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Abstract

Gradient Boosting Decision Trees (GBDTs) and Random Forests (RFs) have been used in
many real-world applications. They are often a standard recipe for building state-of-the-art
solutions to machine learning and data mining problems. However, training and predic-
tion are very expensive computationally for large and high dimensional problems. This
article presents an efficient and open source software toolkit called ThunderGBM which
exploits the high-performance Graphics Processing Units (GPUs) for GBDTs and RFs.
ThunderGBM supports classification, regression and ranking. It uses identical command
line options and configuration files as XGBoost—one of the most popular GBDT and RF li-
braries. ThunderGBM can be used through multiple language interfaces including C/C++
and Python, and can run on single or multiple GPUs of a machine. Our experimental
results show that ThunderGBM outperforms the existing libraries while producing similar
models, and can handle high dimensional problems which existing GPU based libraries
fail. Documentation, examples, and more details about ThunderGBM are available at
https://github.com/xtra-computing/thundergbm.

Keywords: Gradient Boosting Decision Trees, Random Forests, GPUs, efficiency

1. Introduction

Gradient Boosting Decision Trees (GBDTs) and Random Forests (RFs) are widely used
in advertising systems, spam filtering, sales prediction, medical data analysis, and image
labeling (Chen and Guestrin, 2016; Goodman et al., 2016; Nowozin et al., 2013). For ease of
presentation, we use GBDTs as a representative in the remaining of this article, rather than
repeatedly mentioning both GBDTs and RFs. In contrast with deep learning, GBDTs are
simple and relatively easy to explain. The wide use of GBDTs are largely due to the user-
friendly open source toolkits such as XGBoost (Chen and Guestrin, 2016), LightGBM (Ke
et al., 2017) and CatBoost (Prokhorenkova et al., 2018). Additionally, the GBDT has won
many awards in recent Kaggle data science competitions. However, training GBDTs is often
very time-consuming, especially for large and high dimensional problems.

GPUs have been used to accelerate many real-world applications (Dittamo and Cis-
ternino, 2008), due to their abundant computing cores and high memory bandwidth. In
this article, we propose a GPU-based software tool called ThunderGBM to improve the
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Figure 1: Overview of training and prediction in ThunderGBM

efficiency of GBDTs and RFs. ThunderGBM supports binary and multi-class classification,
regression and ranking. It uses the same command line input options and configuration
files as XGBoost—arguably the most popular library for GBDTs. Moreover, ThunderGBM
supports multiple interfaces such as C/C++ and Python, and can run on single or mul-
tiple GPUs of a machine. Our experimental results show that when the existing libraries
running on CPUs, ThunderGBM is 6.4 to 12 times, 4.6 to 26.4 times, and 10.3 times faster
than XGBoost, LightGBM and CatBoost, respectively, while producing similar models. In
comparison with them on GPUs, ThunderGBM is 1 to 6.6 times, 9.6 to 19.5 times and
1.5 times faster than XGBoost, LightGBM and CatBoost, respectively. More importantly,
ThunderGBM can handle high dimensional problems which existing GPU based libraries
fail. The full version of ThunderGBM, which is released under Apache License 2.0, can be
found on GitHub at https://github.com/xtra-computing/thundergbm.

2. Overview and Design of ThunderGBM

Figure 1 shows the overview and software abstraction of ThunderGBM. The training algo-
rithms for different tasks (i.e., classification, regression and ranking) are built on top of a
generic tree construction module. This software abstraction allows us to concentrate on op-
timizing the performance of tree constructions. Different tasks only require different ways
of computing the derivatives of the loss functions. Notably, the multi-class classification
task requires training k trees where k is the number of classes (Bengio et al., 2010; Chen
and Guestrin, 2016), while regression and ranking only require training one tree per iter-
ation. The prediction module is relatively simple, and is essentially computing predicted
values by concurrent tree traversal and aggregating the predicted values of the trees on
GPUs. Here, we focus on the training on single GPU. More details about using multiple
GPUs and the prediction are in Appendix B. We develop a series of optimizations for the
training. For each module that leverages GPU accelerations, we propose efficient parallel
algorithmic design as well as effective GPU-aware optimizations. The techniques are used
to support two major components in ThunderGBM: (i) computing the gradients and second
order derivatives, and (ii) tree construction.
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2.1 Computing the Gradients and Second Order Derivatives on GPUs

The gradients and second order derivatives are computed by the predicted values and the

true values by gi = ∂l(yi,ŷi)
∂ŷi

and hi = ∂2l(yi,ŷi)
∂ŷ2i

, where the gradient and second order derivative

of the loss function are denoted by gi and hi, respectively; l(yi, ŷi) denotes the loss function,
and yi and ŷi denote the true and predicted target value of the i-th training instance,
respectively. ThunderGBM supports common loss functions such as mean squared error,
cross-entropy and pairwise loss (De Boer et al., 2005; Cao et al., 2007; Lin et al., 2014).
More details on loss functions and derivatives are in Appendix A.

Computing gi and hi requires the predicted value ŷi of the i-th training instance, Thun-
derGBM computes ŷi based on the intermediate training results. This is because the training
instances are recursively divided into new nodes and are located in the leaf nodes at the
end of training each tree. Thus, ThunderGBM can obtain the predicted values for each
training instances by reusing this intermediate results, and avoids traversing the trained
trees to obtain the predicted values. To exploit the massive parallelism of GPUs, we create
a sufficient number of threads to efficiently use the GPU resources. Each GPU thread keeps
on pulling a training instance and computes g and h for the instance.

2.2 Tree Construction on GPUs

Tree construction is a key component and time consuming in the GBDT and RF training.
We adopt and extend novel optimizations in our previous work (Wen et al., 2018) to improve
the performance of ThunderGBM. Tree construction contains two key steps: (i) producing
the split point candidates, and (ii) finding the best split for each node.

Step (i): ThunderGBM supports two ways of producing the split point candidates: one
based on enumeration and the other based on histograms. The former approach requires
the feature values of the training instances to be sorted in each tree node, such that it
can enumerate all the distinct feature values quickly to serve as the split point candidates.
However, the number of split point candidates may be huge for large data sets. The later
approach considers only a fixed number of split point candidates for each feature, and each
feature is associated with a histogram containing the statistics of the training instances.
Each bin of the histogram contains the values of the accumulated gradients and second
order derivatives for all the training instances located in the bin. In ThunderGBM, each
histogram is built in two phases. Firstly, a partial histogram is built on the thread block level
using shared memory. Secondly, all the partial histograms of a feature are accumulated to
construct the final histogram. ThunderGBM automatically chooses the split point candidate
producing strategies based on the data set density, i.e., histograms based approach for dense
data sets and enumeration based approach for the others. The density is measured by

total # of feature values
# of instances×# of dimensions . If the ratio is large than 20%, we choose the histogram based
approach; choose the enumeration based approach otherwise.

Step (ii): Finding the best split is to look for the split point candidate with the largest
gain. The gain (Chen and Guestrin, 2016) of each split point candidate is computed by

gain = 1
2

[
G2

L
HL+λ

+
G2

R
HR+λ −

(GL+GR)2

HL+HR+λ

]
, where GL and GR (resp. HL and HR) denote

the sum of gi (resp. hi) of all the instances in the left and right node, respectively; λ is
the regularization constant. In ThunderGBM, one GPU thread is dedicated to compute
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data set on two cpus (sec) on the gpu (sec) speedup (on cpus) speedup (on gpu)

name card. dim. xgb lgbm cat xgb lgbm cat ours xgb lgbm cat xgb lgbm cat

higgs (reg) 11M 28 44.6 77.4 67.9 9.9 80.8 10.1 6.6 6.8 11.7 10.3 1.5 12.2 1.5

log1p (reg) 16K 4M oom 676 oom oom 337 oom 25.6 n.a. 26.4 n.a. n.a. 13.2 n.a.

cifar10 (clf) 50K 3K 521 456 lerr 124 785 lerr 81.5 6.4 5.6 n.a. 1.5 9.6 n.a.

news20 (clf) 16K 62K 198 222 oom 109 321 oom 16.5 12 13.5 n.a. 6.6 19.5 n.a.

yahoo (rnk) 473K 700 18.8 11 n.a. 2.4 29.4 n.a. 2.4 7.8 4.6 n.a. 1.0 12.3 n.a.

Table 1: Comparison with XGBoost, LightGBM and CatBoost

the gain of each split point candidate. The split point candidate with the largest gain
is selected as the best split point for the node, which is done by a parallel reduction on
GPUs. Once the best split point is obtained, the training instances in a node is divided into
two child nodes. For producing the split point candidates by enumeration, ThunderGBM
adopts the novel order preserving data partitioning techniques on GPUs proposed in our
previous work (Wen et al., 2018), i.e., the feature values of the child nodes can be sorted
more efficiently. For producing the split point candidates using histograms, a GPU thread
is dedicated to determining which child node a training instance should go to based on the
best split point. ThunderGBM repeats Step (i) and (ii) until the termination condition is
met (e.g., the tree reaches the maximum depth).

3. Experimental Studies

We conducted experiments on a workstation running Linux with two Xeon E5-2640 v4 10
core CPUs, 256GB memory and a Tesla P100 GPU of 12GB memory. The tree depth is
set to 6 and the number of trees is 40. More results on experiments and descriptions about
the data sets can be found in Appendix C. Five representative data sets are used here (cf.
Table 1). The data sets for testing regression, classification and ranking are marked with
“reg”, “clf” and “rnk”, respectively. We used the latest versions of XGBoost (Chen and
Guestrin, 2016), LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018)
on 10 Jan 2019, respectively.

The results are shown in Table 1, where “oom” stands for “out of memory”, “lerr”
stands for “large training error” and “n.a.” stands for “not applicable”. When the existing
libraries are running on CPUs, ThunderGBM is 6.4 to 12 times, 4.6 to 26.4 times, and
10.3 times faster than XGBoost, LightGBM and CatBoost, respectively. When they are on
GPUs, ThunderGBM is 1 to 6.6 times, 9.6 to 19.5 times, and 1.5 times faster than XGBoost,
LightGBM and CatBoost, respectively. Moreover, ThunderGBM can handle high dimen-
sional problems (e.g., log1p) which the existing libraries fail or run slowly. ThunderGBM
has smaller or comparable errors to the existing libraries (cf. Appendix C).

4. Conclusion

In this article, we present ThunderGBM which supports classification, regression and rank-
ing. To be easy to use, ThunderGBM uses identical input command line options and
configuration files as XGBoost, and supports the Python interface. Our experimental re-
sults show that ThunderGBM outperforms the existing libraries while producing similar
models, and can handle high dimensional problems which the existing libraries often fail.
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Appendix A. Loss functions of regression, classification and ranking

In this section, we describe different loss functions used in ThunderGBM in order to sup-
port regression, classification and ranking. We also derive the gradient and second order
derivative of each loss function, because the gradients and the second order derivatives play
key roles in the GBDT training.

ThunderGBM supports the following loss functions: mean square error, logistic loss (Collins
et al., 2002), cross-entropy loss (Moher and Gulliver, 1998), pairwise loss and NDCG
loss (Ravikumar et al., 2011). Please note that for providing more information about the loss
functions and to keep consistent with XGBoost, we use a special case of cross-entropy for
logistic regression, and call the corresponding loss “logistic loss” similar to XGBoost (Chen
and Guestrin, 2016).

A.1 Mean square error

The mean square error is used in regression in ThunderGBM. The option for the objective
function is “reg:linear” following the convention of XGBoost which is arguably the most
popular library for GBDTs and Random Forests. The goal of the training is the same as
linear regression. The mean square error is defined as follows.

l(yi, ŷi) =
1

2
(yi − ŷi)2

where yi and ŷi are the true target value and the predicted target value of the i-th training
instance, respectively. Then, the gradient and second order derivative are (yi − ŷi) and 1,
respectively.

A.2 Logistic loss

Logistic loss can be used in binary classification or regression for applications with tar-
get values between 0 and 1 (i.e., yi ∈ [0, 1]). The option for the objective function is
“reg:logistic” in ThunderGBM similar to XGBoost. The goal of the training is the same as
logistic regression, and aims to minimize the logistic loss which is defined as follows.

l(yi, ŷi) = −yi log(pi)− (1− yi) log(1− pi)

where pi = 1
1+e−ŷi

. To help compute the gradient and second derivative of the loss function,
we first compute the derivative of pi below.

∂pi
∂ŷi

=
e−ŷi

(1 + e−ŷi)2
= (1− pi)pi

The derivative of the loss function is derived as follows.

∂l(yi, ŷi)

∂ŷi
= −yi ·

1

pi
· p′i − (1− yi) ·

−1

1− pi
· p′i

By substituting the derivative of pi into the above equation, we obtain ∂l(yi,ŷi)
∂ŷi

= pi − yi.
The second order derivative of the loss function is ∂(pi−yi)

∂ŷi
= (1− pi)pi.
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A.3 Cross-entropy loss

This loss is similar to logistic loss, but is used in the multi-class classification problems
in ThunderGBM. The option for choosing this objective function is “multi:softmax” or
“multi:softprob”. The “multi:softprob” option has the same objective function as “multi:softmax”,
but the predicted value is a probability instead of a class label. Next, we present the loss
function and derive its derivative. The cross-entropy loss is defined as follows.

l(yi, ŷi) = −
∑
k

yki log(pki ) (1)

where k is the identifier of the k-th class and i is the identifier of the i-th training instance.
Similar to the logistic loss, to help derive the gradient and second order derivative of the
loss function, we first derive the derivative for the softmax function defined below.

pki =
eŷ

k
i∑K

m=1 e
ŷmi

where K is the total number of classes. For ease of presentation, we ignore the subscript i
which is the identifier of the i-th training instance. Then, we can write the above softmax

function as pk = eŷ
k∑K

m=1 e
ŷm

. The derivative of the function is shown below.

∂pk

∂ŷm
=
∂ eŷ

k∑K
m=1 e

ŷm

∂ŷm

There are two cases for computing the derivative of the softmax function: k = m and
k 6= m. We first consider k = m.

∂pm

∂ŷm
=
∂ eŷ

m∑K
m=1 e

ŷm

∂ŷm
=
eŷ

m ∑K
m=1 e

ŷm − eŷmeŷm

(
∑K

m=1 e
ŷm)2

=
eŷ

m∑K
m=1 e

ŷm
·
∑K

m=1 e
ŷm − eŷm∑K

m=1 e
ŷm

As k = m, the derivative derived from above can be written as ∂pk

∂ŷm = pk(1− pm).

If k 6= m, the derivative of the softmax function pk is shown below.

∂pk

∂ŷm
=

0− eŷkeŷm

(
∑K

m=1 e
ŷm)2

= − eŷ
k∑K

m=1 e
ŷm
· eŷ

m∑K
m=1 e

ŷm
= −pk · pm

The two cases (i.e., k = m and k 6= m) can be written together as follows.

∂pk

∂ŷm
= pk(δkm − pm) (2)

where

δkm =

{
1, if k = m

0, otherwise
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Now, we derive the gradient for the cross-entropy loss.

∂l(y, ŷm)

∂ŷm
= −

∑
k

yk · ∂log(pk)

∂ŷm
= −

∑
k

yk · 1

pk
· ∂p

k

∂ŷm

From the derivative of the softmax function in Equation (2), we have the following.

∂l(y, ŷm)

∂ŷm
= −ym(1− pm)−

∑
k 6=m

yk
1

pk
(−pk · pm) = −ym(1− pm) +

∑
k 6=m

ykpm

= −ym + ympm +
∑
k 6=m

ykpm = pm(ym +
∑
k 6=m

yk)− ym

As
∑

k y
k = 1, so we have ∂l(y,ŷm)

∂ŷm = pm − ym. The second order derivative is ∂2l(y,ŷm)
∂2ŷm

=

pm(1−pm). In our implementation, a common normalization technique is used in computing
pi.

pki =
eŷ

k
i∑K

m=1 e
ŷmi

=
Neŷ

k
i

N
∑K

m=1 e
ŷmi

=
eŷ

k
i +log(N)∑K

m=1 e
ŷmi +log(N)

The term log(N) is computed by log(N) = −max(ŷki ).

A.4 Pairwise loss and NDCG loss

Here, we present the loss functions used for ranking in ThunderGBM. In order to describe
the loss functions, we define the true probability of a pair of training instances with indices
i and j as follows.

Pij =
1

2
(1− Sij)

where Sij = −1 if the i-th training instance is less relevant than the j-th training instance,
Sij = +1 if the i-th training instance is more relevant than the j-th training instance, and
Sij = 0 if the two training instances are the same.

We define the predicted probability of the pair of instances as follows.

P̂ij =
1

1 + e−σ(si−sj)

where σ is a hyper-parameter, and si and sj are the predicted scores of the ranking functions
for the i-th and j-th training instance, respectively.

Following the existing literature (Burges, 2010), ThunderGBM also uses the cross-
entropy loss defined below for ranking problems.

Cij = −Pij log(P̂ij)− (1−Pij) log(1− P̂ij) =
1

2
(1−Sij)σ(si− sj) + log(1 + e−σ(si−sj)) (3)

The derivatives over si and sj are shown below.

∂C

∂si
= −∂C

∂sj
= σ(

1

2
(1− Sij)−

1

1 + eσ(si−sj)
)
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Please note that the derivatives over si and sj have the same absolute value, and the only
difference is their signs. For ease of presentation, we define λij as follows.

λij =
∂C

∂si
= σ(

1

2
(1− Sij)−

1

1 + eσ(si−sj)
)

Existing studies (Burges et al., 2007) show that adding the learning metric into the derivative
helps achieve good results. The λij defined above can be simulated using the following
equation.

λij = − σ

1 + eσ(si−sj)
· |∆Zij |

where |∆Zij | is the value of the metric (e.g., NDCG). Please note that only Sij = 1 is
considered in the above definition of λij .

The second order derivative of the loss function (cf. Equation 3) is as follows.

λ′ij =
∂λij
∂si

=
−σ · eσ(si−sj) · σ
(1 + eσ(si−sj))2

· |∆Zij | = −σ2 · |∆Zij | ·
1

1 + eσ(si−sj)
· (1− 1

1 + eσ(si−sj)
)

Then the gradient of the i-th instance is computed as follows.

gi =
∑
{i,j}∈I

λij −
∑
{j,i}∈I

λji

where I is the set of all pairs of the training instances. Similarly, we can compute the second
order derivative for the i-th instance hi = 2 ·

∑
{i,j}∈I λ

′
ij . In ThunderGBM, |∆Zij | equals

to 1 when the objective function is pairwise loss; |∆Zij | equals to the change of NDCG
when the objective function is NDCG loss.

Appendix B. Multiple GPU Support and the Prediction Algorithm

ThunderGBM supports multiple GPUs and parallel prediction. Next, we elaborate the
details for these two components.

B.1 Training on Multiple GPUs

One of the key limitations of GPUs is that the global memory size is relatively small (e.g.,
12GB) compared with the size of main memory. A machine nowadays can have multiple
GPUs, and commonly can host two to four GPUs. ThunderGBM can leverage multiple
GPUs to train models on larger data sets that can fit into multiple GPUs. It supports a
simple and effective approach for GBDT training on multiple GPUs. In particular, we parti-
tion the training data by features to handle large data sets (i.e., column based partitioning).
There are two advantages of the feature based partitioning. First, both enumeration based
and histogram based techniques for split point candidate production are natively supported.
Producing the split point candidates of a feature requires accessing all the values of the fea-
ture. Storing all the feature values of a feature in one GPU helps perform finding the
split points more communication efficiently. The second advantage is that the GPUs do
not need to exchange the partial histograms in order to find the approximate split points,
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data set cardinality dimension

covetype 581012 54

e2006 16087 150361

higgs 1.1x107 28

ins 13184290 35

log1p 16087 4272228

news20 19954 1355191

real-sim 72201 20958

susy 5x106 18

Table 2: Information of data sets used in the experiments

since all the feature values of a feature are stored locally and the GPU can build the whole
histogram. Hence, the GPUs only need to exchange the local best split point candidates in
order to obtain the global best split point candidates for the tree nodes. This reduces the
communication cost from O(N ×F ×B) to O(N ×F ), where N is the number of tree nodes
needed to split, F is the number of features in the training data set and B is the number
of bins of the histograms. The intuition is that a histogram is replaced by a local best split
point when communicating to other GPUs.

B.2 The Parallel Prediction Algorithm

The prediction module in ThunderGBM is relatively simple, because the prediction mainly
involves tree traversal. ThunderGBM supports different types of tasks including classifica-
tion, regression and ranking. These tasks are designed in a unified prediction algorithm:
traversing the decision trees to obtain the predicted value of an input instance. In Thun-
derSVM, we perform the prediction by concurrently traversing multiple decision trees for
multiple input instances.

Appendix C. Additional experimental results

Experimental setup. We used six more publicly available data sets as shown in Table 2, and
higgs and log1p have been used in our main text. The data sets were downloaded from the
LibSVM website. The data sets cover a wide range of the cardinality and dimensionality.
The experiments were conducted on a workstation running Linux with two Xeon E5-2640v4
10 core CPUs, 256GB main memory and one Pascal P100 GPU of 12GB memory. Each
program was compiled with the -O3 option. ThunderGBM was implemented in CUDA-C.
The default tree depth is 6 and the number of trees is 40. The total time measured in all
the experiments includes the time of data transfer via PCI-e bus.

Comparison. We compare ThunderGBM with well-known GBDT libraries, namely XG-
Boost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova
et al., 2018). We used the latest versions of XGBoost (Chen and Guestrin, 2016), Light-
GBM (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018) on 10 Jan 2019, respec-
tively. The libraries support both CPUs and GPUs, hence we compare ThunderGBM with
both versions of the libraries. Although ThunderGBM supports other loss functions, the
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Figure 2: Comparison with XGBoost, LightGBM and CatBoost on the GPU

loss function in our experiments for all the libraries (including ThunderGBM) is the mean
squared error: l(yi, ŷi) =

∑
i (yi − ŷi)2.

C.1 Overall performance study

This set of experiments aims to study the improvement of execution time of ThunderGMB
over the existing libraries XGBoost, LightGBM and CatBoost. We first present the im-
provement of ThunderGBM over the three libraries on the GPU, and then we present the
improvement of ThunderGBM over them on CPUs. We show that ThunderGBM running
on the GPU significantly outperforms the three existing libraries on the GPU or the CPU.
Finally, we compare the Root Mean Squared Error (RMSE) of the libraries against Thun-
derGBM to study the quality of the trained models. Some results shown here are from our
previous work (Wen et al., 2019).

C.1.1 Execution time comparison on the GPU

We measured the total time (including data transfer from main memory to GPUs via PCI-e
bus) of training all the trees for ThunderGBM, XGBoost, LightGBM and CatBoost. During
training, the split point candidates are found using the histogram based method, as Light-
GBM and CatBoost only support producing the split point candidates using histograms.

The results of the four GPU implementation of GBDTs are shown in Figure 2. The first
observation is that ThunderGBM can handle all the data sets efficiently, and outperforms
all the existing libraries. In comparison, XGBoost and CatBoost cannot handle high di-
mensional data sets such as e2006, news20 and log1p (marked with “n/a”). This is because
the GPU versions of XGBoost and CatBoost do not make use of data sparsity, which leads
to running out of GPU memory. Moreover, XGBoost took 27 seconds to handle real-sim
which CatBoost cannot handle. ThunderGBM can handle real-sim 15 and 40 times faster
than XGBoost and LightGBM, respectively. The GPU version of LightGBM is more reli-
able than XGBoost and CatBoost and can handle all the data sets. However, LightGBM
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Figure 3: Comparison with XGBoost, LightGBM and CatBoost on CPUs

on the GPU is inefficient, and ThunderGBM outperforms it by more than 10 times on the
data sets.

C.1.2 Execution time comparison on CPUs

We study the speedup of ThunderGBM on the GPU over XGBoost, LightGBM and Cat-
Boost on CPUs. Note that the number of CPU threads (i.e., 40 threads) in XGBoost is
automatically selected by the XGBoost library. We have also tried XGBoost with 10, 20,
40 and 80 threads, and found that using 40 threads results in the shortest execution time
for XGBoost in the 8 data sets. Similarly for LightGBM and CatBoost, the number of CPU
threads is chosen automatically by the libraries.

The results of the three libraries on CPUs are shown in Figure 3, in comparison with
ThunderGBM running on the GPU. Among the three libraries, LightGBM is more reliable
compared with XGBoost and CatBoost. XGBoost runs out of memory on the log1p data
set, while CatBoost runs out of memory on e2006 and news20 besides log1p. ThunderGBM
is more than 10 times faster than LightGBM on all the data sets. For the real-sim data
set, ThunderGBM achieves nearly 60 and 100 times speedup over LightGBM and XGBoost,
respectively.

C.2 Handling high dimensional data

Here, we further investigate the memory consumption of ThunderGBM in comparison with
XGBoost, LightGBM and CatBoost on e2006, news20 and log1p. As XGBoost and Cat-
Boost run out of memory for the data sets, we analyze the memory consumption of Thun-
derGBM and the other libraries. The memory for storing the training data sets are shown
in Table 3. XGBoost and CatBoost require much more memory than LightGBM and Thun-
derGBM, because XGBoost and CatBoost use dense data representation while LightGBM
and ThunderGBM use sparse data representation. Although LightGBM is as memory effi-
cient as ThunderGBM, ThunderGBM is an order of magnitude faster than LightGBM as
shown in Figure 2 and 3.

11



Wen, Shi, He, Li and Chen

data set XGBoost LightGBM CatBoost ThunderGBM

e2006 9GB 76MB 9GB 76MB

log1p 256GB 0.4GB 256GB 0.4GB

news20 101GB 4.9MB 101GB 4.9MB

Table 3: Memory consumption comparison

data set
xgboost lightgbm catboost thundergbm measure

name card. dim.

higgs (reg) 11M 28 0.42 0.42 0.43 0.42
rmse

log1p (reg) 16,087 4,272,228 n.a. 0.29 n.a. 0.24

cifar10 (clf) 50,000 3,072 0.83% 2.18% 45.22% 0.82% prediction
error ratenews20 (clf) 15,935 62,061 4.04% 5.68% n.a. 3.78%

yahoo (rnk) 473,134 700 0.882 0.903 n.a. 0.884 ndcg

Table 4: Training result comparison

C.3 Training error comparison

We study the quality of trees learnt by different libraries in this set of experiments. In this
set of experiments, we first investigate the training errors for the data sets listed in the main
text. Then, we study the training errors using more data sets shown in Table 2 beyond the
listed data sets.

We compare the training errors for the data sets shown in the main text. The results are
shown in Table 4, where “n.a.” stands for “not applicable”. We used RMSE to measure the
regression tasks (marked with “reg”), used prediction error rate to measure the classification
tasks (marked with “clf”), and used NDCG to measure the ranking task (marked with
“rnk”). ThunderGBM obtains better or comparable results to the existing libraries.

Next, we study the differences among different libraries using eight data sets in total.
We use RMSE to measure the training error of different models. Table 5 shows the results.
ThunderGBM produces similar RMSE as XGBoost and LightGBM. CatBoost tends to have
higher training errors.

data set xgboost lightgbm catboost thundergbm

covtype 0.72 0.64 0.86 0.72

e2006 0.25 0.29 n.a. 0.25

higgs 0.42 0.42 0.43 0.42

ins 38.70 38.70 38.80 38.70

log1p n.a. 0.29 n.a. 0.24

news20 0.49 0.35 n.a. 0.49

real-sim 0.47 0.37 0.52 0.47

susy 0.37 0.37 0.37 0.37

Table 5: RMSE comparison with XGBoost, LightGBM and CatBoost

12



ThunderGBM: Fast GBDTs and Random Forests on GPUs

data set
elapsed time (sec) RMSE

xgboost (cpu) xgboost (gpu) thundergbm xgboost thundergbm

covtype 1.97 0.48 1.29 1.09 1.04

higgs 54.61 9.21 6.54 0.46 0.45

ins 52.99 10.47 5.3 38.99 38.98

susy 21.59 lerr 3.16 0.39 0.39

Table 6: Comparison on training Random Forests

C.4 Training Random Forests

Only XGBoost and ThunderGBM support RFs. Therefore, we only compare ThunderGBM
with XGBoost in terms of RMSE and execution time. The results are shown in Table 6,
where “lerr” stands for “large error”. ThunderGBM produces similar or better RMSE than
XGBoost on CPUs. XGBoost on GPUs results in large RMSE in some data sets (e.g.,
RMSE is 0.9 on the susy data set). In terms of efficiency, ThunderGBM is 1.5 to 10 times
faster than XGBoost on CPUs. The improvement of ThunderGBM is more notable for
large data sets such as higgs and ins. ThunderGBM is generally faster and more stable
than XGBoost on GPUs as we can see from the results.

C.5 Prediction

ThunderGBM has similar efficiency as the other existing libraries.
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