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Abstract

One of the most challenging multi-discipline/multimodal
task is arguably Visual Question Answering (VQA), which
combines Computer Vision (CV), Natural Language Pro-
cessing (NLP) and Knowledge Representation & Reason-
ing (KR) in one. Completing such task in a single model
may further enable the ability of a machine to perform gen-
eral intelligent action, achieving Al-complete task with a
well-defined evaluation metric. However, producing VQA
datasets with high-quality, which the existing VOA models
heavily rely on, takes a large amount of human effort. As
the result, the potential of existing VQA models is severely
constrained by the scale of available VQA datasets.

In this paper, we propose Gen-VQA', a novel generative
VQA model, designed from the ground up, based on Text-
to-Image generative adversarial networks (GANs) and ba-
sic VOQA model (LSTM + CNNs). The proposed generative
VQA (Gen-VQA) augments the training process by feeding
training data as well as synthetic data to the basic VQA
module consecutively, aiming to improve its robustness to
noises and accuracy to answers. Our experiments show that
the Gen-VQA architecture is more efficient than basic VQA
during the process of inference, using a resnetl8 inspired
network, it can achieve comparable accuracy to the basic
VOQA using a deeper and more complex resnet50.

1. Introduction

Multi-discipline research which combines Computer Vi-
sion (CV), Natural Language Processing (NLP) and Knowl-
edge Representation & Reasoning (KR) could be a big leap
towards the next generation Al algorithms. Such belief
is supported by the argument that capturing multi-modal
knowledge beyond a single sub-domain may further enable
the ability of a machine to perform general intelligent ac-
tion, achieving Al-complete task with a well-defined eval-
uation metric. To this end, the task of Visual Question An-
swering (VQA) has been proposed in 2015 [4]. As shown
in Figure 1, it takes an image and natural language ques-
tion as inputs, and produces a natural language answer as
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Question : Is this a color photo?

Original Image | no

Complementary Image | yes

Question : What is hanging on the wall above the headboard?

Original Image | pictures

Complementary Image | lamp

Figure 1: Examples of VQA datasets collected via Amazon
Mechanical Turk [4].

the output. However, there are many challenges and diffi-
culties of in solving the VQA task: It requires a model to
understand and reason about visual-linguistic concepts, and
demands numerous capabilities compared to single-modal
model, including object localization, attribute detection, ac-
tivity classification, scene understanding, reasoning, count-
ing, and etc [24]. More importantly, high-quality labeled
VQA datasets are scarce, as it take a large amount of hu-
man effort to label them. Although most of the current VQA
models have large model capacity, there is not enough data
for training. For example, the VQAv2 [1] datasets contains
82783 real-world training images for VQA task. However,
datasets such as ImageNet [14] have more than 1.2 million
training images for classification. Therefore, the input and
output of various VQA models generally limit to a small set
where the probability distribution of the predicted answers
are on a fixed space made by the most common answers
of the used datasets [25]. Up to date, a high accurate and
efficient VQA model is not yet to be realized [32].

In this paper, we introduce a generative learning strategy
to overcome the issue of data scarcity, which is motivated
by the previous success of generative adversarial learning
in many computer vision problems [31, 5]. We particularly
frame the task as a generative learning process as we si-
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multaneously train the generator and VQA module. In our
model, the generative module produces synthetic images
based on the question, answer and images from the VQA
training datasets, and the VQA module leverages the syn-
thetic image from the generator, the real image from the
datasets, as well as training questions to yield an answer.

To simplify our model, we constrain the questions to
be multiple-choice which only requires the model to pick
from a predefined list of possible answers, rather than giv-
ing open-ended and free-form response as it was originally
proposed [4]. Furthermore, we constrained our training data
within abstract scene of VQA datasets for faster preprocess-
ing and faster training giving the limited computation re-
sources on our hands.

Our main contribution in this work is to develop a gen-
erative VQA model that enables compelling and effective
question answering with given abstract scenes. The pro-
posed generative VQA (Gen-VQA) is designed from the
ground up, based on Text-to-Image generative adversarial
networks [20] and basic VQA model [4]. Our Gen-VQA
augments the training process by feeding training data as
well as synthetic data to the basic VQA module consecu-
tively, and our experiments show that the Gen-VQA archi-
tecture is much more efficient than basic VQA, as it has
equivalent accuracy using resnetl8, compared to the ba-
sic VQA model with a much deeper and more complex
resnet50.

2. Related Work
2.1. VQA Datasets

VQA is initially proposed as a ”Visual Turing Test” [8],
and its format has very soon been accepted as the basis
for many datasets and benchmarks since 2015. A num-
ber of general datasets, based on MSCOCO images, have
been introduced over the past four years, including CO-
COQA [21], Baidu-FM-IQA [7], VQA [4], Visual7W [34],
and etc. Here, we briefly review some of the most popular
datasets previously used for training and testing.

VQAvV1/VQAv2. VQAVI [4] is one of the earliest, open-
ended form of VQA datasets collected from human label-
ing, but it has multiple kinds of language biases, includ-
ing few reasoning questions and more detection questions.
Therefore, VQAv2 [10] was proposed to mitigate the bi-
ases by collecting complementary images per question that
result in different answers. Though the biases are not com-
pletely resolved, both dataset is the de facto benchmark for
natural image VQA task.

CLEVR [11] is the synthetic generated dataset using
ground-truth programs within modular networks for com-
positional language and elementary visual reasoning. It’s
similar in spirit to the SHAPES dataset [3], but more com-
plex and varied both in terms of visual content and ques-

tion variety and complexity. The images have associ-
taed ground-truth object locations and attributes, and the
questions have an associated machine-readable form, test-
ing abilities such as counting, comparing, logical reason-
ing, and storing information in memory. Later, CLEVR-
Human [12] and CLEVR-CoGenT [22] were created to
expand the original datasets.

2.2. VQA Algorithms/Models

We briefly review the progress and recent studies on
VQA, paying special attention to the model/architecture de-
velopment for better answering accuracy.

Multimodal Fusion Model. Many basic VQA models
combine CNNSs (convolutional neural networks) and Long
Short-Term Memory (LSTM) networks to extract the global
features/patterns in the image and question, and then fuse
the features to output the answer [2, 7, 16]. Some mod-
els introduce a more complex model to learn faster and
better question’s representations with LSTM and Tanh net-
works [1], or a better multimodal fusion with residual net-
works [13].

Image Attention VQA. Recently proposed models,
therefore, also take into the account of attention mecha-
nisms for text-guided analysis of images, where the atten-
tion is learned by using neural networks that predict which
regions of the image are useful, only extracting features
from those regions, and then performing multimodal feature
fusion to obtain the accurate prediction [27, 29, 23, 26, 32].

Co-attention VQA. Beyond understanding the visual
contents of the training image, VQA also requires to under-
stand the semantics of the natural language question. There-
fore, it is also necessary to learn the textual attention for the
question, as well as the visual attention for better accuracy
and performance of the VQA task. Co-attention model is
then introduced, where the neural networks not only predict
which regions of the image, but also which word in the sen-
tence are useful or not for accurate answering [15, 17, 18].

2.3. Generative Adversarial Text to Image Synthesis

In recent years, generic and powerful recurrent neural
network (RNN) have been developed to process sequences
of inputs and thus to learn text feature representations dis-
criminately [30]. Meanwhile, deep convolutional genera-
tive adversarial networks (GANSs) have begun to generate
highly realistic images that are at least superficially authen-
tic to human observers [6]. GANs consist of a generator G
and a discriminator D that compete in a two-player minimax
game: The discriminator tries to distinguish real training
data from synthetic images, and the generator tries to fool
the discriminator. Specifically, D and G play the minimax



game in the following manner [9]:
minmax V(D, G) = Egp,,,, (o) log D)+
Eznp.(»[log(l — D(G(2)))]

It has been proved that this minimax game has a global op-
timium when py = pgqtq, and when G and G have enough
capacity p, converges to pgaze.  Novel architecture us-
ing deep convolutional generative adversarial network (DC-
GAN) has been proposed to generate images conditioned on
text features [28, 33, 20], which inspired us to use a gener-
ative training strategy for the VQA task.

D

3. Approach

Inspired by the generator-discriminator architecture of
GANSs, our generative visual question answering (Gen-
VQA) is also comprised of two major modules: the genera-
tor and the VQA. The architecture of Gen-VQA is shown
in Figure 2. The generator takes the embeddings of the
question-answer pair, the high level feature of the image,
and also random noise as input, and then generates a syn-
thetic image that corresponds to the question-answer pair.
The VQA module is trained not only with real image-
question pair but also with the synthetic/fake images. This
real/synthetic image is fused with the embedding of the
question, and fed toward the VQA module to produce an
answer label. After training, we turn the generator module
off, and then use the VQA module for testing and validation.
This generative approach can be seen as data-augmentation
that augments the original datasets with question informa-
tion and noise perturbation. The following sections will be
focusing on laying out the details of our architecture.

For the generator, we first use word2vec that takes a
large corpus of text in the VQA datasets as input and pro-
duces a vector space as word embeddings. Each unique
sentence in the corpus is being assigned a corresponding
vector in the high dimensional embedding space. Note that
the text from question and answer will go through two sepa-
rate word2vec projections to differentiate their vector space.
After the word embeddings for the text in question and an-
swer are produced and concatenated to one vector, we feed
this vector into a LSTM block, a fully-connected layer with
Tanh activations, as the question-and-answer encoder. With
the question-and-answer feature from the encoder, random
gaussian noise, and the image features from the resnetl8
feature extractor in VQA model, which is pretrained on Im-
ageNet, are concatenated together and sent to the image
generator block that we built. Inspire by resnet, the im-
age generator architecture from low-dimensional vector to
high resolution images consists of a series of resnet block
and upsample layer. De-convolution and regular convolu-
tion is used at the first and last layer to expand and shrink
the number of channel of the features. The image generator

will upsample the input and produce a 224 %224 synthetic
image as an output. The detailed architecture of our gener-
ator is shown in Figure 3.

The generator module’s loss function has three
terms [20]: the first term is the regular cross entropy loss
between the right answer and the answer generated by the
synthetic image; the second term is feature matching loss,
which measures the distance between the real and generated
images’ statistics by comparing intermediate layers activa-
tions; the third term is L1 pixel-wise distance between the
generated and real images, which further constrains the gen-
erated image scene to be close to the source image.

For our VQA module, it’s similar to the Multimodal Fu-
sion Model (basic VQA model [4]) except we are feeding it
with real image and synthetic image consecutively. The im-
age is forwarded to the pretrained resnet18 feature extractor
which produces the global features of that image. The em-
beddings of the question are directly connected to a newly
initiated LSTM and Tanh block from the generator to en-
code the question. This is because the relationship among
words may be different in the case of individual question
and question-answer pair. Later, the question features and
image features are fused by element-wise matrix multipli-
cation, passing through a fully-connected layer, the VQA
module then outpus the answer label corresponding to the
question based on the image.

The loss for the VQA module is calculated based on the
difference between the produced answer (by both the real
image and the synthetic image) and the correct answer in
the training datasets using cross entropy loss. With such
loss calculation, the VQA model constrains the generator to
generate images that can help the VQA module in produc-
ing correct answer, while the VQA module can be regarded
as a basic VQA model except it also takes the synthetic im-
ages generated by the generator as data.

4. Experimental Results
4.1. Resnet Inspired Image Generator

Generating high-resolution images of ImageNet size
(224x224) is quite challenging and relies on deep convolu-
tional neural networks. However, the deep CNNs are hard to
train because of gradient vanishing and exploding. There-
fore, we tackle the problem by introducing resnet block into
the image generator in replacement of conventional DC-
GAN architecture to train a deep convolutional generator.

To test that resnet is indeed a working neural net-
work architecture for text-to-image generation, we first bor-
row an existing pytorch implementation of Text-to-Image
GANSs [20] and change the generator and discriminator net-
work to a resnet inspired network. The generator network
is built upon several resnet BasicBlocks, Upsample, Batch-
Norm, ReLU, Conv2d, and Tanh layers. While the discrimi-
nator network is built like a mirror architecture except it em-
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Figure 2: Architecture for Generative Visual Question Answering.
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ploys Downsample instead of Upsample layers in-between
BasicBlocks, where the Downsample is the standard stride
2 3x3 convolution in resnet. Using Oxford-102 Flowers
datasets [19] and training for 80 epochs, we have the result
(in 64x64 size) in Figure 4.

Figure 4: On the left are the synthetic flower images gen-
erated by the resnet inspired Text-to-Image GANs, on the
right are the real flower images in the datasets

Our resnet inspired Text-to-Image GANSs suffers slightly
on model collapse, where the generator produces limited
modes of synthetic flower images although the inputs are
different. The reason of which, we suspect, are threefolded:
First, resnet is a more complex and deep network archi-
tecture, using small image datasets like Flowers (which is
64 x 64 pixels for each image) may leads to model overfit-
ting and thus model collapse. Second, the last layer of the

discriminator doesn’t have convolutions, which forbids the
information in different channels to mix. Third, though the
generator and discriminator have mirror-like resnet struc-
tures, their loss functions are defined differently in the
model. The generator has cross entropy loss, feature match-
ing loss, as well as L1 distance loss between real and fake
images, while the discriminator only has loss between out-
puts and labels. The better defined loss function with more
strict constraints for the generator leads to its faster training
and, therefore, to its domination in the minmax game before
our GANSs find the global optimal.

In order to solve the model collapse issue, we don’t fur-
ther make the generator model deeper or wider when the
generation target is 224x224. In this way the generator is
less likely to suffer from overfitting. We also change the
learning strategy of generator and discriminator. The learn-
ing rate of discriminator is twice as the generator’s, making
the learning process asymmetric.

4.2. Gen-VQA Optimizations

Now we implement the Gen-VQA model as illustrated in
Figure 2 and 3. First, we only use embedding and features
of the question-and-answer pairs in the VQA datasets to
train the generator module in the Gen-VQA, after 10 epoch
we have the result in Figure 5.

We found that all the generated abstract scenes are iden-
tical, and we suspect this is because the word2vec networks
in our model are randomly initialized, and there is no ex-
plicit loss term to capture this deviation. Thus, even with
different question-and-answer pairs, word2vec networks
will always have similar output features thus identical gen-
erated abstract scenes. This suggests that the question-
answer constraints are insufficient for the text to image
GANs. To overcome such issue, we concatenate not only
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Figure 5: On the top are the synthetic abstract scenes gen-

erated by the resnet based generator in Gen-VQA with

question-and-answer pair embeddings, on the bottom are
the real images in the datasets.

Figure 6: On the top are the synthetic abstract scenes gener-
ated by the resnetl18 based generator in Gen-GANs, where
the question-and-answer pair embeddings as well as real
image features are the inputs, on the bottom are the real
images in the datasets

the question-and-answer pair’s features, but also the real ab-
stract scene features from a pretrained resnetl8 (which is
always fixed during training). The image features serve as
a better initialization point and constraint to the generated
image.

With image features, we were able to generate synthetic
abstract scene images that are much closer to the input ab-
stract scenes in VQA datasets in Figure 6. However, the
upper half of the synthetic images have the same grey-like
color regardless of the input image features. We print the
RBG values of generated images and real images and find
out that the real images have pixel value outside of (—1,1)
range. The Tanh layer in the image generator, however,
clips the generated output image to range (—1, 1), which
causes the color of the generated image to set in a fix re-
gion. Therefore, we decided to remove the Tanh layer in
the generator, and indeed, after doing that the upper half
images become discriminative with respect to different in-
put images as illustrated in Figure 7.

Another observation from Figure 7 is that since the fea-
ture from the resent18 is very high level (features from the
last layer of resnet before going through fully-connected
layer), the generated synthetic images only contain the low-

Figure 7: On the top are the synthetic abstract scene VQA
images generated without Tanh layer in generator, on the
bottom are the real images in the VQA datasets

frequency general structure of the input images, e.g. trees,
road, couch, which isn’t ideal. The high frequency informa-
tion, which is often the core of VQA questions, is ignored.

Therefore, we further concatenate the second last layer
features (before the global pooling layer) from the pre-
trained resnetl8 feature extractor, along with the last layer,
question-and-answer pair’s features, before send it into the
generator module. Our intuition is that the image feature
before global average pooling contains more high frequency
details and spatial information of objects. By concatenating
more low-level, high-frequency features, we expect to be
able to produce images with more details. And indeed, as
we can see from the Figure 8, the generated images are able
to obtain more details, e.g. people, pond, window, of the
real images. Besides, the input gaussian noise effectively
modify the synthetic images. We can see from the figure
that perturbations such as color shift and shape distortion
are added to the synthetic image. This significantly aug-
ments the original VQA datasets by adding variations to the
images and could improve model accuracy.

Figure 9 shows two concrete examples of the visual im-
ages and answers. We can see that Gen-VQA correctly ren-
ders out the bush and pictures in the image, which helps
VQA module to better understand the abstract scene.

4.3. Performance

With the generator network working properly, we train
the whole Gen-VQA system together with 30 epochs using
Amazon EC2 Nvidia V100 GPU instance. The batch size is
set to 64 and each epoch of training takes 15 minutes. We
compare our Gen-VQA model (based on resnetl8 feature
extractor) with the basic VQA models in Figure 10 in terms
of training/validation loss and accuracy curve. We train the
basic VQA model with resnet18, resnet34 and resnet50 fea-
ture extractor with 30 epochs.

GenVQA achieves the validation accuracy of 64.0% on
abstract scene dataset. Using the same CNN structure,
Gen-VQA significantly outperforms the basic-VQA with
resnetl8 by 5.1%. More surprisingly, our Gen-VQA with
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Figure 8: The synthetic (top) and real (bottom) abstract
scene VQA images after 30 epochs of training. Compared
to Figure 7, all the synthetic images obtains more high-
frequency information from the real/input images as well
as perturbations such as colors and shapes.
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What is above the fire place?
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Figure 10: Benchmarking Gen-VQA and basic VQA with
different resnet architectures on abstract scene

resnet18 has higher accuracy performance (0.2%) with ba-
sic VQA with resnet50 network structure. This shows that
our generative approach significantly augments the VQA
datasets, which effectively feeds more data to the network.

Figure 11 shows the model complexty (parameter size)
and accuracy of the 3 baselines and our Gen-VQA. The
pareto optimal curve of basic VQA in terms of accuracy
and parameter size is marked by dotted line. Gen-VQA sig-
nificantly stretch the pareto optimal curve with higher accu-
racy and lower model complexity. This shows that resnet18
has sufficient capacity to extract features for VQA abstract
scene. The scarcity of data limits its potential. With our
generative learning/training strategy, a shallow network can
perform as well as a much deeper network.

S. Limitations and Future Works
We show two cases where our generative VQA fails in

Figure 12. In the first case the generator generates two peo-
ple and thus misleading the VQA module. This suggests

Y X Basic(resnet18)
X X Basic(resnet34)
: Basic(resnet50)
Ours(resnet18)

Accuracy
a
3
X

100 125 150 175 200 225 250 275 300
Parameter Size

Figure 11: Parameter Size-Accuracy Plot

Is the old man speaking to someone? What kind of ball is there?

i

Real: No
Figure 12: Failure cases

that if the distortion is added to the interested part of the
image, the answer could be affected. In the second case, the
generator fails to synthesize the football so that the answer
is incorrect. This indicates the need to improve the genera-
tor to restore more high frequency details.

In future work, we aim to further scale up the model to
higher resolution real-world images beyond abstract scene
and expand the VQA task to include open-ended, free-form
questions that are more complex. We also plan to introduce
more noises or inputs to the generator to generate more di-
versified images, such as different weather, number of trees
etc. Training the VQA module only on the synthetic images
with questions would be an interesting direction to pursue.

6. Conclusions

Synthetic: Yes

Synthetic: Green  Real: Soccer ball

In this work, we developed a generative and effective
VQA model based on Text-to-Image GANs and basic VQA
model. We demonstrated that the generator in our model
can synthesize many plausible visual images of a given ab-
stract scene sets. Our generator module substantially im-
proved the VQA module on the efficiency of inference in
the VQA task, and we showed that our Gen-VQA using
resnetl8 performs equivalently with a basic VQA using
resnet50 (a much deeper and more complex network struc-
ture).

Contribution - Zhen Guo

Z.G. and Y.Y. together came up with the idea of work-
ing on generative learning/training strategy with VQA task.
Z.G. did a comprehensive survey on existing VQA datasets
and VQA algorithms/models, re-wrote and tested the basic
VQA model on the local host, setup the virtual machines on
AWS EC2, proposed ideas during the implementation of the
Gen-VQA model, and summarized the results and figures in
the logical order.



Contribution - Yifan Yang

Y.Y. and Z.G. together came up with the idea of work-
ing on generative learning/training strategy with VQA task.
Y.Y. re-designed/re-engineered the generator module us-
ing resnet inspired building-block, combined the genera-
tor module with the basic VQA module, implemented the
Gen-VQA model and optimizations, performed VQA task
benchmarking on the AWS virtual machines, and pointed
out limitations of our Gen-VQA model.
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