
Performance Experiments Report

B119172

November 24, 2017

1 Introduction

The purpose of this report is to demonstrate and analyze the results of perfor-
mance experiments on the predator-prey model program.
The predator-prey model program is implemented in Java. By using Guava
Stopwatch and Java VisualVM, this report presents investigations on program
execution time and profiles the CPU and memory usage during runtime. The
report then analyzes and identifies the main source of overhead. Further exper-
iments on program optimizations were performed and presented.

2 Performance tests and analysis

2.1 Performance

2.1.1 Context

All the experiments run on MacOS Sierra 10.12.6 with 1.6 GHz Intel Core i5
processor and 8 GB 1600 MHz DDR3 memory. Java version ”1.8.0 73” with
HotSpot 64-Bit Server VM was used. Java VisualVM was introduced as the
profiling tool and Guava Stopwatch library was used to measure the execution
time.

2.1.2 Profiling

Profiling by Java VisualVM for experiments on 500 x 500 landscape with 40
percent of land are presented below.In this experiment, output interval i was
set to 400.

1



(a) CPU (b) Java Heap

Figure 1: Runtime Monitor Overview

Figure 2: CPU Profiling

Figure 3: Memory Profiling

2.2 Analysis

2.2.1 Basic

In order to facilitate a better analysis, the execution time of the simulation is
analyzed using the following simplified model.

T = Tio +

loop∑
i=1

∆ti + Tgc

2



where:

• T io is the cost of program input and output

• ti is the execution time for simulation on iteration i

• T gc is the cost of JVM Garbage Collection

According to the equation, there are three major factors affect the overall exe-
cution time. In this program , a thread pool is created for ppm output so T io

has less effect on overall run time. The simulation procedure modeled by ti has
a large impact on the total execution time and T gc also makes a difference in
T . This report mainly focused on the analysis of ti and T gc.

2.2.2 CPU

As is illustrated in Figure 1 (a), CPU usage fluctuates at around 25% and fall
after a sudden rise to about 85% three times.
After initialization, the program starts to simulate the evolution of the predator-
prey model over loops. CPU usage remains level during every iteration since the
workload between iterations are similar. Ppm outputs of current iteration are
exported on given intervals which leads to the sudden increase of CPU usage.
According to Figure 2, thread pool 2 is used to output the ppm file and the
total time consumed in thread pool 2 is less than the simulation process. This
indicates that the T io does not have a great impact on the total execution time.
Execution Time is mainly consumed by ti and it represents the time used in the
evolution function of the program.
The evolution function computes new densities of hare and puma on every
grids of the landscape and update the density maintained by a Map structure
of the Grid class. After that, a Grid array represents the landscape with a
water halo for intermediate status record are synchronized with current grids
on the landscape. The main overhead of the program for now lies in the update
procedure of densities.

2.2.3 Memory

As is shown in Figure 1, there are many JVM GC happened during runtime.
From Figure 3, large amounts of Double objects are used during execution.
Creation of Double instances leads to the increase of GC time. The usage of so
many Double objects is considered as the major overhead for now.
By analyzing the code of the program, all the Double instances are used in the
Grid class which uses a Map with Double as its value to maintain the density
of hare and puma. When updating the density after computations on each
iteration, the put method of Map is used and new instances of Double are
created to represent the density after evolution. Implementations of the update
method leads to the numerous initialization of Double objects which not only
affect the ti but also results in more JVM GC and increase the T gc.

3



2.3 Optimization

2.3.1 Solution

Based on the analysis, a new way to manage densities on Grid class is introduced.
A primitive double array is used to maintain the densities of hare and puma.
When update on densities over iterations, only the value in the array is altered,
which avoid the creation of Double objects.

2.3.2 Verification

After optimization as described above, experiments on 500 x 500 landscape with
40 percents of land are presented below.In this experiment, output interval i was
set to 400.
As is demonstrated in Figure 4 and Figure 6, with less creation of Double
instances, the memory usage has imporved and less GC was triggered. This
contributes to the reduction of ti with less object creation and Map operation
and T gc with less GC triggered. From Figure 5, the computation time is reduced.
Further experiments on different problem size are repeated 10 times and the
results are presented in Figure 7 to compare the difference between the previous
code and optimized code.

(a) CPU (b) Java Heap

Figure 4: Runtime Monitor Overview

Figure 5: CPU Profiling

4



Figure 6: Memory Profiling

Figure 7: Execution time of previous and optimized code

3 Conclusion

This report presents experiments on performance investigations of the predator-
prey model program. Different ways to manage program data makes a great dif-
ference on program performance. According to the analysis, numerous creation
of objects in a Java program will result in an overhead on program execution
and more JVM GC will be triggered which will also slow down the program.
Under certain circumstance, with a properly designed data structure such as a
primitive double array instead of a Map to maintain data that requires lots of
updates during runtime will reduce the overhead on execution and JVM GC. It
is important to choose a better data structure for program performance.

5


