
This project implements a sequential version of a two-dimensional predator-prey model with spatial
diffusion.

Language: This project is mainly developed using Java with Java version 1.8.0_73.Java HotSpot(TM) 64-
Bit Server VM (build 25.73-b02, mixed mode) is used as target JVM. The Google Java Code Style Guide is
followed for development.

Revision Control: Git is used for revision control and Github is used to maintain the repository. The
repository can be found in https://github.com/Yiiinsh/predator-prey-model. We follow the Github Flow, as is
described in https://guides.github.com/introduction/flow/, during our development.

Debuggers: IDE embeded debugger for Intellij IDEA is used for debug.

Build Tool: This project use maven as build tool.Maven version is 3.5.2.

Test Tool: JUnit framework with version 4.11 is used as our test framework.Mockito 2.11.0 is used as
mocking framework for unit testing.

Optimization: Jconsole and Jstat is used to detect Garbage Collection and Memory Usage for optimization.

Continuous Integration: Travis CI is introduced for continuous integration.

Coverage: Coveralls is introduced for coverage report.

Liscense: This project is licensed under Apache 2 License.

To get, build and install this project,following dependencies is required:

git v2.15.0: To get source code from Github.
java v1.8.0_73: Project basic working environment.
maven v3.5.2: Build tools.

You can get these dependencies by the package manager on your local machine. For instance, apt for

Predator-Prey Model Documentation
Introduction

Technology Explained

Prerequisite

https://google.github.io/styleguide/javaguide.html
https://github.com/Yiiinsh/predator-prey-model
https://guides.github.com/introduction/flow/
https://github.com/Yiiinsh/predator-prey-model/blob/master/LICENSE


Ubuntu, brew for MacOS and yum for Scientific Linux.Note that previous version of these depenencies
may also work fine, but we are not sure about that.

If you have already got the source code, you can skip this step.

Before we take to next step, you need to set up a Github account first.We assume that you have already
obtained a Github account. To get the source code of this project, you need to open your terminal and type:

    git clone https://github.com/Yiiinsh/predator-prey-model.git

Normally, a directory named "predator-prey-model" that contains the source code will appear under your
current working directory. Then you can type the following command to get into the directory:

    cd predator-prey-model/

To build this project, firstly you need to change your current working directory to the directory you just
cloned ("predator-prey-model"). Open your terminal and type :

mvn clean install

Maven will automatically install all the dependencies and run our test.If you see a success message from
your terminal, you have successfully build our project. 

Build

Get Source

Build

Javadoc



Javadoc can automatically generate a API documentation for this project in HTML format. To get this API
documentation, you can type the following command on your terminal

mvn javadoc:javadoc

After execution, you will be able to find the documentation in target/site/apidocs/ under every module
directory.Example for documentation got from client/shell/target/site/apidocs/index.html is shown below 

After you have successfully build our project, you can find executables in client/shell/target/shell-1.0.0-
simulation/shell-1.0.0/ . We have provided a startup script named simulation.sh which you can find in the
same directory.You should change your directory to the project packaged directory from project base
directory by

cd client/shell/target/shell-1.0.0-simulation/shell-1.0.0/

Then you can either invoke by the shell script ./simulation.sh with flags or by java -jar
client/shell/target/shell-1.0.0-simulation/shell-1.0.0/simulation.jar with flags. For instance, you can run
the program with ./simulation.sh -f file.dat -i 100 -r inside the directory client/shell/target/shell-1.0.0-

Usage

Basic



simulation/shell-1.0.0/ where file.dat is the path to your landscape file. Command provided by our
program is shown below:

-f or --file <arg> : This is a mandatory argument that specify the source file to generate the landscape
for evolution.
-i or --interval <arg> : This is a optional argument.Value for this flag declare a interval for output of both
PPM files and average numbers of hare and puma.Default value for this option is 100.
-r or --report : This is a option flag.If the flag is used, there will be a html report generated after
execution.Average densities for hare and puma will be demonstrated using a line chart.If the size of
landscape is less than 10 * 10 , there will be a dynamic simulation demonstration represented. You
need a connection to the network to see the full source of this report.

After execution, corresponding plain PPM file will appear in current working directory. Average densities
and total execution time over given interval will be presented on both of the terminal output and a file
named simulation.log. You can also check the trends of densities over evolutions on the generated report
report.html (network required). Sample report are shown below:

This project use JUnit and Mocktio for testing. Unit test is defined for every individual part in our
project.Coverage reaches 79% accroding to Coveralls. To execute the test, you can type the command
below and test result will appear after execution.

mvn test -B

Output

Test



To execute single test, you can open our project with IDE such as Intellij IDEA or Eclipese which provided a
more convenient test execution environment.

Further tests have been taken to check the performance of our program using landscape size 3*3, 20*20,
50*50, 100*100, 500*500, 1000*1000, 1500*1500 and 2000*2000.Results are illustrated below:

size time/ms

3 169

20 281

50 451

100 884

500 12745

1000 44070

1500 89313

2000 157748

Sample output for simulation.sh -f file2000.dat -i 100 are shown as:

The predator-prey-model is the root directory of this project. Root directory contains a pom.xml file for
maven build. It defines three modules in this project :

Source Code Layout

common



Common module defines some general purpose tool for this project. In our project, it contains the definition
of base configuration class which is used for manipulating the configurations in this project. And a base
exception class which can be modified in a more general way for further consideration.

Corresponding test is attached to check the correctness of Config class.

Core module contains the core alghrithm implementation for this project together with some classes for
better modeling. We extract the landscape as a Landscape class with Gird as a single unit inside the
landscape. Grid class keeps the information about densities of hare and puma. Corresponding factory
classes are provided to create instances of Landscape and Grid. A EvolutionManager class is designed to
help perform and tracking the evolution status. It include a evolution method to perfrom the evolution and
records the results and average densities for every evolution. The equation of this project is defined inside
DefaultCoreAlghrithm class to help perform the evolution.

Corresponding test is attached to check the correctness of classes defined in core module.

Client module contains the user interface for this project.For now, we only provide a CLI client for user to
perform the simulation via command line. The CLI client is implemented in shell module inside client
module. Shell module contains use SimulationCommand class to process the command parsing and
simulation execution. ConvertService class is used to convert data for IO. Dynamic design pattern is used
to measure the execution time for the simulation. We use Java reflection to achieve this goal and
SimulationTimeMeasurementProxyHandler class is the dynamic handler for time measurement.

Corresponding test is attached to check the correctness of command and service execution.

We are using Java to implement this project so we take a more object oriented way to model this problem.

The landscape for our problem is modeled as Landscape class. A two dimensional array of Grid class is
used to model the units of landscape. Grid class has a Terrain member which is implemented by a Enum
class to identify the type of this grid. Densities for hare and puma are recorded as a double member.
Species for identifing puma and hare together with there equation attributes are implemented as a Species
enum class. We can use Species class as a key to get current density from Grid.

LandscapeEvolutionManager class is designed to perform the evolution. It contains the Landscape for
evolution. It keep tracks of densities for every species on every evolutions. If the landscape is within a
specified scale (in this case, 10 * 10 is used), LandscapeEvolutionManager will maintain snap shots for
every evolution which can be used to generate the dynamic evolution simpulation part in the report.

core

client

Design



For the client part, we use a command-service model to implement the CLI.

Class Diagram are presented below:

Some famous Java thrid-party libraries are used in this project including :

More



Apache Commons Configuration2 : Generic configuration interface for Java
Log4j2 : Logging tools for Java
Apache Commons-Cli : Apache commons library for command line options processing
Velocity : Java based template engine for static resources generation

Since we are using Java to implement this project, we would like to model it in a more object oriented way.
It is obvious to model the landscape as Landscape class and map grid inside landscape to a 2 dimensional
Grid class array.

We map species such as hare and puma as a Species enum class for scalability and understandability.
There is a problem occurs for the storage of densities of species inside a Grid. Firstly, we use a Map and
initialized it with EnumMap to store the densities of different species inside a grid. When we test our
program with 2000 * 2000 landscape, the program runs very slow. We then use the jconsole and jstat tools
to check the runtime JVM information and it shows that there are lots of minorGC during execution and it
costs about 1 minutes to do the garbage collection.

We analyzed the result and got the conclusion that there is an ineffeciency of object storage in our code.
We use Intellij IDE embeded debugger to set up break points and use method
ObjectSizeCalculator.getObjectSize(Object object) to check the memory usage of our objects. It shows
that Grid object takes much memory. The main reason for this is the usage of EnumMap. It takes more than
6000 byte to store two densities data. We then decided to use a two dimensional double array to store the
densities and use the ordinal value for enum Species to fetch the corresponding density. Memory used by a
double[2] is aboult 32 byte in our test machine and it is a significantly reduce in the object size of Grid.
Good performance was presented after the modification.

The code contains lots of ephemeral objects over every evolutions and the usage of old generation in JVM
is rarely altered. After tests on different scenarios, we decided to allocate more space for JVM new
generation. We use the option "-Xms4g -Xmx4g -Xmn2g" for our test machine.

We implemented our CLI module by command-service pattern where command arranges tasks and assign
specific jobs for services and managers to do for decouple purpose. Defensive programming strategy is
used to prevent unknown user behaviour. Single Responsibility Principle matters a lot through our
development process. We used a interface based programming in our service implementations.

Key Design Decision

Memory Usage Diagnosis

JVM Optimization

Implementation



@Shaohan Yin

@Jiahao Cao

This project is licensed under the Apache 2 License

Contributor

License

https://github.com/Yiiinsh
https://github.com/JasonCao666
https://github.com/Yiiinsh/predator-prey-model/blob/master/LICENSE

