Performance Experiments Report

B119172
November 24, 2017

1 Introduction

The purpose of this report is to demonstrate and analyze the results of perfor-
mance experiments on the predator-prey model program.

The predator-prey model program is implemented in Java. By using Guava
Stopwatch and Java VisualVM, this report presents investigations on program
execution time and profiles the CPU and memory usage during runtime. The
report then analyzes and identifies the main source of overhead. Further exper-
iments on program optimizations were performed and presented.

2 Performance tests and analysis

2.1 Performance
2.1.1 Context

All the experiments run on MacOS Sierra 10.12.6 with 1.6 GHz Intel Core i5
processor and 8 GB 1600 MHz DDR3 memory. Java version ”1.8.0_73” with
HotSpot 64-Bit Server VM was used. Java VisualVM was introduced as the
profiling tool and Guava Stopwatch library was used to measure the execution
time.

2.1.2 Profiling

Profiling by Java VisualVM for experiments on 500 x 500 landscape with 40
percent of land are presented below.In this experiment, output interval i was
set to 400.

x| [Heap | Metaspace

GC activity: ~881.4% Size: 4,204,967,296 B
Max: 4,294,067,206 B

4

80%
3cE

60%
2ce-

0% \ |

o 168

3 o
100820 AM 100930 AM 10:09:40 AM 100950 AM 101000 AM 100820 AM 100930 AM 100840 AM

(a) CPU

B CPU usage B GC act

Figure 1: Runtime

CallTre - Method
¥ = main
+ %4 org.epce.ps.client.shell.Simulation.main)
% com.sun.proxy.SProxy18.simulate
vy

vy lient.shell.

—

Monitor Overview

W java lang.reflect Method Invoke

% sun.reflect DelegatingMethodAccessorimpl.invoke (
W sun.reflect NativeMethodAccessorlmpl.invoke (
v 39 sunreflect NativeMethodAccessorlmpl.invokeO[native] (

vy

. d.simulate 0

v

© Self time
®

© self time

= Finalizer

5 RMI TCP Accept-0

5 RMI TCP Connection(1)-192.168.130.161
5 RMI Scheduler(0)

5 JMX server connection timeout 15

5 RMI TCP Connection(2)-192.168.130.161
5 RMI TCP Connection(3)-192.168.130.161
5 pool-2-thread-1

Class Name - Alocated Objcts
javalang.Double
Java.uti EnumMap
Javalang.Object(]
org.epce.ps.core entit.environment Grid
in)
org.epecc.ps.core.entty.environment. Grid(]
charl]
bytel]
javalang string
Javalang.Class
java.io ObjectStreamClass$WeakClassKey
Java.util TreeMapSEntry
javalang.reflect Method
java.utl HashMap$Node
java.utl.concurrent ConcurrentHashMap$Node
java util HashMap$ode(]
java.utlLinkedHashMap$Entry.
java uil HashMap
javalang.Long
javalang reflect Field
javalang.Class()
javalangstringll
javaio ObjectstreamCiass
javalang.Object
java lang refect Constructor
java i LinkedistsNode
javaang StringBuilder
javalang.ref.SoftReference
Java.utlconcurrent ConcurrentitashMap$Nodal]
java.util TreeMap
Javalang Classs ReflectionData

2.2 Analysis
2.2.1 Basic

Figure 2: CPU Profiling

100950 AM 101000 AM

b) Java Heap

[Heap size M Used heap

Toul Time 6]+ ToulTime ot Time (cPU)
— 38,083 ms
I 38,083 ms
I 38,083 ms
I 38,083 ms

0 I 38,083 ms
I 38,083 ms
I 38,083 ms
I 38,083 ms
I 38,083 ms
I 38,083 ms
— 38,083 ms
1 24,957 ms
] 13,126 ms

0000 ms

0000 ms

0000 ms

0000 ms

0000 ms

0000 ms

0000 ms

0000 ms

0000 ms

I 0.000 ms
I 0.000 ms
I 0.000 ms
I 38,083 ms
I 35,053 ms (100%) 0000 ms
N 38,083 ms (100%) 0,000 ms
I 35053 ms (100%) 38,083 ms
N 38,083 ms (100%) 38,083 ms.
I 31,759 ms (00%) 3580 ms

Byes Allocated)~ Byes Alocated Object Alocated

425.967384..(67.9% 17,748,641 (91,69

1 200802408 (10 502006 (6%
I 125853048 (2.6% 516,127 2.7%
I 1208098 @59 502004 (269
I 71011768 (1.5% 1874 (0%
| 20260488 (0.9 1002 0%
1381368 039 18065 0.9

279448 (0.1%) 1857 (0%

360168 010 16084 0.0

3492088 (0.%) 3100 09

1801608 (0% 5630 (09

1698008 (00 a5 09

1659688 (0 1886 09

1160968 (09 368 (09

92,4408 (00 290 (00

75048 (09 80 o0

641208 (00 1603 09

538088 (09 1121 09

537608 (0% 2200 (0

536408 (09 75 00

02488 (0% 2202 (0

61688 (0 1415 09

45,9688 (00 w2 o0

03368 00 251 09

343208 (09 2 o0

262568 (00 1004 09

259208 (00 1080 (0%

256408 (0 61 00

28248 00 56 00

232808 (00 8 00

20648 (00 0 09

Figure 3: Memory Profiling

In order to facilitate a better analysis, the execution time of the simulation is
analyzed using the following simplified model.

loop

T =T+ :E:: Z&ti *_iIbc

7

1

where:
e T, is the cost of program input and output
e t; is the execution time for simulation on iteration i
o T is the cost of JVM Garbage Collection

According to the equation, there are three major factors affect the overall exe-
cution time. In this program , a thread pool is created for ppm output so T';,
has less effect on overall run time. The simulation procedure modeled by ¢; has
a large impact on the total execution time and 7'y, also makes a difference in
T'. This report mainly focused on the analysis of ¢; and T'y.

2.2.2 CPU

As is illustrated in Figure 1 (a), CPU usage fluctuates at around 25% and fall
after a sudden rise to about 85% three times.

After initialization, the program starts to simulate the evolution of the predator-
prey model over loops. CPU usage remains level during every iteration since the
workload between iterations are similar. Ppm outputs of current iteration are
exported on given intervals which leads to the sudden increase of CPU usage.
According to Figure 2, thread pool 2 is used to output the ppm file and the
total time consumed in thread pool 2 is less than the simulation process. This
indicates that the T';, does not have a great impact on the total execution time.
Execution Time is mainly consumed by t; and it represents the time used in the
evolution function of the program.

The evolution function computes new densities of hare and puma on every
grids of the landscape and update the density maintained by a Map structure
of the Grid class. After that, a Grid array represents the landscape with a
water halo for intermediate status record are synchronized with current grids
on the landscape. The main overhead of the program for now lies in the update
procedure of densities.

2.2.3 Memory

As is shown in Figure 1, there are many JVM GC happened during runtime.
From Figure 3, large amounts of Double objects are used during execution.
Creation of Double instances leads to the increase of GC time. The usage of so
many Double objects is considered as the major overhead for now.

By analyzing the code of the program, all the Double instances are used in the
Grid class which uses a Map with Double as its value to maintain the density
of hare and puma. When updating the density after computations on each
iteration, the put method of Map is used and new instances of Double are
created to represent the density after evolution. Implementations of the update
method leads to the numerous initialization of Double objects which not only
affect the ¢; but also results in more JVM GC and increase the T'g..

2.3 Optimization
2.3.1 Solution

Based on the analysis, a new way to manage densities on Grid class is introduced.
A primitive double array is used to maintain the densities of hare and puma.
When update on densities over iterations, only the value in the array is altered,
which avoid the creation of Double objects.

2.3.2 Verification

After optimization as described above, experiments on 500 x 500 landscape with
40 percents of land are presented below.In this experiment, output interval i was
set to 400.

As is demonstrated in Figure 4 and Figure 6, with less creation of Double
instances, the memory usage has imporved and less GC was triggered. This
contributes to the reduction of ¢; with less object creation and Map operation
and T'y. with less GC triggered. From Figure 5, the computation time is reduced.
Further experiments on different problem size are repeated 10 times and the
results are presented in Figure 7 to compare the difference between the previous
code and optimized code.

cpu x| | Heap | Metaspace x
CPU usage: 53.8% GC activity: 0.9% Size: 4,294,967,296 B Used: 439,698,968 B
100% Max: 4,294,967,296 B

124715 M 124720 M 124725 124715 M 12:4720PM 124725 M
[CPU usage B GC activity O Heap size M Used heap

(a) CPU

—~

b) Java Heap

Figure 4: Runtime Monitor Overview

CalTes - vethod ot Time 61+ TotlTime TotlTime (cPU)
v = main I % 14,492 ms
* W org.epcc.ps.clent shell Simulation.main 0 — 14,492 ms
% com.sun.proxy.$Proxy19.simulate O — 14492 ms

v hell. I 14,492 ms

] ient.shell. I 14,492 ms

v W java lang.reflect Method.invoke I 14,492 ms

v %9 sun.reflect.DelegatingMethodAccessorimpl.invoke I 14,492 ms

* W sun.reflect NativeMethodAccessorimpl.invoke — 14,492 ms

¥ 3 sunreflect NativeMethodAccessorimpl invokeOlnative] — 14492 ms

v Jient.shell o d simulate 0 — 14,492 ms

vy d J I 14,417 ms

© Self time I 9,907 ms

®] 4509 ms

> it shell, i o | 0000 ms

» % org apache.logging sIf4j LogéiLogger.info) I 753ms

© self time. 0.000 ms.

© Self time. 0.000 ms.

© el time 0000 ms

© Self time. 0.000 ms.

© Selftime 0000 ms

© Self time. 0.000 ms.

© selftime 0000 ms

© Self time. 0.000 ms.

© selftime 0000 ms

» 5 Reference Handler I 518ms
» &= Finalizer I 518ms
» 5 RMITCP Accept-0 I 0.000 ms
» 5 RMI TCP Connection(1)-192.168.130.161 I 14,691 ms
» I RMI Scheduler(0) I 0.000 ms
» &3 JMX server connection timeout 15 I 0.000 ms
» 5 RMI TCP Connection(2)-192.168.130.161 I 14691 ms (100%) 14,691 ms

Figure 5: CPU Profiling

Class Name - Allocsted Objects Bytes Allocated () v Byes Allocated
char) | 3
intg)

javalang String
javatext.DecimalFormatSymbols
doublel]
java.util.FormatterSFormatSpecifier
javautil.Formatter$Fixedstring
javalang.Objectl]

javalang StringBuilder
org.epcc.ps.core.entity.environment Grid
javautil.regex Matcher
javautil.FormatterSFormatstring[]

113915528 2
8,535,0088
85266568 (1

java.util. Formatters Flags
java.uti Formatter
org.epcc.ps.core.entity.environment Grid(]
bytell

javalang Class

javalang reflect Method

java.util HashMap$Node

java.util.concurrent ConcurrentHashMap$Node
java.util HashMap$Nodel)
javautil.LinkedHashMap$ Entry

java.util LinkedLists Node

javallang.Double

java.util TreeMapSEntry
java.o.ObjectStreamClass$WeakClassKey
javalangreflect Field

java.util HashMap

javalang Classll

javalangString[]

javalang Object

Figure 6: Memory Profiling

O Previous Optimized

50000

37500
@
£
(0]
£

= 25000
kel
5
(s}
Q
X
w

12500

0

100 x 100 200 x 200 300 x 300 400 x 400 500 x 500

Problem Size

Figure 7: Execution time of previous and optimized code

3 Conclusion

This report presents experiments on performance investigations of the predator-
prey model program. Different ways to manage program data makes a great dif-
ference on program performance. According to the analysis, numerous creation
of objects in a Java program will result in an overhead on program execution
and more JVM GC will be triggered which will also slow down the program.
Under certain circumstance, with a properly designed data structure such as a
primitive double array instead of a Map to maintain data that requires lots of
updates during runtime will reduce the overhead on execution and JVM GC. It
is important to choose a better data structure for program performance.

