
Genetic Algorithm:

1. Gene Model:

In this problem, every group have only two ways to color it, so I model this in to 0

and 1, and this is the definition of our gene locus, and all locus from colorable

graph form a chromosome, so every chromosome is a color method for entire

color bounding box, and is one solution to this problem.

2. Mutation Method, MOGAR:

(1) First sort the rows by score, I keep the highest score chromosome at top.

(2) For each row, I random a number x and to see if x<𝑎𝑖, I will choose this row

to mutate, given 𝑎𝑖 =
𝑖−1

𝑁
, 𝑖 ∈ 𝑁, we can see that the row with the best score

is located at the top and thus 𝑎𝑖 = 0, this row is never choose, thus never

changed, and the lower the row is, the higher this mutation probability is.

(3) After I choose the row to mutate, I perform mutation on those loci where their

𝑏𝑗 is high, and 𝑏𝑗 = 1 − |𝑝𝑗0 − 0.5| − |𝑝𝑗1 − 0.5|, ∀𝑗 ∈ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠, where

𝑝𝑗𝑋 =
∑ (𝑁+1−𝑖)×𝛿𝑖𝑗(𝑋)𝑁

𝑖=1

∑ 𝑚𝑁
𝑚=1

, where 𝛿𝑖𝑗(𝑋) = 1 if Matrix(i,j)=1, vice versa, this

indicates some kind of statistics, because higher score in general will

encounter similar structure that cause good result, so if one column is

randomly distributed, then it has higher probability to changed.

(4) I will replace the rows whose score lie in the last 20% with randomly

generated chromosomes.

3. Mutation Method, MOGAC:

(1) Sort rows by score, the same as MOGAR

(2) For each column, I random a number y to see if y<𝑏𝑗, as given above, and if it

is true, I choose this column to mutation the last 𝑏𝑗 × 𝑁 rows’ jth loci.

4. Implementation:

At first, I set a maximum iteration time, and a parameter γ, and I create an m by

n chromosome matrix MC, where m=100*groups and n=groups, and in each

iteration I random a number z, and if z<γ, I mutate the chromosome using

MOGAR , otherwise I use MOGAC, and after that I update the score, and then do

the next iteration, until maximum iteration is reached or is about exceed the

contest run time threshold.

