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Abstract

In a (¢, n) threshold digital signature scheme, ¢ out of n signers must co-operate to issue a signature.
We present an efficient and robust (¢,n) threshold version of Schnorr’s signature scheme. We prove it
to be as secure as Schnorr’s signature scheme: i.e., existentially unforgeable under adaptively chosen
message attacks. The signature scheme is then incorporated into a (¢, n) threshold scheme for implicit
certificates. We prove the implicit certificate scheme to be as secure as the distributed Schnorr signature
scheme.

1 Introduction

Traditional certificates contain a signature on some data, usually a public key and an identity string. To
issue a traditional certificate, a Certification Authority (C'A) first verifies the authenticity of this data
and then simply issues a digital signature on it. The certificate is therefore as secure as the signature
scheme: certificates cannot be forged because signatures cannot be forged.

When issuing implicit certificates, the situation is somewhat different. Implicit certificates also contain
some data, usually some public reconstruction data and an identity string, but no public key or signature.
The public key itself must be computed from the public reconstruction data and the public key of the C'A
who issued the certificate. Clearly, the advantage of implicit certificates is their size: they only contain
some public reconstruction data, where as traditional certificates contain instead a public key and a digital
signature. A survey of various types of implicit certificates is given in [9].

In contrast to traditional certificates, where the security lies directly on the underlying signature scheme,
there are special security issues concerning implicit certificates. In general, any public reconstruction data
and identity string, together with a C'A’s public key, would yield a public key. However, it should be
hard to choose the public reconstruction data and compute the private key corresponding to the implied
public key, without knowing the C'A’s private key. Another issue is that — since one usually uses a slightly
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modified signature scheme to issue a certificate — one has to make sure that no information about the
C A’s or the user’s private key is leaked.

We first present a distributed Schnorr signature scheme and prove it to be as secure as the non distributed
version, i.e., existentially unforgeable under adaptively chosen message attacks. Second, this scheme is
incorporated into the construction of a distributed implicit certificate scheme.

Our digital signature threshold scheme is based on two primitives: Pederson’s Verifiable Secret Sharing
Scheme and Pederson’s multi-party protocol to generate a random shared secret [8, 6]. These primitives
are briefly discussed in Section 2. In Section 3 we recall Schnorr’s signature scheme [12]. Then we propose
in Section 4 a (t,n) threshold version of this signature scheme. We prove the security of the scheme in
Section 5, adapting the proof techniques used in [5]. The non-distributed implicit certificate scheme is
introduced in Section 6. The (¢,n) threshold version of this scheme is presented in Section 7, and a
security proof is presented in Section 8.

In all proofs, we use the random oracle model as described in [1]. For all protocols we assume a synchronous
communication model, where all players are connected via private channels and a global broadcast channel.

2 Secret Sharing Schemes

2.1 Parameters

We use elliptic curve notation for the discrete logarithm problem. Suppose ¢ is a large prime and G, H
are generators of a subgroup of order ¢ of an elliptic curve E. We assume that F is chosen in such a way
that the discrete logarithm problem in the subgroup generated by G is hard, so it is infeasible to compute
the integer d such that G = dH.

2.2 Shamir’s Secret Sharing Scheme

In a (¢, n) secret sharing scheme, a dealer distributes a secret s to n players Py, -- -, P, in such a way that
any group of at least t players can reconstruct the secret s, while any group of less than t players do not
get any information about s. In [13], Shamir proposes a (¢, n) threshold secret sharing scheme as follows.
In order to distribute s € Z, among Py, ..., P, (where n < ¢), the dealer chooses a random polynomial f
over Z, of degree at most t — 1 satisfying f(0) = s. Each participant P; receives s; = f(i) as his share.

There is one and only one polynomial of degree at most ¢t — 1 satisfying f(i) = s; for ¢ values of i.
Therefore, an arbitrary group P of ¢ participants can reconstruct the polynomial f() by using Lagrange’s
interpolation formula:

_ . L TTY—J
flu) = l%;f(z)w,(u) , where w;(u) = JEHP — mod gq.
JF

Since it holds that s = f(0), the group P can reconstruct the secret directly, using the formula

s = f(0) = Zf(z)w, , where w; = w;(0) = H 7 mod q.
i€P j{i?‘]_l
J#
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Each w; is non-zero and can be easily computed from public information. Note that the constant term of a
polynomial of degree at most ¢ — 1 is not given through ¢t — 1 equations of the form f(¢) = s;. Furthermore,
each possible value for the constant term is equally possible. A coalition of t — 1 players can therefore
neither compute the secret nor get any information about it.

2.3 Verifiable Secret Sharing Scheme

A Verifiable Secret Sharing Scheme (VSS) prevents the dealer from cheating. In a VSS, each player can
verify his share. If the dealer distributes inconsistent shares, he will be detected. Pedersen presented a
non-interactive VSS in [7] which we will use in this paper. His scheme is as follows.

Assume the dealer has a secret s € Z; and a random number s’ € Z,, and is committed to the pair (s, s')
through public information Cy = sG + s'H. The secret s can be shared among Py, ..., P, as follows.

The dealer performs the following steps

1. Choose random polynomials
flu)=s+frust -+ fiau'™ flu) ="+ flut -+ flu'™
where s, 5', f;, f} € Z;. Compute (s;,s}) = (f(7), f/(¢)) for i € {1,...,n}.
2. Send (s, s}) secretly to player P; for 1 < i < n.

3. Broadcast the values C; = f;G + f]’H for1<j<t-1.

Each player P, performs the following steps

1. Verify that

t—1
S,’G—I—S;'H:Zijcj‘. (1)

=0
If this is false, broadcast a complaint against the dealer.

2. For each complaint from a player 7, the dealer defends himself by broadcasting the value (f(4), f/())
that satisfies the checking equation (1).

3. Reject the dealer if
e he received more than t complaints in step 1, or

e he answered to a complaint in step 2 with values that violate Eq. (1).

Pedersen proved that any coalition of less than t players cannot get any information about the shared
secret, provided that the discrete logarithm problem in E is hard (see [7]).
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2.4 Generating a random secret

For the key generation phase of our scheme, it is necessary to generate a random shared secret in a
distributed way. The early protocol proposed by Feldman [4] has been shown to have a security flaw, and
a secure protocol has been proposed in [11]. We will use the secure protocol for our schemes and recall it
in the following.

Suppose a trusted dealer chooses r,r" at random, broadcasts Y = rG and then shares r using among the
players P; using Pedersen’s VSS as described above. We would like to achieve this situation without a
trusted dealer. This can be achieved by the following protocol (see [11] for more details).

Each player P, performs the following steps

1. Each player P, chooses r;, 1 € Z, at random and verifiably shares (r;, /), acting as the dealer accord-

ing to Pedersen’s VSS described above. Let the sharing polynomials be f;(u) = Z;;é a;juw’, fl(u) =

t—1 ; . .
Z]‘:O a;»ju], where a0 = r;, aly = r}, and let the public commitments be Cj,, = a;G + @}, H for

i€ {0,...t—1}.

2. Let Hy :={P;|P; is not detected to be cheating at step 1}. The distributed secret value r is not
explicitly computed by any party, but it equals r = ZieHo r;. Each player P; sets his share of the
secret as s; = ) iy fj(i) mod ¢, and the value s; = > . fi(i) mod ¢.

3. Extracting ¥ = ZjeHo r;G: Each player in Hy exposes Y; = s;G via Feldman’s VSS (see [4]):

3.1. Each player P; in Hy broadcasts A;; = a;1G for k € {0, ...t — 1}.

3.2. Each player P; verifies the values broadcast by the other players in Hy. Namely, for each
P; € Hy, P; checks if

fij)G = X_jj’“A,»k. (2)
k=0

If the check fails for an index 7, P; complains against P; by broadcasting the values (f;(7), /(7))
that satisfy Eq. (1) but do not satisty Eq. (2).

3.3. For players P; who received at least one valid complaint, i.e., values which satisfy Eq. (1) but
do not satisty Eq. (2), the other players run the reconstruction phase of Pedersen’s VSS to
compute 7y, f;(+), A for k =0,....,t — 1 in the clear'. All players in Hy set Y; = r;G.

After the executing this protocol, the following equations hold [11]:

Y = rG
flu) = r4+au+..+a_1u'™", where q; = Z azi, and
JEH,
f@i) = s.

'Every player in Ho simply reveals his share of ;. Each player can then compute r; by choosing t shares that satisfy
Eq. (1)
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For convenience, we introduce the following notation for this protocol:

t,n)

(81, +eey Sn) (r|Y,a;G, Hy), i € {1, ....,t — 1}.

This notation means that s; is player P;’s share of the secret r for each j € Hpy. The values a;G are
the public commitments of the sharing polynomial f(-) (they can be computed using public information),
and (r,Y) forms a key pair (i.e., r is a private key and Y is the corresponding public key). The set Hy
denotes the set of players that have not been detected to be cheating. In the further protocols, we do not
need the values C;,Y;, Cj;, 85, 0" for j € {1,...,n},i € {0,...,t — 1} and therefore we omit these values in
the short notation.

3 Schnorr’s Signature Scheme

In [10], Schnorr introduced the following signature scheme. Let (2,Y) be a user’s key pair, let m be a
message and let G be a generator of an elliptic curve group having prime order ¢. Then a user generates
a Schnorr signature on the message m as follows.

—

. Select e € Z, at random

[\

. Compute V = eG
3. Compute 0 = e + h(m,V)z mod ¢

4. Define the signature on m to be (V, o)

A verifier accepts a signature (V,0) on a message m if and only if ¢ € Z, and
oG =V +h(m, V)Y

Schnorr signatures were shown to be existentially unforgeable under adaptively chosen message attacks in
the random oracle model, using the forking lemma in [10], provided that the discrete logarithm problem
is hard in the group generated by G.

4 A (t,n) Threshold Signature Scheme

In this section, we propose a robust and efficient (¢,7n) threshold digital signature scheme for Schnorr
signatures. We use the primitives presented in Section 2.

Our protocol consists of a key generation protocol and a signature issuing protocol. Let Py, ..., P, be a
set, of signers and let G be a generator of an elliptic curve group of order q.

4.1 Key Generation Protocol

All n signers have to co-operate to generate a public key, and a secret key share for each P;. They generate
a random shared secret according to the protocol presented in Section 2.4. Let the output of the protocol
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be

t,n)

(2|Y, 0:;G, Ho), i € {1,....t — 1}.

(01, ey i)

For each j € Hy, «; is the secret key share of P;, and will be used to issue a partial signature for the key
pair (z,Y).

4.2 Signature Issuing Protocol

Let m be a message and let h be a one-way hash function. Suppose that a subset H;y C Hp wants to issue
a signature. They use the following protocol:

1. If |[Hy| < t, stop. Otherwise, the subset H; generates a random shared secret as described in Section
2.4. Let the output be

t,n)

(517 cey ﬁn)
2. If |Hy| < k, stop. Otherwise, each P; € Hy reveals

vi = Bi+ h(m, V).

(e|V,e;G, Hy), i € {1,...,t —1}.

3. Each P, € H, verifies that

t—1 t—1
WG =V +> G+ h(m, V) | Y+ bk’G | forall k€ H,.
7=1 7=1

Let Hs := {P;|P; not detected to be cheating at step 3}.

4. If |H3| < t, then stop. Otherwise, each P; € Hj selects an arbitrary subset Hy C Hs with |Hy| = ¢
and computes o satisfying o = e + h(m, V)2, where

h
o= Z'ijjandwj: H —

JEH, h#j
h7]€H4

The signature is (o, V). To verify the signature, the same formula as in Schnorr’s scheme applies:

oG =V +h(m, V)Y and 0 € Z,.

Remarks

(1) The formula used in step 4 to compute o holds because of the following: Let
F3(u) := Fy(u) + h(m, V) Fy(u).
Then it follows that
F3(0) = F5(0) + h(m,V)F(0) = e+ h(m,V)z = 0.

Therefore, by using Lagrange’s formula (Section 2.2), the formula holds.
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(2) This scheme is robust, i.e., a corrupt signer who does not follow the protocol (by distributing incon-
sistent shares) will be detected. The random shared secret protocol has been proven to be robust
n [11]. The validity of the {7;} is verified at step 3.

(8) The scheme can easily be modified so that a trusted combiner calculates the signature, instead of the
players. The v,’s would be sent secretly to the trusted combiner, who proceeds with the verification
and the signature generation. In such a scenario, the players would not be able to generate a
signature without the combiner.

4) The only property required by the underlying secret sharing scheme is that it must be homomorphic.
g g
This signature scheme could therefore be generalized to non-threshold access structures by using a
suitable linear general access structure secret sharing scheme.

5 Security

5.1 Notion of Security

In this section, we show that the proposed (¢,n) threshold signature scheme is as secure as Schnorr’s
signature scheme, i.e., existentially unforgeable under adaptively chosen message attacks in the random
oracle model.

We define an adaptively chosen message attack against our (¢, n) threshold scheme as follows. An adversary
ApistSchnorr 18 allowed to have the signature issuing protocol executed by any ¢ or more signers to compute
signatures on messages of his own choice. He also might corrupt up to t — 1 arbitrary players. ApistSchnorr
then tries to forge a new signature from the signatures he obtained in this way and from his view, where
the view is everything that Ap;sSchnorr Sees in executing the key generation protocol and the signature
issuing protocol.

Let ANormSchnorr b€ a successful adversary that can break (in the sense of an existential forgery under
adaptively chosen message attack) Schnorr’s scheme (denoted by DnormSchnorr); and let ApisiSehnorr be @
successful adversary that can break the distributed Schnorr scheme (denoted by D pisischnorr) presented in
this paper. To proof the security of our scheme, we will show that given AnyrmSchnorr, ONE can construct
an adversary ApistSchnorr, and visa versa. This implies that D p;sisehnor 1S as secure as D NormSchnorr 1S

The basic idea of how to construct AnormSchnorr given the adversary Apisischnorr, @ public key Y and
a signing oracle goes as follows. ApnormSchnorr Simulates the roles of the uncorrupted players during all
stages of DpistSchnorr — 1-€., from the key generation protocol that outputs Y up to the signature issuing
protocols for ApisSchnors’s chosen message attack — and lets them interact with Apjsigchnorr (S€€ Section
5.3). Because ApisiSchnorr cannot distinguish what he sees (i.e., his view) during this simulation from what
he would see during a real run of Dp;ssehnorr, he will succeed and output a valid forgery, and therefore
so will ANormSchnorr-

The next section explains precisely what a view is. We also explain how to build a simulator SIM that
simulates the honest players during the generation of a distributed random shared secret such that it
produces for an arbitrary but given public key Y a view that is indistinguishable for the adversary from
a view that would have resulted from real players during a real run of the same protocol outputting Y.
This simulator is then used later as a subroutine of a simulator for the adversary’s entire view of our
threshold signature scheme.
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5.2 View

During an arbitrary multi-party protocol, a player will chose values on his own, see public broadcast
values and receive private values. We define his view of the protocol to consist of all these values. Notice
that in order to simulate the view for a player one does not have to simulate the values which the player
chooses on his own.

In the following, we will analyze the adversary’s view during the generation of a random shared secret. In
particular, the goal is to build a simulator SIM that succeeds in the following game. Let B be the index
set of corrupted players. The corrupted players P; for ¢ € B first run the protocol with real players such
that the public value of the random shared secret outputs a random value Y. Now we run the protocol
again, but instead of communicating with the real players, the players F; for ¢ € B communicate with the
simulator. This simulator will now produce messages exactly as the real players do, such that the public
value of the random shared secret is Y, and further, the adversary controlling players P; for ¢ € B cannot
distinguish this simulated view from the view resulting from the real players.

When generating a distributed random shared secret, as explained in Section 2.4, the view of a player P;
would be the following;:

the sharing polynomials JAONHO)
the temporary shares fi(9), f]'(z) for 7 € Hy
the public commitments Clim, Ajm for j € Ho, k € {0,....,t — 1}
answers on a valid complaint against P (fi(5), () for j € {1,...,n},

and the content of his random tape. If an adversary corrupts P; and P;, then the adversary’s view is
{view of P;} U {view of P;}.

Definition 1 Suppose that a set Hy of players compute a random shared secret on input (¢, G) and
produce output Y. Let A be an adversary that corrupts up to t — 1 players. Let view(fl, G,q,Y) denote
the view of the adversary for this protocol. Let VI EW(A,G,Q,Y) be the random variable induced by
view(fl,G,q,Y)z.

Lemma 1 For any probabilistic polynomial time adversary A there exists a probabilistic polynomial time
stmulator SIM that can compute a random variable SIM(G, q,Y) which has the same probability distribu-
tion as VIEW (A, G, q,Y).

Proof of Lemma 1 Assume that A corrupts players P; for i € B = {1,...,t — 1}. Further, let B’
be the index set that denotes the player who publishes inconsistent values A;,,. Then, view(A,G,q,Y),
when generating a random shared secret, is as follows, assuming Hy = { P, ..., P, }:

1. The content of the random tape of A

2. fi(-), fI(-) for i € B

2

view(.) contains random variables and static values. VIEW(.) can be regarded as the interpretation of view(.) as one
large bit string, so it is basically a random variable.



5 Security Page 9

3. f;(i), fi(i) for j € Ho,i € B

. Cjm for j € Hy,m € {0, ....,t — 1}

B

5. Ajm for j € Ho,m € {0, ...t — 1}

: (fl(])?fz/(])) for j € {17 "'7n}7i €B

(@]

Now we show how to construct a simulator SIM that can act in the protocol as the real players, such that
the resulting view has the same probability distribution (we use the same simulator as in [11]). Note that
SIM does not have to compute the sharing polynomials (2) itself since they are chosen by the adversary.
The same holds for the content of the random tape (1) which is part of the adversary’s internal state that
does not have to be simulated.

1. (3, 4) Perform step 1 of the protocol on behalf of the uncorrupted players P, ..., P, exactly as
specified in the protocol. This includes receiving and processing the information sent privately and
publicly from corrupted players to honest ones.After this step, SIM knows all polynomials f;(-), f/(-)
for ¢ € Hy (this holds also for ¢ € Hy N B, since SIM received enough consistent shares from these
parties to compute their polynomials). In particular, SIM knows all the shares f;(j), f/(j), the
coefficients a;x, b and the public values Cj.

2. (5) When extracting the values r;G, the simulator acts as follows:

e Compute A;; = ;G for i € Ho \ {n},k € {0,...,t — 1}
e Compute A, =Y — EiEH\{n} Ao

e Compute A, = Apodno + Zf;} Meifn(0)G for k€ {1,...,t — 1}, where A;’s are the Lagrange
interpolation coefficients of the set Hy.

e Broadcast A for ¢ € Ho, k € {0,....,t — 1}
3. (6) To handle the messages resulting from complaints, SIM acts as follows:

e Perform for each uncorrupted player the verifications of Eq. (2) on the values A, for ¢ € B,
broadcast by the players controlled by the adversary. If the verification fails for some ¢ € B, j €
Hy \ B, broadcast a complaint (f;(7), f/(j)). (Notice that the corrupted players can publish a
valid complaint only against one another, and there will be no complaints against an honest
player that is simulated by SIM).

e For each valid complaint against P;, perform the reconstruction phase of Pedersen’s VSS to
compute r; and Y; in the clear.

After step 1, the polynomials f;(-), f/(-) for ¢ € Hy \ B are chosen at random. All associated values
(Ciks fi(4), f1(4), ik, big) therefore have the exact same probability distribution as in a real run of the
protocol.

The broadcasted values A;; are all uniformly random since the corresponding a,;; are random. This holds
also for the specially computed A, for k& € {0,...,t — 1}, since, for each such coefficient, there is at
least one random value it depends on. Notice that the fact that these A,;’s are not consistent with
the corresponding a,;’s does not appear in the adversary’s view: he never sees the a,;’s but only the
consistent public commitments of these values.
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During the handling of complaints (step 3) there can only be valid complaints against a corrupted server.
To reconstruct r;, SIM has to reveal the values f;(j), f/(j) for j € Hy\ B. But SIM knows all the
polynomials f;(-), f/(-) for ¢ € Hy \ B. Therefore, SIM has only to broadcast these values, which will
always be consistent with the adversary’s view.

A more detailed analysis of the distribution can be found in [11]. The computed view, and the induced
random variable SIM (A, G, q,Y), has the same probability distribution as VIEW (A, G, q,Y). O

5.3 Unforgeability

In this section, we will show how to reduce the distributed Schnorr signature scheme to the regular Schnorr
signature scheme, and visa versa. This implies that the security of the two schemes is identical.

Definition 2 Let Ayormschnor b€ a probabilistic polynomial time adversary who can ask a signer for valid
signatures. By ANormSchnorr (G, q,Y) we denote a random wvariable which specifies the probability of the
event that ANormSchnorr queries (my, ma, ..., ) to the signer and outputs (m,&,f/) (on iput (G,q,Y) ).
The probability is taken over all the coin tosses of ANormSchnorr and the signer.

Definition 3 Let Ap;sschnor e a probabilistic polynomial time adversary who can corrupt up to t—1 play-
ers. He also may have > t arbitrary signers issue a signature upon his request. By ApisiSchnorr (G, q|Y)3
we denote the random variable that has the probability distribution of ApisiSchnorr 0sking for signatures on
(1,3, ...,) (on input (G, q)) and finally computing (i, &, V) under the condition that the key generation
protocol outputs Y. The probability is taken over all the coin tosses of ApisiSchnorr and the signers.

Theorem 1 For any adversary AnormSchnorr 090inst D NormSchnorr, there exists an adversary ApisiSchnorr
against Dpisisehnor Such that

Pr[ADistSchnorr (G7 q|Y) — (mh ey (~ 75-7 ‘N/))] — Pr[ANormSchnorr (G7 q, Y) — (mh ey (m7 5-7 ‘N/))]

(Proof) We show how to construct ApisiSchnorr given the adversary AnormSchnorr- Suppose the
key generation protocol of Dpisschnorr generates Y. Apisschnorr feeds (G, ¢,Y) and the content of the
random tape of AnormSchnorr N0 ANormSchnorr and starts ApnormSchnorr. YWhenever A normSchnorr asks for
a signature on a message m, ApisiSehnorr Nas some t signers execute the signature issuing protocol for
m and returns the signature (0, V) to0 AnormSchnorr- Thus, ANormSchnorr can perform his chosen message
attack. ApisiSehnorr outputs (m, , V) if AnormSchnorr oOutputs (m,a, V). O

Theorem 2 For any adversary ApisiSchnorr @90inst DpisiSchnore, there exists an adversary ApnormSchnorr
against D NormSehnorr Such that

Pr[ANormSchnorr (G7 q, Y) - (mh ceey (m7 5-7 ‘N/))] = Pr[ADistSchnorr (G7 (J|Y) = (mh ceey (~ 75-7 ‘N/))]

3 Apistschnorr (G, qlY) is different from Apisischnorr (G, g, Y). It contains not only the values G, q, Y, but also Apistschnors’s
view from the key generation protocol. For Ansrmschnorr this view is empty, while for Apjstscanors this is not the case (since
he can corrupt ¢ — 1 signers)
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(Proof) We show how to construct Apnormschnorr given the adversary ApisiSchnorr. Informally, we
will show how An,rmSchnorr can simulate — with the help of a signing oracle (used in the chosen message
attack assumption) — the role of the honest players in DpisSchnorr for a given public key Y. Because
ApistSchnorr cannot distinguish this simulation, it will be successful and output a forgery which is a
forgery in D normSechnorr, 0O.

For simplicity, assume A pisisehnorr corrupts players 1, ...,t—1. Using the techniques described in Lemma 1,
ANormSehnorr lets SIM execute the key generation protocol for the given public key Y. Next, AnormSchnorr
runs ApistSehnorr- WWhenever Ap;sSehnorr requests a signature for m;, AnormSchnorr asks a signer and
provides ApisiSchnorr With the signature (my, 0, Vi). ANormSchnorr also has to provide Apjsigehnorr With
the values he sees during the signature issuing protocol. These values include, in particular, the view
resulting from generating a random shared secret and all the {v;}. Again, An,rmSchnorr lets SIM interact
with ApistSehnorr during the generation of a random shared secret. As a side effect, SIM (and therefore also
ANormSechnorr ) KNOWS a1, ..., y—1, B1, ..., Bi—1 and can compute vy, ..., Yi—1. Finally, AnormSchnorr cOmputes
v as follows. Recall from Section 4.2 that we have

t tog
o = E vjw;, where w; = H T
J=1 hj J
h=1
Hence, v; is computed as
t
Oi = 2 i1 Vi)
Wi '

Tt =

Now ApnormSchnorr feeds {v1, ..., vt} t0 ApistSchnorr- Since Apisisehnorr 10w has his whole view, he can per-
form his adaptive chosen message attack. AnormSchnorr OUtputs (m, d, V) if Apisischnorr Outputs (m, o, V).
O

6 The Implicit Certificate Scheme

To motivate the (¢,n) threshold scheme for implicit certificates, we give a short overview of the non-
distributed version of this scheme ([3]). In [3], security proofs for this scheme in the random oracle model
are given.

Assume a C'A with the key pair (z,Y) issues an implicit certificate to a user. The operation of the scheme
is as follows.

1. The user generates a random integer ¢ € Z, and computes V = ¢G. Further, he sends V' to the C'A.

2. The C' A authenticates the user. Together, the C'A and the user determine an identifier string I,
(containing the user’s identity and other information such as, for example, a serial number for the
certificate).

3. The C'A chooses a random integer ¢ € Z,, and computes C' =V + eG and 0 = e + h(I,,C)z.
Further, the C A sends (I, C, o) to the user.

4. The user computes his private key SK, = ¢+ s mod ¢, and verifies the certificate by checking that
following equation holds: SK, = C + h(1,,C)Y.
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When a verifier wants to compute the user’s public key from the certificate (I,,C), following formula
applies: PK, = C + h(I,,C)Y. Note that the equation used to compute o is exactly Schnorr’s signing
equation. The only difference from Schnorr’s signature scheme is the construction of the point C'. Here,
this point contains an additive component that the user provides. This is necessary to guarantee that
only the user knows his secret key.

7 (t,n) Threshold Scheme for Implicit Certificates

In this section, we incorporate the distributed Schnorr signature scheme into a (¢,n) threshold scheme
for implicit certificates in the same way as was done in Section 6. In such a scheme, n players Py, ..., Py,
called the shareholders, represent a C'A with public key PKy. A group of ¢ shareholders together can
reconstruct S Ky and issue an implicit certificate. Any coalition of less than ¢ shareholders does not have
any information about SKjy.

Our scheme consists of three steps. First, the shareholders representing the C'A have to generate a key
pair. Everybody will know the value of PKy, while only a coalition of at least t shareholders shall be
able to recover SKjy or issue certificates. Second, the shareholders issue a certificate to a user. Finally,
the user verifies if the certificate is valid.

In Section 8, we will give a proof that the presented scheme is as secure as the Schnorr signature scheme.
This means that if an adversary could forge an implicit certificate and know the corresponding private
key, he could also forge a Schnorr signature.

7.1 Key Generation Protocol

We would like to generate a random shared secret SKg such that each shareholder P; who follows the
protocol holds a share s; in this key. Moreover, a coalition of less than t players cannot get any information
about SKj.

This situation corresponds exactly to the generation of a shared secret, as described in Section 2.4. Using
the notation introduced in Section 2.4, the situation is as follows:

(s ooy a) 27 (5K

PEKo,bG, Ho), i € {1, .t — 1}

7.2 Certificate Issuing Protocol and Public Key Reconstruction

Suppose a subset Hy C Hy wants to issue an implicit certificate.

1. The user selects a random number ¢, and sends V,, = ¢,G to the shareholders. V,, is called the
public request value of the user.

2. If |Hy| < t, stop. Otherwise, H; generates a random shared secret as shown in Section 2.4. Let the
public output be

By ) L (e|V, G, Hy), i€ {1, oyt — 1),
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3. If |Hy| < k, stop. Otherwise, each P; € Hy computes C' =V + V,, and reveals
vi = Bi + h(Ly, C) .

4. Each P, € H, verifies that

t—1 t—1
NG =V +> G+ h(1,C) [ Y+ b;i?G | foralll € H,.
7=1 7=1

Let Hs := {P;|P; not detected to be cheating at step 3}.

5. If |Hs| < t stop. Otherwise, each P; € Hj selects an arbitrary group Hy C Hz with |Hs| = ¢ and

computes o satistying 0 = e + h(I,,C)x by

o= Z vjw;, Where w; = H hhf]

JEH, h#j
h7]€H4

(5)

The implicit certificate is (o, ). At least ¢ shareholders send the implicit certificate to the user.

6. The user computes his private key SK, as SK, = ¢,+ ¢ and verifies the correctness of the certificate

by the following equation:

SK,G=C+n(l,,C)Y and 0 € Z,.

To reconstruct the public key of the user from the implicit certificate, we use following formula:

oPK, =C + h(I,,C)Y.

(6)

(7)

Remark A corrupt shareholder might send a wrong certificate & to the user. Since t shareholders
send their certificates to the user, the user got at least one valid certificate (since there is at least one
honest shareholder among ¢ shareholders). To identify the valid certificate, the user simply checks for

each o if equation (6) holds.

8 Security

8.1 Correctness

We have to verify that the private key SK, computed by the user corresponds to the public key PK,

implied by the implicit certificate (formula 7). Thus, we have to verify that following formula holds:

SK.G = C + h(l,,C)PKo.

(8)
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Let P (|P| =t) be a group of shareholders which have not been detected to be cheating when issuing the
certificate. Then we have

SK,G ) (cu+ Z%’%’)G
1€EP
1€EP
Vi + Z(ﬁ,w,G + Oé,'w,'h(fu, C)G)
1€EP
= Vu+V+h(l,C)PKy
— C+h(I,,C)PK, O

—_
~

—_
w
o

8.2 Detectability

We have to verify that every shareholder not following the protocol will be detected.

Key Generation During key generation, we use the protocol described in [11]. This protocol has
already been proven to be robust, i.e., players not following the protocol will be detected.

Certificate Issuing First, the players generate a distributed secret with Pedersen’s protocol (which
is proved to be detectable). Second, they reveal {7;}, but these values are verified through equation (4).
Finally, they send the calculated certificate to the user. By verifying equation (6), the user can identify
the correct certificates.

8.3 Notion of Security in the Random Oracle Model

We assume that we are in the random oracle model (i.e., the hash function is modelled as a random
function; see [1]). Let (SK¢a, PKca) be the key pair of the C'A (represented through shareholders in
case of the distributed implicit certificate scheme). An implicit certificate scheme is secure if the following
two properties hold:

unforgeability It is hard for an adversary who does not know C' A’s secret key to forge implicit certificates
in such a manner that the adversary knows the corresponding private key

non-impersonating It is hard for C'A to obtain the requester’s private key provided that the requester
followed the protocol.

The term “hard” means that there is no polynomial-time adversary who can solve the task with non-

negligible probability. These conditions must hold for adversaries defined as follows.

We define a forging adversary A; as a probabilistic, polynomial-time turing machine which, on input

PK¢ 4 does the following:

e it may watch other entities requesting and receiving implicit certificates from the C'A
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e it may request implicit certificates from the C'A

e finally, it produces an implicit certificate and the corresponding private key in time ¢ and with
probability p.

We define an impersonating adversary A; as a probabilistic, polynomial-time turing machine which, on
input (PKca,SKca) does the following:

e it may act as a C'A and issue implicit certificates to requesting entities

e it can produce an implicit certificate and the corresponding private key in time ¢ and with probability
Pp.

An adversary Ay (respectively, A4;) is successful if ¢ is polynomial and p is non-negligible.

8.4 Unforgeability

Let (2,Y) be the (SK, PK) key pair of the C'A (represented through shareholders in case of the implicit
certificate scheme). Let DyormSchnorr denote Schnorr’s signature scheme and A nprmSchnorr be a successful
adversary against it as defined earlier in Section 5.1. We define a successful adversary Ap;sicert against
the implicit certificate scheme D p;sicer as a successful forging adversary as defined in Section 8.3.

One can show that a successful adversary AnormSchnorr 18 €quivalent to a successful adversary Apisicert,
in the sense that each of them can construct the other one. This implies that the distributed implicit
certificate scheme is as secure as Schnorr’s signature scheme.

The same proof technique as was used for the distributed Schnorr signature scheme can be applied in
a straightforward way. That is, one can show how to simulate the view of the given adversary without
knowing the private key of the shareholders. Since the adversary cannot distinguish a simulated view
from an actual view, he will perform his attack and output a forgery. This forgery can then be used to
construct the other adversary.

8.5 Non-impersonating

By proving the unforgeability of our scheme, we implicitly proved that the user does not learn the
shareholders’ private key shares. We also have to show that the shareholders do not learn the user’s
private key and impersonate the user. But it follows directly from the scheme that if the shareholders
could compute the user’s private key, then they could compute discrete logarithms. O

8.6 Further Issues

Counsider the scenario where a digital signature on a certain message and an implicit certificate authenti-
cating the according verification key are sent to a user. Even though we proved that it is hard to forge an
implicit certificate without knowing the C'A’s secret key such that one knows the corresponding private
key, we did not prove that it is hard to forge a digital signature and an implicit certificate such that the
public key implied by the certificate just validates the signature.
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This is not an issue with traditional certificates. However, whenever implicit certificates are used to
authenticate a public key for some application, a specific security proof for the particular application is
necessary. For example, in [2], a proof is given in the random oracle model that it is secure to use implicit
certificates as authentication for public keys that verify Schnorr signatures.
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10 Summary

Based upon various secret sharing primitives and Schnorr’s signature scheme, we have presented an
implicit certificate scheme, a (¢,n) threshold signature scheme, and a (¢,n) threshold scheme for implicit
certificates. All schemes are efficient, robust and provably secure in the random oracle model.

From a practical point of view, implicit certificate schemes have the following drawbacks. We suggest
these points as open research problems.

e The implicit certificate schemes itself generate a key pair for the user. Therefore, the schemes cannot
be used to generate a public reconstruction data for a given key pair of the user. To the best of our
knowledge, no scheme based on the elliptic curve discrete logarithm problem exists that can issue
an implicit certificate for a given key pair.

e The implicit certificate schemes produce a key pair which is defined over the same group as the C A’s
key pair is. Therefore, the security parameters for the certified public keys are always inherited from
the certifying C'A. This might not always be desirable in practice.
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