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Abstra
t

In a (t; n) threshold digital signature s
heme, t out of n signers must 
o-operate to issue a signature.

We present an eÆ
ient and robust (t; n) threshold version of S
hnorr's signature s
heme. We prove it

to be as se
ure as S
hnorr's signature s
heme: i.e., existentially unforgeable under adaptively 
hosen

message atta
ks. The signature s
heme is then in
orporated into a (t; n) threshold s
heme for impli
it


erti�
ates. We prove the impli
it 
erti�
ate s
heme to be as se
ure as the distributed S
hnorr signature

s
heme.

1 Introdu
tion

Traditional 
erti�
ates 
ontain a signature on some data, usually a publi
 key and an identity string. To

issue a traditional 
erti�
ate, a Certi�
ation Authority (CA) �rst veri�es the authenti
ity of this data

and then simply issues a digital signature on it. The 
erti�
ate is therefore as se
ure as the signature

s
heme: 
erti�
ates 
annot be forged be
ause signatures 
annot be forged.

When issuing impli
it 
erti�
ates, the situation is somewhat di�erent. Impli
it 
erti�
ates also 
ontain

some data, usually some publi
 re
onstru
tion data and an identity string, but no publi
 key or signature.

The publi
 key itself must be 
omputed from the publi
 re
onstru
tion data and the publi
 key of the CA

who issued the 
erti�
ate. Clearly, the advantage of impli
it 
erti�
ates is their size: they only 
ontain

some publi
 re
onstru
tion data, where as traditional 
erti�
ates 
ontain instead a publi
 key and a digital

signature. A survey of various types of impli
it 
erti�
ates is given in [9℄.

In 
ontrast to traditional 
erti�
ates, where the se
urity lies dire
tly on the underlying signature s
heme,

there are spe
ial se
urity issues 
on
erning impli
it 
erti�
ates. In general, any publi
 re
onstru
tion data

and identity string, together with a CA's publi
 key, would yield a publi
 key. However, it should be

hard to 
hoose the publi
 re
onstru
tion data and 
ompute the private key 
orresponding to the implied

publi
 key, without knowing the CA's private key. Another issue is that { sin
e one usually uses a slightly
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modi�ed signature s
heme to issue a 
erti�
ate { one has to make sure that no information about the

CA's or the user's private key is leaked.

We �rst present a distributed S
hnorr signature s
heme and prove it to be as se
ure as the non distributed

version, i.e., existentially unforgeable under adaptively 
hosen message atta
ks. Se
ond, this s
heme is

in
orporated into the 
onstru
tion of a distributed impli
it 
erti�
ate s
heme.

Our digital signature threshold s
heme is based on two primitives: Pederson's Veri�able Se
ret Sharing

S
heme and Pederson's multi-party proto
ol to generate a random shared se
ret [8, 6℄. These primitives

are brie
y dis
ussed in Se
tion 2. In Se
tion 3 we re
all S
hnorr's signature s
heme [12℄. Then we propose

in Se
tion 4 a (t; n) threshold version of this signature s
heme. We prove the se
urity of the s
heme in

Se
tion 5, adapting the proof te
hniques used in [5℄. The non-distributed impli
it 
erti�
ate s
heme is

introdu
ed in Se
tion 6. The (t; n) threshold version of this s
heme is presented in Se
tion 7, and a

se
urity proof is presented in Se
tion 8.

In all proofs, we use the random ora
le model as des
ribed in [1℄. For all proto
ols we assume a syn
hronous


ommuni
ation model, where all players are 
onne
ted via private 
hannels and a global broad
ast 
hannel.

2 Se
ret Sharing S
hemes

2.1 Parameters

We use ellipti
 
urve notation for the dis
rete logarithm problem. Suppose q is a large prime and G;H

are generators of a subgroup of order q of an ellipti
 
urve E. We assume that E is 
hosen in su
h a way

that the dis
rete logarithm problem in the subgroup generated by G is hard, so it is infeasible to 
ompute

the integer d su
h that G = dH .

2.2 Shamir's Se
ret Sharing S
heme

In a (t; n) se
ret sharing s
heme, a dealer distributes a se
ret s to n players P

1

; � � � ; P

n

in su
h a way that

any group of at least t players 
an re
onstru
t the se
ret s, while any group of less than t players do not

get any information about s. In [13℄, Shamir proposes a (t; n) threshold se
ret sharing s
heme as follows.

In order to distribute s 2 Z

q

among P

1

; :::; P

n

(where n < q), the dealer 
hooses a random polynomial f

over Z

q

of degree at most t � 1 satisfying f(0) = s. Ea
h parti
ipant P

i

re
eives s

i

= f(i) as his share.

There is one and only one polynomial of degree at most t � 1 satisfying f(i) = s

i

for t values of i.

Therefore, an arbitrary group P of t parti
ipants 
an re
onstru
t the polynomial f() by using Lagrange's

interpolation formula:

f(u) =

X

i2P

f(i)!

i

(u) ; where !

i

(u) =

Y

j2P

j 6=i

u� j

i� j

mod q:

Sin
e it holds that s = f(0), the group P 
an re
onstru
t the se
ret dire
tly, using the formula

s = f(0) =

X

i2P

f(i)!

i

; where !

i

= !

i

(0) =

Y

j2P

j 6=i

j

j � i

mod q:
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Ea
h !

i

is non-zero and 
an be easily 
omputed from publi
 information. Note that the 
onstant term of a

polynomial of degree at most t�1 is not given through t�1 equations of the form f(i) = s

i

. Furthermore,

ea
h possible value for the 
onstant term is equally possible. A 
oalition of t � 1 players 
an therefore

neither 
ompute the se
ret nor get any information about it.

2.3 Veri�able Se
ret Sharing S
heme

A Veri�able Se
ret Sharing S
heme (VSS) prevents the dealer from 
heating. In a VSS, ea
h player 
an

verify his share. If the dealer distributes in
onsistent shares, he will be dete
ted. Pedersen presented a

non-intera
tive VSS in [7℄ whi
h we will use in this paper. His s
heme is as follows.

Assume the dealer has a se
ret s 2 Z

q

and a random number s

0

2 Z

q

, and is 
ommitted to the pair (s; s

0

)

through publi
 information C

0

= sG+ s

0

H . The se
ret s 
an be shared among P

1

; :::; P

n

as follows.

The dealer performs the following steps

1. Choose random polynomials

f(u) = s + f

1

u+ � � �+ f

t�1

u

t�1

; f

0

(u) = s

0

+ f

0

1

u+ � � �+ f

0

t�1

u

t�1

where s; s

0

; f

j

; f

0

j

2 Z

q

. Compute (s

i

; s

0

i

) = (f(i); f

0

(i)) for i 2 f1; :::; ng.

2. Send (s

i

; s

0

i

) se
retly to player P

i

for 1 � i � n.

3. Broad
ast the values C

j

= f

j

G+ f

0

j

H for 1 � j � t � 1.

Ea
h player P

i

performs the following steps

1. Verify that

s

i

G+ s

0

i

H =

t�1

X

j=0

i

j

C

j

: (1)

If this is false, broad
ast a 
omplaint against the dealer.

2. For ea
h 
omplaint from a player i, the dealer defends himself by broad
asting the value (f(i); f

0

(i))

that satis�es the 
he
king equation (1).

3. Reje
t the dealer if

� he re
eived more than t 
omplaints in step 1, or

� he answered to a 
omplaint in step 2 with values that violate Eq. (1).

Pedersen proved that any 
oalition of less than t players 
annot get any information about the shared

se
ret, provided that the dis
rete logarithm problem in E is hard (see [7℄).
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2.4 Generating a random se
ret

For the key generation phase of our s
heme, it is ne
essary to generate a random shared se
ret in a

distributed way. The early proto
ol proposed by Feldman [4℄ has been shown to have a se
urity 
aw, and

a se
ure proto
ol has been proposed in [11℄. We will use the se
ure proto
ol for our s
hemes and re
all it

in the following.

Suppose a trusted dealer 
hooses r; r

0

at random, broad
asts Y = rG and then shares r using among the

players P

i

using Pedersen's VSS as des
ribed above. We would like to a
hieve this situation without a

trusted dealer. This 
an be a
hieved by the following proto
ol (see [11℄ for more details).

Ea
h player P

i

performs the following steps

1. Ea
h player P

i


hooses r

i

; r

0

i

2 Z

q

at random and veri�ably shares (r

i

; r

0

i

), a
ting as the dealer a

ord-

ing to Pedersen's VSS des
ribed above. Let the sharing polynomials be f

i

(u) =

P

t�1

j=0

a

ij

u

j

; f

0

i

(u) =

P

t�1

j=0

a

0

ij

u

j

, where a

i0

= r

i

; a

0

i0

= r

0

i

, and let the publi
 
ommitments be C

im

= a

im

G + a

0

im

H for

i 2 f0; :::; t� 1g.

2. Let H

0

:=fP

j

jP

j

is not dete
ted to be 
heating at step 1g. The distributed se
ret value r is not

expli
itly 
omputed by any party, but it equals r =

P

i2H

0

r

i

. Ea
h player P

i

sets his share of the

se
ret as s

i

=

P

j2H

0

f

j

(i) mod q, and the value s

0

i

=

P

j2H

0

f

0

j

(i) mod q.

3. Extra
ting Y =

P

j2H

0

r

i

G: Ea
h player in H

0

exposes Y

i

= s

i

G via Feldman's VSS (see [4℄):

3.1. Ea
h player P

i

in H

0

broad
asts A

ik

= a

ik

G for k 2 f0; :::; t� 1g.

3.2. Ea
h player P

j

veri�es the values broad
ast by the other players in H

0

. Namely, for ea
h

P

i

2 H

0

, P

j


he
ks if

f

i

(j)G =

t�1

X

k=0

j

k

A

ik

: (2)

If the 
he
k fails for an index i, P

j


omplains against P

i

by broad
asting the values (f

i

(j); f

0

i

(j))

that satisfy Eq. (1) but do not satisfy Eq. (2).

3.3. For players P

i

who re
eived at least one valid 
omplaint, i.e., values whi
h satisfy Eq. (1) but

do not satisfy Eq. (2), the other players run the re
onstru
tion phase of Pedersen's VSS to


ompute r

i

; f

i

(�); A

ik

for k = 0; :::; t� 1 in the 
lear

1

. All players in H

0

set Y

i

= r

i

G.

After the exe
uting this proto
ol, the following equations hold [11℄:

Y = rG

f(u) = r + a

1

u + :::+ a

t�1

u

t�1

; where a

i

=

X

j2H

0

a

ji

; and

f(i) = s

i

:

1

Every player in H

0

simply reveals his share of r

i

. Ea
h player 
an then 
ompute r

i

by 
hoosing t shares that satisfy

Eq. (1)
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For 
onvenien
e, we introdu
e the following notation for this proto
ol:

(s

1

; :::; s

n

)

(t;n)

 ! (rjY; a

i

G;H

0

); i 2 f1; :::; t� 1g:

This notation means that s

j

is player P

j

's share of the se
ret r for ea
h j 2 H

0

. The values a

i

G are

the publi
 
ommitments of the sharing polynomial f(�) (they 
an be 
omputed using publi
 information),

and (r; Y ) forms a key pair (i.e., r is a private key and Y is the 
orresponding publi
 key). The set H

0

denotes the set of players that have not been dete
ted to be 
heating. In the further proto
ols, we do not

need the values C

i

; Y

j

; C

ji

; s

0

j

; r

0

for j 2 f1; :::; ng; i 2 f0; :::; t� 1g and therefore we omit these values in

the short notation.

3 S
hnorr's Signature S
heme

In [10℄, S
hnorr introdu
ed the following signature s
heme. Let (x; Y ) be a user's key pair, let m be a

message and let G be a generator of an ellipti
 
urve group having prime order q. Then a user generates

a S
hnorr signature on the message m as follows.

1. Sele
t e 2 Z

q

at random

2. Compute V = eG

3. Compute � = e+ h(m;V )x mod q

4. De�ne the signature on m to be (V; �)

A veri�er a

epts a signature (V; �) on a message m if and only if � 2 Z

q

and

�G = V + h(m;V )Y

S
hnorr signatures were shown to be existentially unforgeable under adaptively 
hosen message atta
ks in

the random ora
le model, using the forking lemma in [10℄, provided that the dis
rete logarithm problem

is hard in the group generated by G.

4 A (t; n) Threshold Signature S
heme

In this se
tion, we propose a robust and eÆ
ient (t; n) threshold digital signature s
heme for S
hnorr

signatures. We use the primitives presented in Se
tion 2.

Our proto
ol 
onsists of a key generation proto
ol and a signature issuing proto
ol. Let P

1

; :::; P

n

be a

set of signers and let G be a generator of an ellipti
 
urve group of order q.

4.1 Key Generation Proto
ol

All n signers have to 
o-operate to generate a publi
 key, and a se
ret key share for ea
h P

j

. They generate

a random shared se
ret a

ording to the proto
ol presented in Se
tion 2.4. Let the output of the proto
ol
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be

(�

1

; :::; �

n

)

(t;n)

 ! (xjY; b

i

G;H

0

); i 2 f1; :::; t� 1g:

For ea
h j 2 H

0

, �

j

is the se
ret key share of P

j

, and will be used to issue a partial signature for the key

pair (x; Y ).

4.2 Signature Issuing Proto
ol

Let m be a message and let h be a one-way hash fun
tion. Suppose that a subset H

1

� H

0

wants to issue

a signature. They use the following proto
ol:

1. If jH

1

j < t, stop. Otherwise, the subset H

1

generates a random shared se
ret as des
ribed in Se
tion

2.4. Let the output be

(�

1

; :::; �

n

)

(t;n)

 ! (ejV; 


i

G;H

2

); i 2 f1; :::; t� 1g:

2. If jH

2

j < k, stop. Otherwise, ea
h P

i

2 H

2

reveals




i

= �

i

+ h(m;V )�

i

:

3. Ea
h P

i

2 H

2

veri�es that




k

G = V +

t�1

X

j=1




j

k

j

G+ h(m;V )

0

�

Y +

t�1

X

j=1

b

j

k

j

G

1

A

for all k 2 H

2

:

Let H

3

:= fP

j

jP

j

not dete
ted to be 
heating at step 3g.

4. If jH

3

j < t, then stop. Otherwise, ea
h P

i

2 H

3

sele
ts an arbitrary subset H

4

� H

3

with jH

4

j = t

and 
omputes � satisfying � = e+ h(m;V )x, where

� =

X

j2H

4




j

!

j

and !

j

=

Y

h6=j

h;j2H

4

h

h � j

:

The signature is (�; V ). To verify the signature, the same formula as in S
hnorr's s
heme applies:

�G = V + h(m;V )Y and � 2 Z

q

:

Remarks

(1) The formula used in step 4 to 
ompute � holds be
ause of the following: Let

F

3

(u) := F

2

(u) + h(m;V )F

1

(u):

Then it follows that

F

3

(0) = F

2

(0) + h(m;V )F

1

(0) = e + h(m;V )x = �:

Therefore, by using Lagrange's formula (Se
tion 2.2), the formula holds.
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(2) This s
heme is robust, i.e., a 
orrupt signer who does not follow the proto
ol (by distributing in
on-

sistent shares) will be dete
ted. The random shared se
ret proto
ol has been proven to be robust

in [11℄. The validity of the f


i

g is veri�ed at step 3.

(3) The s
heme 
an easily be modi�ed so that a trusted 
ombiner 
al
ulates the signature, instead of the

players. The 


i

's would be sent se
retly to the trusted 
ombiner, who pro
eeds with the veri�
ation

and the signature generation. In su
h a s
enario, the players would not be able to generate a

signature without the 
ombiner.

(4) The only property required by the underlying se
ret sharing s
heme is that it must be homomorphi
.

This signature s
heme 
ould therefore be generalized to non-threshold a

ess stru
tures by using a

suitable linear general a

ess stru
ture se
ret sharing s
heme.

5 Se
urity

5.1 Notion of Se
urity

In this se
tion, we show that the proposed (t; n) threshold signature s
heme is as se
ure as S
hnorr's

signature s
heme, i.e., existentially unforgeable under adaptively 
hosen message atta
ks in the random

ora
le model.

We de�ne an adaptively 
hosen message atta
k against our (t; n) threshold s
heme as follows. An adversary

A

DistS
hnorr

is allowed to have the signature issuing proto
ol exe
uted by any t or more signers to 
ompute

signatures on messages of his own 
hoi
e. He also might 
orrupt up to t�1 arbitrary players. A

DistS
hnorr

then tries to forge a new signature from the signatures he obtained in this way and from his view, where

the view is everything that A

DistS
hnorr

sees in exe
uting the key generation proto
ol and the signature

issuing proto
ol.

Let A

NormS
hnorr

be a su

essful adversary that 
an break (in the sense of an existential forgery under

adaptively 
hosen message atta
k) S
hnorr's s
heme (denoted by D

NormS
hnorr

); and let A

DistS
hnorr

be a

su

essful adversary that 
an break the distributed S
hnorr s
heme (denoted by D

DistS
hnorr

) presented in

this paper. To proof the se
urity of our s
heme, we will show that given A

NormS
hnorr

, one 
an 
onstru
t

an adversary A

DistS
hnorr

, and visa versa. This implies that D

DistS
hnorr

is as se
ure as D

NormS
hnorr

is.

The basi
 idea of how to 
onstru
t A

NormS
hnorr

given the adversary A

DistS
hnorr

, a publi
 key Y and

a signing ora
le goes as follows. A

NormS
hnorr

simulates the roles of the un
orrupted players during all

stages of D

DistS
hnorr

{ i.e., from the key generation proto
ol that outputs Y up to the signature issuing

proto
ols for A

DistS
hnorr

's 
hosen message atta
k { and lets them intera
t with A

DistS
hnorr

(see Se
tion

5.3). Be
ause A

DistS
hnorr


annot distinguish what he sees (i.e., his view) during this simulation from what

he would see during a real run of D

DistS
hnorr

, he will su

eed and output a valid forgery, and therefore

so will A

NormS
hnorr

.

The next se
tion explains pre
isely what a view is. We also explain how to build a simulator SIM that

simulates the honest players during the generation of a distributed random shared se
ret su
h that it

produ
es for an arbitrary but given publi
 key Y a view that is indistinguishable for the adversary from

a view that would have resulted from real players during a real run of the same proto
ol outputting Y .

This simulator is then used later as a subroutine of a simulator for the adversary's entire view of our

threshold signature s
heme.
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5.2 View

During an arbitrary multi-party proto
ol, a player will 
hose values on his own, see publi
 broad
ast

values and re
eive private values. We de�ne his view of the proto
ol to 
onsist of all these values. Noti
e

that in order to simulate the view for a player one does not have to simulate the values whi
h the player


hooses on his own.

In the following, we will analyze the adversary's view during the generation of a random shared se
ret. In

parti
ular, the goal is to build a simulator SIM that su

eeds in the following game. Let B be the index

set of 
orrupted players. The 
orrupted players P

i

for i 2 B �rst run the proto
ol with real players su
h

that the publi
 value of the random shared se
ret outputs a random value Y . Now we run the proto
ol

again, but instead of 
ommuni
ating with the real players, the players P

i

for i 2 B 
ommuni
ate with the

simulator. This simulator will now produ
e messages exa
tly as the real players do, su
h that the publi


value of the random shared se
ret is Y , and further, the adversary 
ontrolling players P

i

for i 2 B 
annot

distinguish this simulated view from the view resulting from the real players.

When generating a distributed random shared se
ret, as explained in Se
tion 2.4, the view of a player P

i

would be the following:

the sharing polynomials f

i

(�); f

0

i

(�)

the temporary shares f

j

(i); f

0

j

(i) for j 2 H

0

the publi
 
ommitments C

jm

; A

jm

for j 2 H

0

; k 2 f0; :::; t� 1g

answers on a valid 
omplaint against P

l

(f

l

(j); f

0

l

(j)) for j 2 f1; :::; ng;

and the 
ontent of his random tape. If an adversary 
orrupts P

i

and P

j

, then the adversary's view is

fview of P

i

g [ fview of P

j

g.

De�nition 1 Suppose that a set H

0

of players 
ompute a random shared se
ret on input (q; G) and

produ
e output Y . Let

~

A be an adversary that 
orrupts up to t � 1 players. Let view(

~

A;G; q; Y ) denote

the view of the adversary for this proto
ol. Let V IEW (

~

A;G; q; Y ) be the random variable indu
ed by

view(

~

A;G; q; Y )

2

.

Lemma 1 For any probabilisti
 polynomial time adversary

~

A there exists a probabilisti
 polynomial time

simulator SIM that 
an 
ompute a random variable SIM(G; q; Y ) whi
h has the same probability distribu-

tion as V IEW (

~

A;G; q; Y ).

Proof of Lemma 1 Assume that

~

A 
orrupts players P

i

for i 2 B = f1; :::; t� 1g. Further, let B

0

be the index set that denotes the player who publishes in
onsistent values A

im

. Then, view(

~

A;G; q; Y ),

when generating a random shared se
ret, is as follows, assuming H

0

= fP

1

; :::; P

n

g:

1. The 
ontent of the random tape of

~

A

2. f

i

(�); f

0

i

(�) for i 2 B

2

view(.) 
ontains random variables and stati
 values. VIEW(.) 
an be regarded as the interpretation of view(.) as one

large bit string, so it is basi
ally a random variable.
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3. f

j

(i); f

0

j

(i) for j 2 H

0

; i 2 B

4. C

jm

for j 2 H

0

; m 2 f0; :::; t� 1g

5. A

jm

for j 2 H

0

; m 2 f0; :::; t� 1g

6. (f

i

(j); f

0

i

(j)) for j 2 f1; :::; ng; i 2 B

0

Now we show how to 
onstru
t a simulator SIM that 
an a
t in the proto
ol as the real players, su
h that

the resulting view has the same probability distribution (we use the same simulator as in [11℄). Note that

SIM does not have to 
ompute the sharing polynomials (2) itself sin
e they are 
hosen by the adversary.

The same holds for the 
ontent of the random tape (1) whi
h is part of the adversary's internal state that

does not have to be simulated.

1. (3, 4) Perform step 1 of the proto
ol on behalf of the un
orrupted players P

t

; :::; P

n

exa
tly as

spe
i�ed in the proto
ol. This in
ludes re
eiving and pro
essing the information sent privately and

publi
ly from 
orrupted players to honest ones.After this step, SIM knows all polynomials f

i

(�); f

0

i

(�)

for i 2 H

0

(this holds also for i 2 H

0

\ B, sin
e SIM re
eived enough 
onsistent shares from these

parties to 
ompute their polynomials). In parti
ular, SIM knows all the shares f

i

(j); f

0

i

(j), the


oeÆ
ients a

ik

; b

ik

and the publi
 values C

ik

.

2. (5) When extra
ting the values r

i

G, the simulator a
ts as follows:

� Compute A

ik

= a

ik

G for i 2 H

0

n fng; k 2 f0; :::; t� 1g

� Compute A

n0

= Y �

P

i2Hnfng

A

i0

� Compute A

nk

= �

k0

A

n0

+

P

t�1

i=1

�

ki

f

n

(i)G for k 2 f1; :::; t� 1g, where �

ki

's are the Lagrange

interpolation 
oeÆ
ients of the set H

0

.

� Broad
ast A

ik

for i 2 H

0

; k 2 f0; :::; t� 1g

3. (6) To handle the messages resulting from 
omplaints, SIM a
ts as follows:

� Perform for ea
h un
orrupted player the veri�
ations of Eq. (2) on the values A

ik

for i 2 B,

broad
ast by the players 
ontrolled by the adversary. If the veri�
ation fails for some i 2 B; j 2

H

0

nB, broad
ast a 
omplaint (f

i

(j); f

0

i

(j)). (Noti
e that the 
orrupted players 
an publish a

valid 
omplaint only against one another, and there will be no 
omplaints against an honest

player that is simulated by SIM ).

� For ea
h valid 
omplaint against P

i

, perform the re
onstru
tion phase of Pedersen's VSS to


ompute r

i

and Y

i

in the 
lear.

After step 1, the polynomials f

i

(�); f

0

i

(�) for i 2 H

0

n B are 
hosen at random. All asso
iated values

(C

ik

; f

i

(j); f

0

i

(j); a

ik

; b

ik

) therefore have the exa
t same probability distribution as in a real run of the

proto
ol.

The broad
asted values A

ik

are all uniformly random sin
e the 
orresponding a

ik

are random. This holds

also for the spe
ially 
omputed A

nk

for k 2 f0; :::; t � 1g, sin
e, for ea
h su
h 
oeÆ
ient, there is at

least one random value it depends on. Noti
e that the fa
t that these A

nk

's are not 
onsistent with

the 
orresponding a

nk

's does not appear in the adversary's view: he never sees the a

nk

's but only the


onsistent publi
 
ommitments of these values.
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During the handling of 
omplaints (step 3) there 
an only be valid 
omplaints against a 
orrupted server.

To re
onstru
t r

i

, SIM has to reveal the values f

i

(j); f

0

i

(j) for j 2 H

0

n B. But SIM knows all the

polynomials f

i

(�); f

0

i

(�) for i 2 H

0

n B. Therefore, SIM has only to broad
ast these values, whi
h will

always be 
onsistent with the adversary's view.

A more detailed analysis of the distribution 
an be found in [11℄. The 
omputed view, and the indu
ed

random variable SIM (

~

A;G; q; Y ), has the same probability distribution as V IEW (

~

A;G; q; Y ). 2

5.3 Unforgeability

In this se
tion, we will show how to redu
e the distributed S
hnorr signature s
heme to the regular S
hnorr

signature s
heme, and visa versa. This implies that the se
urity of the two s
hemes is identi
al.

De�nition 2 Let A

NormS
hnorr

be a probabilisti
 polynomial time adversary who 
an ask a signer for valid

signatures. By A

NormS
hnorr

(G; q; Y ) we denote a random variable whi
h spe
i�es the probability of the

event that A

NormS
hnorr

queries (m

1

; m

2

; :::; ) to the signer and outputs ( ~m; ~�;

~

V ) (on input (G; q; Y ) ).

The probability is taken over all the 
oin tosses of A

NormS
hnorr

and the signer.

De�nition 3 Let A

DistS
hnorr

be a probabilisti
 polynomial time adversary who 
an 
orrupt up to t�1 play-

ers. He also may have � t arbitrary signers issue a signature upon his request. By A

DistS
hnorr

(G; qjY )

3

we denote the random variable that has the probability distribution of A

DistS
hnorr

asking for signatures on

(m

1

; m

2

; :::; ) (on input (G; q)) and �nally 
omputing ( ~m; ~�;

~

V ) under the 
ondition that the key generation

proto
ol outputs Y. The probability is taken over all the 
oin tosses of A

DistS
hnorr

and the signers.

Theorem 1 For any adversary A

NormS
hnorr

against D

NormS
hnorr

, there exists an adversary A

DistS
hnorr

against D

DistS
hnorr

su
h that

Pr[A

DistS
hnorr

(G; qjY ) = (m

1

; :::; (~m; ~�;

~

V ))℄ = Pr[A

NormS
hnorr

(G; q; Y ) = (m

1

; :::; (~m; ~�;

~

V ))℄:

(Proof) We show how to 
onstru
t A

DistS
hnorr

given the adversary A

NormS
hnorr

. Suppose the

key generation proto
ol of D

DistS
hnorr

generates Y . A

DistS
hnorr

feeds (G; q; Y ) and the 
ontent of the

random tape of A

NormS
hnorr

into A

NormS
hnorr

and starts A

NormS
hnorr

. Whenever A

NormS
hnorr

asks for

a signature on a message m, A

DistS
hnorr

has some t signers exe
ute the signature issuing proto
ol for

m and returns the signature (�; V ) to A

NormS
hnorr

. Thus, A

NormS
hnorr


an perform his 
hosen message

atta
k. A

DistS
hnorr

outputs ( ~m; ~�;

~

V ) if A

NormS
hnorr

outputs ( ~m; ~�;

~

V ). 2

Theorem 2 For any adversary A

DistS
hnorr

against D

DistS
hnorr

, there exists an adversary A

NormS
hnorr

against D

NormS
hnorr

su
h that

Pr[A

NormS
hnorr

(G; q; Y ) = (m

1

; :::; (~m; ~�;

~

V ))℄ = Pr[A

DistS
hnorr

(G; qjY ) = (m

1

; :::; (~m; ~�;

~

V ))℄:

3

A

DistS
hnorr

(G; qjY ) is di�erent from A

DistS
hnorr

(G; q; Y ). It 
ontains not only the values G; q; Y , but also A

DistS
hnorr

's

view from the key generation proto
ol. For A

NormS
hnorr

this view is empty, while for A

DistS
hnorr

this is not the 
ase (sin
e

he 
an 
orrupt t� 1 signers)
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(Proof) We show how to 
onstru
t A

NormS
hnorr

given the adversary A

DistS
hnorr

. Informally, we

will show how A

NormS
hnorr


an simulate { with the help of a signing ora
le (used in the 
hosen message

atta
k assumption) { the role of the honest players in D

DistS
hnorr

for a given publi
 key Y . Be
ause

A

DistS
hnorr


annot distinguish this simulation, it will be su

essful and output a forgery whi
h is a

forgery in D

NormS
hnorr

, too.

For simpli
ity, assume A

DistS
hnorr


orrupts players 1; :::; t�1. Using the te
hniques des
ribed in Lemma 1,

A

NormS
hnorr

lets SIM exe
ute the key generation proto
ol for the given publi
 key Y . Next, A

NormS
hnorr

runs A

DistS
hnorr

. Whenever A

DistS
hnorr

requests a signature for m

i

, A

NormS
hnorr

asks a signer and

provides A

DistS
hnorr

with the signature (m

i

; �

i

; V

i

). A

NormS
hnorr

also has to provide A

DistS
hnorr

with

the values he sees during the signature issuing proto
ol. These values in
lude, in parti
ular, the view

resulting from generating a random shared se
ret and all the f


i

g. Again, A

NormS
hnorr

lets SIM intera
t

with A

DistS
hnorr

during the generation of a random shared se
ret. As a side e�e
t, SIM (and therefore also

A

NormS
hnorr

) knows �

1

; :::; �

t�1

; �

1

; :::; �

t�1

and 
an 
ompute 


1

; :::; 


t�1

. Finally, A

NormS
hnorr


omputes




t

as follows. Re
all from Se
tion 4.2 that we have

�

i

=

t

X

j=1




j

!

j

; where !

j

=

t

Y

h6=j

h=1

h

h� j

:

Hen
e, 


t

is 
omputed as




t

=

�

i

�

P

t

j=1




j

!

j

!

t

:

Now A

NormS
hnorr

feeds f


1

; :::; 


t

g to A

DistS
hnorr

. Sin
e A

DistS
hnorr

now has his whole view, he 
an per-

form his adaptive 
hosen message atta
k. A

NormS
hnorr

outputs ( ~m; ~�;

~

V ) if A

DistS
hnorr

outputs ( ~m; ~�;

~

V ).

2

6 The Impli
it Certi�
ate S
heme

To motivate the (t; n) threshold s
heme for impli
it 
erti�
ates, we give a short overview of the non-

distributed version of this s
heme ([3℄). In [3℄, se
urity proofs for this s
heme in the random ora
le model

are given.

Assume a CA with the key pair (x; Y ) issues an impli
it 
erti�
ate to a user. The operation of the s
heme

is as follows.

1. The user generates a random integer 
 2 Z

q

and 
omputes V = 
G. Further, he sends V to the CA.

2. The CA authenti
ates the user. Together, the CA and the user determine an identi�er string I

u

(
ontaining the user's identity and other information su
h as, for example, a serial number for the


erti�
ate).

3. The CA 
hooses a random integer e 2 Z

q

, and 
omputes C = V + eG and � = e + h(I

u

; C)x.

Further, the CA sends (I

u

; C; �) to the user.

4. The user 
omputes his private key SK

u

= 
+ s mod q, and veri�es the 
erti�
ate by 
he
king that

following equation holds: SK

u

= C + h(I

u

; C)Y .
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When a veri�er wants to 
ompute the user's publi
 key from the 
erti�
ate (I

u

; C), following formula

applies: PK

u

= C + h(I

u

; C)Y . Note that the equation used to 
ompute � is exa
tly S
hnorr's signing

equation. The only di�eren
e from S
hnorr's signature s
heme is the 
onstru
tion of the point C. Here,

this point 
ontains an additive 
omponent that the user provides. This is ne
essary to guarantee that

only the user knows his se
ret key.

7 (t; n) Threshold S
heme for Impli
it Certi�
ates

In this se
tion, we in
orporate the distributed S
hnorr signature s
heme into a (t; n) threshold s
heme

for impli
it 
erti�
ates in the same way as was done in Se
tion 6. In su
h a s
heme, n players P

1

; :::; P

n

,


alled the shareholders, represent a CA with publi
 key PK

0

. A group of t shareholders together 
an

re
onstru
t SK

0

and issue an impli
it 
erti�
ate. Any 
oalition of less than t shareholders does not have

any information about SK

0

.

Our s
heme 
onsists of three steps. First, the shareholders representing the CA have to generate a key

pair. Everybody will know the value of PK

0

, while only a 
oalition of at least t shareholders shall be

able to re
over SK

0

or issue 
erti�
ates. Se
ond, the shareholders issue a 
erti�
ate to a user. Finally,

the user veri�es if the 
erti�
ate is valid.

In Se
tion 8, we will give a proof that the presented s
heme is as se
ure as the S
hnorr signature s
heme.

This means that if an adversary 
ould forge an impli
it 
erti�
ate and know the 
orresponding private

key, he 
ould also forge a S
hnorr signature.

7.1 Key Generation Proto
ol

We would like to generate a random shared se
ret SK

0

su
h that ea
h shareholder P

i

who follows the

proto
ol holds a share s

i

in this key. Moreover, a 
oalition of less than t players 
annot get any information

about SK

0

.

This situation 
orresponds exa
tly to the generation of a shared se
ret, as des
ribed in Se
tion 2.4. Using

the notation introdu
ed in Se
tion 2.4, the situation is as follows:

(�

1

; :::; �

n

)

(t;n)

 ! (SK

0

jPK

0

; b

i

G;H

0

); i 2 f1; :::; t� 1g:

7.2 Certi�
ate Issuing Proto
ol and Publi
 Key Re
onstru
tion

Suppose a subset H

1

� H

0

wants to issue an impli
it 
erti�
ate.

1. The user sele
ts a random number 


u

and sends V

u

= 


u

G to the shareholders. V

u

is 
alled the

publi
 request value of the user.

2. If jH

1

j < t, stop. Otherwise, H

1

generates a random shared se
ret as shown in Se
tion 2.4. Let the

publi
 output be

(�

1

; :::; �

n

)

(t;n)

 ! (ejV; 


i

G;H

2

); i 2 f1; :::; t� 1g:
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3. If jH

2

j < k, stop. Otherwise, ea
h P

i

2 H

2


omputes C = V + V

u

and reveals




i

= �

i

+ h(I

u

; C)�

i

: (3)

4. Ea
h P

i

2 H

2

veri�es that




l

G = V +

t�1

X

j=1




j

i

j

G+ h(I

u

; C)

0

�

Y +

t�1

X

j=1

b

j

i

j

G

1

A

for all l 2 H

2

: (4)

Let H

3

:= fP

j

jP

j

not dete
ted to be 
heating at step 3g.

5. If jH

3

j < t stop. Otherwise, ea
h P

i

2 H

3

sele
ts an arbitrary group H

4

� H

3

with jH

3

j = t and


omputes � satisfying � = e+ h(I

u

; C)x by

� =

X

j2H

4




j

!

j

; where !

j

=

Y

h6=j

h;j2H

4

h

h� j

: (5)

The impli
it 
erti�
ate is (�; C). At least t shareholders send the impli
it 
erti�
ate to the user.

6. The user 
omputes his private key SK

u

as SK

u

= 


u

+� and veri�es the 
orre
tness of the 
erti�
ate

by the following equation:

SK

u

G = C + h(I

u

; C)Y and � 2 Z

q

: (6)

To re
onstru
t the publi
 key of the user from the impli
it 
erti�
ate, we use following formula:

�PK

u

= C + h(I

u

; C)Y: (7)

Remark A 
orrupt shareholder might send a wrong 
erti�
ate ~� to the user. Sin
e t shareholders

send their 
erti�
ates to the user, the user got at least one valid 
erti�
ate (sin
e there is at least one

honest shareholder among t shareholders). To identify the valid 
erti�
ate, the user simply 
he
ks for

ea
h � if equation (6) holds.

8 Se
urity

8.1 Corre
tness

We have to verify that the private key SK

u


omputed by the user 
orresponds to the publi
 key PK

u

implied by the impli
it 
erti�
ate (formula 7). Thus, we have to verify that following formula holds:

SK

u

G

!

� C + h(I

u

; C)PK

0

: (8)
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Let P (jP j = t) be a group of shareholders whi
h have not been dete
ted to be 
heating when issuing the


erti�
ate. Then we have

SK

u

G

(5)

= (


u

+

X

i2P




i

!

i

)G

(3)

= 


u

G+

 

X

i2P

(�

i

+ h(I

u

; C)�

i

)

!

G!

i

= V

u

+

X

i2P

(�

i

!

i

G+ �

i

!

i

h(I

u

; C)G)

= V

u

+ V + h(I

u

; C)PK

0

= C + h(I

u

; C)PK

0

2

8.2 Dete
tability

We have to verify that every shareholder not following the proto
ol will be dete
ted.

Key Generation During key generation, we use the proto
ol des
ribed in [11℄. This proto
ol has

already been proven to be robust, i.e., players not following the proto
ol will be dete
ted.

Certi�
ate Issuing First, the players generate a distributed se
ret with Pedersen's proto
ol (whi
h

is proved to be dete
table). Se
ond, they reveal f


i

g, but these values are veri�ed through equation (4).

Finally, they send the 
al
ulated 
erti�
ate to the user. By verifying equation (6), the user 
an identify

the 
orre
t 
erti�
ates.

8.3 Notion of Se
urity in the Random Ora
le Model

We assume that we are in the random ora
le model (i.e., the hash fun
tion is modelled as a random

fun
tion; see [1℄). Let (SK

CA

; PK

CA

) be the key pair of the CA (represented through shareholders in


ase of the distributed impli
it 
erti�
ate s
heme). An impli
it 
erti�
ate s
heme is se
ure if the following

two properties hold:

unforgeability It is hard for an adversary who does not know CA's se
ret key to forge impli
it 
erti�
ates

in su
h a manner that the adversary knows the 
orresponding private key

non-impersonating It is hard for CA to obtain the requester's private key provided that the requester

followed the proto
ol.

The term \hard" means that there is no polynomial-time adversary who 
an solve the task with non-

negligible probability. These 
onditions must hold for adversaries de�ned as follows.

We de�ne a forging adversary A

f

as a probabilisti
, polynomial-time turing ma
hine whi
h, on input

PK

CA

does the following:

� it may wat
h other entities requesting and re
eiving impli
it 
erti�
ates from the CA
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� it may request impli
it 
erti�
ates from the CA

� �nally, it produ
es an impli
it 
erti�
ate and the 
orresponding private key in time t and with

probability p.

We de�ne an impersonating adversary A

i

as a probabilisti
, polynomial-time turing ma
hine whi
h, on

input (PK

CA

; SK

CA

) does the following:

� it may a
t as a CA and issue impli
it 
erti�
ates to requesting entities

� it 
an produ
e an impli
it 
erti�
ate and the 
orresponding private key in time t and with probability

p.

An adversary A

f

(respe
tively, A

i

) is su

essful if t is polynomial and p is non-negligible.

8.4 Unforgeability

Let (x; Y ) be the (SK; PK) key pair of the CA (represented through shareholders in 
ase of the impli
it


erti�
ate s
heme). Let D

NormS
hnorr

denote S
hnorr's signature s
heme and A

NormS
hnorr

be a su

essful

adversary against it as de�ned earlier in Se
tion 5.1. We de�ne a su

essful adversary A

DistCert

against

the impli
it 
erti�
ate s
heme D

DistCert

as a su

essful forging adversary as de�ned in Se
tion 8.3.

One 
an show that a su

essful adversary A

NormS
hnorr

is equivalent to a su

essful adversary A

DistCert

,

in the sense that ea
h of them 
an 
onstru
t the other one. This implies that the distributed impli
it


erti�
ate s
heme is as se
ure as S
hnorr's signature s
heme.

The same proof te
hnique as was used for the distributed S
hnorr signature s
heme 
an be applied in

a straightforward way. That is, one 
an show how to simulate the view of the given adversary without

knowing the private key of the shareholders. Sin
e the adversary 
annot distinguish a simulated view

from an a
tual view, he will perform his atta
k and output a forgery. This forgery 
an then be used to


onstru
t the other adversary.

8.5 Non-impersonating

By proving the unforgeability of our s
heme, we impli
itly proved that the user does not learn the

shareholders' private key shares. We also have to show that the shareholders do not learn the user's

private key and impersonate the user. But it follows dire
tly from the s
heme that if the shareholders


ould 
ompute the user's private key, then they 
ould 
ompute dis
rete logarithms. 2

8.6 Further Issues

Consider the s
enario where a digital signature on a 
ertain message and an impli
it 
erti�
ate authenti-


ating the a

ording veri�
ation key are sent to a user. Even though we proved that it is hard to forge an

impli
it 
erti�
ate without knowing the CA's se
ret key su
h that one knows the 
orresponding private

key, we did not prove that it is hard to forge a digital signature and an impli
it 
erti�
ate su
h that the

publi
 key implied by the 
erti�
ate just validates the signature.
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This is not an issue with traditional 
erti�
ates. However, whenever impli
it 
erti�
ates are used to

authenti
ate a publi
 key for some appli
ation, a spe
i�
 se
urity proof for the parti
ular appli
ation is

ne
essary. For example, in [2℄, a proof is given in the random ora
le model that it is se
ure to use impli
it


erti�
ates as authenti
ation for publi
 keys that verify S
hnorr signatures.
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10 Summary

Based upon various se
ret sharing primitives and S
hnorr's signature s
heme, we have presented an

impli
it 
erti�
ate s
heme, a (t; n) threshold signature s
heme, and a (t; n) threshold s
heme for impli
it


erti�
ates. All s
hemes are eÆ
ient, robust and provably se
ure in the random ora
le model.

From a pra
ti
al point of view, impli
it 
erti�
ate s
hemes have the following drawba
ks. We suggest

these points as open resear
h problems.

� The impli
it 
erti�
ate s
hemes itself generate a key pair for the user. Therefore, the s
hemes 
annot

be used to generate a publi
 re
onstru
tion data for a given key pair of the user. To the best of our

knowledge, no s
heme based on the ellipti
 
urve dis
rete logarithm problem exists that 
an issue

an impli
it 
erti�
ate for a given key pair.

� The impli
it 
erti�
ate s
hemes produ
e a key pair whi
h is de�ned over the same group as the CA's

key pair is. Therefore, the se
urity parameters for the 
erti�ed publi
 keys are always inherited from

the 
ertifying CA. This might not always be desirable in pra
ti
e.
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