
Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

1 Problem Statement

A substantial amount of valuable knowledge is recorded in the form of unstructured text data,
such as news, emails, journal articles, etc. Information extraction deals with automatically
extracting structured data from unstructured and semi-structured data sources. Within
information extraction, the task of identifying semantic relations among the text entities is
referred to as relation extraction. The goal of this project was to build a system to extract
information templates of the following forms:

• BORN (Person/Organization, Date, Location)

• ACQUIRE (Organization, Organization, Date)

• PART OF

– PART OF (Organization, Organization)

– PART OF (Location, Location)

To build this system, we were provided with 30 text files containing Wikipedia articles that
are split as follows:

• 10 articles related to Organizations

• 10 articles related to Persons

• 10 articles related to Locations

2 Proposed Approach

The general outline of our project can be broken down into three main stages:

1. Feature Extraction.

2. Preliminary filtering.

3. Relation extraction.

Language in general, is complex. Words can be used in different senses, and their order
of appearance can mean completely different things in similar-looking scenarios. Thus, us-
ing linguistic knowledge associated with the text while building NLP systems is considered
to be extremely useful. Identifying key information associated with the words in the text
such as their parts of speech, the underlying phrase-structure rules, entity chunking etc. is

1

Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

paramount. We used each of these components to enrich the features extracted from the
Wikipedia articles.

Before extracting the relations from the articles, a basic filtering was done to weed out the
sentences/phrases with little meaning. In general, a complete sentence is considered to be one
which contains atleast one subject, one predicate, one object, and closes with a punctuation.
Considering subject and object are always nouns and the predicate is always a verb, the text
files were subjected to a parts-of-speech based filtering, and all those sentences which didn’t
fit this description were filtered out.

There are various pattern-based and machine learning based approaches to extracting rela-
tions from text. Considering the size of the corpus given to us wasn’t very large, we decided
to explore a rule-based approach making use of pattern-extraction algorithms for this task.
Different strategies were devised for each of the templates. Finally, considering the given
templates were specific with respect to the labels of the named entities they were associated
with, it was used to filter the extracted templates.

3 System Design

3.1 Architecture

Figure 1: Architectural Design of the Pipeline

2

Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

3.2 General Overview

The chomskIE system is designed to be as modular as possible. While the design of our
system is inspired by the spaCy library, individual components can be swapped out trivially
to use various other libraries. In order to enable this, we defined a Document data structure
similar to the Doc object in spaCy. With each feature/relation extraction step in the pipeline,
this document gets appended with the information extracted from the step, which can be
used later in the pipeline.

3.3 External Packages/Libraries Used

This project was developed with Python3 programming language. To do the various tasks
within the software, external packages like spacy, ftfy, textacy and datefinder were used.

4 Full Implementation Details

4.1 Feature Engineering

The feature engineering stage has two phases:

1. Read the raw text in the correct encoding.

2. Extract low-level and high-level features using a deep Natural Language Processing
Pipeline.

While most of given text files are correctly encoded as Unicode text, some of the files have
encoding issues. To handle this and avoid glitches due to incorrectly encoded text, ftfy was
used. Our system automatically fixes the encoding issues after reading the data from the
files, and can be extended to various input sources.

The deep Natural Language Processing Pipeline consists of the following stages:

1. SentenceRecognizer uses rules and patterns to detect sentence boundaries.

2. WordTokenizer split sentences into individual tokens in a non-destructive fashion. It
also allows us to merge named entities into a single token.

3. Lemmatizer maps tokens to their lemmas using pre-written rules.

4. PartOfSpeechTagger uses a pre-trained statistical model to assign part of speech tags
to the tokens

3

Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

5. NamedEntityRecognizer uses a pre-trained statistical model identify non-overlapping
spans in the sentence that contains Named Entities.

6. DependencyParser uses a pre-trained statistical model to parse the sentence into a
dependency tree.

Figure 2: The named entities detected in a sentence

Figure 2 shows the named entities detected by our pipeline in an example sentence.
Figure 3 depicts the dependency parse tree for the sentence which was re-tokenized
to keep the named entities as single tokens. In the figure, the leaves of the tree also
contain other NLP features like lemmas and Part of Speech tags for the tokens.

Figure 3: Dependency parse tree along with lemmas and part of speech tags for the tokens
in a sentence.

4

Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

4.2 Preliminary filtering

Since the given data files are the text form of Wikipedia articles, they contain some non-
sentence artifacts like:

• Headings and subheadings

• Ordered and unordered lists

• References

We pre-process the text by splitting the text into paragraphs (via newlines "\n\n"). spaCy

by default uses a dependency-tree based sentence boundary detection. Considering the
Wikipedia articles were generally well-structured grammatically, we realized this was effective
in identifying different sentences in the paragraphs within the text.

Before subjecting each of these sentences to the feature-extraction pipeline, we determine if
the sentence is complete by checking if it has at least one subject-predicate pair (via part of
speech tags). Such a technique helped filter the non-sentence artifacts.

4.3 Relation Extraction

Our general approach to relation extraction was using dependency tree based rules.

4.3.1 Template #1: BORN

There are two kinds BUY relations we wanted to extract:

1. BORN(Person, Date, Location)

2. BORN(Organization, Date, Location)

The anchor for the first BORN template is just the word "born". This form of relation occurs
most commonly in passive voice like ”x was born in y on z.” So, we used the dependency
relation nsubjpass to determine the person.

The anchors for the second BORN template are the words {"found", "establish" }. This
form of relation occurs most commonly in active voice like ”x founded y in z on w.” So, we
used the dependency relation dobj to determine the founded organization

The Date and Location arguments are extracted by matching tokens whose head has the
Part of Speech tag IN (as in ”x founded y in date”).

Finally, the extracted tuples are validated by ensuring that the entity types of the arguments
are correct (Eg, GPE for Location)

5

Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

4.3.2 Template #2: ACQUIRE

For every sentence in the document, first ordered subject-verb-object triples (SVOTriples)
were extracted based on a rule-based pattern matching algorithm designed around the phrase-
structure dependencies. textacy library was used for extracting such triples.

A set of verbs was constructed containing synonyms of the verb acquire. All the subject-
verb-object triples extracted for a sentence which didn’t contain verbs or their lemmas from
this list were considered to be irrelevant and filtered out.

Next, a named-entity label based filtering was carried out. All subject-verb-object triples
the named-entity label of whose subject was ORG were retained. In order to find the third
argument in the template, those words were picked from the dependents of the root verb
which also carried an ORG named-entity label.

One special case in this template was the extraction of date objects. We realized that the de-
pendency parse structure generated by spaCy doesn’t take into consideration the dependency
relation between the root and date units within the sentence. Also, the named-entity based
DATE labeling wasn’t always accurate. So, a regular expression based matching algorithm
was used to identify various formats of dates or references to dates in the sentence which fit
with the template.

4.3.3 Template #3: PART OF

The strategy employed for extracting PART OF templates was devised around identifying
the meronymy semantic relations between different words in the sentence. In order to enable
this, first a set of synonyms was constructed for all the words in the sentence using Wordnet
data resource. Next, sets of meronyms and holonyms were retrieved for each of these words.

A set intersection between the meronyms and the original list of tokens in the sentence was
computed. A similar set intersection was computed between the holonyms and the list of
tokens. This helped identify the relevant tokens in the sentence that exhibited the meronymy
semantic relation.

From both these sets, the meronyms were mapped with their corresponding holonyms to
generate the PART OF templates. Considering the template arguments had a restriction to
either be a ORG-ORG pair or a LOC-LOC pair, this was incorporated for further filtering out
irrelevant relations, and retrieve the relevant PART OF templates.

5 Results and Error Analysis

While using evaluation metrics like precision and recall was intuitive, we found that it wasn’t
very feasible in this case because of the phrase-matching involved in comparing the arguments

6

Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

of the extracted relations. Thus, to test the efficacy of the pipeline, a small dev dataset was
constructed with selected examples from the given corpus. The entire pipeline was developed
with the goal of improving the quality and quantity of the relations extracted from this
dataset. Here are a few sample relations extracted by the pipeline 12:

1. BORN

• Abraham Lincoln was born on February 12, 1809, as the second child of

Thomas and Nancy Hanks Lincoln, in a one-room log cabin on Sinking

Spring Farm near Hodgenville, Kentucky.

Argument-1: Abraham Lincoln

Argument-2: February 12, 1809

Argument-3: Hodgenville

• In May 2002, Musk founded SpaceX, an aerospace manufacturer and space

transport services company, of which he is CEO and lead designer.

Argument-1: SpaceX

Argument-2: May 2002

2. ACQUIRE

• Compaq acquired Zip2 for US$307 million in cash and US$34 million in

stock options in February 1999.

Argument-1: Compaq

Argument-2: Zip2

Argument-3: February 1999

• In 2015, Tesla acquired Riviera Tool & Die (with 100 employees in

Michigan), one of its suppliers of stamping items.

Argument-1: Tesla

Argument-2: Riviera Tool & Die

Argument-3: 2015

1These examples are picked from the /outputs directory in the submitted code repository, which contains
JSON files for all .txt files in corpus.

2https://www.github.com/aashishyadavally/chomskIE

7

https://www.github.com/aashishyadavally/chomskIE

Team: ChomskIE
Spring 2021 Project Report : Information Extraction

CS 6320
May 18, 2021

3. PART-OF

• They met in Springfield, Illinois in December 1839 and were engaged

a year later.

Argument-1: Springfield

Argument-2: Illinois

• The Mahatma Gandhi District in Houston, Texas, United States, an

ethnic Indian enclave, is officially named after Gandhi.

Argument-1: Houston

Argument-2: Texas

In general, we realized that the default spaCy named-entity recognition wasn’t as effective
as we would have liked. For example, in Figure 2, ’Augustine’ was identified as GPE, while
it should have been labeled as PERSON. Considering filtering based on named entity labels is
a major part of our approach due to the restricted nature of the relations, errors like these
significantly hinder the performance of the software.

Using WordNet for identifying words based on their semantic relationship was a central part
of our strategy for extracting PART OF templates. However, we realized that WordNet
doesn’t encompass as many words/relations specific to our corpus, and thus, our ability to
find these templates effectively was hindered.

6 Conclusion

Lessons Learned & Potential Improvements

The premise of the pipeline for extracting ACQUIRE templates relies on the effective retrieval
of subject-verb-object triples from the text. As we realized, the pipeline wasn’t very effective
in identifying all such triples in complex sentences, i.e. those containing more than one
dependent clauses. As a result, there were cases where such templates weren’t identified by
the software. This can be a potential improvement, and more effective subject-verb-object
triple extraction can be used to improve the overall efficacy of the system.

Another improvement for the relation extraction algorithms that we would like to explore in
the future is ensemble methods. For example, the Snorkel system provides ways to combine
various heuristic rules in a semi-supervised manner. This approach would have been viable
for this project if we had more data.

8

	Problem Statement
	Proposed Approach
	System Design
	Architecture
	General Overview
	External Packages/Libraries Used

	Full Implementation Details
	Feature Engineering
	Preliminary filtering
	Relation Extraction
	Template #1: BORN
	Template #2: ACQUIRE
	Template #3: PART_OF

	Results and Error Analysis
	Conclusion

