
18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

EMBEDDED PROGRAMMING
ECE4025 (L41+L42)

Allen Ben Philipose – 18BIS0043

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

TASK – 3

a) Write a shell script program to find whether the

number is prime number or not.

number=43 #My Roll Number

i=2

f=0 #Flag Variable

while test $i -le `expr $number / 2`

do

if test `expr $number % $i` -eq 0

then

f=1

fi

i=`expr $i + 1`

done

if test $f -eq 1

then

echo "Composite Number"

else

echo "Prime Number"

fi

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Output

Explanation

- The variables – number, i, f – are declared and initialized.

- The while loop goes from the numerical value 2 to the value of

number/2 and the variable i will be considered as the loop

variable.

- The if condition inside the loop checks whether the remainder

of number/i is equal to 0. If yes, the flag variable f is made 1.

- Variable i is incremented after each iteration.

- Outside the loop, the if condition checks if the flag variable f is 1,

if yes, “Composite Number” is printed, else, “Prime Number” is

printed.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

b) Write a C code to reversing an already existing list

of 10 nodes implemented using singly linked list.

Clearly explain the declaration and initialization.

#include <stdio.h>

#include <stdlib.h>

struct Node {

 int data;

 struct Node* next;

};

static void reverse(struct Node** head_ref)

{

 struct Node* prev = NULL;

 struct Node* current = *head_ref;

 struct Node* next = NULL;

 while (current != NULL) {

 next = current->next;

 current->next = prev;

 prev = current;

 current = next;

 }

 *head_ref = prev;

}

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

void push(struct Node** head_ref, int new_data)

{

 struct Node* new_node = (struct

Node*)malloc(sizeof(struct Node));

 new_node->data = new_data;

 new_node->next = (*head_ref);

 (*head_ref) = new_node;

}

void printList(struct Node* head)

{

 struct Node* temp = head;

 while (temp != NULL) {

 printf("%d ", temp->data);

 temp = temp->next;

 }

}

int main()

{

 int k;

 struct Node* head = NULL;

 for(int a=1;a<=10;a++) {

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

 printf(" Enter number %d: ",a);

 scanf("%d",&k);

 push(&head, k);

 }

 printf("\n Reversed linked list\n");

 printf(" ");

 printList(head);

 reverse(&head);

 printf("\n Given Linked list \n");

 printf(" ");

 printList(head);

}

Output

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Explanation

A singly linked list is a type of linked list (sequence of elements in

which every element has a link to its next element in the sequence)

that is unidirectional, that is, it can be traversed in only one

direction from head to the last node (tail).

Each element in a linked list is called a node. A single node contains

data and a pointer to the next node which helps in maintaining the

structure of the list.

The first node is called the head; it points to the first node of the

list and helps us access every other element in the list. The last

node, also sometimes called the tail, points to NULL which helps us

in determining when the list ends.

1. Include all the header files which are used in the program.

2. Declare all the user defined functions.

3. Define a Node structure with two members data and next.

4. Define a Node pointer 'head' and set it to NULL.

5. Implement the main method by displaying operations menu and

make suitable function calls in the main method to perform user

selected operation.

Common Singly Linked List Operations:

Insertion

In a single linked list, the insertion operation can be performed in

three ways. They are as follows:

- Inserting at Beginning of the list

- Inserting at End of the list

- Inserting at Specific location in the list

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Deletion

In a single linked list, the deletion operation can be performed in

three ways. They are as follows:

- Deleting from Beginning of the list

- Deleting from End of the list

- Deleting a Specific Node

Display

To display the elements of a single linked list, following steps are

to be used:

1. Check whether list is Empty (head == NULL)

2. If it is Empty then, display 'List is Empty!!!' and terminate the

function.

3. If it is Not Empty then, define a Node pointer 'temp' and initialize

with head.

4. Keep displaying temp → data with an arrow (--->) until temp

reaches to the last node!

5. Finally display temp → data with arrow pointing to NULL (temp

→ data ---> NULL).

These commands in the

program are responsible for

the reversing of the linked list.

The pointers are changed, and

the values are interchanged

between the nodes. This

process is done inside a while

loop and is continued till the current node becomes NULL i.e.,

execution reached the end of the linked list and hence stopped.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

c) Write a C code to perform “Dequeue a node and

Enqueue the same node” to an already existing

QUEUE of 10 nodes implemented using singly

linked list. Clearly explain the declaration and

initialization.

#include <stdio.h>

#include <stdlib.h>

struct QNode {

 int key;

 struct QNode* next;

};

struct Queue {

 struct QNode *front, *rear;

};

struct QNode* newNode(int k)

{

 struct QNode* temp = (struct

QNode*)malloc(sizeof(struct QNode));

 temp->key = k;

 temp->next = NULL;

 return temp;

}

struct Queue* createQueue()

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

{

 struct Queue* q = (struct

Queue*)malloc(sizeof(struct Queue));

 q->front = q->rear = NULL;

 return q;}

void enQueue(struct Queue* q, int k)

{

 struct QNode* temp = newNode(k);

 if (q->rear == NULL) {

 q->front = q->rear = temp;

 return;

 }

 q->rear->next = temp;

 q->rear = temp;

}

int deQueue(struct Queue* q)

{

 if (q->front == NULL)

 return -1;

 struct QNode* temp = q->front;

 q->front = q->front->next;

 if (q->front == NULL)

 q->rear = NULL;

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

 return temp->key;

 free(temp);

}

int main()

{

 int k;

 struct Queue* q = createQueue();

 for(int a=1;a<=10;a++) {

 printf(" Enter number %d: ",a);

 scanf("%d",&k);

 enQueue(q, k);

 }

 int q1=deQueue(q);

 enQueue(q,q1);

 printf(" Dequeued node: %d \n", q1);

 printf(" Enqueued node: %d", q1);

 return 0;

}

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Output

Explanation

Queue implemented using linked list can organize as many data

values as we want. In a linked queue, each node of the queue

consists of two parts i.e., data part and the link part. Each element

of the queue points to its immediate next element in the memory.

In linked list implementation of a queue, the last inserted node is

always pointed by 'rear' and the first node is always pointed by

'front'. The front pointer contains the address of the starting

element of the queue while the rear pointer contains the address

of the last element of the queue.

Insertion and deletions are performed at rear and front end,

respectively. If front and rear both are NULL, it indicates that the

queue is empty.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Enqueue (Insert)

The insert operation appends the queue by adding an element to

the end of the queue. The new element will be the last element of

the queue.

There are two scenarios of inserting a new node into the linked

queue. In the first scenario, we insert element into an empty

queue. In this case, the condition front = NULL becomes true.

Now, the new element will be added as the only element of the

queue and the next pointer of front and rear pointer both, will

point to NULL. In the second case, the queue contains more than

one element. The condition

front = NULL becomes false. In this scenario, we need to update

the end pointer rear so that the next pointer of rear will point to

the new node. Since, this is a linked queue, hence we also need to

make the rear pointer point to the newly added node. We also

need to make the next pointer of rear point to NULL.

Dequeue (Deletion)

Deletion operation removes the element that is first inserted

among all the queue elements. Firstly, we need to check either the

list is empty or not. The condition front == NULL becomes true if

the list is empty, in this case , we simply write underflow on the

console and make exit.

Otherwise, we will delete the element that is pointed by the

pointer front.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

d) Write a C program to implement STACK operations

using Linked list.

#include <stdio.h>

#include <stdlib.h>

void push();

void pop();

void display();

struct node

{

 int val;

 struct node *next;

};

struct node *head;

int main ()

{

 int choice=0;

 printf(" Stack operations using linked list");

 while(choice!=4)

 {

 printf("\n\n Select...\n");

 printf("\n 1.Push\n 2.Pop\n 3.Show\n 4.Exit");

 printf("\n Enter: ");

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

 scanf("%d",&choice);

 switch(choice)

 {

 case 1: {

 push();

 break;

 }

 case 2: {

 pop();

 break;

 }

 case 3: {

 display();

 break;

 }

 case 4: {

 printf(" Exiting....");

 break;

 }

 default: {

 printf(" Invalid Choice\n");

 }

 };

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

 }

}

void push ()

{

 int val;

 struct node *ptr = (struct

node*)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf(" Unable to push");

 }

 else

 {

 printf(" Enter the value: ");

 scanf("%d",&val);

 if(head==NULL)

 {

 ptr->val = val;

 ptr -> next = NULL;

 head=ptr;

 }

 else

 {

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

 ptr->val = val;

 ptr->next = head;

 head=ptr;

 }

 printf(" Item pushed");

 }

}

void pop()

{

 int item;

 struct node *ptr;

 if (head == NULL)

 {

 printf(" Underflow");

 }

 else

 {

 item = head->val;

 ptr = head;

 head = head->next;

 free(ptr);

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

 printf(" Item popped");

 }

}

void display()

{

 int i;

 struct node *ptr;

 ptr=head;

 if(ptr == NULL)

 {

 printf(" Stack is empty\n");

 }

 else

 {

 printf(" Printing\n");

 while(ptr!=NULL)

 {

 printf(" %d\n",ptr->val);

 ptr = ptr->next;

 }

 }

}

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Output

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Explanation

Stacks can be easily implemented using a linked list. Stack is a data

structure to which a data can be added using the push() method

and data can be removed from it using the pop() method. With

Linked list, the push operation can be replaced by the addAtFront()

method of linked list and pop operation can be replaced by a

function which deletes the front node of the linked list.

First, a class node is created. This is the Linked list node class which

will have data in it and a node pointer to store the address of the

next node element. Then the stack class is to be defined.

Inserting Data in Stack

To insert an element into the stack, a node is to be created and

placed in front of the list. Whenever the push() function is called, a

new node will get added to the list in the front, which is exactly how

a stack behaves.

To push an element, the following steps are involved:

- Create a node first and allocate memory to it.

- If the list is empty, then the item is to be pushed as the start node

of the list. This includes assigning value to the data part of the

node and assign null to the address part of the node.

- If there are some nodes in the list already, then we must add the

new element in the beginning of the list (to not violate the

property of the stack). For this purpose, assign the address of

the starting element to the address field of the new node and

make the new node, the starting node of the list.

Time Complexity : o(1)

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Removing Element from Stack

To do this, simply delete the first node, and make the second node

as the head of the list. Deleting a node from the top of stack is

referred to as pop operation. Deleting a node from the linked list

implementation of stack is different from that in the array

implementation.

- Check for the underflow condition: The underflow condition

occurs when a pop operation is attempted on an already empty

stack. The stack will be empty if the head pointer of the list

points to null.

- Adjust the head pointer accordingly: In stack, the elements are

popped only from one end, therefore, the value stored in the

head pointer must be deleted and the node must be freed. The

next node of the head node now becomes the head node.

Time Complexity: o(n)

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of

the linked list organized in the form of stack. For this purpose,

following steps must be done:

- Copy the head pointer into a temporary pointer.

- Move the temporary pointer through all the nodes of the list and

print the value field attached to every node.

Time Complexity: o(n)

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

e) Explain CPU Scheduling with an example.

CPU scheduling is a process that allows one process to use the CPU

while the execution of another process is on hold (in waiting state)

due to unavailability of any resource like I/O etc, thereby making

full use of CPU. The aim of CPU scheduling is to make the system

efficient, fast, and fair.

Whenever the CPU becomes idle, the operating system must select

one of the processes in the ready queue to be executed. The

selection process is carried out by the short-term scheduler (or

CPU scheduler). The scheduler selects from among the processes

in memory that are ready to execute and allocates the CPU to one

of them.

Dispatcher

Another component involved in the CPU scheduling function is the

Dispatcher. The dispatcher is the module that gives control of the

CPU to the process selected by the short-term scheduler. This

function involves:

- Switching context

- Switching to user mode

- Jumping to the proper location in the user program to restart

that program from where it left last time.

The dispatcher should be as fast as possible, given that it is invoked

during every process switch. The time taken by the dispatcher to

stop one process and start another process is known as the

Dispatch Latency.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Types of CPU Scheduling

- When a process switches from the running state to the waiting

state (for I/O request or invocation of wait for the termination

of one of the child processes).

- When a process switches from the running state to the ready

state (for example, when an interrupt occurs).

- When a process switches from the waiting state to the ready

state (for example, completion of I/O).

- When a process terminates.

In circumstances 1 and 4, there is no choice in terms of scheduling.

A new process (if one exists in the ready queue) must be selected

for execution. There is a choice, however in circumstances 2 and 3.

When Scheduling takes place only under circumstances 1 and 4, we

say the scheduling scheme is non-preemptive; otherwise, the

scheduling scheme is preemptive.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Preemptive Scheduling

In this type of Scheduling, the tasks are usually assigned with

priorities. At times it is necessary to run a certain task that has a

higher priority before

another task although

it is running. Therefore,

the running task is

interrupted for some

time and resumed later

when the priority task

has finished its

execution. Thus, this

type of scheduling is

used mainly when a

process switches either

from running state to

ready state or from waiting state to ready state.

The resources (that is CPU cycles) are mainly allocated to the

process for a limited amount of time and then are taken away, and

after that, the process is again placed back in the ready queue in

the case if that process still has a CPU burst time remaining. That

process stays in the ready queue until it gets the next chance to

execute.

Some Algorithms that are based on preemptive scheduling are

Round Robin Scheduling (RR), Shortest Remaining Time First

(SRTF), Priority (preemptive version) Scheduling, etc.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Non-Preemptive Scheduling

Under non-preemptive scheduling, once the CPU has been

allocated to a process,

the process keeps the

CPU until it releases the

CPU either by

terminating or by

switching to the

waiting state. This

scheduling method is

used by the Microsoft

Windows 3.1 and by the

Apple Macintosh

operating systems. It is

the only method that

can be used on certain hardware platforms because It does not

require the special hardware (for example a timer) needed for

preemptive scheduling.

In non-preemptive scheduling, it does not interrupt a process

running CPU in the middle of the execution. Instead, it waits till the

process completes its CPU burst time, and then after that it can

allocate the CPU to any other process.

Some Algorithms based on non-preemptive scheduling are:

Shortest Job First (SJF basically non-preemptive) Scheduling and

Priority (non- preemptive version) Scheduling, etc.

18BIS0043 Allen Ben Philipose

Task - III L41+L42 ECE4025

Example - First Come First Serve Scheduling

In the "First come first serve" scheduling algorithm, as the name

suggests, the process which arrives first, gets executed first, or we

can say that the process which requests the CPU first, gets the CPU

allocated first.

- First Come First Serve, is just like FIFO (First in First out) Queue

data structure, where the data element which is added to the

queue first, is the one who leaves the queue first.

- This is used in Batch Systems.

- It is easy to understand and implement programmatically, using

a Queue data structure, where a new process enters through the

tail of the queue, and the scheduler selects process from the

head of the queue.

- A perfect real-life example of FCFS scheduling is buying tickets

at ticket counter.

- It is Non-Preemptive algorithm, which means the process

priority does not matter. If a process with very least priority is

being executed, more like daily routine backup process, which

takes more time, and suddenly, some other high priority process

arrives, like interrupt to avoid system crash, the high priority

process will have to wait, and hence in this case, the system will

crash, just because of improper process scheduling.

- Not optimal Average Waiting Time. AWT or Average waiting

time is the average of the waiting times of the processes in the

queue, waiting for the scheduler to pick them for execution.

- Resource’s utilization in parallel is not possible, which leads to

Convoy Effect, and hence poor resource (CPU, I/O etc)

utilization.

