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Abstract

This thesis evaluates the ABS Modelling Framework which supports delta-modelling.
A short introduction to the ABS language is given and the smart home product line
on which a part of the evaluation is based is discussed. This thesis presents three
approaches to achieve code reuse: the delegation approach, the single type approach
and the multiple delta approach. The first one is applicable to most object-oriented
programming languages as it does not rely on deltas, the second one relies on deltas
but is only applicable when one type of a type hierarchy is needed in a product,
the last one also relies on deltas and is the most usable approach to code reuse of
the three. ABS also shows to be fairly intuitive to use. It still has to mature a bit,
as some annoyances in the language show. These can be improved in the future
though. Also, according to a comparative performance test, ABS is about three
orders of magnitude slower than Java, which is due to performance being a low
priority requirement when ABS was developed.
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Chapter 1

Introduction

The ABS Modelling Framework is being developed in the context of the HATS (Highly
Adaptable and Trustworthy Software using Formal Models) European project [5,
p. 2], and supports developing software product line (SPL) systems following
established software product line engineering (SPLE) practices, e.g. feature-oriented
development. It allows the precise modelling and analysis of component-based
distributed concurrent systems, focusing on their functionality while not taking into
account concerns such as concrete resources, deployment scenarios and scheduling
policies [20].

1.1 Problem Statement

Delta Modelling [15] is a programming approach to developing software product
lines in which modifications to a program are encapsulated using deltas. Deltas can
be seen as patches to a core program. Upon compilation deltas are incrementally
applied to the core program, guided by a selection of features of a desired product,
thereby adding, removing, or modifying functionality. Delta modelling is supported
in the Abstract Behavioural Specification (ABS) language, a modern object-oriented
programming (OOP) language currently under development.

Since development of the ABS language is still in progress, not much experience
with the ABS language and its approach to delta modelling is available.

The goals of this master’s thesis are to evaluate ABS w.r.t. its practical usefulness
in developing SPL systems, to identify design patterns and best practices related
to delta-oriented programming, to uncover code smells and anti-patterns, to expose
weaknesses and limitations, and to propose improvements to the ABS language. The
focus will be on researching patterns for code reuse in the ABS language which needs
to be accomplished using deltas. A smart home product line will be implemented
using the delta modelling constructs in the ABS language. This implementation will
serve as the basis for evaluating ABS.
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1. Introduction

1.2 Context
This master’s thesis is executed in the context of Software Product Line Engineering
(SPLE). This methodology has been proven to allow the development of a diversity
of software products and software-intensive systems at lower costs, in shorter time,
and with higher quality w.r.t. other approaches [13, p. V].

Most systems of a certain complexity make use of software because of the benefits
it offers regarding flexibility and functionality. It is much easier to change or add
something in software than it is in hardware, so the amount of embedded systems is
steadily growing. The amount of variability in these systems is growing even faster.
This is where SPLE comes into play. SPLE allows designers to control this ever
increasing variability in a structured way.

Software product line engineering is a paradigm to develop software appli-
cations (software-intensive systems and software products) using platforms
and mass customisation. ([13, p. 14])

This definition of SPLE covers both the development of pure software products and
of software for embedded systems as the principles of product line engineering are the
same for both types of software. The definition mentions the use of platforms. These
should be build carefully by considering re-usability in advance: the platform should
contain the reusable parts of the product line. The platform can then be customised
to generate different end products. This entails using the concept of managed
variability, which means that commonalities and differences in the applications
should be well documented and modelled in a common way. This is consistent with
the definition of a software product line given by Schaefer et al. [17, 16]: ‘A software
product line (SPL) is a set of software systems with well-defined commonalities
and variabilities’. Managed variability also impacts the way software is developed,
extended and maintained. Instead of just changing software to suit the new needs,
adapting the software should be done only in those places where it makes sense to
do so. [13, p. 14-15]

1.3 Outline of the Thesis
Chapter 2 discusses the current state of the art by giving descriptions of delta-oriented
programming and the ABS language. Chapter 3 presents the smart home product
line. Chapter 4 covers three approaches to code reuse in ABS with their advantages
and disadvantages. In Chapter 5 other methodologies for delta-oriented programming
are given, covering discovered patterns and methodologies as well as experiences with
the ABS language. Chapter 6 summarises the thesis and gives a general conclusion.
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Chapter 2

State of the Art

This chapter elaborates on the state of the art regarding the thesis. In Section 2.1
delta-oriented programming and its relation to other programming paradigms is
discussed, Section 2.2 discusses the ABS language.

2.1 Delta-Oriented Programming

In an object-oriented programming paradigm, two kinds of approaches to implement-
ing SPLs exist: annotative approaches, in which source code is removed if it does
not correspond to a feature in the selected product configuration, and compositional
approaches, where code fragments corresponding to different features are assembled
to form the required end product [17]. Delta-Oriented Programming (DOP) belongs
to the group of compositional approaches. DOP was introduced as a programming
language approach for more flexible implementation of SPLs [16]. In DOP, feature
modules are generalised to delta modules that allow the adding, refining, and remov-
ing of fields, methods, and classes. To create a SPL using DOP, first a feature model
should be build. A valid product is then selected from the feature model (i.e. at
least the mandatory features and a minimal set of required alternative features) for
implementation. Selecting a valid product allows using known software engineering
techniques to ensure validity and quality. Delta modules can then be created and
applied to this core to add or remove features by adding, changing and removing
code. Schaefer and Damiani [17] differentiate between two kinds of DOP: Core DOP
and Pure DOP. Core DOP refers to traditional DOP in which a single valid core
product must be selected, as a baseline is needed. Pure DOP is introduced as a term
referring to DOP where this requirement is dropped: products are assembled solely
from delta modules. The requirement is dropped in order for Pure DOP to be a
true generalisation of feature-oriented programming. The ABS language on which
this master’s thesis focuses, uses the Core DOP approach and will be discussed in
Section 2.2.

3



2. State of the Art

2.1.1 Feature-Oriented Programming

DOP was introduced to provide more flexibility and expressiveness than feature-
oriented programming (FOP) [14, 3], which can also be used to implement SPLs.
FOP focuses on large-scale compositional programming and feature modularity [1].

The main difference between DOP and FOP is that in FOP the finest level of
granularity for variability is a feature module, while in DOP this is a delta module.
In FOP, feature modules are applied incrementally and can only introduce new
classes or refine existing ones by adding fields and methods or by overriding existing
methods. In contrast to delta modules, feature modules cannot remove code. Delta
modules are also not restricted to one specific feature. This opens the possibility
to provide deltas which contain code that is necessary for the interaction between
two features. In FOP such interaction code cannot be handled directly, since feature
modules are intended to represent exactly one product feature [16].

2.1.2 Aspect-Oriented Programming

In contrast to FOP, Aspect-Oriented Programming (AOP) focuses on cross-cut mod-
ularity [1]. It is a technique that improves the separation of concerns in software [11].
A frequently used example is logging. Logging occurs in many places in the code
base of a program. Therefore it requires much code duplication since the logging
code has to be implemented in all the places where logging is required. AOP allows
for the separate implemention of such cross-cutting concerns, called aspects. These
aspects are then applied at specified joinpoints. This technique effectively decreases
code duplications since the code only needs to be defined once and is then applied at
the specified locations.

Deltas are similar to aspects in that they also define orthogonal code modifications.
However, they differ in several ways. Deltas are more like features in FOP, where
features are typically used in an incremental fashion, refining the code and other
features. Deltas are guided by features but are more fine grained. They are combined
to implement a feature. On the other hand, aspects address crosscutting concerns
by taking over control at specified joinpoints, and executing their code. Another
difference is that deltas have the possibility to introduce new, independent classes.
This cannot be done using aspects. They can only introduce new members to classes,
and new superclasses and interfaces. This is because aspects have no architectural
model [1].

2.2 The Abstract Behavioural Specification Language

The abstract behavioural specification language, or ABS language or just ABS as
it will be called throughout the rest of the text, is a language which has a hybrid
functional and object-oriented core with built-in concurrency constructs. It comes
with extensions that support the development of systems that are adaptable to
diversified requirements as well as to future changes, yet capable to maintain a high
level of trustworthiness [20]. The full ABS language actually consists of 5 different

4



2.2. The Abstract Behavioural Specification Language

languages: Core ABS, the Micro Textual Variability Language (µTVL), the Delta
Modelling Language (DML), the Product Line Configuration Language (CL), and
the Product Selection Language (PSL), which will be discussed in the following
sections.

2.2.1 Core ABS

Core ABS is a subset of the full ABS language and does not in itself address SPL,
but forms a basis for extensions which will capture SPL artifacts such as features
and feature integration [8]. It can be used as a regular OOP language and is used as
the language for specifying the core behavioural modules.

DOP was one of the extensions added on top of Core ABS in order to support
SPLE. DOP was chosen as a research project for ABS over inheritance because it
was fairly new and the developers of ABS wanted to see how well it fared in practice.
This is why ABS does not support inheritance, but code reuse should be achieved
using deltas. Chapter 3 discusses the feasibility of this.

In ABS, interfaces define types and the methods available for that type. Classes
can implement these interfaces and their methods but are not types themselves.
Other ways to create types in ABS are to use algebraic data types by using the
data keyword, or to define type synonyms which are semantically equivalent to
their synonym by using the type keyword. Listing 2.1 gives an overview of the
possibilities for typing in ABS.

1 module Example;
2 data Car =
3 BMW |
4 Mercedes |
5 Ferrari
6 ;
7 interface Foo {
8 Int getInt();
9 Car getCar();

10 }
11 type Bar = Foo;
12 class F(Car car) implements Foo {
13 Int getInt() {
14 return 5;
15 }
16 Bar getBar() {
17 Foo f = new F(BMW);
18 return f;
19 }
20 Car getCar() {
21 return this.car;
22 }
23 }

Listing 2.1: Typing in ABS

5



2. State of the Art

ABS is designed to model distributed systems and applies a concurrency model
using concurrent object groups (COG) [18] for this. Each COG has its own heap
of objects and communicates with other COGs through asynchronous method calls.
Calls inside one COG are regular, local, synchronous method calls. Synchronous
method calls are made using the normal “.” and can only be performed on [Near]
references. These are references to objects which belong to the same COG. [Near]
is an annotation which can be added to variables to indicate that they refer to an
object residing in the same COG. Asynchronous method calls are made using a “!”
and can only be performed on [Far] references. These are references to objects
which belong to a different COG. [Far] is an annotation similar to [Near], only
[Far] indicates that the variable refers to an object residing in a different COG.
The result of an asynchronous call is called a future. The execution of a method can
be suspended by performing an await on such a future. When execution resumes,
a get can be performed on the future and the actual result is returned. Listing 2.2
gives a short example of the use of ABS’ concurrency model.

1 [Far]Foo foo = new cog Foo();
2 [Near]Foo foo2 = new Foo();
3 Fut<Int> f = foo!getInt();
4 Int i = foo2.getInt();
5 await f?;
6 i = f.get;

Listing 2.2: Example of concurrency in ABS

On line 1 a new object of class Foo is created inside a new COG. On line 2
a new object of class Foo is created as well, but this time it is created inside the
current COG. On line 3 an asynchronous call is made to the getInt() method of
the [Far] Foo, the result of this call is a future parametrised with type Int. The
future contains information about the completion of the asynchronous call and the
result of the getInt() method. On line 4 a call to the getInt() method of the
[Near] Foo is made. This is a regular, synchronous call since it resides in the same
method and the result is immediately returned. On line 5 an await is performed on
the future created on line 3 the execution will be suspended until the asynchronous
call returns. This also gives the opportunity for other tasks inside the current COG
to be executed. When the task is resumed, the get on line 6 is executed and the
result assigned to i.

2.2.2 Micro Textual Variability Language

µTVL is the language used to describe feature models [2, 10] using a textual rep-
resentation. It allows for describing feature models as a forest of nested features
with possibly multiple roots (for orthogonal variability) with the possibility to add
boolean or integer attributes to each feature. Additional constraints can be put on
the presence of features and on the possible values of attributes.
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2.2. The Abstract Behavioural Specification Language

Listing 2.3 gives a short example of µTVL. This is the textual representation of
the feature diagram in Figure 2.1. It defines a feature model with three features,
one of them having three subfeatures of which at least two and at most three need
to be selected (the large, second constraint in the feature diagram), and one being
optional and requiring another feature to be present (the first constraint in the
feature diagram). A larger example will be explained in Chapter 3.

Figure 2.1: Example of a feature dia-
gram

1 root FeatureModel {
2 group allof {
3 Feature1,
4 Feature2 {
5 group [2..3] {
6 SubFeature21,
7 SubFeature22,
8 SubFeature23
9 }
10 },
11 opt Feature3 { require

: SubFeature22 ;
}

12 }
13 }

Listing 2.3: Example of µTVL

2.2.3 Delta Modelling Language

Delta modules (or deltas in short), which are used to achieve variability in a SPL,
are defined using DML. They contain program modifications, adding, removing, and
refining classes, methods, and fields. The deltas are applied to the core module, and
specified using Core ABS.

When defining a delta, first an identifier and possibly some attributes are given.
The use of attributes is not exploited in this thesis. Secondly, the added, modified,
or removed class, method, or field is specified. When modifying or adding, the new
implementation is given next. Modifications may sometimes want to call the original
implementation in order to extend its behaviour. This can be done by calling the
special method original().

Listing 2.4 gives an example of the use of DML. It adds an interface FooBar
with two methods and adds this interface to the F class. It also removes tho Foo
interface and getBar() method from the F class, the getString() method is
added and the getInt() method modified.

7



2. State of the Art

1 delta D1;
2 uses Example;
3 adds interface FooBar {
4 String getString();
5 Int getInt();
6 }
7 modifies class F adds FooBar removes Foo {
8 adds String getString() {
9 return "String";

10 }
11 removes Bar getBar();
12 modifies Int getInt() {
13 Int i = original();
14 return i + 1;
15 }
16 }

Listing 2.4: Example of the Delta Modelling Language

2.2.4 Product Line Configuration Language

To link feature models created using µTVL to delta modules created using DML,
the product line configuration language is used. A product line configuration starts
with the name of the SPL followed by the applicable features. Next the deltas to be
applied are specified together with an optional after clause, specifying a partial
order on the application of deltas, and a when clause, specifying for which features
the delta should be applied. Listing 2.5 gives an example.

1 productline Examp;
2 features Feature1, Feature2, SubFeature21, SubFeature22,

SubFeature23, Feature3;
3 delta D1 when Feature1;
4 delta D2 after D1 when SubFeature12;

Listing 2.5: Example of the Product Line Configuration Language

2.2.5 Product Selection Language

The different end products are specified using the product selection language. A
product description consists of a product name, followed by the features the product
has and, if necessary, filled in parameters. Listing 2.6 gives an example.

1 product Example1 (Feature1, Feature2, SubFeature21,
SubFeature23);

Listing 2.6: Example of the Product Selection Language

8



2.2. The Abstract Behavioural Specification Language

2.2.6 Full Specification of ABS

The previous sections briefly discussed the different language components of ABS.
Many more concepts exist in these languages, but the interested reader is referred
to [20], [6] and [5] for a full discussion of these languages. It needs to be noted that
these texts use another syntax of ABS than is used in this master’s thesis. The
syntax used here is newer and solves some of the problems the old syntax had.
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Chapter 3

Development of a Smart Home
Product Line in ABS

In this chapter, the model of a smart home product line is explained in more detail.
The possible features in this product line and how they relate to each other are
discussed here.

3.1 Feature Diagram
The SPL implemented for this thesis is a product line for a smart home and is
based on the home automation model described in the book Software Product Line
Engineering [13]. Figure 3.1 shows a graphical representation of the feature model of
the smart home.

• Every product (valid configuration of features) needs to have an interface
and optionally a remote interface. Interface in this context means a way of
interaction with the system, not an interface of a programming language. A
remote interface is then a way of controlling the smart home through a remote
device.

• A smart home can optionally have electronic doors which can be sliding or
swinging doors. When a smart home has an electronic door, it also needs to
have door sensors.

• A smart home can optionally have electronic blinds, which require window
sensors to be present as well.

• A smart home can have two types of alarms: a fire alarm and a burglar alarm.
When a fire alarm is present, a fire sensor needs to be present as well. When a
burglar alarm is present, a movement sensor is mandatory.

• Heating can optionally be controlled by the smart home. Heating is either gas,
electric, or oil fuel based. When heating is controlled by the smart home, a
temperature sensor needs to be present.

11



3. Development of a Smart Home Product Line in ABS

Figure 3.1: Feature diagram of the smart home

• Sensors can also be optionally available to provide information on the state of
the smart home regardless of whether there are other features depending on
these sensors.

This feature model is sufficiently large to provide enough challenges to gain
experience with the use of the ABS language, while at the same time, it is sufficiently
small to still be manageable for a one person research project. The feature model

12



3.2. Feature Model in µTVL

also shows the need for SPLs because even though it only has 21 features which are
constrained to some degree, it still has 3.510 possible configurations.

3.2 Feature Model in µTVL

1 root SmartHome {
2 group allof {
3 opt ElectronicDoor {
4 group [1..*] {
5 SlidingDoor,
6 SwingingDoor
7 }
8 require: DoorSensor ;
9 },

10 opt ElectronicBlinds { require: WindowSensor ; },
11 opt Sensors {
12 group [1..*] {
13 DoorSensor,
14 FireSensor,
15 MovementSensor,
16 WindowSensor,
17 COSensor,
18 TemperatureSensor
19 }
20 },
21 opt Alarm {
22 group [1..*] {
23 FireAlarm { require: FireSensor ; },
24 BurglarAlarm { require: MovementSensor ; },
25 COAlarm { require: COSensor ; }
26 }
27 },
28 Interface {
29 group allof {
30 opt RemoteInterface
31 }
32 },
33 opt Heating {
34 group oneof {
35 Gas { require: COAlarm ; },
36 Electric,
37 Oil
38 }
39 require: TemperatureSensor ;
40 }
41 }
42 }

Listing 3.1: Feature model of the smart home in µTVL

The definition of the feature model in µTVL is given in Listing 3.1. The group
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3. Development of a Smart Home Product Line in ABS

allof keywords, e.g. on line 2, mean that all its grouped features without the
opt keyword need to be selected. Using the opt keyword here is equivalent to
using in the feature diagram, not using opt here is equivalent to . The group
oneof keyword on line 34 means that exactly one of the grouped features needs to
be selected. This is equivalent to in the feature diagram. When using group
in combination with a cardinality, e.g. on line 4, the cardinality determines how
many of the grouped features need to be selected. In this feature model, only
cardinalities of [1..*] are used, but they can take any number (e.g. [2..4]). The
cardinality [1..*] is equivalent to in the feature diagram, other cardinalities
need to be represented using constraints (like in Figure 2.1). The require, e.g. on
line 8 is used to state that when that feature is selected, the features after require
also need to be selected. So in this case, if the feature ElectronicDoor is selected,
the feature DoorSensor also needs to be selected.

Class Diagram

Figure 3.2 shows the class diagram of the program that would be implemented in
regular OOP should every feature in the feature model (in Figure 3.1) be selected. If
only a subset of the possible features is selected, say a smart home with electric heating,
then only the classes and interfaces in light green - SmartHomeInterface (with
a subset of it’s methods), Heating, GasBurner, Observer, Observable,
Sensor and TemperatureSensor - would need to be implemented. To retain the
overview, not all methods are filled in in this class diagram.

Defining the product of the smart home with electric heating is done using PSL.
Listing 3.2 shows the code for this. The Interface feature is selected because it
is mandatory, Heating and Electric are selected because these are the desired
features. Sensors and TemperatureSensor are selected because the Heating
feature requires this the TemperatureSensor to be present.

1 product ElectricHeating (Interface, Heating, Electric, Sensors,
TemperatureSensor);

Listing 3.2: PSL code fore a smart home with electric heating

The selected features are linked to deltas using CL. Listing 3.3 shows an excerpt of
the smart home implementation doing exactly this. In this code, the delta DHeating
is applied when the Heating feature is selected, but only after the DTemperature-
Sensor delta is applied (line 20). The DTemperatureSensor delta is applied
when the TemperatureSensor feature is selected (line 17), but since Heating
requires TemperatureSensor, this dependency can never lead to problems.
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Figure 3.2: Full class diagram of the Smart Home
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3. Development of a Smart Home Product Line in ABS

1 productline House;
2 features ElectronicDoor, SlidingDoor, SwingingDoor,

ElectronicBlinds,
3 Sensors, DoorSensor, FireSensor, MovementSensor,

WindowSensor, COSensor,
4 TemperatureSensor, Alarm, FireAlarm, BurglarAlarm, COAlarm,

Interface,
5 RemoteInterface, Heating, Gas, Electric, Oil;
6
7 // Deltas concerning House
8 delta DTemperature when TemperatureSensor;
9 ...

10 // Deltas concerning SmartHomeInterface
11 delta DTemperatureMonitor after DTemperatureSensor when

TemperatureSensor;
12 delta DHeatingInterface after DTemperatureMonitor when

Heating;
13 ...
14 // Deltas concerning Sensor
15 delta DObserver when Sensors;
16 delta DSensor after DObserver when Sensors;
17 delta DTemperatureSensor after DSensor when

TemperatureSensor;
18 ...
19 // Deltas concerning Heating
20 delta DHeating after DTemperatureSensor when Heating;
21 delta DElectricHeater after DHeating when Electric;
22 ...

Listing 3.3: Deltas linked to features in the smart home implementation
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Chapter 4

Code Reuse in the ABS
Language

Most object-oriented programming languages (e.g. Java) use inheritance as a mecha-
nism to avoid code duplication. As explained in Section 2.2, there is no support for
inheritance in ABS. ABS provides deltas which can be used to achieve code reuse.
In the next sections three approaches, the last two of which use deltas, to achieve
code reuse in ABS are discussed. The first one is called the delegation approach
(Section 4.1) and is applicable to other OOP languages as well. The second approach
makes use of deltas and can only be used when just one ’subclass’ of a class needs to
be introduced; this will be called the single type approach (Section 4.2). The last,
and most difficult one is the multiple delta approach (Section 4.3) which allows using
more than one type of a type hierarchy in the system. The first two approaches use
small implementations of a sensor type hierarchy as working examples. For the third
approach, the implementation of the smart home is used.

4.1 Delegation Approach

Delegation is a known pattern in software engineering and can be defined as:

An implementation mechanism in which an object forwards or delegates
a request to another object. The delegate carries out the request on behalf
of the original object. ([7, p. 360])

This means that instead of handling a method call itself, an object performs a
method call to another object to which it has a reference and which provides an
implementation for that method. So it receives a method call and forwards it to
another class. Delegation can be used as an alternative to inheritance since the
delegation of a method to another class can be viewed as a subclass delegating
method calls to its superclass. The difference is that in delegation, the subclass has
the superclass as a variable instead of it being an instance of the superclass. To
avoid confusion, a superclass in the delegation approach will from now on be called a
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4. Code Reuse in the ABS Language

superobject, as an instantiation of the supertype’s class is used as object to delegate
its method calls to.

4.1.1 Sensor Implementation

In light of the smart home model, a test using the delegation approach was done by
implementing a type hierarchy for sensors. The type hierarchy is shown in Figure 4.1.
The FireAndMovementSensor is not part of the smart home, it is merely used
here to show some properties of the delegation approach.

+getSensorType() : string

+getSecurityLevel() : int

Sensor

FireSensor MovementSensor

FireAndMovementSensor

Figure 4.1: Sensor type hierarchy

The Sensor class is made abstract since no direct instantiations of a sensor should
be made. FireSensor and MovementSensor inherit from Sensor, and Fire-
AndMovementSensor from both FireSensor and MovementSensor. If Fire-
Sensor and MovementSensor have different implementations of some methods,
this creates a Nixon Diamond [9].

Figure 4.2 shows how the class diagram looks like when the type hierarchy of
the sensors is mapped to the delegation approach. Every type is now represented
as an interface with an implementing class. These classes have a reference to their
superobject(s) instead of inheriting from it/them. This means that for all the
methods the superobjects have, a method needs to be created which can either
call the superobject’s method, or give a new implementation (overriding). When
implementing this in ABS, the interfaces of the different sensor types are defined
first (Listing 4.1).

Secondly, the classes are implemented. Listing 4.2 shows the implementation
of FireAndMovementSensor, as this is the most interesting case. The Fire-
AndMovementSensor class implements the methods required by Sensor: get-
SensorType() and getSecurityLevel() which are both overridden. For get-
SecurityLevel() the results of both superobjects’ methods are combined to get
a new result. This shows that the delegation approach can also mimic multiple
inheritance in a straightforward way.
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4.1. Delegation Approach

+getSensorType() : string

+getSecurityLevel() : int

<<Interface>>

Sensor

-super : Sensor

FireSensor

-super : Sensor

MovementSensor

-fireSuper : FireSensor

-MovementSuper : MovementSensor

FireAndMovementSensor

Sensor<<Interface>>

FireSensor

<<Interface>>

MovementSensor

<<Interface>>

FireAndMovementSensor

1 1

11

Figure 4.2: Sensor class diagram for delegation approach

1 interface Sensor {
2 String getSensorType();
3 Int getSecurityLevel();
4 }
5 interface FireSensor extends Sensor {}
6 interface MovementSensor extends FireSensor {}
7 interface FireAndMovementSensor extends FireSensor,

MovementSensor {}

Listing 4.1: Interfaces of the sensors

1 class FireAndMovementSensor implements FireAndMovementSensor {
2 FireSensor fireSuper;
3 MovementSensor movementSuper;
4 {
5 this.fireSuper = new FireSensor();
6 this.movementSuper = new MovementSensor();
7 }
8 String getSensorType() {
9 return "Fire and Movement Sensor";

10 }
11 Int getSecurityLevel() {
12 Int fire = fireSuper.getSecurityLevel();
13 Int movement = movementSuper.getSecurityLevel();
14 return fire + movement;
15 }
16 }

Listing 4.2: Implementation of the FireAndMovementSensor class

19



4. Code Reuse in the ABS Language

4.1.2 Testing the Sensor Behaviour

A small program was written to test the behaviour of the different sensor classes.
First a list is built containing all the different types of sensors (Listing 4.3), once
with the list as a [Near] reference and once with the list as a [Far] reference.
Next, the getSensorType() method is called on all the sensors in the list and the
result printed to the console. The code for the test is shown in Listing 4.4. The
resulting output is shown in Listing 4.5.

1 class ListBuilder implements ListBuilder {
2 List<Sensor> buildSensorList() {
3 Sensor s = new Sensor();
4 FireSensor fs = new FireSensor();
5 MovementSensor ms = new MovementSensor();
6 FireAndMovementSensor fms = new FireAndMovementSensor();
7 List<Sensor> sensors = Cons(s, Cons(fs, Cons(ms, Cons(fms,

Nil)));
8 return sensors;
9 }

10 }

Listing 4.3: Build a list of different sensors

The list containing the different sensors is parametrised so that it contains
objects of type Sensor. However, when the type of the Sensor is asked using the
getSensorType() method, the type of the originally created object is returned.
This is exactly how dynamic binding in inheritance would respond: method calls are
bound based on the actual type of the object and not on the declared type. It is
easy to see why this happens in ABS. Every kind of sensor implements the interface
Sensor, so the list can hold it. However the different classes implementing the
different interfaces have no direct knowledge of each other (only through delegation),
so they can only respond to the method with their own implementation. A discussion
of static behaviour will be given in Section 5.2.5.

4.1.3 Pattern

The example discussed in Section 4.1.1 can be generalised into a pattern:

1. Define the type hierarchy.

2. For every type in the hierarchy: define an interface which extends its direct
supertype’s interface.

3. For every interface, define a class which implements that interface.

a) Define a field F of the supertype’s type.
b) In the initialisation block, create an object O of the supertype’s class and

assign it to F.
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4.1. Delegation Approach

1 class Test {
2 Unit run() {
3 // Test behaviour of Near sensors
4 Printer printer = new Printer();
5 ListBuilder nearBuilder = new ListBuilder();
6 List<Sensor> sensors = nearBuilder.buildSensorList();
7 Bool continue = ~isEmpty(sensors);
8 printer.print("Near list of Sensors");
9 while (continue) {

10 Sensor s = head(sensors);
11 sensors = tail(sensors);
12 String toPrint = s.getSensorType();
13 printer.print(toPrint);
14 continue = ~isEmpty(sensors);
15 }
16 printer.print("~~~~~~");
17 // Test behaviour of Far sensors
18 ListBuilder builder = new cog ListBuilder();
19 Fut<List<Sensor>> f = builder!buildSensorList();
20 await f?;
21 List<Sensor> farSensors = f.get;
22 continue = ~isEmpty(farSensors);
23 printer.print("Far list of Sensors");
24 while (continue) {
25 Sensor s = head(farSensors);
26 farSensors = tail(farSensors);
27 Fut<String> fs = s!getSensorType();
28 await fs?;
29 String toPrint = fs.get;
30 printer.print(toPrint);
31 continue = ~isEmpty(farSensors);
32 }
33 }
34 }

Listing 4.4: Test of [Near] and [Far] behaviour of delegation

1 "Near list of Sensors"
2 "Generic Sensor"
3 "Fire Sensor"
4 "Movement Sensor"
5 "Fire and Movement Sensor"
6 "~~~~~~"
7 "Far list of Sensors"
8 "Generic Sensor"
9 "Fire Sensor"

10 "Movement Sensor"
11 "Fire and Movement Sensor"

Listing 4.5: Output of the sensor test-program

21



4. Code Reuse in the ABS Language

c) Delegate all method calls that don’t need overriding to O.
d) Define getters and setters for all variables that need to be available in

lower types’ implementations (and add these getters and setters to the
type’s interface).

4.1.4 Discussion

The delegation approach provides an alternative to inheritance in an easy to un-
derstand manner. The programmer gains a lot of control over the code using this
approach. For instance, multiple inheritance can be simulated using this approach
without much difficulty, and problems like the Nixon Diamond do not even exist, since
the programmer has to specifically declare which superobject’s method, combination
of superobjects’ methods, or own implementation he wishes to use.

Four main problems exist with the delegation approach: (a) using an overriden
method, (b) coding overhead, (c) memory overhead, and (d) execution overhead.
These are discussed in detail below.

Overriden Method The first problem with the delegation approach is that when
a method call is performed on a subtype, but this method is implemented in a higher
type’s implementation and this method calls another method which is overridden
in the subtype, the subtype’s method implementation will not be called. Instead,
the implementation of the higher type will be used (or one of its supertypes if it
does not provide a new implementation). Take for instance Listing 4.6. When using
regular inheritance, the programmer expects the variable i on line 29 to contain 10
after the call to foo(). However, because the class Super, to which foo() was
delegated has no knowledge of any overriding of its bar() method, i will contain 5.

This problem can easily be overcome by having the foo() method in Sub call
bar() directly, resulting in code duplication. But this is what this approach tried
to avoid in the first place. The delegation approach therefore is far from optimal.

Coding Overhead The delegation approach also suffers from a coding overhead.
Since methods are not inherited from a supertype, every method of every supertype
all the way to the top of the hierarchy needs to be defined and implemented for
every type in the type hierarchy. This can cause a large overhead if the top levels
of the hierarchy contain many methods which do not need overriding in the lower
levels. Also, getters and setters need to be defined for all variables which need to be
available lower in the hierarchy since these lower types have no other way of reading
or writing to this variables. This seriously deteriorates any encapsulation present
since the variables are now publicly available for reading and writing. For instance in
Java, this encapsulation problem is handled by making variables protected, which
means they are only visible for the class and its subclasses.

Memory Overhead A third concern is memory. When a hierarchy consists of
many levels and many objects of the lowest level need to be created, many more
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4.1. Delegation Approach

1 interface Super {
2 Int foo();
3 Int bar();
4 }
5 interface Sub extends Super {
6 }
7 class Super implements Super {
8 Int foo() {
9 return bar();

10 }
11 Int bar() {
12 return 5;
13 }
14 }
15 class Sub implements Sub {
16 Super super;
17 Unit run() {
18 this.super = new Super();
19 }
20 Int foo() {
21 return super.foo();
22 }
23 Int bar() {
24 return 10;
25 }
26 }
27 {
28 Sub sub = new Sub();
29 Int i = sub.foo();
30 }

Listing 4.6: Problem in the delegation approach

other objects need to be created as well. Take for instance a type hierarchy of ten
levels. If an object of the lowest level is created, an object of the level above that is
created as well, and for the level above that, and so on, creating ten different objects
in total to only represent one object.

Execution Overhead A last possible concern is execution overhead. Non-overriding
methods call the method of their superobject, which may possibly call the method in
their superobject, and so on. This results in an overhead on the stack as well as in
execution time because of the method call overhead. To check whether this overhead
in execution time is substantial, a test was performed comparing inheritance and the
delegation approach in Java. A method was called 9,223,372,036 times1 for three
levels of inheritance and delegation and for ten levels of inheritance and delegation.
The results were averaged over ten runs. These averages are shown in Table 4.1 with
execution times expressed in microseconds. The code for this test is available in
Appendix A.1.

1This is Long.MAX_VALUE / 1000000000 in Java
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Inheritance Delegation Difference
3 levels 4,746,942 4,751,934 +0.105 % (4,992)
10 levels 4,749,890 4,882,556 +2.793 % (132,666)
Difference +0.062 % (2,948) +2.749 % (130,622)

Table 4.1: Execution times of inheritance vs. delegation (in µs)

The execution times for three levels and ten levels of inheritance are nearly the
same with ten levels being 2,948 µs slower than three levels, this is a difference of
only 0.062 % and is probably due to execution fluctuations on the processor. For three
levels of inheritance and delegation, delegation is 4,992 µs slower than inheritance,
or 0.105 % which is still very small. When looking at ten levels, the difference
is already much larger with delegation being 132,666 µs slower than inheritance,
or 2.793 % which is comparable to ten levels of delegation being 130,622 µs, or 2.749 %
slower than three levels of delegation. Looking at these results, it can be concluded
that delegation is in fact slower than inheritance. However, the difference in execution
time is so small that for most applications this is of no concern.

4.2 Single Type Approach

When only one type of the type hierarchy may be used in each product, the single
type approach can be used. In this approach the top-level type is modelled as a
regular class and the subtypes are defined as deltas, changing the original class’s
implementation to suit their needs by changing implemented methods and adding
new methods and fields.

+getSensorType() : string

+getSecurityLevel() : int

Sensor

+alertFireDepartment() : unit

FireSensor

UltraSensitiveFireSensor

Figure 4.3: Type hierarchy of the fire sensors

Figure 4.3 shows the class hierarchy of three types of sensors. The Sensor
class has two methods which will be implemented in a regular class in ABS. The
FireSensor class has an extra method, this method will be added to the Sensor
class in a delta module. It will also be added to the Sensor interface so that
the new method will be visible outside the class. UltraSensitiveFireSensor
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has no new methods, but changes the result of a call to getSensorType() and
getSecurityLevel(), also by using a delta module. Since only one type in the
hierarchy is available in the entire program, the original interface can be reused and
no new interfaces need to be defined.

1 module Sensor;
2 export *;
3 import * from Printer;
4 interface Sensor {
5 String getSensorType();
6 Int getSecurityLevel();
7 }
8 class Sensor implements Sensor {
9 String getSensorType() {

10 return "Generic Sensor";
11 }
12 Int getSecurityLevel() {
13 return 5;
14 }
15 }
16 delta DFireSensor;
17 uses Sensor;
18 modifies interface Sensor {
19 adds Unit alertFireDepartment();
20 }
21 modifies class Sensor {
22 modifies String getSensorType() {
23 return "Fire Sensor";
24 }
25 modifies Int getSecurityLevel() {
26 return 7;
27 }
28 adds Unit alertFireDepartment() {
29 Printer printer = new Printer();
30 printer.printS("Fire!");
31 }
32 }
33 delta DUltraSensitiveFireSensor;
34 uses Sensor;
35 modifies class Sensor {
36 modifies String getSensorType() {
37 return "Ultra-Sensitive Fire Sensor";
38 }
39 modifies Int getSecurityLevel() {
40 return 10;
41 }
42 }

Listing 4.7: Implementation of the fire sensor hierarchy

The code for this example is given in Listing 4.7. First the interface for Sensor
is defined and implemented in the Sensor class (lines 4 to 15). Next, the DFire-
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Sensor delta is defined which adds alertFireDepartment() to the Sensor
interface and class and modifies the method implementations of Sensor (lines 16
to 32). Finally, the DUltraSensitiveFireSensor delta also modifies the original
methods of the Sensor class (lines 33 to 42).

1 module Test;
2 import * from Sensor;
3 import * from Printer;
4 class Test() {
5 Sensor sensor;
6 Unit run() {
7 sensor = new Sensor();
8 Printer printer = new Printer();
9 String toPrint = sensor.getSensorType();

10 printer.printS(toPrint);
11 Int level = sensor.getSecurityLevel();
12 toPrint = intToString(level);
13 printer.printS(toPrint);
14 }
15 }
16 {
17 new cog Test();
18 }
19 delta DUseFireSensors;
20 uses Test;
21 modifies class Test {
22 modifies Unit run() {
23 original();
24 sensor.alertFireDepartment();
25 }
26 }
27 productline Sensors;
28 features Fire, UltraSensitive;
29 delta DFireSensor when Fire;
30 delta DUseFireSensors when Fire;
31 delta DUltraSensitiveFireSensor after DFireSensor when

UltraSensitive;
32
33 product FireSensor (Fire);
34 product UltraSensitiveFireSensor (Fire, UltraSensitive);
35
36 root Sensors {
37 group [0..2] {
38 Fire,
39 UltraSensitive { require: Fire; }
40 }
41 }

Listing 4.8: Test program of the fire sensor hierarchy

Listing 4.8 shows a test program for the fire sensor hierarchy. It defines two
products, one with a fire sensor and one with an ultra-sensitive fire sensor (lines 33
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and 34). For the first one, two deltas are applied, the DFireSensor delta (List-
ing 4.7) and the DUseFireSensors delta (lines 19 to 26). The first changes the
implementation of the Sensor class, the second one changes the implementation of
the run() method of the Test class, so that it makes use of the newly available
method alertFireDepartment(). When the UltraSensitiveFireSensor
product is chosen, the DUltraSensitiveFireSensor delta (Listing 4.7) is ap-
plied as well, after the DFireSensor delta. The after statement is important, as
they both change the methods getSensorType() and getSecurityLevel().

This example shows that when new methods are added to a class, existing
methods wanting to use the added methods have to be completely rewritten if it is
necessary to call the new methods in between the existing code, or if it has to be
called on an object created inside the existing method. E.g. printing the result of
getSensorType(), then calling alertFireDepartment(), and then printing
the result of getSecurityLevel() is impossible without copying the original
code and inserting the new method call in between.

4.2.1 Pattern

The example discussed above can be generalised into a pattern:

1. Define the type hierarchy.

2. Define an interface I for the top-level type.

3. Define a class implementing I.

4. For each subtype S, define a delta which modifies the original class to suit the
needs of S.

5. Apply the delta’s in top-down order until the delta of the needed type is
reached.

4.2.2 Discussion

The single type approach is easy to use when exactly one type of a type-hierarchy is
used throughout the entire product. It makes use of deltas, modifying the classes
directly, which alleviates the problem the delegation approach has with methods
calling other methods without doing anything besides that. Because all modifications
are made to the original class, the resulting compiled code will be much smaller than
when the delegation approach would be used.

The single type approach is very easy to use, but having only one type of a type
hierarchy available throughout an entire program is very problematic as this is a case
that will only occur very sporadically. The single type approach also becomes much
harder to use when the types lower in the hierarchy have methods the types higher
up do not have. It is possible that code has to be rewritten in this case, creating a
coding overhead. However, in regular OOP with inheritance, when a method wants
to start using a type lower in the hierarchy, it has to be rewritten as well, so the
single type approach is not worse than when inheritance is available in this aspect.
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4.3 Multiple Delta Approach

The single type approach is only useful when the entire product needs exactly one
specific class of a type hierarchy. In this case, the existing class is altered so that it
provides the functionality that is necessary in that particular product. When two or
more types in a type hierarchy are needed, the single type approach becomes useless.
The multiple delta approach provides an answer to this problem.

The first intuition into tackling the problem was to provide a delta for each
different type, changing the class to what is needed for that specific type and using
that delta in different places in the code. This is not possible however, since deltas
are applied to the entire code, not just to specific locations. Hence, a kind of local
single type approach is not possible.

A solution can be found in the ABS typing system. The perceived type of an
object is dependent on the variable that contains the object. So if for instance a
class implements interfaces Observable and Alarm, an instantiation of this class
can be assigned to a variable of the type Observable as well as a variable of
the type Alarm. However, the variable of type Observable can only access the
methods defined in the Observable interface and the variable of type Alarm can
only access the methods defined in the Alarm interface. This provides a large part
of the solution, since variables can be declared to be of a specific type and only the
methods belonging to the corresponding interface can be accessed.

+enable()

+disable()

#gatherInformation()

Sensor

FireSensor

+getTemperature() : int

TemperatureSensor

+register(observer : Observer)

+unregister(observer : Observer)

<<Interface>>

Observable

Figure 4.4: Type hierarchy of Sensor, TemperatureSensor and FireSensor

Using this observation, the code in Listing 4.9 was written. This is an ex-
cerpt from the smart home implementation of the sensor type hierarchy shown
in Figure 4.4. In the first delta (DSensor, lines 1 to 24), the interface and its
implementing class Sensor are introduced. This is done in a delta as the Sensor
feature is not mandatory. Next, in the delta DTemperatureSensor (lines 25
to 49), the TemperatureSensor interface is defined, extending the Sensor in-
terface. This new interface is added to the original Sensor class and the new
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getTemperature() method is added to the Sensor class and implemented. Sim-
ilarly, in the delta DFireSensor (lines 50 to 67) the interface FireSensor is
defined, extending the Sensor interface, and added to the Sensor class. If all three
deltas would be applied, there would be a Sensor class implementing the Sensor,
TemperatureSensor and FireSensor interfaces. It is then possible to have
variables of the three different types, with only variables of the type Temperature-
Sensor able to receive calls to the getTemperature() method.

1 delta DSensor;
2 uses House;
3 adds data SensorType =
4 Sensor |
5 TemperatureSensor |
6 FireSensor;
7 adds interface Sensor extends Observable {
8 Unit enable();
9 Unit disable();
10 }
11 adds class Sensor(House house, SensorType typE) implements

Sensor {
12 Bool enabled = True;
13 ...
14 Unit enable() {
15 this.enabled = True;
16 }
17
18 Unit disable() {
19 this.enabled = False;
20 }
21
22 Unit gatherInformation() {
23 }
24 }
25 delta DTemperatureSensor;
26 uses House;
27 adds interface TemperatureSensor extends Sensor {
28 Int getTemperature();
29 }
30 modifies class Sensor adds TemperatureSensor {
31 adds Int temperature = 10;
32
33 adds Int getTemperature() {
34 return this.temperature;
35 }
36 modifies Unit gatherInformation() {
37 if (this.typE == TemperatureSensor) {
38 Fut<Int> t = this.house!getTemperature();
39 await t?;
40 Int temp = t.get;
41 if (temp != this.temperature) {
42 this.temperature = temp;
43 this.notifyObservers(intToString(temp));
44 } else {
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45 original();
46 }
47 }
48 }
49 }
50 delta DFireSensor;
51 uses House;
52 adds interface FireSensor extends Sensor {
53 }
54 modifies class Sensor adds FireSensor {
55 modifies Unit gatherInformation() {
56 if (this.typE == FireSensor) {
57 Fut<Bool> f = this.house!getFire();
58 await f?;
59 Bool fire = f.get;
60 if (fire) {
61 this.notifyObservers("fire");
62 }
63 } else {
64 original();
65 }
66 }
67 }

Listing 4.9: Sensor type hierarchy

4.3.1 Pattern

The example discussed above can be generalised into a pattern:

1. Define the type hierarchy.

2. Define an interface TopI for the top-level type.

3. Define a class C implementing TopI.

4. For each subtype define a delta which:

a) defines an interface I for the type extending the direct supertype’s inter-
face,

b) adds I to C,
c) modifies C by adding the methods defined in the type’s interface.

4.3.2 Multiple Method Implementations

The multiple delta approach as it is described up until now has one big problem: it
often happens that different subtypes require the same method to behave differently
and override the method implementation of the supertype. Since the proposed
approach does not create two classes, only one implementation of a method is available.
The attentive reader may already have noticed a solution to this problem in the
gatherInformation() method of Listing 4.9. A variable of type SensorType
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is passed as a parameter to the class. This variable should state the type of the
type hierarchy this instantiation should have. So for instance, it is possible to
have a variable of type Sensor to which a new instantiation of the class Sensor
is assigned, with the new instantiation having FireSensor as the SensorType
parameter. The instantiation will then be treated as being a FireSensor. Each
delta then modifies the method it wants to override by first putting an if-statement
to check whether the modification should be executed, based on the type and calling
original() in the else-clause. Of course this is not an ideal solution since the
wrong type can easily be passed in the parameter, either accidentally or maliciously.
Sometimes it is desirable to call the implementation of the supertype while overriding
the method. This is still possible by calling original() in the if-clause as well.
Since only one of the subtypes’ implementations should enter the if-clause, the
original implementation of the supertype will eventually be called. To make sure a
supertype will handle a call to original() correctly, the if-clause should respond
to all the subtypes of that type as well. Since the subtypes will always be called first
(as their deltas are applied later), this does not give rise to new problems.

Taking this problem into account, the pattern in Section 4.3.1 should be extended:

4. d) For every method that will be overridden use following pattern for the
method’s implementation:

1 ReturnType result;
2 if (this.typE == <Type>) {
3 // <Type specific implementation here>
4 } else {
5 result = original();
6 }
7 return result;

The creation of an object now has the elements of object creation in Java. In
Java the left hand side of the expression states the static type of the object, which
defines the methods available for calling. The right hand side states the dynamic
type and defines which method implementation will be used. In ABS the left hand
side of the expression also states the static type of the object, i.e. which methods can
be used. The dynamic type is defined by the type parameter since this parameter
will be used to determine the functionality of the called methods.

Because the same method is used for all implementations, the method signature
cannot be changed, so the return type and the type of the parameters are the same
for all types in the hierarchy. Of course changing the dynamic type of returned
objects is possible, but the static type is not alterable.

4.3.3 Discussion

The main advantage of the multiple delta approach over the delegation approach
is the correct use of overriden/overriding methods. This was a major issue in the
delegation approach. A second important advantage over the delegation approach
is the reduction of code overhead. Since the multiple delta approach uses the same
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class for all the different types, explicitly implementing the methods defined in
the interfaces is only necessary when the behaviour of the supertype needs to be
overridden. On the other hand, always modifying the same class is the biggest
problem of this approach, since every instantiation contains the functionality of all
the types in the type hierarchy. This is mainly a problem when different subtypes
have a different behaviour for the same method. This can however be solved by using
a combination of if-statements and calls to original().

1 interface Sensor {
2 }
3 interface FireSensor extends Sensor {
4 }
5 interface MovementSensor extends Sensor {
6 }
7 class Sensor implements Sensor, FireSensor, MovementSensor {
8 }
9 {

10 Sensor s = new Sensor();
11 FireSensor fs = s; // Error
12 MovementSensor ms = fs; // Error
13 FireSensor fs2 = new Sensor();
14 Sensor s2 = fs2;
15 MovementSensor ms2 = fs2; // Error
16 }

Listing 4.10: Reassigning objects to variables of different types

The fact that the class implements all interfaces poses no problem. Reassigning
an object to a variable of another type is only possible according to the type
hierarchy defined by the interfaces. For instance, in Listing 4.10 an object of the
class Sensor is instantiated and assigned to a variable of the type Sensor (line 10).
On lines 11 and 12 this object is reassigned to a variable of type FireSensor and
MovementSensor respectively. These assignments are invalid, since these types
are lower in the hierarchy than Sensor. On line 13 an object of the class Sensor
is instantiated and assigned to a variable of type FireSensor, reassigning it to
a variable of type Sensor (line 14) succeeds, because the interfaces state that a
FireSensor is also a Sensor (due to the extends statement). Reassigning it to
a variable of type MovementSensor (line 15) fails, because that relationship does
not apply here.

The solution for the multiple method implementations proposed in Section 4.3.2
still has some issues. For instance, the if-statements needs to check that the provided
type parameter is the type for the implementation of that level in the hierarchy as
well as any level lower in the hierarchy. So for Sensor this would be Listing 4.11.

This cannot be trivially shortened, since the data construct in ABS does not
support a hierarchical structure. One possible solution is combining all the checks in
one function, this would then look like Listing 4.12 and the new if-statement looks
like Listing 4.13.
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1 if (typE == Sensor || typE == FireSensor || typE ==
MovementSensor)

Listing 4.11: if-statement for Sensor

1 def Bool isSensorType(SensorType toCheck, SensorType t) =
2 case toCheck {
3 t => True;
4 Sensor => True;
5 TemperatureSensor => case t {
6 TemperatureSensor => True;
7 _ => False;
8 };
9 FireSensor => case t {

10 FireSensor => True;
11 _ => False;
12 };
13 };

Listing 4.12: Checking type using a function

1 if (isSensorType(this.typE, Sensor))

Listing 4.13: if-statement for Sensor using a function

This does not solve the problem of course, but by concentrating the code in one
place, it becomes more manageable. On the downside, functions cannot be changed
using deltas, so the function to check types has to be written up front. However, this
is the same for the types itself, since just like functions, data declarations cannot
be modified or removed by deltas either, only added. Since ABS is still under
development, it could be that modifying functions and/or data declarations will be
possible in the future.

4.4 Conclusion

In this chapter, three approaches for code reuse in ABS were discussed. The
delegation approach tries to mimic inheritance by delegating method calls to a
superobject which represents its superclass. The biggest problem of this approach
is that the superobjects have no knowledge of their subobjects and therefore of
possible overriding of their methods. This may result in unexpected results since the
programmer will expect the overriding method to be used instead of the overridden
one. Also, a coding overhead is present due to the delegation. Every non-overridden
method still has to be implemented in every class, calling the same method in its
superobject. A memory problem exists as well, since an object lower in the type
hierarchy is represented by one object for every level in the hierarchy. One positive
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point about the delegation approach is that it is usable in most OOP languages since
it uses main concepts of OOP (classes and interfaces).

The single type approach is a first step into solving the problems of the delegation
approach. In the single type approach, one class is defined and deltas modify the
functionality of this class. This solves the delegation and its associated coding
overhead. Its simplicity makes it very easy to use, but also makes it useless in many
cases. It can only be used when one type in the type hierarchy is needed throughout
the entire program, a rare condition.

The third, or multiple delta approach solves the problem of the single type
approach by exploiting the ABS typing system. Interfaces are again defined for every
type and are added to the original class implementation in deltas. These deltas also
modify the functionality of the class by adding new methods and overriding other
methods using a specific pattern in order to handle multiple method implementations.
Variables containing objects of this class have a specific type and only the methods
defined in the interface of this type are available. The downside is that this pattern
needs typing information which the programmer needs to fill in manually on creation
of the object and methods always have the same unalterable signature.
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Chapter 5

Evaluation of the ABS
Delta-Oriented Programming
Methodology

In this chapter the experience gained with ABS is discussed. Section 5.1 gives a
short general experience with ABS, and Section 5.2 discusses development in ABS. In
section 5.3 the performance of ABS is discussed, and Section 5.4 covers unit testing
in ABS. Section 5.5 closes the chapter with a conclusion.

5.1 General Experience with ABS

Using Core ABS as a programming language will for most programmers not be a very
big step as it is an object-oriented programming language with a syntax resembling
e.g. Java. The major difference to use it as a programming language like Java is
that classes require interfaces in order to be assignable to variables since the classes
do not define types, their interfaces do. Classes just provide the implementation of
methods.

The facet of Core ABS that will be new for most programmers is the concurrency
model of ABS: using COGs, asynchronous method calls, futures, await, suspend,
and get (although the new version of C# (C# 5) will use similar constructs for
asynchronous method calls [12]). Using these features may be a bit tricky for novices
to concurrency, as they may result in some unexpected results which will be discussed
in Section 5.2.3. The problems existing here are common to concurrent programming
languages and the reader is referred to literature focusing on the subject of concurrent
programming [4, 21].

Using the languages for variability (µTVL, DML, CL, and PSL) will be new
to almost all programmers. This does not imply that they are hard to use. These
languages are very intuitive and a programmer new to the concepts of DOP, only
needs a few examples to grasp the usage of these languages.
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5.2 Developing in ABS

In this section development in ABS is discussed. It starts with some implementation
guidelines, continues with patterns and best practices, some anti-patterns and code
smells. Also some annoyances in ABS are discussed, some of these can be improved
in later versions of ABS, others are the consequence of design decisions and cannot
be changed.

5.2.1 Implementing a Software Product Line

When starting the implementation of an SPL in ABS, it is a good idea to begin with
describing the feature model. This gives a first degree of granularity of the SPL.

A selection can be made from the feature model. This selection should be
implemented in core ABS and forms the basis for the deltas. (For instance, in the
implementation of the smart home, this core implementation contained all mandatory
features and nothing more (so only the feature Interface). It was very small,
consisting of only one interface and one class declaration with only one method.)
It is possible to select more than the mandatory features, but using the code reuse
approaches described in Chapter 3 becomes more difficult as some deltas will have
to remove code instead of adding code, which may make it harder to reason about
the results.

After the implementation in core ABS is finished, the deltas can be defined. They
will provide a second degree of granularity as features can be split into several deltas
and one delta can be used by several features or link features together by providing
communication between them. The deltas are then linked to their respective features.

Products can be defined anytime after the feature model has been described. So
the products, which will be the end products of the SPL, can be defined directly
after defining the feature model. Other products which serve merely to test the
implementation of deltas can be defined on the fly.

5.2.2 Patterns and Best Practices

Code Reuse

Chapter 4 gives an extensive overview of three patterns for code reuse: the delegation
approach, the single type approach and the multiple delta approach.

Repeating Method

During the development of the smart home, while-loops were often used to have
active objects simulate certain behaviour. For instance, the sensors need to check
whether the state of the house has changed in fixed time intervals. This example is
shown in Listing 5.1, with the run() method of the Sensor class.

In this piece of code a method call is inserted on line 7. The called method
implements the execution steps which need to be performed every time the sensor
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becomes active. This way, deltas can add to or modify this behaviour without the
programmer having to rewrite the code required to keep the sensor active.

1 class Sensor implements Sensor {
2 ...
3 Unit run() {
4 sleeper = new cog Sleeper();
5 while (True) {
6 if (enabled) {
7 this.gatherInformation();
8 }
9 Fut<Unit> s = sleeper!sleep(100);
10 await s?;
11 }
12 }
13 ...
14 }

Listing 5.1: Run() method of the Sensor class

5.2.3 Code Smells and Anti-Patterns

Asynchronous Call - Await - Get

When an asynchronous call, an await statement on the future of that call and a
get statement on that future occur consecutively (e.g. Listing 5.2) chances are
that this is suboptimal. The asynchronous call should be moved up so that it gets
executed as early as possible and the await and get statements should be deferred
as long as possible. By splitting these statements, the time the method is idling
because the asynchronous call has not returned yet is minimised. Of course it is not
always possible to split these three statements, but if anything can be put between
an asynchronous call and its respective await statement, it should be there.

1 ...
2 Fut<Int> f = foo!bar();
3 await f?;
4 Int i = f.get;
5 ...

Listing 5.2: Asynchronous call - await - get

Await and Suspend

A programmer needs to use caution when adding await or suspend statements.
These statements halt the execution of the method and allow calls to other methods
to be made within the same COG. This could lead to unexpected results, since these
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other method calls could change the value of a variable. Listing 5.3 gives an example
of how things can go wrong.

1 interface Foo {
2 Unit setVal(Int i);
3 Int getVal();
4 Unit fooBar();
5 }
6 interface Bar {}
7 class Foo implements Foo {
8 Int val = 0;
9 Unit setVal(Int i) {

10 this.val = i;
11 }
12 Int getVal() {
13 return this.val;
14 }
15 Unit foobar() {
16 if (this.val < 5) {
17 // do some stuff
18 suspend;
19 Printer printer = new Printer();
20 printer.printS("Value was: " + intToString(this.val));
21 }
22 }
23 }
24 class Bar implements Bar {
25 Unit run() {
26 [Far]Foo foo = new cog Foo();
27 foo!foobar();
28 foo!setVal(10);
29 }
30 }

Listing 5.3: Problem with await and suspend

When the object of class Bar makes an object of Foo and calls the foobar()
method, val is still 0 and the if statement evaluates to True. The execution of the
method is then suspended giving Bar the opportunity to call setVal(10). This
will cause val to be set to 10 and “Value was: 10” will be printed instead of
the expected “Value was: 0”. It is in no way certain that this will occur due
to non-deterministic behaviour of the execution of tasks. This can make it harder
to detect these problems as tests may succeed even though the problem still exists.
In the described example, the problem can easily be solved by adding an await
between lines 27 and 28 halting the execution of Bar until foobar has finished
running. However, scenario’s exist where the call to foobar() and setValue(10)
come from different objects.

In general, using suspend and await statements between two uses of the same
global variable should be avoided unless the programmer can be certain that the
variable won’t be changed by any other method call.
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5.2.4 Annoyances and Shortcomings of ABS

Initialisation

In ABS, it is possible to add parameters to a class definition which can be used to
initialise an object. The initialisation code for this is written in a nameless block in
the class. It is however not possible to call methods from inside this block, and the
block cannot be altered using deltas. As a consequence, the initialisation of objects
cannot be altered in any way using deltas. If method invocation was possible inside
this initialisation block, an initialisation method could be written which could then
be modified using deltas.

The run() method of a class could be used to overcome this problem. If a class
has a run() method, this method will be executed as a new task, so there is no
guarantee when it will be executed. If it is in the same COG as the current task, it
has to wait until the current task has finished or is suspended, and then other tasks
could still be executed first. If the run() method is not executed before the new
object is used, the object may behave unexpectedly.

Intermediate Results

The ABS compiler does not allow the programmer to perform a method call on
the result of a method call. It only allows calling methods on variables. Hence,
intermediate results always have to be stored in a variable. Listing 5.4 gives an
example of code that is not accepted by the compiler, while Listing 5.5 shows how
the code should be written.

1 interface Foo {
2 Bar getBar();
3 }
4 interface Bar {
5 Foo getFoo();
6 }
7 class Foo implements Foo {
8 Bar getBar() {
9 return new Bar();

10 }
11 }
12 class Bar implements Bar {
13 Foo getFoo() {
14 return new Foo();
15 }
16 }
17 {
18 Foo foo = new Foo();
19 Foo foo2 =

foo.getBar().getFoo();
// Syntax error!

20 }

Listing 5.4: No intermediate results

1 interface Foo {
2 Bar getBar();
3 }
4 interface Bar {
5 Foo getFoo();
6 }
7 class Foo implements Foo {
8 Bar getBar() {
9 return new Bar();

10 }
11 }
12 class Bar implements Bar {
13 Foo getFoo() {
14 return new Foo();
15 }
16 }
17 {
18 Foo foo = new Foo();
19 Bar bar = foo.getBar();
20 Foo foo2 = bar.getFoo();
21 }

Listing 5.5: With intermediate results
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This is an annoying trait of ABS since lots of variables need to be created which
serve to nothing more than hold a result between two method executions. There is
no apparent reason why calling methods directly on other methods results should
not be possible.

Conditional Statements

ABS does not allow the programmer to call methods inside a conditional statement.
Only statements without side-effects are valid. Listing 5.6 gives an example of code
that is not accepted by the compiler, Listing 5.7 shows how this code should be
written.

1 interface Foo {
2 Bool getBool();
3 }
4 class Foo implements Foo {
5 Bool getBool() {
6 return True;
7 }
8 }
9 {

10 Foo foo = new Foo();
11 if (foo.getBool()) {
12 // Do something
13 }
14 }

Listing 5.6: Conditional statement with
method call

1 interface Foo {
2 Bool getBool();
3 }
4 class Foo implements Foo {
5 Bool getBool() {
6 return True;
7 }
8 }
9 {
10 Foo foo = new Foo();
11 Bool test =

foo.getBool();
12 if (test) {
13 // Do something
14 }
15 }

Listing 5.7: Conditional statement
without method call

This looks like the same problem as the intermediate results problem of the
previous section. However in this case a reason for this exists. A quote from Rudi
Schlatte, one of the developers of ABS [19]:

ABS distinguishes between pure (side-effect-free) and side-effecting expres-
sions, and disallows side effects in lots of places. This is for the benefit
of the modelling aspect of the ABS language / methodology, making it
much easier to develop proof theories and proof checkers. Also, it makes
the semantics a bit easier: consider

if (b && foo.someMethod(this)) { ... }

where someMethod calls back and changes b. These things can be specified,
but make language semantics messy and difficult to analyse.

Import and Export Statements in Deltas

Core ABS code is written inside a module. To make interfaces and classes available
outside this module, the export statement is used. To use interfaces and classes
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from other modules, the import statement is used. They can both select a certain
interfaces or class by stating its name or use “*” to export/import everything.

However, it is not possible to incorporate import and export statements in deltas.
It could sometimes be handy to add new import and export statements in a delta
since it is possible that this delta uses a new module or that it introduces new
interfaces and classes which a delta in another module needs to use. It is possible
to solve this problem by using “import *;” and “export * from x;” statements,
but this requires all interfaces and classes of a module to be imported or exported,
which is usually not desirable.

5.2.5 Static Behaviour in ABS

Static binding (where method calls are bound to the declared type) is not possible
in ABS, since ABS does not support static methods. However, ABS has a functional
core and consequently supports functions, which are somewhat like static methods,
as they also do not require the initialisation of an object. Functions also do not need
to be declared inside a class. This also means that functions cannot use variables
outside their local scope, so global variables are not available. So as long as global
variables are not required, functions suffice and are even preferable, since functions
are side effect free and static methods may have side effects.

Static methods could be made available in ABS if it was allowed to implement
certain methods in the interface declaration. These methods would then be the
same for every implementation of that interface, and could not depend on the run-
time class of an object since it has no reference to actual implementations of the
interface. A code example of this is given in Listing 5.8 for a square. The interface
definition states that implementations of the Square interface needs to implement
the getArea() method, it also defines a static calculateArea(Int) method,
which calculates the area of a square based on the parameter provided when calling
the method.

1 interface Square {
2 Int getArea();
3 Int calculateArea(Int a) {
4 return a*a;
5 }
6 }
7 {
8 Int area = Square.calculateArea(4);
9 }

Listing 5.8: Example of how a static method declaration could look like

As mentioned before, for full functionality of static methods, static variables
would be needed as well, otherwise functions could be used. This is where problems
could arise when trying to use the delegation approach to code reuse described in
Section 4.1. If both an object and its superobject implement an interface with a
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static variable, this static variable is present in both objects. A solution could be to
always use the static variable of the superobject since both classes can have access to
this variable (either directly or through a getter/setter-pair). This would mean that
the subobject has a field which would never be accessed and thus wastes memory.

5.3 Performance of ABS Execution

In Section 4.1 a test was performed to measure the difference in execution times
between regular inheritance and the delegation approach when applied to Java. At
first the test was set up so that the delegation approach was applied in ABS code
(which is translated to Java) and compared to an inheritance implementation in Java.
It was decided that this was not a good measure for this test and that both the
delegation approach and regular inheritance had to be implemented natively in Java,
with the results in Section 4.1 as a result. It did however give rise to a new test on
the difference in execution times between an ABS implementation and a native Java
implementation. ABS has different back-ends which translate ABS code to another
programming language. Java is the most mature and supported of these back-ends
and was therefore chosen as reference.

The new test was set up to measure the execution time of calling a method in
both ABS (translated to Java) and Java. The most important code for the ABS speed
test can be found in Listing 5.9. For Java, the multiplication (line 10) is surrounded
by a loop running ten times. This is done to get a representable measurement since
the execution in Java was too fast to measure accurately otherwise. This code was
executed ten times and the results written to file. The total code can be found
in Appendix A.2. The analogous code for the Java speed test can be found in
Appendix A.3.

1 Multiplier m = new Multiplier();
2 Int x = 1;
3 int y = 0;
4 Int start = 0;
5 Int end = 0;
6 List<Int> times = Nil;
7 while(x < 100000) {
8 start = currentms();
9 while (y < x) {

10 m.multiply(123456789 + y, 987654321 + x);
11 y = y + 1;
12 }
13 end = currentms();
14 times = Cons(end - start, times);
15 y = 0;
16 x = x + 1;
17 }

Listing 5.9: ABS speed test
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5.3. Performance of ABS Execution

5.3.1 Results

The average results of the ten executions are shown, with data points in red and the
trend line shown in green, in Figure 5.1 for ABS and in Figure 5.2 for Java.
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Figure 5.1: Average of ten executions of the ABS performance test

Figure 5.1 clearly shows a linearly increasing execution time in function of th
number of method calls, which is expected. The y-intercept of the trend line lies
at 2077.26 and the trend line has slope of 0.473966. The y-intercept indicates a
rather large start-up time of 2077.26 µs. The slope indicates that per 2 method calls,
the execution time increases with about 1 µs.
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Figure 5.2: Average of ten executions of the Java performance test
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Figure 5.2 also shows a linearly increasing execution time in function of number
of method calls. Here the trend line has an y-intercept of 1.03522 and a slope
of 0.00139297, meaning a start-up time of 1.03522 µs and an increase of execution
time of roughly 1 µs per 700 executions.

5.3.2 Discussion

As is already clear from the difference in scale on the y-axis (0 to 400 for Java
compared to 0 to 60,000 for ABS), the execution of a program written in ABS is
much slower than its equivalent program written in Java. The graph for Java shows
much more outliers compared to the graph for ABS, which has none. This is due
to the greater speed of the Java program. Interrupts in the program have a much
greater impact on measured execution time when the normal execution time is so
small.

The graphs show that ABS and Java have the same behaviour with increasing
execution indicating that ABS is in fact slower and this is not due to a possible large
start-up time for ABS. The most probable cause for this slow execution lies in the
way the ABS code is transformed into Java. Listing 5.10 shows an excerpt from the
performed test for ABS transformed in Java. Lines 3 and 8 show that integers in
ABS are transformed to ABSInteger objects. This is done by parsing the textual
representation of the integer. As the parsing of strings is slow, this could explain
the slow execution in ABS. Another possible answer is the large amount of method
calls happening in the transformed code. However, as can be concluded from the
test performed in Section 4.1.4, increasing the number of method calls increases the
execution time only slightly, certainly not 6 orders of magnitude.

1 if (__ABS_getRuntime().debuggingEnabled())
2 __ABS_getRuntime().nextStep("abs/SpeedTest.abs",26);
3 abs.backend.java.lib.types.ABSInteger a = abs.backend.java.lib.

types.ABSInteger.fromString("123456789");
4 if (__ABS_getRuntime().debuggingEnabled())
5 __ABS_getRuntime().getCurrentTask().setLocalVariable("a",a);
6 if (__ABS_getRuntime().debuggingEnabled())
7 __ABS_getRuntime().nextStep("abs/SpeedTest.abs",27);
8 abs.backend.java.lib.types.ABSInteger b = abs.backend.java.lib.

types.ABSInteger.fromString("987654321");
9 if (__ABS_getRuntime().debuggingEnabled())

10 __ABS_getRuntime().getCurrentTask().setLocalVariable("b",b);

Listing 5.10: ABS code transformed in Java

ABS aims at specification and analysis. Generation of efficient code is not a
primary goal of the project. The results of this test may however encourage the
developers of ABS to keep efficiency in mind when working on ABS in order to reduce
the difference between the execution time of an ABS program and the execution
time of an analogous native program.
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5.4 Unit Tests

It is possible to test implementations in ABS by performing unit tests. The AbsUnit
module was written by ABS developers for this purpose. Unit tests are used to test
a unit of functionality of a system, usually at the level of public class methods [20].

Unit tests in ABS generally look like the code in Listing 5.11. The [Fixture]]
annotation defines the fixture for the test and is added to the test interface.
The [Test] annotation specifies which methods in the interface are tests, while
[DataPoint] defines which methods in the interface provide data input for test
methods. Finally, the [Suite] annotation is added to the class implementing the
tests. The actual tests are performed by making method calls to an instance of
ABSAssert which is provided by the AbsUnit module.

1 module Test;
2 import * from AbsUnit;
3 [Fixture] interface TestInterface {
4 [Test] Unit test1(Int ints);
5 [Test] Unit test2();
6 [DataPoint] Set<Int> getInts();
7 }
8 [Suite]
9 class TestImplementation implements TestInterface {

10 ABSAssert aut;
11 Unit run() {
12 aut = new ABSAssertImpl();
13 }
14 Set<Int> getInts() {
15 return Insert(1, Insert(2, EmptySet));
16 }
17 Unit test1(Int ints) {
18 TestedClass tc = new TestedClass();
19 Int i = tc.testedMethod1();
20 Comparator cmp = new IntComparator(i, ints);
21 aut.assertNotEquals(cmp);
22 }
23 Unit test2() {
24 TestedClass tc = new TestedClass();
25 String s = tc.testedMethod2();
26 Comparator cmp = new StringComparator(s,"expected string");
27 aut.assertEquals(cmp);
28 }
29 }

Listing 5.11: ABSUnit example

By running a test runner generator, code is generated, which can be run like
any other ABS program. The generated code will call all tests it found in the
program asynchronously (so all tests will run concurrently). Tests which take
parameters are called once for every item in the respective set. So in the example
(Listing 5.11), test1(Int) is called twice, once with 1 as parameter and once
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with 2 as parameter. Listing 5.12 shows code generated by the test runner generator
for the tests in Listing 5.11.

1 module AbsUnit.TestRunner;
2 import * from Test;
3 import * from ABS.StdLib;
4 import * from AbsUnit;
5 {
6 Set<Fut<Unit>> futs = EmptySet;
7 Fut<Unit> fut;
8 TestInterface testImplementationdataPoint = new

TestImplementation();
9 Set<Int> testImplementationdataPointSet =

testImplementationdataPoint.getInts();
10 TestInterface testImplementation0 = new cog

TestImplementation();
11 fut = testImplementation0!test2();
12 futs = Insert(fut, futs);
13 while (hasNext(testImplementationdataPointSet)) {
14 Pair<Set<Int>, Int> nt = next(

testImplementationdataPointSet);
15 Int d = snd(nt);
16 testImplementationdataPointSet = fst(nt);
17 TestInterface testImplementation1 = new cog

TestImplementation();
18 fut = testImplementation1!test1(d);
19 futs = Insert(fut, futs);
20 }
21 while (hasNext(futs)) {
22 Pair<Set<Fut<Unit>>, Fut<Unit>> nt = next(futs);
23 fut = snd(nt);
24 futs = fst(nt);
25 fut.get;
26 }
27 }

Listing 5.12: Generated test runner code

First a set of futures is defined (line 6) which will contain the futures created by
calling the test methods. Next, the set of data points is generated (line 9). After
that the actual tests are run. Line 10 to line 12 executes test2() and adds the
future of the result to the future set. Line 13 to line 20 runs test1(Int) for each
value in the data point set and adds the future of each of these calls to the future
set. In Line 21 to 26 a get is performed on each future in the set to make sure each
test has finished.

5.4.1 Testing Non-Public Methods

As mentioned earlier, unit tests normally are used to test public methods. However,
in ABS it is also possible to test private methods due to the power of deltas. If a
method is private to a class, a delta can be written which adds this method to an
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interface of the class. The test case can now access the method in order to test its
functionality. The test itself will also have to be written in a delta. Listing 5.13 gives
an example of this. Being able to test private methods is a major advantage of ABS
unit testing over unit testing where deltas are not available (e.g. JUnit).

1 module Test;
2 import * from AbsUnit;
3 interface Foo {
4 }
5 class Foo implements Foo {
6 Int bar() {
7 return 5;
8 }
9 }

10 delta DFooTest;
11 uses Test;
12 modifies interface Foo {
13 adds Int bar();
14 }
15 adds [Fixture] interface FooTest {
16 [Test] testBar();
17 }
18 adds [Suite] class FooTestImpl implements FooTest {
19 ABSAssert aut;
20 Unit run() {
21 aut = new ABSAssertImpl();
22 }
23 Unit testBar() {
24 Foo foo = new Foo();
25 Int bar = foo.bar();
26 Comparator cmp = new IntComparator(bar, 5);
27 aut.assertEquals(cmp);
28 }
29 }

Listing 5.13: Testing a private method

5.4.2 Discussion

Error Messages

When the code generated by the test runner generator is executed, the program exits
without any output if all assertions succeed. If an assertion fails, an error message is
shown. These error messages look like Listing 5.14.

1 Error in abs.backend.java.lib.runtime.ABSRuntime@635b9e68:
2 absunit.abs:68:4: Assertion failed

Listing 5.14: ABSUnit error message
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A message like this is all but informative. The line of code the error message points
to (absunit.abs:68:4) refers to the assert statement in the ABSUnit library
and consequently gives no information on what went wrong, only that something
did. This is OK when only a very small amount of tests are present, but when the
number of tests increases, these error messages are no longer feasible. To be truly
useful, the error messages should contain at least the name of the file containing the
test and the name of the test. In the best case the line number and parameters of
the call in the test are included. For instance, should test1(Int) in Listing 5.11
fail, the error message could look something like Listing 5.15.

1 Assertion Error: Test.abs:39 test1(Int)
2 assertNotEquals failed for IntComparator(2, 2)

Listing 5.15: Improved error message

With this information the programmer immediately knows exactly which test
failed. To be able to generate this error message, some reflection is needed in order
to know the test method that failed and the file it resides in. The information
from the Comparator could be extracted by using a toString() method. This
method would then return the name of the Comparator implementation and its
parameters. Of course, showing the parameters is only possible if they too have a
textual representation.

Test Runner Generator

It seems that the test runner generator still has some bugs. Listing 5.16 shows
the console output of running the test runner generator on a product in the smart
home product line for which a test was implemented. It clearly shows that the delta
is applied and the interface and class are added to the program (lines 2 and 3).
However, line 5 shows that generating the test runner failed. According to the code
of the test runner generator, this error message means that no unit tests were found
which is contradictory with the application of the delta.

1 ...
2 *** applying ModuleModifier AddInterfaceModifier(

SmartHomeInterfaceTest)
3 *** applying ModuleModifier AddClassModifier(

SmartHomeInterfaceTestImpl)
4 ...
5 An error occurred during compilation: Cannot generate test

runner
6 make: *** [unit] Error 1

Listing 5.16: Output from test runner generator
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In order to identify the possible cause(s) of this bug, Some test implementations
were set up:

• Testing a class fully defined inside a delta,

• Modifying the class under test in a delta, before and after the application of
the delta with the test in it. With the modifications in the same and in another
delta module.

• Modifying the interface of the class under test in a delta, before and after the
application of the delta with the test in it. With the modifications in the same
and in another delta module.

Each to no avail, none of these circumstances triggered the failure of generating the
test runner. The cause(s) of this bug thus still remain unknown and are subject to
further investigation.

5.5 Conclusion

In this chapter, the ABS language was evaluated. ABS incorporates constructs
for concurrent programming (futures, await, suspend and get) which are fairly
new to most developers, although they are also getting picked up by commercial
programming languages (e.g C# 5 [12]). Together with the languages for variability
(µTVL, DML, CL and PSL) this makes ABS more challenging to learn than regular
OOP languages. The constructs are fairly intuitive however and after playing around
with them for a bit, they soon start to become clear. Implementing in ABS can
therefore be learned with relative ease, although some caution needs to taken when
using the concurrent programming constructs. These are common to the other
concurrent programming languages though.

ABS is still young and this can also be seen in some annoyances the language has:
initialisation blocks cannot be changed by deltas, results of method calls need to be
stored in variables before other method calls can be performed on them, conditional
statements do not allow side effects (this is a conscious choice) and import/export
statements cannot be changed using deltas. ABS provides functions which can be
used as a kind of static methods. They however provide less functionality than static
methods as they are not defined inside classes and global static variables are thus
not available.

When ABS was developed, performance was not a great issue. This is clear from
the performance test carried out, which compared the execution of a short program
written in ABS to an analogous program written in Java. This test showed ABS to
be three orders of magnitude slower than Java.

Unit testing for ABS has also been evaluated. ABSUnit has a very nice feature
for testing non-public methods, which is in general not possible, thanks to the deltas
which make it possible to make private methods public by adding them to one of the
class’s interface. The error messages the unit tests give could be improved to give
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developers more information on which test failed and the test runner generator has
some unresolved issues breaking it in some unidentified cases.
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Chapter 6

Conclusion

In this thesis a product line for a smart home was described. This product line
served as basis for the evaluation of delta modelling in the ABS language.

Three approaches to code reuse in ABS were introduced: the delegation approach,
the single type approach and the multiple delta approach. The delegation approach
has as the advantage that it can be applied to most object-oriented programming
languages since it is based on interfaces and classes, two important concepts in OOP.
It does however have issues making it unsuitable in some cases. The single type
approach alleviates the problems with the delegation approach but has the major
downside of only allowing one type of a type hierarchy to be available throughout an
entire program. The multiple delta approach fixes this problem. It also has a minor
issue with multiple method implementations, but a workarounds exist for this: using
a type parameter on construction of an object. Although this workaround is not
optimal since all the possible types are available as input for the parameter, even
if the type itself is not available (because its delta was not applied), it makes the
multiple delta approach work.

After the introduction of the three code reuse approaches, the ABS language in
itself was evaluated. ABS showed to have a set of features concerning concurrency
and variability, which were fairly new. This does not mean that is very hard to
learn ABS when another OOP language is already known, since the features ABS
has are rather intuitive. ABS is still young which showed when developing using it.
Some things are not possible that should be (like calling methods directly on other
methods’ results), but these are things that can be improved in future versions of
ABS. It was a goal of this thesis to expose weaknesses and limitations of ABS and
to propose improvements, which was achieved with respect to object initialisation,
intermediate method results, etc.

The goal of discovering design patterns was also met by introducing the code reuse
approaches. This took a lot of time; as a consequence the code smells, anti-patterns
and also more general design patterns were neglected a bit.
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Future Work
This thesis did not make use of the possibility to add attributes to deltas and features.
This possibility is consequently not evaluated. It may however make many more
things possible and this subject is worthwhile to put more research to.

A second subject that was not included in the thesis, but is open to investigation is
a comparison of delta-oriented programming to aspect-oriented and feature-oriented
programming. These three programming paradigms each have their advantages and
disadvantages and it could be interesting to see in which circumstances it is best to
use each of these paradigms or even if a combination of them is possible.
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Appendix A

Source Code Excerpts

A.1 Test of Execution Time of Delegation vs.
Inheritance

1 public class Main {
2 public static void main(String[] args) {
3 long max = Long.MAX_VALUE / 1000000000;
4 System.out.println(max);
5 int runs = 10;
6 long start = 0;
7 long end = 0;
8 long diff1 = 0;
9 long diff2 = 0;

10 long diff3 = 0;
11 long diff4 = 0;
12 for (int i = 0; i < runs; i++) {
13 // Test for 3 levels of delegation
14 DSS dss = new DSS();
15 start = System.nanoTime();
16 for (long x = 0; x < max; x++) {
17 dss.multiply(123456789, 987654321);
18 }
19 end = System.nanoTime();
20 diff1 += end - start;
21 // Test for 3 levels of inheritance
22 ISS iss = new ISS();
23 start = System.nanoTime();
24 for (long x = 0; x < max; x++) {
25 iss.multiply(123456789, 987654321);
26 }
27 end = System.nanoTime();
28 diff2 += end - start;
29 // Test for 10 levels of delegation
30 DSSSSSSSSS dsssssssss = new DSSSSSSSSS();
31 start = System.nanoTime();
32 for (long x = 0; x < max; x++) {
33 dsssssssss.multiply(123456789, 987654321);

3



A. Source Code Excerpts

34 }
35 end = System.nanoTime();
36 diff3 += end - start;
37 // Test for 10 levels of inheritance
38 ISSSSSSSSS isssssssss = new ISSSSSSSSS();
39 start = System.nanoTime();
40 for (long x = 0; x < max; x++) {
41 isssssssss.multiply(123456789, 987654321);
42 }
43 end = System.nanoTime();
44 diff4 += end - start;
45 }
46 // Output the results
47 System.out.println("With delegation lvl 3: " + diff1/runs);
48 System.out.println("With inheritance lvl 3: " + diff2/runs)

;
49 System.out.println("With delegation lvl 10: " + diff3/runs)

;
50 System.out.println("With inheritance lvl 10: " + diff4/runs

);
51 }
52 }

Listing A.1: Test program of the different sensor types

A.2 Test of ABS Execution Time

1 module SpeedTest;
2 import * from Foreign;
3 import * from Multiplier;
4 {
5 Int runs = 0;
6 while (runs < 10) {
7 Multiplier m = new Multiplier();
8 Int x = 1;
9 Int y = 0;

10 Int start = 0;
11 Int end = 0;
12 List<Int> times = Nil;
13 Int startTotal = currentms();
14 while (x < 100000) {
15 // Track execution time of number of method calls
16 start = currentms();
17 while (y < x) {
18 m.multiply(123456789 + y, 987654321 + x);
19 y = y + 1;
20 }
21 end = currentms();
22 times = Cons(end - start, times);
23 y = 0;
24 x = x + 1;
25 }
26 Int endTotal = currentms();
27 // Write results to file
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28 FileWriter fw = new FileWriter();
29 fw.setFileName("results" + intToString(runs) + ".dat");
30 List<Int> temp = Nil;
31 while (~isEmpty(times)) {
32 temp = Cons(head(times), temp);
33 times = tail(times);
34 }
35 times = temp;
36 while (~isEmpty(times)) {
37 Int toWrite = head(times);
38 times = tail(times);
39 fw.write(intToString(toWrite));
40 }
41 fw.flush();
42 runs = runs + 1;
43 }
44 }

Listing A.2: Test of ABS execution time

A.3 Test of Java Execution Time

1 import java.io.File;
2 public class Main {
3 public static void main(String[] args) {
4 int runs = 0;
5 while (runs < 10) {
6 Multiplier m = new Multiplier();
7 int x = 1;
8 int y = 0;
9 long start = 0;

10 long end = 0;
11 Vector<Long> times = new Vector<Long>();
12 while (x < 100000) {
13 // Track execution time of number of method calls
14 start = System.nanoTime();
15 while (y < x) {
16 for (int i = 0; i < 10; i++) {
17 m.multiply(123456789 + y, 987654321 + x);
18 }
19 y = y + 1;
20 }
21 end = System.nanoTime();
22 times.add(end - start);
23 y = 0;
24 x = x + 1;
25 }
26 // Write results to file
27 write("results" + runs + ".dat", times);
28 runs = runs + 1;
29 }
30 }
31 /**
32 * Writes elements to a file
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33 * @param name The name of the file to write to
34 * @param toWrite The elements to write to the file
35 */
36 public static void write(String name, Vector<?> toWrite) {
37 File file = new File(name);
38 try {
39 FileWriter fw = new FileWriter(file);
40 for (int i = 0; i < toWrite.size(); i++) {
41 fw.write(toWrite.get(i) + "\n");
42 }
43 fw.flush();
44 } catch (IOException e) {
45 e.printStackTrace();
46 }
47 }
48 }

Listing A.3: Test of Java execution time
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• Software Product Line Engineering 
Software product lines consist of a set of similar 
products. They have a common core, but each 
product has a different set of features. These 
features are units of functionality in the software 
system. They represents requirements of the 
product, specified when designing the system, and 
provide potential configuration options. Selecting 
different features thus effectively leads to different 
end products. 

• ABS Language 
The HATS project  is concerned with highly adaptable 
software  which at same time needs to be very 
trustworthy. It develops  a formal method for the 
design, analysis and implementation of such 
systems. At the core of the HATS project lies the 
Abstract Behaviour Specification (ABS) Language.  
The Full ABS Language actually consists of five 
languages which can describe an entire product line 
when combined. A core concept in these languages 
is delta modelling. In delta modelling a distinction is 
made between the core implementation containing 
the common code to each product, which is 
provided by the Core ABS Language, and deltas, 
which secify changes that have to be made to the 
core implementation and are specific to some 
feature(s). Defining the deltas and features and 
linking them together as well as specifying the end 
products is achieved by the other four languages. 

In order to discover the possibilities of code reuse in the 
ABS Language, a case study is being performed. The 
implementation of a ‘Smart Home’ was chosen based 
on the ‘Home Automation Model’ in the book “Software 
Product Line Engineering” by Klaus Pohl, Günther 
Böckle and Frank van der Linden. The picture at the 
bottom of this frame shows the feature model (the 
possible features in the product line and their 
constraints) of the product line. A nice advantage of the 
Smart Home is that the number of features in the model 
is an amount that is small enough to be manageable in 
a research project or too small to not give any results. 
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Goals 

In spite of being object-oriented, the Core ABS language 
does not support the widely used notion of inheritance. 
This leads to a problem in code reuse which in most 
object-oriented languages is achieved using code 
inheritance. The subject of this research is consequently 
to develop methodologies for code reuse in the ABS 
Language. 

Applications 

The applications of this research are straightforward. 
Being able to reuse code reduces the workload for the 
programmer by creating a smaller typing or copy/paste 
overhead hereby saving time, energy and development 
cost. It also reduces errors in consistency between the 
places where the code is used because the code only 
needs to be adjusted in one place. 

In the ABS Language, types are defined by interfaces 
which are implemented by classes and although no 
inheritance is available, interfaces can still extend each 
other, allowing type hierarchies to be created. By using 
this handy feature and the delegation pattern, code 
reuse can be accomplished. An object of certain type 
can have a variable containing an object of its super 
type. If the implementation of the super type does not 
need to be overridden, the object can just call the 
method in the super type. Because type hierarchies are 
supported, it is possible to have a variable of a certain 
type which contains an object implementing an 
interface which extends (or is) the interface of the 
variable type. This results in a dynamic binding-like 
behaviour of the ABS Language since the method 
implementation of the contained object is used; it has 
no notion of any other implementation because there is 
no code inheritance. 

Preliminary Results 

It would be feasible to extract a pattern that makes use 
of the deltas provided by the ABS Language out of the 
implementation using the delegation approach. Hence 
the Smart Home will be further implemented and 
analysed in order to discover such a pattern. 

At the moment the behaviour of static binding has not 
yet been achieved using the delegation approach. 
Although in most cases dynamic binding is feasible, 
sometimes there is a need for static binding so this is 
worth looking into. 

Future Research 
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Abstract—The ABS Modelling Framework supports delta-
modelling, which opens a path to code reuse. This paper presents
three approaches to achieve code reuse: the delegation approach,
the single type approach and the multiple delta approach. The
first one is applicable to most object-oriented programming
languages as it does not rely on deltas, the second one relies on
deltas but is only applicable when one type of a type hierarchy
is needed in a product, the last one also relies on deltas and is
the most usable approach to code reuse of the three.

Index Terms—ABS, delta modelling, code reuse, design pat-
terns

I. INTRODUCTION

The ABS Modelling Framework is being developed in the
context of the HATS (Highly Adaptable and Trustworthy
Software using Formal Models) European project [3, p. 2],
and supports developing software product line (SPL) sys-
tems following established software product line engineering
(SPLE) practices, e.g. feature-oriented development. It allows
the precise modelling and analysis of component-based dis-
tributed concurrent systems, focusing on their functionality
while separating from the concerns such as concrete resources,
deployment scenarios and scheduling policies [13].

The abstract behaviour specification language (ABS) is a
language which has a hybrid functional and object-oriented
core. It comes with extensions that support the development
of systems that are adaptable to diversified requirements as
well as to future changes and yet is capable to maintain a high
level of trustworthiness [13]. It makes use of the delta-oriented
programming (DOP) paradigm [11] in which a core product
is implemented and deltas are applied to this core in order
to get different end-products based on selected features. ABS
consists of five languages to support this: (a) Core ABS which
is used to describe the core behavioural modules and can be
used as a regular object-oriented programming language, (b)
µTVL or Micro Textual Variability Language, which is used
to describe feature models using a textual representation, (c)
DML or Delta Modelling Language, which is used to describe
the deltas that are applied to the core product in order to
change it, (d) CL or Product Line Configuration Language,
which is used to link deltas to features, the deltas belonging
to a feature are applied if the feature is selected, (e) PSL or
Product Selection Language, which is used to define products
by selecting features.

Core ABS is a subset of the full ABS language and does
not in itself address SPL development, but forms a basis for

extensions which will capture SPL artifacts such as features
and feature integration [7]. DOP was one of the extensions
added on top of Core ABS in order to support SPLE. DOP
was chosen as a research project for ABS over inheritance
because it was fairly new and the developers of ABS wanted
to see how well it fared in practice. ABS does not support
inheritance, but code reuse can be achieved using deltas, as
will be shown in this paper.

In this paper, first an introduction to ABS is given (Sec-
tion II. Next, three approaches to code reuse in ABS will
be discussed: the delegation approach (Section III), the single
type approach (Section IV), and the multiple delta approach
(Section V). The last two approaches use deltas. Section VII
gives a general conclusion of the paper.

II. THE ABS LANGUAGE

Section I already introduced the five languages which make
up ABS. In this section they will be discussed a bit more in
depth.

A. Core ABS

Core ABS is the language used for specifying the core
behavioural modules and can be used as a regular OOP
language. What is important in Core ABS is that interfaces
define types and the methods available for that type. Classes
can implement these interfaces and their methods but are not
types themselves. Other ways to create types in ABS are
to use algebraic data types using the data keyword or by
defining type synonyms which are semantically equivalent to
their synonym, using the type.

ABS is designed to model distributed systems and ap-
plies a concurrency model using concurrent object groups
(COG) [12]. Each COG has its own heap of objects and
communicates with other COGs through asynchronous method
calls. Calls inside one COG are regular, local, synchronous
method calls. Synchronous method calls are made using the
normal “.” and can only be performed on [Near] references.
These are references to objects which belong to the same
COG. [Near] is an annotation which can be added to
variables to indicate that they refer to an object residing in the
same COG. Asynchronous method calls are made using a “!”
and can only be performed on [Far] references. These are
references to objects which belong to a different COG. [Far]
is an annotation similar to [Near] only that [Far] indicates
that the variable refers to an object residing in a different



COG. The result of an asynchronous call is called a future.
The execution of a method can be suspended by performing an
await on such a future. When execution resumes, a get can
be performed on the future and the actual result is returned.

B. Micro Textual Variability Language

µTVL is the language used to describe feature models
[1] [10] using a textual representation. It allows describing
feature models as a forest of nested features with possibly
multiple roots (for orthogonal variability) with the possibility
to add boolean or integer attributes to each feature. Additional
constraints can be put on the presence of features and on the
possible values of attributes.

C. Delta Modelling Language

Delta modules (or deltas in short), which are used to achieve
variability in a SPL, are defined using DML. They contain
program modifications, adding, removing, and refining classes,
methods, and fields. The deltas are applied to the core module,
specified using Core ABS.

When defining a delta, first an identifier and possibly some
attributes are given. Secondly, the added, modified, or removed
class, interface, method, or field is specified. When modifying
or adding, the new implementation is given next. Modifications
may sometimes want to call the original implementation in
order to extend its behaviour. This can be done by calling the
special method original().

D. Product Line Configuration Language

To link feature models created using µTVL to delta modules
created using DML, the product line configuration language is
used. A product line configuration starts with the name of the
SPL followed by the applicable features. Next the deltas to be
applied are specified together with an optional after clause,
specifying a partial order on the application of deltas, and a
when clause, specifying for which features the delta should
be applied.

E. Product Selection Language

The different end products are specified using the product
selection language. A product description consists of a prod-
uct name, followed by the features the product has and, if
necessary, feature attributes with assigned values.

F. Full Specification of ABS

The previous sections briefly discussed the different lan-
guage components of ABS. Many more concepts exist in these
languages, but the interested reader is referred to [13], [4] and
[3] for a full discussion of these languages.

G. Code Reuse

Most object-oriented programming languages (e.g. Java) use
inheritance as e mechanism to avoid code duplication. As
explained in Section I, there is no support for inheritance in
ABS. ABS provides deltas which can be used to achieve code
reuse. The next three chapters will discuss three approaches
to code reuse in ABS, with the last two depending on deltas.

+getSensorType() : string

+getSecurityLevel() : int
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Fig. 1. Sensor type hierarchy
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Fig. 2. Sensor class diagram for delegation approach

Each approach starts from an existing type hierarchy, like in
Fig. 1.

III. DELEGATION APPROACH

The delegation approach is based on the well known delega-
tion pattern of software engineering, which can be defined as:
“An implementation mechanism in which an object forwards
or delegates a request to another object. The delegate carries
out the request on behalf of the original object.” [6] Delegation
can be used as an alternative to inheritance since the delegation
of a method to another class can be viewed as a subclass
delegating method calls to its superclass. The difference is
that in delegation, the subclass has the superclass as a variable
instead of it being an instance of the superclass. To avoid
confusion, in the delegation approach a superclass will be
called a superobject and a subclass a subobject. A type
hierarchy like in Fig. 1 can be transformed to the class diagram
in Fig. 2. A simple pattern describes this procedure:

1) For every type in the hierarchy: define an interface which
extends its direct supertype’s interface.

2) For every interface, define a class which implements that
interface.

a) Define a field of the supertype’s type.
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Fig. 3. Type hierarchy of fire sensors

b) In the initialisation block, create an object of the
supertype’s class and assign it to the field defined
in the previous step.

c) Delegate all method calls that don not need over-
riding to the object created in the previous step.

d) Define getters and setters for all variables that need
to be available in lower type’s implementations
(and add these getters and setters to the type’s
interface).

The delegation approach provides a simple alternative to
inheritance. It can simulate overriding, and even multiple in-
heritance. Because the delegation approach uses main concepts
of object-oriented programming (OOP), it is applicable to most
other OOP languages as well.

Three main problems exist with the delegation approach.
(a) When a method call is performed on a subtype, but this
method is delegated to a supertype and this implementation
calls another method which is overridden in the subtype,
the supertype’s implementation will be used since it has no
knowledge of this overriding. To overcome this problem, the
method implementation from the superclass would have to be
copied to the subtype resulting in code duplication. (b) The
delegation approach also suffers from a coding overhead since
every method of every supertype all the way to the top has to
be implemented for every type in the hierarchy. Also, variables
defined higher in the hierarchy need getters and setters to
be accessible for implementations lower in the hierarchy,
breaking a part of the encapsulation. (c) Memory is also a
concern since multiple objects reside in memory to actually
only represent one. If for instance a type hierarchy has ten
level, an object of the lowest level has ten objects representing
it, more if multiple inheritance is simulated.

IV. SINGLE TYPE APPROACH

As the name suggest, the single type approach is only
applicable when one type of a type hierarchy to is needed in a
program. Take the type hierarchy in Fig. 3. If a SPL would use
this type hierarchy and only the Sensor, or the FireSensor, or
the UltraSensitiveFireSensor is needed in the program because
of selected features, the single type approach can be used. It
is described in the following pattern:

1) Define an interface for the top-level type.

2) Define a class implementing the interface defined in the
previous step.

3) For each subtype, define a delta which modifies the
original class the suit the subtype’s specific needs.

4) Apply the delta’s in a top-down order until the delta of
the needed type is reached.

The obvious downside of this approach is that only allowing
one type of a type hierarchy is a very limiting constraint.
However, because it uses deltas to change the behaviour of
a class based on the required type, the overhead in coding
(writing method headers for each type) and memory (only
one object is instantiated here) is alleviated. These advantages
over the delegation approach make it worth considering this
approach when possible.

V. MULTIPLE DELTA APPROACH

When two or more types of a type hierarchy are needed in
a program, which is the most frequent case, the single type
approach is rendered useless.

The multiple delta approach is a sort of extension to the
single type approach. It does allow multiple types of a type
hierarchy to exist in one program and uses the type system
of ABS to accomplish this. The perceived type of an object
is dependent on the variable that contains the object, not on
the class of the object. So if a class implements the interfaces
Observable and Alarm, an instantiation of this class can be
assigned to a variable of the type Observable or to a variable
of the type Alarm. Only calls to methods in the interface
belonging to the type are accepted though. Listing 2 illustrates
this. Lines 23 and 26 are invalid as they call methods that
are not available for the variable’s type.

1 interface Observable {
2 Unit register(Observer observer);
3 Unit unregister(Observer observer);
4 }
5 interface Alarm {
6 Unit setAlarm();
7 }
8 class Alarm implements Observer, Alarm {
9 Unit register(Observer observer) {
10 ...
11 }
12 Unit unregister(Observer observer) {
13 ...
14 }
15 Unit setAlarm() {
16 ...
17 }
18 }
19 {
20 Observer o = new Observer();
21 Observable ob = new Alarm();
22 ob.register(o);
23 ob.setAlarm(); // Error!
24 Alarm al = new Alarm();
25 a.setAlarm();
26 a.register(o); // Error!
27 }

Listing 1. Example of types in ABS

So if the type hierarchy in Fig. 4 is used, a variable of
type Observer will only accept calls to register(Observer) and



+enable()

+disable()

#gatherInformation()

Sensor

FireSensor

+getTemperature() : int

TemperatureSensor

+register(observer : Observer)

+unregister(observer : Observer)

<<Interface>>

Observable

Fig. 4. Type hierarchy of Sensor, TemperatureSensor and FireSensor

unregister(Observer), a variable of type Sensor will accept
calls to the two methods of Observable (as it extends this
interface), as well as to enable() and disable().

From this observation, the following pattern was developed:
1) Define an interface for the top-level type.
2) Define a class implementing the interface defined in the

previous step.
3) For each subtype define a delta which:

a) defines an interface for the type extending the
direct supertype’s interface,

b) adds the newly defined interface to the class de-
fined in the third step,

c) modifies the class defined in the third step by
adding the methods defined in the type’s interface.

Because all method implementations for a type hierarchy
reside in the same class, the multiple delta approach has a
problem when two types require a different implementation for
the same method. To alleviate this problem a type parameter is
introduced in the class construction, that states of which type
in the hierarchy the object is. When overriding a method in a
delta, the following template should then be used:

1 ReturnType result;
2 if (this.typE == <Type>) {
3 // <Type specific implementation here>
4 } else {
5 result = original();
6 }
7 return result;

Listing 2. Example of types in ABS

This executes the type specific implementation if the type of
the object matches, otherwise it executes the implementation
of the supertype by calling original().

The main advantage of the multiple delta approach over the
delegation approach is the correct use of overridden/overriding
methods. This was a major issue in the delegation approach.
A second important advantage over the delegation approach
is the reduction of code overhead. Since the multiple delta
approach uses the same class for all the different types,
explicitly implementing the methods defined in the interfaces
is only necessary when the behaviour of the supertype needs

to be overridden. On the other hand, always modifying the
same class is the biggest problem of this approach, since
very instantiation contains the functionality of all the types
in the type hierarchy. This is mainly a problem when different
subtypes have a different behaviour for the same method. This
can however be solved by using a combination of if-statements
and calls to original(). Real overriding like in Java is not
possible in this approach due to the same class factor. All
method implementations for the different types reside in the
same method so changing the method signature is not possible.

VI. RELATED WORK

This paper discusses three approaches to code reuse, two
of which are applicable to ABS (and possibly other DOP
languages), and one which is more generally usable in OOP.
Other constructs for code reuse have been researched as well,
for instance Findler and Flatt [5] discuss units and mixins
as a means for solving complex reuse problems in a natural
manner; Biemand and Xia [2] provide a quantitative study of
the use of inheritance in C++.

Helvensteijn et al. [9] evaluate the use of the delta modelling
methodology as a means to accurately model and implement
SPLs. It reports on the implementation of an industrial scale
product in ABS for which the Delta Modelling Workflow
(DMW) [8] was used. This paper reports on the practical use
of the DMW and therefore also of deltas for implementing a
full SPL whereas this paper focuses on using deltas for code
reuse which only implicates a subset of the implementation.

VII. CONCLUSION

In this paper, three approaches for code reuse in ABS were
discussed. The delegation approach tries to mimic inheritance
by delegating method calls to a superobject which represents
its superclass. The biggest problem of this approach is that
the superobjects have no knowledge of their subobjects and
therefore of possible overriding of their methods. This may
result in unexpected results since the programmer will expect
the overriding method to be used instead of the overridden
one. Also, a coding overhead is present due to the delegation.
Every non-overridden method still has to be implemented
in every class, calling the same method in its superobject.
A memory problem exists as well since an object lower in
the type hierarchy is represented by one object for every
level in the hierarchy. One positive point about the delegation
approach is that it is usable in most object-oriented program-
ming languages since it uses main concepts of object-oriented
programming (classes and interfaces).

The single type approach is a first step into solving the prob-
lems of the delegation approach. In the single type approach,
one class is defined and deltas modify the functionality of
this class. This solves the delegation and its associated coding
overhead. Its simplicity makes it very easy to use, but also
makes it useless in many cases. It can only be used when
one type in the type hierarchy is needed throughout the entire
program, a rare condition.



The third, or multiple delta approach solvers the problem
of the single type approach by exploiting the ABS typing
system. Interface are again defined for every type and are
added to the original class implementation in deltas. These
deltas also modify the functionality of the class by adding
new methods and overriding other methods using a specific
pattern in order to handle multiple method implementations.
Variables containing objects of this class have a specific type
and only the methods defined in the interface of this type
are available. The downside is that this pattern needs typing
information which the programmer needs to fill in manually
on creation of the object and methods always have the same
unalterable signature.
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