C + x86 Assembly : Optimizing Program Performance
By Amanda Falke
September 2014
Abstractmachines at gmail

Questions which I try to answer from :
Bryant and O’Halloran’s “Computer Systems: A Programmer’s Perspective”
Answers in bold

5.16 &

Write a version of the inner product procedure described in Problem 5.15 that
uses four-way loop unrolling.

For x86-64, our measurements of the unrolled version give a CPE of 2.00 for
integer data but still 3.00 for both single and double precision.

A. Explain why any version of any inner product procedure cannot achieve a
CPE less than 2.00.

This is because the inner product procedure requires at least two operations - or
two cycles - per element. This is demonstrated by the fact that, inside of the loop,
we have this operation:

sum = sum + udata[i] * vdata[i];

write to read from read from read from

register register memory: 1 CPE memory: 1 CPE
1 CPE + 1 CPE =2 CPE

B. Explain why the performance for floating-point data did not improve with
loop unrolling.

The model/reference machine’s computer architecture in chapter 5 of this book
does not optimize for floating point operations.

5.18 &

Write a version of the inner product procedure described in Problem 5.15 that uses
four-way loop unrolling along with reassociation to enable greater parallelism.
Our measurements for this function give a CPE of 2.00 with x86-64 and 2.25 with

IA32 for all types of data.

original:

/¥ Accumulate in temporary */

2 void inner4(vec_ptr u, vec_ptr v,
data_t *dest)

31

4 long int i;

5 int length = vec_length(u);

6 data_t *udata = get_vec_start(u);
7 data_t *vdata = get_vec_start(v);
8 data_t sum = (data_t) o;

9

10 for (i = 0; i < length; i++) {

11 sum = sum + udatali] * vdatali];
12 }

13 *dest = sum;

14 }

Answer:

2 void inner4(vec_ptr u, vec_ptr v, data_t *dest)

3{

4 long int i;

5 int length = vec_length(u);
6 int lengthg4 = length - 3;

7 data_t *udata = get_vec_start(u);
8 data_t *vdata = get_vec_start(v);
9 data_t sum = (data_t) o;

10

11 for (i=o0;i<lengthg;i+=4){
12 /* instead of the below, use

13 two way parallelism: */

14 // sum = sum + udata(i] * vdata[i];

15 // sum = sum + udata[i+1] * vdata[i+1];
16 // sum = sum + udatafi+2] * vdata[i+2];
17 // sum = sum + udata[i+3] * vdata[i+3];

18 /* two way parallelism: */

19 sum = sum + udata[i] * vdatal[il; // even

20 sum = sum + udata[i+1] * vdata[i+1]; //odd
21 } // first for loop ends

22 /* finish remaining elements */

23 for (i=0;i <length;i++){

24 sum = sum + udata[i] * vdata[il;

25 } // second, “finishing” for loop ends

26

27 *dest = sum; // register read, memory write

28 } // function ends

5.22 ¢

Suppose you are given the task of improving the performance of a program
consisting of three parts. Part A requires 20% of the overall run time, part B
requires 30%, and part C requires 50%. You determine that for $1000 you could
either speed up part B by a factor of 3.0 or part C by a factor of 1.5.Which choice
would maximize performance?

Let’s calculate:
B is 30% of time. Speedup by a factor of 3.0: 30% becomes 10%

Cis 50% of time. Speedup by a factor of 1.5: 50% becomes 33%

Clearly, choosing to optimize B is a better choice than choosing to optimize C.

CHAPTER 6
6.26 @

The following table gives the parameters for a number of different caches. For
each cache, fill in the missing fields in the table. Recall that m is the number of
physical address bits, C is the cache size (number of data bytes), B is the block

size in bytes, E is the associativity, S is the number of cache sets, t is the number of
tag bits, s is the number of set index bits, and b is the number of block offset bits.

m | C B E S t s b
1 |32]1024 | 4 4 64 24 6 2
2 |32 1024 |4 256 1 30 o 2
3 |32 |1024 |8 1 128 22 7 3
4 |32 |1024 |8 128 1 29 (1) 3
5 |32 |1024 [32 |1 32 22 5 5
6 |32 1024 |32 |4 8 24 3 5

6.28 ¢
This problem concerns the cache in Problem 6.13.

A. List all of the hex memory addresses that will hit in set 1.

ANSWER:
For problem#6.13, (SEBM)=(82413)

M = address size = 13 bit address:

Hence:

t=8: s=3 b=2
t t t t t t t t s s s b

TAG BITS: In set 1, tag bits must be 45 = 0x45 = 0100 0101:

t=8: s=3 b=2
o 1 o o o o o 1

SET INDEX BITS: In set 1, s bits must be 1 = 001 = ox1:

t=8: s=3 b=2
o 1 o o o o o 1 o o 1

b BITS: In set 1, block offset b bits may vary, for values o, 1, 2, or 3:

t=8: s=3 b=2
o 1 o o o o o 1 o o 1
o 1 o o o o o 1 o o 1
o 1 o o o o o 1 o o 1
o 1 o o o o o 1 o o 1

B. List all of the hex memory addresses that will hit in set 6.

ANSWER:
For problem#6.13, (SEBM)=(82413)

M = address size = 13 bit address:

Hence:
t=8: s=3 b=2
t t t t t t t t s s s b b
TAG BITS: In set 6, tag bits must be 91 = 0x91 = 1001 0001:
t=8: s=3 b=2
1 o o 1 o o o 1
SET INDEX BITS: In set 6, s bits must be 6 = 110 = 0x6:
t=8: s=3 b=2
1 o o 1 o o o 1 1 1 o
b BITS: In set 6, block offset b bits may vary, for values o, 1, 2, or 3:
t=8: s=3 b=2:
1 o o 1 o o o 1 1 1 o o 1

6.30 &

Suppose we have a system with the following properties:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not to 4-byte words).

. Addresses are 12 bits wide.

. The cache is two-way set associative (E = 2), with a 4-byte block size (B = 4)
and four sets (S = 4).

see figure on page 633 of book for hex values for addresses, etc

A. The following diagram shows the format of an address (one bit per box).
Indicate (by labeling the diagram) the fields that would be used to determine
the following:

CO The cache block offset

CI The cache set index

CT The cache tag

ANSWER: C=S* E*B
C=4*2%4=32....

s=2 b=2 t=(12-(2+2)) =t=8

B. For each of the following memory accesses indicate if it will be a cache hit
or miss when carried out in sequence as listed. Also give the value of a read
if it can be inferred from the information in the cache.

OPERATION ADDRESS HIT? READ VALUE (OR
UNKNOWN)

READ 0x834

WRITE 0x836

READ oxFFD

6.31 &

Suppose we have a system with the following properties:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not to 4-byte words).

. Addresses are 13 bits wide.

. The cache is four-way set associative (E = 4), with a 4-byte block size (B = 4)

and eight sets (S = 8).

Consider the following cache state. SEE THE FIGURE ON PAGE 634 FOR TABLE

All addresses, tags, and values are given in hexadecimal format. The Index column contains the
set index for each set of four lines. The Tag columns contain the tag value for each line. The V
columns contain the valid bit for each line. The Bytes 0—3 columns contain the data for each
line, numbered left-to-right starting with byte 0 on the left.

A. What is size (C) of this cache in bytes?
ANSWER: Since (S, E,B,M)=(8,4,4,13)thens=3,b=2,m=13,t=8

So cache sizeis: C=S*E*B =128

B. The box that follows shows the format of an address (one bit per box).
Indicate (by labeling the diagram) the fields that would be used to determine
the following:

CO The cache block offset ~ CI The cache set index CT The cache tag

6.32 ¢

Supppose that a program using the cache in Problem 6.31 references the 1-byte
word at address 0x071A. Indicate the cache entry accessed and the cache byte
value returned in hex. Indicate whether a cache miss occurs. If there is a cache
miss, enter “—” for “Cache byte returned”. Hint: Pay attention to those valid bits!

A. Address format (one bit per box):

ANSWER: NOTE THAT ox071A = 0000 0111 0001 1010
And also, notethat:s=3,b=2,m=13,t=8

t= 00111000 = 0x38 S =110 = 0x6 b =10 = ox2

B. Memory reference:

PARAMETER VALUE

INDEX (CI) S = 110 = 0x6

CACHE TAG (CT) t= 00111000 = 0x38
CACHEHIT?Y /N yes, it’s a hit!

CACHE BYTE RETURNED oxF7

6.35 &

Consider the following matrix transpose
routine:

1 typedef int array[4][4];

2

3 void transpose2(array dst, array src)
44

5int i, j;

6

7for(i=0;1<4;i++) {

8for j=0;]<4;j++){

9 dst[j][i] = sre[i][j];

10}

11

Assume this code runs on a machine with the
following properties:

. sizeof(int) == 4.

. The src array starts at address 0 and the dst
array starts at address 64

(decimal).

. There is a single L1 data cache that is
direct-mapped, write-through, write-allocate,
with a block size of 16 bytes.

. The cache has a total size of 32 data bytes
and the cache is initially empty.

. Accesses to the src and dst arrays are the
only sources of read and write

misses, respectively.

A. For each row and col, indicate whether the access to src[row][col] and
dst[row][col] is a hit (h) or a miss (m). For example, reading src[0][0]

is a miss and writing dst[o][0] is also a miss.

DST ARRAY:
COLo COL1 COL 2 COL 3
ROW o miss hit hit hit
ROW 1 miss hit hit hit
ROW 2 miss hit hit hit
ROW 3 miss hit hit hit
SRC ARRAY:
COL o COL1 COL 2 COL 3
ROW o miss hit hit hit
ROW 1 miss hit hit hit
ROW 2 miss hit hit hit
ROW 3 miss hit hit hit

6.36 © &
Repeat Problem 6.35 for a cache with a total size of 128 data bytes.

DST ARRAY:
COL o COL1 COL 2 COL 3
ROW o miss hit hit hit
ROW 1 miss hit hit hit
ROW 2 miss hit hit hit
ROW 3 miss hit hit hit
SRC ARRAY:
COL o COL1 COL 2 COL 3
ROW o miss hit hit hit
ROW 1 miss hit hit hit
ROW 2 miss hit hit hit
ROW 3 miss hit hit hit

6.37 & &

This problem tests your ability to predict the
cache behavior of C code. You are
given the following code to analyze:

1int x[2][128];
2inti;

3 int sum = o;
4

5for (i=0;1<128;i++){
6 sum += x[o][i] * x[1][i];
7%

Assume we execute this under the following
conditions:

. sizeof(int) = 4.

. Array x begins at memory address oxo and
is stored in row-major order.

. In each case below, the cache is initially
empty.

. The only memory accesses are to the entries
of the array x. All other variables

are stored in registers.

Given these assumptions, estimate the miss rates for the following cases:
A. Case 1: Assume the cache is 512 bytes, direct-mapped, with 16-byte cache

blocks. What is the miss rate?

B. Case 2: What is the miss rate if we double the cache size to 1024 bytes?
C. Case 3: Now assume the cache is 512 bytes, two-way set associative using an
LRU replacement policy, with 16-byte cache blocks.What is the cache miss

rate?

D. For Case 3, will a larger cache size help to reduce the miss rate?Why or why

not?

E. For Case 3, will a larger block size help to reduce the miss rate?Why or why

not?

6.45 ¢ & &

Download the mountain program from the CS:APP2Web site and run it on your
favorite PC/Linux system. Use the results to estimate the sizes of the caches on
your system.

ANSWER: I ran this on linux and received the following output. I’'m not really sure
about the output of this program.

machina@ada:~/fabcodez/dir1/a5$ 1Is

mountain mountain.tar

machina@ada:~/fabcodez/dir1/a5$ ed mountain
machina@ada:~/fabcodez/dir1/a5/mountain$ ls

clock.c clock.h feyc2.c fecyc2.h Makefile mountain mountain.c README
machina@ada:~/fabcodez/dir1/a5/mountain$./mountain

Clock frequency is approx. 2500.1 MHz

Memory mountain (MB/sec)

S1 s2 s3 s4 s5 s6 s7 s8 s9 s 10 s11 s12 s13 si4
s15 sS16 s17 s18 s19 s 20 s21 S22 s23 s24 s25 s26 s27 s28
s29 s 30 s31 s32 s33 S34 S35 S36 s37 s38 s39 s 40
S41 s42 843 844 S45 sS40 s47 S48 849 s 50 851 852 s53 854
s55 s56 s57 s58 s59 s 60 s61 s62 s63 s64
32m 6475.3 5697.9 4605.6 3695.9 2033.1 2397.9 2025.1 1767.1 1629.8 1 541.6
1474.4 1440.8 1460.5 1537.2 1667.5 1164.1 2049.2 2205.2 2453.7 2 591.2 2726.5
2843.9 2931.8 3053.4 3048.9 3073.3 3110.1 3114.6 3144.6 3 141.6 3138.0 936.2
3145.9 3143.8 3154.1 3158.2 3132.5 3146.1 3141.53 132.0 3136.2 3135.0 3213.2
3242.2 3271.2 3297.3 3308.6 3284.3 3354.3 3 377.4 3390.7 3405.1 3413.8
3423.9 3438.8 3445.5 3449.2 3445.7 3435.0 3 431.0 3430.6 3409.4 3393.8
950.4
16m 6497.2 6363.2 6078.9 5428.4 4696.9 4050.9 3529.8 3151.6 3145.13 6.5

I then tried to get the information programatically directly from the CPU and was
denied, in these steps:

machina@ada:~/fabcodez/dir1/a5/mountain$ /proc/cpuinfo
-bash: /proc/cpuinfo: Permission denied

machina@ada:~/fabcodez/dir1/a5/mountain$

I then changed directories:

machina@ada:~/fabcodez/dir1/a5/mountain$ c¢d /proc

After I was granted permission, I did a list:

machina@ada:/proc$ Is

1 145 168 1944 2233 257 29002 32132 35956 5326 7741 buddyinfo
10 14587 1685 1945 2238 258 29005 32215 35974 54 7743 bus

101 14601 169 1946 2239 259 2901 32431 35976 5439 7744 cgroups
102 147 16972 195 224 26 29021 325 36 55 775 cmdline

103 1476 17 1956 225 260 291 32592 36228 56 776 consoles
1030 148 170 19659 2253 26040 29109 32661 36231 5646 7773 cpuinfo
10342 149 17090 1966 22610 262 292 32778 36987 57 78 crypto

In the case above, CPUINFO is listed in a TABLE of sorts, or a FILE TABLE of sorts,
I believe. It appears that CPUINFO is entry number 1030.

To change directories to CPUINFO, simply cd to the directory 1030.
In my case, the CPUINFO directory was “table” number 101:

machina@ada:/proc$ cd 101
machina@ada:/proc/101$ Is

attr comm fd map_files net pagemap smaps task
autogroup coredump_filter fdinfo maps ns personality stack timers
auxv cpuset io mem numa_maps root stat wchan
cgroup cwd latency mountinfo oom_adj sched statm
clear_refs environ limits mounts oom_score schedstat status
cmdline exe loginuid mountstats oom_score_adj sessionid syscall

machina@ada:/proc/101$

In this way, ’'m getting to know Linux and Unix, but still unable to really resolve
this question.

machina@ada:/sys/firmware$ 1s

acpi memmap

machina@ada:/sys/firmware$ cd memmap
machina@ada:/sys/firmware/memmap$ Is

0110111223 456789

machina@ada:/sys/firmware/memmap$ cd ..
machina@ada:/sys/firmware$ cd ..

machina@ada:/sys$ Is

block bus class dev devices firmware fs hypervisor kernel module power
machina@ada:/sys$ cd kernel

machina@ada:/sys/kernel$ ls

debug iommu_groups kexec_loaded profiling slab vmcoreinfo

fscache kexec crash loaded mm rcu_expedited uevent_helper
fscaps kexec_crash_size notes security uevent_seqnum
machina@ada:/sys/kernel$ cd fscache
machina@ada:/sys/kernel/fscache$ 1s

Nothing available in fscache.

FINAL OBSERVATIONS:

Output of the mountain program problematic, as well as determining cache size
using the mountain program.

When running the mountain program, output numbers differ according to the
time of day I did the output.

