C + x86 Assembly : Representing and Manipulating Information
By Amanda Falke
September 2014
Abstractmachines at gmail

Questions which I try to answer from :
Bryant and O’Halloran’s “Computer Systems: A Programmer’s Perspective”

Format: Questions in bold, and answers follow.

2.59 ¢ @ Write a C expression that will yield a word consisting of the least
significant byte of x, and the remaining bytes of y. For operands x = 0x89ABCDEF
and y =0x76543210, this would give 0x765432EF.

ANSWER EXPLANATION: AND with a 1 preserves. AND with a o destroys. We will AND with
a 1 for information we want, and AND with a o for information we do not want. Combining
these operations on both bit vector variables, and then adding those two bit vector variables,
produces our desirable, masked answer.

ANSWER FOR 2.59:
intn = (x & 0x000000FF) + (y & oxFFFFFF00);

2.61 ¢

Write C expressions that evaluate to 1 when the following conditions are true, and
to 0 when they are false. Assume x is of type int.

A. Any bit of x equals 1.

B. Any bit of x equals o.

C. Any bit in the least significant byte of x equals 1.

D. Any bit in the most significant byte of x equals 0.

Your code should follow the bit-level integer coding rules (page 120), with the
additional restriction that you may not use equality (==) or inequality (!=) tests.

A: ANSWER EXPLANATION: An AND with 1 and x would return 1 if [bit of x] is one. Note that
the BOOL data type is not native to c, so we will return an int data type.

THE ANSWER FOR A:

intn=x&&1|| 03

// ALTERNATE ANSWER:
intn=1"(x);

B: ANSWER EXPLANATION: An XOR with 1 and x would return 1 if [bit of x] is zero.
Similarly, a 1, AND’ed with a complemented 0 would return 1 (1 && NOTZERO == 1).

THE ANSWER FOR B:

intn = ~x && 1;

// Alternate answer:
intn = 11(~x);

C: ANSWER EXPLANATION: To return a 1 or true value if LS Byte of x equals 1: check for IF
any of bits in the least significant byte (meaning the rightmost 8 bits) are zero. Hence, we will
AND the least significant byte with 1111 1111, which will only return a 1 if 1. This is because 1 & 1
is 1. See AND truth table. Note that we assume 32 bit LITTLE ENDIAN machine byte order.

THE ANSWER FOR C:

int n = !!(x && OxFF); // do a LOGICAL AND on 8 bits with the least significant bytes.

// note that oxFF = 1111 1111, so this is the same as int n = !!(x & 11111111);

D: ANSWER EXPLANATION: To return a 1 or true value if MS Byte of x equals 0: Assuming
IA32, with 32 bit integers, the most significant byte (meaning the 8 bits that are on the leftmost
side of the bit array or bit string you may have) are followed by 24 more bits (because 8 bits +
24 bits = 32 bits).. Hence, we will assume 32 bits for this answer, and have 8 bits in the most
significant byte that will return a true value if the most significant byte has zeros. The bitwise
solution would be to XOR these bits with a 1 to return a true value; the logical solution would
be to AND bits with COMPLEMENTED. Note that little endian byte order, which is assumed
for x86 IA32, puts the least significant values in the lowest order (leftmost) bit places. BIG
ENDIAN WOULD BE: int n = 1111 1111 0000 0000 0000 0000 0000 0000 && !x); LITTLE
ENDIAN IS: // int n = 0000 0000 0000 0000 0000 0000 1111 1111 && !x;

THE ANSWER FOR D:

int n = (~x && 0x000000FF); // LITTLE ENDIAN

2.66 ¢ &

Write code to implement the following function:

/*

* Generate mask indicating leftmost 1 in x. Assume w=32.

* For example 0xFFoo0 -> 0x8000, and 0x6600 --> 0x4000.

*If x = 0, then return o.

*/

int leftmost_one(unsigned x);

Your function should follow the bit-level integer coding rules (page 120), except
that you may assume that data type int has w = 32 bits.

Your code should contain a total of at most 15 arithmetic, bit-wise, and logical
operations.

Hint: First transform x into a bit vector of the form[0o...011...1].

ANSWER EXPLANATION: Solution: bit smearing. This “smears” the high order bits over
lower order bits. This solution is chosen because the 32-_builtin_ clzll(v) function cannot be
used per requirements. Bit smearing uses the BITWISE OR operator |= to create a mask. At the
end of the algorithm, function returns an XOR with first bit smearing shift (highest order bit).

int leftmost_one(unsigned int x)

{

X|=x>>1;
X|=x>>2;
X |=x>>4;
X|=x>>8;

X |=x>>16;

return x *=x >> 1; // bitwise XOR

}

2.76 ¢ &

Suppose we are given the task of generating code to multiply integer variable x
by various different constant factors K. To be efficient, we want to use only the
operations +, -, and <<. For the following values of K, write C expressions to
perform the multiplication using at most three operations per expression.
A.K=17:

B.K=-7:

C.K=6o0:

D.K = —112:

A - D: ANSWER EXPLANATION: Note that one left shift will multiply a bit vector by POWERS
OF TWO for EACH LEFT SHIFT. For example, to multiply by 16, you would left shift four
times. 24 = 16. Note also the twos complement paradigm: that the number 10000000 is equal
to -128, and that the number 10000001 is equal to -127. That is, the “bits other than the MSB”
add to positive values, and the MSB indicates the negative value by the bit place. As put by the
CS tutors, in twos complement, the non-MSB bits “dig you out of negative, towards positive.”
The answers to this question use shifting algorithms for multiplication for two’s complement
numbers.

FINAL SOLUTIONS: FOR A where K = 17:_shift x to the left 4 times and add 1. each shift is a
power of 2. 16 is 2 to the 4, hence we have four left shifts. A left shift is multiplication.

THE ANSWER FORA: K=17:.
X =X << 43 // 24 = 16, so this multiplies x by 16.
X=X+1;

THE ANSWER FOR B: K = -7: Note that -71s 1001
X = X << 33 // this is 1000, or x*3 = 8. In two’s complement, 1000 is -8.
x=x+13//-8+1is-7.

THE ANSWER FOR C: K = 60. Note that 60 is 0011 1100
X =X << 63 // thisis 64
X=X-4;//60

THE ANSWER FOR D: K = -112: Note that -12 is 1111 0100
X = X << 173 // this is 128, 10000000, or x*7 = 128. In two’s complement, 1000000 is -128.
X=X+ 163 //-128 + 16 is -112.

2.86 ¢ ¢

Consider a 16-bit floating-point representation based on the IEEE floating-point
format, with one sign bit, seven exponent bits (k = 7), and eight fraction bits
(n = 8). The exponent bias is 2”"7-1 — 1= 63.

Fill in the table that follows for each of the numbers given, with the following
instructions for each column:

Hex: The four hexadecimal digits describing the encoded form.

M: The value of the significand. This should be a number of the

form x or x/y , where x is an integer, and y is an integral

power of 2.

E: The integer value of the exponent.

V : The numeric value represented. Use the notation x orx x 2z, where x and z are

integers.

description hex m (8 fraction e v
bits)

-0 0000 00000000 00000.. 0
Smallest value 2?7? ?? ?? ??
-2
512 0xX44000000 0000000 .00000100 512 in IEEE 754
largest 2977 ?2?77? ?? ?2777?
denormalized
infinity um, infinity??
0x3BBo o0x3BBo 0.0036430

2.90 ¢

Around 250B.C., the Greek mathematician Archimedes proved that 223/71 < <

22/7.

Had he had access to a computer and the standard library <math.h>, he would

have

been able to determine that the single-precision floating-point approximation of

7 has the hexadecimal representation 0x40490FDB. Of course, all of these are just
approximations, since nt is not rational.
A. What is the fractional binary number denoted by this floating-point value?

ANSWER:

3.141593 in decimal is equal to 011.0010010000111111011100

B. What is the fractional binary representation of 22/7 ? Hint: See Problem 2.82.

ANSWER:
22/7 = 3.14285714

3 in base 10 is equal to 011 in base 2, s0 011.00100100100...

C. At what bit position (relative to the binary point) do these two approximations
to m diverge?

ANSWER:
After the 8th fractional decimal place. For clarification, note which parts are BOLDED in the
answers above to parts A and parts B. Thanks! :)

7.9 &

Consider the following program, which consists of two object modules:
1 /* foob6.c */

2 void p2(void);

3

4 int main()

5%

6 p2();

7 return o;

8}

1 /* bar6.c */
2 #include <stdio.h>

3
4 char main;

5

6 void p2()

74

8 printf("ox%x\n", main);

9}

When this program is compiled and executed on a Linux system, it prints the
string

“ox55\n” and terminates normally, even though p2 never initializes variable main.

Can you explain this?

ANSWER: Rule #1 of the LINKER is that “multiple symbols are not allowed,” and Rule #2 of the
LINKER is that “strong symbols are preferred over weak symbols.” The variable main is
uninitialized, and hence, variable main is a weak symbol. The function main() is a strong symbol
because it is initialized. The LINKER actually does indeed allow for multiple symbols, so long as
there is a strong symbol that takes precedence over the weak symbol. The result of these
operations are that the main; is ignored, while strong symbol main() is linked by linker. The
uninitialized main is completely ignored, because it’s weak!

7.15 ¢ &

Performing the following tasks will help you become more familiar with the
various tools for manipulating object files.

A. How many object files are contained in the versions of libc.a and libm.a
on your system?

ANSWER:

The answer is to view object files in an archive using the ar command, option t:
ar -t libc.a

Computer response: no such files.
B. Does gcce -O2 produce different executable code than gec -O2 -g?

ANSWER:
Yes, it does produce different executables; with or without gdb is the difference.

Using the -g tag on the command line generates symbolic information for the gdb debugger as
well as many error messages.

C. What shared libraries does the gcc driver on your system use?
ANSWER:

The answer is to view object files in an archive using the ar command, option t:
ar -t libc.a

Computer response: no such files.

