
s14x_nrf5x migration document

Introduction to the s140_nrf52840 migration document

About the document

This document describes how to migrate to new versions of the s140 SoftDevices. The s140_nrf52840 release notes should be read in
conjunction with this document.

For each version, we have the following sections:

"Required changes" describes how an application would have used the previous version of the SoftDevice and how it must now use
this version for the given change.
"New functionality" describes how to use new features and functionality offered by this version of the SoftDevice. Not all new Note:
functionality may be covered; the release notes will contain a full list of new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating to the current version from the
previous version, follow the instructions in that section. To migrate between versions that are more than one version apart, follow the
migration steps for all intermediate versions in order.

Example: To migrate from version 5.0.0 to version 5.2.0, first follow the instructions to migrate to 5.1.0 from 5.0.0, then follow the
instructions to migrate to 5.2.0 from 5.1.0.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

s140_nrf52_6.1.0
This section describes how to use the new features of s140_nrf52_6.1.0 when migrating from s140_nrf52_6.0.0. As with all minor releases,
the s140_nrf52_6.1.0 is binary compatible with s140_nrf52_6.0.0. Hence existing applications running on s140_nrf52_6.0.0 need not be
recompiled unless the new features are needed. Advertising extensions and LE Coded PHY are now fully tested and qualified features.

New functionality

Scanning on two PHYs

Using a single call to sd_ble_gap_scan_start(), the application can make the SoftDevice scan for advertisers advertising on both LE 1M PHY
and LE Coded PHY as primary advertising channels. For scanning on two PHYs, the API expects the interval parameter to be larger than or
equal to twice the scan window and the extended flag to be set to 1.

The application can also use to scan on two PHYs before connecting to a peer peripheral. This is useful when sd_ble_gap_connect()
the application does not know the PHY on which the peer peripheral is advertising.

Usage

static uint8_t raw_scan_buffer[BLE_GAP_SCAN_BUFFER_EXTENDED_MIN];
static ble_data_t scan_buffer =
 {
 .p_data = raw_scan_buffer,
 .len = sizeof(raw_scan_buffer)
 };
static uint16_t scan_window = 0x00A0; /* Corresponds to 100 ms */

int main(void)
{
 ble_gap_scan_params_t scan_params=
 {
 .extended = 1, /* Enable extended scanning. */
 .scan_phys = BLE_GAP_PHY_1MBPS | BLE_GAP_PHY_CODED ,
 .timeout = BLE_GAP_SCAN_TIMEOUT_UNLIMITED,
 .window = scan_window,
 .interval = (scan_window * 2), /* Interval should be at least
twice the scan window since the scanning is requested for two PHYs. */
 };

 /* Enable the BLE Stack */
 sd_ble_enable(...);

 /* Start scanning */
 sd_ble_gap_scan_start(&scan_params, &scan_buffer);

 /* Stop scanning */
 sd_ble_gap_scan_stop();

 /* Create a connection to a peer that is advertising on either LE 1M
PHY or LE Coded PHY. */
 sd_ble_gap_connect(..., &scan_params, ...);

 [...]
}

Support for advertising with up to 255 bytes of advertising data

The SoftDevice now supports advertising up to 255 bytes of advertising data. The macro BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_MAX
is added to indicate this. For connectable extended advertising, the maximum advertising data size is 238 bytes, as indicated _SUPPORTED

by .BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_CONNECTABLE_MAX_SUPPORTED

Usage

Extended Non-Connectable Non-Scannable Advertising with 255 bytes of Advertising data

static uint8_t raw_adv_data_data_buffer
[BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_MAX_SUPPORTED];
static ble_gap_adv_data_t adv_data =
 {
 .adv_data.p_data = raw_adv_data_data_buffer,
 .adv_data.len = sizeof(raw_adv_data_data_buffer)
 };

int main(void)
{
 uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET;
 ble_gap_adv_params_t adv_params =
 {
 .properties=
 {
 .
type=BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED
 },
 .interval = BLE_GAP_ADV_INTERVAL_MAX,
 .duration = BLE_GAP_ADV_TIMEOUT_LIMITED_MAX,
 .channel_mask = {0},
 .max_adv_evts = 0,
 .filter_policy = BLE_GAP_ADV_FP_ANY,
 .primary_phy = BLE_GAP_PHY_1MBPS,
 .secondary_phy = BLE_GAP_PHY_2MBPS,
 };

 /* Enable the BLE Stack */
 sd_ble_enable(...);

 [...]
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data, &adv_params);

 /* Start advertising */
 sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT);

 [...]
}

Extended Scannable Advertising with 255 bytes of Scan Response data

static uint8_t raw_scan_rsp_data_buffer
[BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_MAX_SUPPORTED];
static ble_gap_adv_data_t adv_data =
 {
 .scan_rsp_data.p_data = raw_scan_rsp_data_buffer,
 .scan_rsp_data.len = sizeof(raw_scan_rsp_data_buffer)
 };

int main(void)
{
 uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET;
 ble_gap_adv_params_t adv_params =
 {
 .properties=
 {
 .
type=BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_UNDIRECTED
 },
 .interval = BLE_GAP_ADV_INTERVAL_MAX,
 .duration = BLE_GAP_ADV_TIMEOUT_LIMITED_MAX,
 .channel_mask = {0},
 .max_adv_evts = 0,
 .filter_policy = BLE_GAP_ADV_FP_ANY,
 .primary_phy = BLE_GAP_PHY_1MBPS,
 .secondary_phy = BLE_GAP_PHY_2MBPS,
 };

 /* Enable the BLE Stack */
 sd_ble_enable(...);

 [...]
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data, &adv_params);

 /* Start advertising */
 sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT);

 [...]
}

Support for receiving up to 255 bytes of advertising data

The SoftDevice now supports receiving up to 255 bytes of advertising data as a scanner. The macro BLE_GAP_SCAN_BUFFER_EXTENDED_
 is added to indicate this. MAX_SUPPORTED

Usage

static uint8_t raw_scan_buffer
[BLE_GAP_SCAN_BUFFER_EXTENDED_MAX_SUPPORTED];
static ble_data_t scan_buffer =
 {
 .p_data = raw_scan_buffer,
 .len = sizeof(raw_scan_buffer)
 };
static uint16_t scan_window = 0x00A0; /* Corresponds to 100 ms */

int main(void)
{
 ble_gap_scan_params_t scan_params=
 {
 .extended = 1, /* Enable extended scanning to be able
to receive large advertising data. */
 .scan_phys = BLE_GAP_PHY_1MBPS | BLE_GAP_PHY_CODED,
 .timeout = BLE_GAP_SCAN_TIMEOUT_UNLIMITED,
 .window = scan_window,
 .interval = BLE_GAP_SCAN_INTERVAL_MAX,
 .channel_mask = {0}, /* Scanning on all the primary channels */
 .filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL
 };

 /* Enable the BLE Stack */
 sd_ble_enable(...);

 /* Start scanning */
 sd_ble_gap_scan_start(&scan_params, &scan_buffer);

 [...]
}

API for removing a Vendor Specific base UUID

Using , the application can now remove a Vendor Specific base UUID that has been added with sd_ble_uuid_vs_remove() sd_ble_uui
. This allows the application to reuse memory allocated for Vendor Specific base UUIDs. Td_vs_add() he application must provide a pointer

to the UUID type to be removed a . The UUID type must not be in use by the ATT s an input parameter to sd_ble_uuid_vs_remove()
Server. A limitation with the current implementation is that the input parameter can only point to or the last BLE_UUID_TYPE_UNKNOWN
added UUID type.

API to enable or disable extended RC calibration

Extended RC calibration is a new SoftDevice feature that performs additional RC oscillator drift detection and calibration when the
SoftDevice is acting as a peripheral and the RC oscillator is used as the SoftDevice clock source. The extended RC calibration is performed
in addition to the periodic calibration which is configured when calling . sd_softdevice_enable() If using only peripheral connections, the
periodic calibration can then be configured with a much longer interval because the peripheral can detect and adjust automatically to clock
drift and calibrate when required.

The extended RC calibration is enabled by default. The option BLE_COMMON_OPT_EXTENDED_RC_CAL is added to the BLE option API,
allowing the application to enable or disable this feature. When using this API, set ble_common_opt_t::extended_rc_cal::enable to
'1' to enable, or to '0' to disable.

API to get the advertiser Bluetooth device address

A new API enables the application to get the local Bluetooth device address that is used by the advertiser. sd_ble_gap_adv_addr_get()
The application must provide the advertising handle of the advertiser for the input parameter, and a pointer to an address adv_handle
structure to be used as the output parameter. p_addr The function may only be called when advertising is enabled.

Note: If privacy is enabled, the SoftDevice will generate a new private address every ble_gap_privacy_params_t::
, which is configured when calling . Depending on when private_addr_cycle_s sd_ble_gap_privacy_set() sd_ble_gap_adv_addr_g

 is called, the returned address may not be the address that is currently used by the advertiser.et()

Hardware resource usage API

The API now contains new macros to inform the application about the hardware resources used by the SoftDevice.

The macro indicates the interrupt priority levels used by the SoftDevice. __NRF_NVIC_SD_IRQ_PRIOS
The macro indicates the interrupt priority levels available to the application. __NRF_NVIC_APP_IRQ_PRIOS
The macros can be NRF_SOC_SD_PPI_CHANNELS_SD_ENABLED_MSK and NRF_SOC_SD_PPI_CHANNELS_SD_DISABLED_MSK
used to identify the PPI channels reserved by the SoftDevice when the SoftDevice is enabled or disabled respectively.
The macros can be NRF_SOC_APP_PPI_CHANNELS_SD_ENABLED_MSK and NRF_SOC_APP_PPI_CHANNELS_SD_DISABLED_MSK
used to identify the PPI channels available to the application when the SoftDevice is enabled or disabled respectively.
The macros and can be used to NRF_SOC_SD_PPI_GROUPS_SD_ENABLED_MSK NRF_SOC_SD_PPI_GROUPS_SD_DISABLED_MSK
identify the PPI groups reserved by the SoftDevice when the SoftDevice is enabled or disabled respectively.
The macros can be NRF_SOC_APP_PPI_GROUPS_SD_ENABLED_MSK and NRF_SOC_APP_PPI_GROUPS_SD_DISABLED_MSK
used to identify the PPI groups available to the application when the SoftDevice is enabled or disabled respectively.

Other additions to the API

The macro indicates the SoftDevice variant. SD_VARIANT_ID
The macro indicates the amount of flash memory used by the SoftDevice. SD_FLASH_SIZE

s140_nrf52_6.0.0
This section describes how to migrate to s140_nrf52_6.0.0 from s132_nrf52_5.1.0.

Notes:

s140_nrf52_6.0.0 has changed the API compared to s132_nrf52_5.1.0 which requires applications to be recompiled.
s140_nrf52_6.0.0 includes some features that are not Bluetooth qualified. For more information, see the release notes.

New functionality

Quality of Service (QoS) channel survey

This feature provides measurements of the energy levels on the Bluetooth Low Energy channels to the application. The application can use
this information to determine the noise floor on a per channel basis and set an adapted channel map to avoid busy channels.

When the feature is enabled, events will periodically report the measured energy levels BLE_GAP_EVT_QOS_CHANNEL_SURVEY_REPORT
for each channel. The channel energy is reported in ble_gap_evt_qos_channel_survey_report_t::channel_energy

, indexed by the Channel Index. The SoftDevice will attempt to measure energy levels and deliver reports [BLE_GAP_CHANNEL_COUNT]
with the average interval specified in .interval_us

Note: To make the channel survey feature available to the application, ble_gap_cfg_role_count_t::
 must be set. This is done using the API.qos_channel_survey_role_available sd_ble_cfg_set()

The event structures for and have been changed to provide the application BLE_GAP_EVT_RSSI_CHANGED BLE_GAP_EVT_ADV_REPORT
the channel number for reported Received Signal Strength Indication (RSSI) measurements. For more information, see Updated RSSI API in
the Required changes section.

API Updates

 A new boolean flag, ,ble_gap_cfg_role_count_t::qos_channel_survey_role_available must be set in the SoftDevice
role configuration API to make the channel survey available for the application.
Two new SV calls have been added to start and stop the channel survey:

sd_ble_gap_qos_channel_survey_start()
sd_ble_gap_qos_channel_survey_stop()

Usage

/* Make Channel Survey feature available to the application */
ble_cfg_t cfg;
cfg.role_count.qos_channel_survey_role_available = 1;
sd_ble_cfg_set(..., &cfg, ...);

/* Start receiving channel survey continuously. */
uint32_t errcode;
errcode = sd_ble_gap_qos_channel_survey_start
(BLE_GAP_QOS_CHANNEL_SURVEY_INTERVAL_CONTINUOUS);

int8_t rssi;
/* A new measurement is ready. */
case BLE_GAP_EVT_QOS_CHANNEL_SURVEY_REPORT:
{
 for (i = 0; i < BLE_GAP_CHANNEL_COUNT; i++)
 {
 rssi = p_ble_evt->evt.gap_evt.params.qos_channel_survey_report.
channel_energy[i];
 }
}

/* Stop receiving channel survey. */
errcode = sd_ble_gap_qos_channel_survey_stop()

Advertising Extensions

The LE Advertising Extensions feature has limited support in this SoftDevice that can be enabled with the new advertiser and scanner API.
The feature may not function as specified, and may contain issues. For more information, see the release notes.

Extended Advertiser

Extended advertising can be enabled by assigning an advertising type to the _EXTENDED_ ble_gap_adv_params_t::properties::
.type

The extended advertising types are:

BLE_GAP_ADV_TYPE_EXTENDED_CONNECTABLE_NONSCANNABLE_UNDIRECTED

BLE_GAP_ADV_TYPE_EXTENDED_CONNECTABLE_NONSCANNABLE_DIRECTED

BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_UNDIRECTED

BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_DIRECTED

BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED

BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_NONSCANNABLE_DIRECTED

New parameters in the API that are relevant for extended advertising:

ble_gap_adv_params_t::properties::anonymous
If this flag is set to 1, the advertiser's address will be omitted from all PDUs. This is only available for extended advertising
event types.

ble_gap_adv_params_t::primary_phy
Indicates the PHY on which the primary advertising channel packets are transmitted.
For extended advertising event types, this can be set to , , or BLE_GAP_PHY_AUTO BLE_GAP_PHY_1MBIT BLE_GAP_PHY_C

 if supported by the SoftDevice.ODED
ble_gap_adv_params_t::secondary_phy

Indicates the PHY on which the auxiliary PDUs will be sent.
Can be set to , , , or if BLE_GAP_PHY_AUTO BLE_GAP_PHY_1MBPS BLE_GAP_PHY_2MBPS BLE_GAP_PHY_CODED
supported by the SoftDevice.

ble_gap_adv_params_t::set_id
This value is used as the Advertising Set ID in the AdvDataInfo field of the PDU.

Extended Scanner

Scanning of extended advertising PDUs can be enabled by setting the flag to 1 for the scan ble_gap_scan_params_t::extended
parameters provided to . If set to 1, both legacy and extended advertising PDUs will be scanned. If the flag is sd_ble_gap_scan_start()
set to 0, all extended advertising PDUs will be ignored by the scanner. Correspondingly, to connect to a peer that is advertising with
extended advertising PDUs, set the flag to 1 for the scan parameters provided to ble_gap_scan_params_t::extended sd_ble_gap_c

.onnect()

New parameters in the API that are relevant for extended scanning:

ble_gap_scan_params_t::report_incomplete_evts
This option is currently not supported.

ble_gap_evt_adv_report_t::type::extended_pdu
Will be set to 1 if an extended advertising set is received.

ble_gap_evt_adv_report_t::tx_power
The transmit power reported by the advertising in the last packet header received. The TX power field is present only in
some extended advertising PDUs.

ble_gap_evt_adv_report_t::aux_pointer
The offset and PHY of the next advertising packet in this extended advertising set.
This field will only be set if is set to ble_gap_evt_adv_report_t::type::status BLE_GAP_ADV_DATA_STATUS_INC

.OMPLETE_MORE_DATA
ble_gap_evt_adv_report_t::set_id

Set ID of the received advertising data. This is only present in some extended advertising PDUs.
ble_gap_evt_adv_report_t::data_id

Data ID of the received advertising data. This is only present in some extended advertising PDUs.

Access to USB power handling registers

The SoftDevice provides new APIs allowing the application to enable or disable USB power interrupts. It is also now possible to read the
value of the USB supply status register.

API Updates

Four new APIs have been added

sd_power_usbpwrrdy_enable(): Enable or disable the USB power ready event.

When enabled, the event will be raised when USB 3.3 V supply is ready.NRF_EVT_POWER_USB_POWER_READY
 .sd_power_usbdetected_enable(): Enable or disable the USB power detected event

When enabled, the event will be raised when voltage supply is detected on the NRF_EVT_POWER_USB_DETECTED
VBUS pin.

.sd_power_usbremoved_enable(): Enable or disable the USB power removed event

 When enabled, the NRF_EVT_POWER_USB_REMOVED event will be raised when voltage supply removed from the
VBUS pin.

sd_power_usbregstatus_get(): Get the USB supply status register content.

Write to SoftDevice protected registers

 A new API, sd_protected_register_write(), has been added to give the application the possibility to write to a register that is write-
protected by the SoftDevice. A write-protected peripheral shall only be accessed through the SoftDevice API when the SoftDevice is enabled.

The new API supports writing to the Access Control Lists () peripheral which is designed to assign and enforce access permissions to ACL
different regions of the on-chip flash memory map. Therefore, has been removed in this SoftDevice.sd_flash_protect()

Usage

uint32_t errcode;
/* Set the start address of the flash page to 0x10000 */
errcode = sd_protected_register_write(&(NRF_ACL->ACL[0].ADDR), 0x10000);

if (errcode == NRF_SUCCESS)
{
 /* Set the size of the region to protect to 0x1000 */
 errcode = sd_protected_register_write(&(NRF_ACL->ACL[0].SIZE),
0x1000);
}

if (errcode == NRF_SUCCESS)
{
 /* Set the permission for the protected region to read/write
protected */
 errcode = sd_protected_register_write(&(NRF_ACL->ACL[0].PERM),
(ACL_ACL_PERM_READ_Msk | ACL_ACL_PERM_WRITE_Msk));
}

Configure power failure levels for high voltage

A new API, , has been added to give the application the possibility to set the power failure sd_power_pof_thresholdvddh_set()
comparator threshold for high voltage.

See for valid .NRF_POWER_THRESHOLDVDDHS thresholds

Enable DC/DC converter for REG0 stage

A new API, , has been added to give the application the possibility to enable the DC/DC regulator for the sd_power_dcdc0_mode_set()
regulator stage 0 (REG0).

Required changes

Updated advertiser API

 sd_ble_gap_adv_data_set() has been removed.

A new API, , has been added with the following functionalities:sd_ble_gap_adv_set_configure()

Configuring and updating the advertising parameters of an advertising set.
Setting, clearing, or updating advertising and scan response data.

Note: The a dvertising data must be kept alive in memory until advertising is terminated. Not doing so will lead to undefined behavior.
Note: Updating advertising data while advertising can only be done by providing new advertising data buffers.

Configuring and updating an advertising set

 is a term introduced in Bluetooth Core Specification v5.0.Advertising Set

Each advertising set is identified by an advertising handle. To configure a new advertising set and obtain a new advertising handle, sd_ble_
 should be called with a pointer pointing to an advertising handle setgap_adv_set_configure() p_adv_handle to BLE_GAP_ADV_SET_

HANDLE_NOT_SET.

To update an existing advertising set, with a previously configured advertising sd_ble_gap_adv_set_configure() should be called
handle.

Note: Currently only one advertising set can be configured in the SoftDevice.

Configuring advertising parameters for an advertising set

Setting advertising parameters has been moved from to .sd_ble_gap_adv_start() sd_ble_gap_adv_set_configure()

 has changed:The content of ble_gap_adv_params_t

ble_gap_adv_params_t::type has been removed.
A new parameter, of the new type properties, ble_gap_adv_properties_t has been added.

The advertising type must now be set through _ble_gap_adv_properties t::type.
.The advertising type definitions () have changed, and new types have been addedBLE_GAP_ADV_TYPES The mapping

from old to new advertising types is shown below. These advertising types are referred to as advertising types:legacy
 type = BLE_GAP_ADV_TYPE_ADV_IND -> properties.type =

BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED
 BLE_GAP_ADV_TYPE_ADV_DIRECT_INDtype = -> properties.type =

BLE_GAP_ADV_TYPE_CONNECTABLE_NONSCANNABLE_DIRECTED_HIGH_DUTY_CYCLE or BLE_GAP_ADV_TYP
E_CONNECTABLE_NONSCANNABLE_DIRECTED

 BLE_GAP_ADV_TYPE_ADV_SCAN_INDtype = -> properties.type = BLE_GAP_ADV_TYPE_NONCONN
ECTABLE_SCANNABLE_UNDIRECTED

 BLE_GAP_ADV_TYPE_ADV_NONCONN_INDtype = -> properties.type =
BLE_GAP_ADV_TYPE_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED

 fpble_gap_adv_params_t:: has been renamed .filter_policyble_gap_adv_params_t::
has been renamed timeoutble_gap_adv_params_t:: ble_gap_adv_params_t::duration and is now measured in 10 ms

.units
ble_gap_adv_params_t::channel_mask type has been changed from to the new type ble_gap_adv_ch_mask_t ble_gap_

.ch_mask_t
Note: At least one of the primary channels that is channel index 37-39 must be set to 0.
Note: Masking away secondary channels is currently not supported.
The mapping from old type ble_gap_adv_ch_mask_t to the new type ble_gap_ch_mask_t is shown below:

 channel_mask.ch_37_off = 1 -> = 0x2000000000channel_mask
 channel_mask.ch_38_off = 1 -> = 0x4000000000channel_mask
 channel_mask.ch_39_off = 1 -> = 0x8000000000channel_mask

 has several new parameters:ble_gap_adv_params_t
 has been added to allow the application to advertise for a given number of advertising events.max_adv_evts

 scan_req_notification flag has been added to give the application the possibility to receive events of type ble_gap_e
. This replaces vt_scan_req_report_t BLE_GAP_OPT_SCAN_REQ_REPORT.

 and allow the application to select PHYs primary_phy secondary_phy for primary and secondary advertising channels.
 should be set to or for legacy advertising types. primary_phy BLE_GAP_PHY_AUTO BLE_GAP_PHY_1MBPS For

 it should be set to or extended advertising types, BLE_GAP_PHY_1MBPS BLE_GAP_PHY_CODED if supported by the
.SoftDevice

 can be ignored for legacy advertising. For extended advertising types, it should be set to secondary_phy BLE_GA
 or .P_PHY_1MBPS, BLE_GAP_PHY_2MBPS, BLE_GAP_PHY_CODED if supported by the SoftDevice

 has been added to allow the application to choose the set ID of an extended advertiserset_id .

Other Advertising API changes

BLE_GAP_TIMEOUT_SRC_ADVERTISING has been removed.
A new event, structure BLE_GAP_EVT_ADVERTISING_SET_TERMINATED with ble_gap_evt_adv_set_terminated_t,
has been introduced to let the application know when and why an advertising set has terminated.

A new configuration parameter, ,ble_gap_cfg_role_count_t::adv_set_count has been introduced to set the maximum
 number of advertising sets. Note: The maximum number of advertising sets is supported .BLE_GAP_ADV_SET_COUNT_MAX

 BLE_GAP_ADV_MAX_SIZE has been replaced with BLE_GAP_ADV_SET_DATA_SIZE_MAX.
 now includesble_gap_evt_connected_t and adv_handle adv_data of the new type ble_gap_adv_data_t These are .

set when the device connects as a peripheral.
 now includes .ble_gap_evt_scan_req_report_t adv_handle

 has been removed.BLE_GAP_OPT_SCAN_REQ_REPORT
 has been changed from 180 to 18000 as is BLE_GAP_ADV_TIMEOUT_LIMITED_MAX sd_ble_gap_adv_params_t::duration

now measured in 10 ms units.

Usage

static uint8_t raw_adv_data_buffer1[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static uint8_t raw_scan_rsp_data_buffer1[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static ble_gap_adv_data_t adv_data1 = {.adv_data.p_data =
raw_adv_data_buffer1, .adv_data.len = sizeof
(raw_adv_data_buffer1),
 .scan_rsp_data.p_data =
raw_scan_rsp_data_buffer1, .scan_rsp_data.len = sizeof
(raw_scan_rsp_data_buffer1)};

/* A second advertising data buffer for later updating advertising data
while advertising */
static uint8_t raw_adv_data_buffer2[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static uint8_t raw_scan_rsp_data_buffer2[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static ble_gap_adv_data_t adv_data2 = {.adv_data.p_data =
raw_adv_data_buffer2, .adv_data.len = sizeof
(raw_adv_data_buffer2),
 .scan_rsp_data.p_data =
raw_scan_rsp_data_buffer2, .scan_rsp_data.len = sizeof
(raw_scan_rsp_data_buffer2)};

int main(void)
{
 uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET;
 ble_gap_adv_params_t adv_params = {.properties={.
type=BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED},
 .interval =
BLE_GAP_ADV_INTERVAL_MAX,
 .duration =
BLE_GAP_ADV_TIMEOUT_LIMITED_MAX,
 .channel_mask = {0}, /*
Advertising on all the primary channels */
 .max_adv_evts = 0,
 .filter_policy =
BLE_GAP_ADV_FP_ANY,
 .primary_phy =
BLE_GAP_PHY_AUTO,
 .scan_req_notification = 1
 };
 /* Enable the BLE Stack */
 sd_ble_enable(...);

 [...]
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data1, &adv_params);
 /* Start advertising */
 sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT);

 [...]
 /* Update advertising data while advertising */
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data2, NULL);

 [...]
 /* Stop advertising */
 sd_ble_gap_adv_stop(adv_handle);

 [...]
}

Updated scanner API

The scanner API has been updated. The changes are as follows:

 has been changed:ble_gap_scan_params_t
A new flag, extended, has been added. If set to 1, the scanner will receive both legacy advertising packets and extended
advertising packets. If set to 0, the extended advertising packets will be ignored.
The Observer channel map for primary advertising channels can be set through a new parameter ble_gap_scan_params

. The parameter type is the same as is used for setting advertiser channel _t::channel_mask ble_gap_ch_mask_t
map.

 and have been combined into . See use_whitelist adv_dir_report filter_policy BLE_GAP_SCAN_FILTER_POL
 for valid policies.ICIES

 has been added to let the application decide on scan_phys which PHYs the scanner should receive packets. Set to BLE_G
. orBLE_GAP_PHY_1MBPS if extended scanning is disabledAP_PHY_AUTO

 is now measured in 10 ms units.timeout
 which takes a has a new input parameter, sd_ble_gap_scan_start() p_adv_report_buffer, pointer to an advertising report

 that buffer must be kept alive until the scanner is stopped. The minimum buffer size is either BLE_GAP_SCAN_BUFFER_MIN or BLE_
when extended scanning is enabled.GAP_SCAN_BUFFER_EXTENDED_MIN

When the application receives a , it must now resume scanning by calling .ble_gap_adv_report_t sd_ble_gap_scan_start()
 has been updated:ble_gap_evt_adv_report_t

. has been redefined from to ::typeble_gap_evt_adv_report_t uint8_t ble_gap_adv_report_type_t
 flag has been removed. It is now included in .scan_rsp ble_gap_adv_report_type_t::scan_response

 and have been replaced with of data dlen data type .ble_data_t
New fields have been added: and aux_pointer.

 now includes which is set when the scanner times out.ble_gap_evt_timeout_t adv_report_buffer
 and have been increased from 0x4000 to 0xFFFF. BLE_GAP_SCAN_INTERVAL_MAX BLE_GAP_SCAN_WINDOW_MAX

 has been removed.BLE_GAP_SCAN_TIMEOUT_MAX

Usage

static uint8_t raw_scan_buffer[BLE_GAP_SCAN_BUFFER_MIN];
static ble_data_t scan_buffer = {.p_data = raw_scan_buffer, .len =
sizeof(raw_scan_buffer)};

void on_ble_evt(const ble_evt_t * p_evt)
{
 if (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_REPORT)
 {

 ble_gap_evt_adv_report_t * p_report = &p_ble_evt->evt.gap_evt.
params.adv_report;

 /* Read out data*/
 [...]

 /* Continue scanning. */
 sd_ble_gap_scan_start(NULL, &scan_buffer);
 }
}

int main(void)
{
 ble_gap_scan_params_t scan_params= {.extended = 0,
 .scan_phys =
BLE_GAP_PHY_AUTO,
 .timeout =
BLE_GAP_SCAN_TIMEOUT_UNLIMITED, /* Unlimited scanning */
 .interval =
BLE_GAP_SCAN_INTERVAL_MAX,
 .channel_mask = {0}, /* Scanning
on all the primary channels */
 .filter_policy =
BLE_GAP_SCAN_FP_ACCEPT_ALL
 };
 /* Enable the BLE Stack */
 sd_ble_enable(...);

 /* Start scanning */
 sd_ble_gap_scan_start(&scan_params, &scan_buffer);

 [...]
}

Updated RSSI API

The RSSI API has been changed so that the SoftDevice can provide the application with the channel index on which the reported RSSI
measurements are made.

sd_ble_gap_rssi_get() takes an additional parameter . For this parameter, provide a pointer to a location where p_ch_index
the channel index for the RSSI measurement should be stored.
The event structure for the event has a new parameter BLE_GAP_EVT_RSSI_CHANGED ble_gap_evt_rssi_changed_t::

. This is the Data Channel Index (0-36) on which the RSSI is measured.ch_index
The event structure for the event has a new parameter .BLE_GAP_EVT_ADV_REPORT ble_gap_evt_adv_report_t::ch_index
This is the Channel Index (0-39) on which the last advertising packet is received. The corresponding measured RSSI for this packet
can be read from .ble_gap_evt_adv_report_t::rssi

TX power API

The TX power API now supports setting individual transmit power for each link or role.

sd_ble_gap_tx_power_set() takes two new parameters, and in addition to . For available roles and role ,handle tx_power
TX power values, see ble_gap.h.

Updated Flash API

sd_flash_protect() has been removed.

sd_flash_write() now triggers a HardFault if the application tries to write to a protected page. is returned if NRF_ERROR_FORBIDDEN
the application tries to write to a page outside application flash area.

sd_flash_page_erase() now triggers a HardFault if the application tries to erase a protected page. is returned NRF_ERROR_FORBIDDEN
if the application tries to erase a page outside application flash area.

LE Coded PHY

Note: When is used to reply to a PHY Update, depending on the peer's preferences, sd_ble_gap_phy_update BLE_GAP_PHY_AUTO
 is not Bluetooth Qualified in this SoftDevice. For more might result in the PHY to be changed to . This PHYBLE_GAP_PHY_CODED

information, see the release notes.

s140_nrf52840_5.0.0-3.alpha
This section describes how to migrate to s140_nrf52840_5.0.0-3.alpha from s140_nrf52840_5.0.0-2.alpha or s132_nrf52832_4.0.2.

New functionality

New Configuration API

A new configuration option, has been added to the . This option can be used to configure ,BLE_GAP_CFG_ADV sd_ble_cfg_set()
advertising sets. Currently this option is not used as this alpha release only supports one advertising set with 31 bytes of advertising or scan
response data.

New defines and structures

Some new defines and structures have been added to ble_gap.h

/** @brief Default advertising and scan response max length. */
#define BLE_GAP_ADV_SR_MAX_LEN_DEFAULT (31)

/** @brief Maximum advertising or scan response data length. */
#define BLE_GAP_ADV_SR_MAX_DATA_LEN (1650)

/** @brief Maximum fragmentation size of an advertising or scan
response packet. */
#define BLE_GAP_ADV_SR_MAX_FRAGMENTATION_SIZE (255)

/** @brief Default advertising set handle.
 *
 * Default advertising set handle. This handle identifies the default
advertising set,
 * and shall be used when the application has not configured any custom
advertising sets.
 * @sa ble_gap_cfg_adv_config_t */
#define BLE_GAP_ADV_SET_HANDLE_DEFAULT (0)

/** @brief Advertising set handle not set.
 *
 * Advertising set handle not set. If an additional advertising handle
is required this have to be set
 * to configure additional advertising sets. @sa
ble_gap_cfg_adv_config_t */
#define BLE_GAP_ADV_SET_HANDLE_NOT_SET (0xFF)

/**@defgroup BLE_GAP_ADV_DATA_STATUS GAP Advertising data status
 * @{ */
#define BLE_GAP_ADV_DATA_STATUS_COMPLETE 0x00 /**< All data
in the advertising event have been received. */
#define BLE_GAP_ADV_DATA_STATUS_INCOMPLETE_MORE_DATA 0x01 /**< More

data to be received. */
#define BLE_GAP_ADV_DATA_STATUS_INCOMPLETE_TRUNCATED 0x02 /**< Missing
data, no more to be received. */
/**@} */

/**@defgroup BLE_GAP_SCAN_FILTER_POLICIES GAP Scanner filter policies
 * @{ */
#define BLE_GAP_SCAN_FP_ACCEPT_ALL 0x00 /**<
Accept all advertising packets except directed advertising packets not
addressed to this device. */
#define BLE_GAP_SCAN_FP_WHITELIST 0x01 /**<
Accept advertising packets from devices in the whitelist except
directed advertising packets not addressed to this device. */
#define BLE_GAP_SCAN_FP_ALL_NOT_RESOLVED_DIRECTED 0x02 /**<
Accept all advertising packets specified in @ref
BLE_GAP_SCAN_FP_ACCEPT_ALL. In addition, accept directed advertising
packets,
 where
the initiator's address is a resolvable private address that cannot be
resolved. */
#define BLE_GAP_SCAN_FP_WHITELIST_NOT_RESOLVED_DIRECTED 0x03 /**<
Accept all advertising packets specified in @ref
BLE_GAP_SCAN_FP_WHITELIST. In addition, accept directed advertising
packets,
 where
the initiator's address is a resolvable private address that cannot be
resolved. */
/**@} */

/**@defgroup BLE_GAP_SCAN_DUPLICATES_POLICIES GAP Scanner filter
duplicates policies.
 * @{ */
#define BLE_GAP_SCAN_DUPLICATES_REPORT 0x00 /**< Duplicate
filtering disabled. */
#define BLE_GAP_SCAN_DUPLICATES_SUPPRESS 0x01 /**< Duplicate
filtering enabled. */
#define BLE_GAP_SCAN_DUPLICATES_ONCE_PER_PERIOD 0x02 /**< Duplicate
filtering enabled, reset for each scan period. */
/**@} */

/**@brief Advertising event properties. */
typedef struct
{
 uint16_t connectable : 1; /**< Connectable advertising event. */
 uint16_t scannable : 1; /**< Scannable advertising event. */
 uint16_t directed : 1; /**< Directed advertising event. */
 uint16_t high_duty : 1; /**< High duty cycle directed advertising.
Only applicable for directed advertising event using legacy PDUs. */
 uint16_t legacy_pdu : 1; /**< Advertise using legacy advertising

PDUs. @note If ble_gap_cfg_adv_config_t::use_adv_ext has not been
configured
 on the advertising handle corresponding
to this advertising set, then legacy_pdu shall be set to 1.*/
 uint16_t anonymous : 1; /**< Omit advertiser's address from all
PDUs. */
 uint16_t tx_power : 1; /**< Include TxPower in the extended header
of the advertising PDU. */
 uint16_t reserved : 9; /**< Reserved for future use. */
} ble_gap_adv_properties_t;

/**@brief Advertising report type. */
typedef struct
{
 uint16_t connectable : 1; /**< Connectable advertising event type.
*/
 uint16_t scannable : 1; /**< Scannable advertising event type. */
 uint16_t directed : 1; /**< Directed advertising event type. */
 uint16_t scan_response : 1; /**< Scan response. */
 uint16_t legacy_pdu : 1; /**< Legacy advertising PDU. */
 uint16_t status : 2; /**< Data status. See @ref
BLE_GAP_ADV_DATA_STATUS. */
 uint16_t reserved : 9; /**< Reserved for future use. */
} ble_gap_adv_report_type_t;

/**
 * @brief Configuration of an advertising set, set with @ref
sd_ble_cfg_set.
 *
 * @note This configuration can be set multiple times, and each time
it will reserve memory required for the advertising configuration. If
adv_handle
 * has been set to @ref BLE_GAP_ADV_SET_HANDLE_NOT_SET, it will
return a new advertising set handle. The first call to this function
will replace
 * the default advertising configuration. If the adv_handle has
been set to something other than @ref BLE_GAP_ADV_SET_HANDLE_NOT_SET
then the
 * advertising configuration will be updated to the maximum size
required between those subsequent calls.
 * The default advertising configuration handle is @ref
BLE_GAP_ADV_SET_HANDLE_DEFAULT with @ref BLE_GAP_ADV_SR_MAX_LEN_DEFAULT.
 *
 * @retval ::NRF_ERROR_INVALID_PARAM Invalid parameters.
 */
typedef struct
{
 uint8_t *p_adv_handle; /**< Pointer to store the advertising
handle for this configuration. */
 uint16_t adv_data_size; /**< Maximum advertising data size. If
size is larger than @ref BLE_GAP_ADV_SR_MAX_LEN_DEFAULT then

advertising extension will be used. */
 uint16_t scan_response_size; /**< Maximum scan response data size
required. If size is larger than @ref BLE_GAP_ADV_SR_MAX_LEN_DEFAULT
then advertising extension will be used. */
 uint8_t use_adv_ext:1; /**< If set, it configures the
adverting set to use advertising extension. */
} ble_gap_cfg_adv_config_t;

/**@brief Data structure. */
typedef struct
{
 uint8_t *p_data; /**< Pointer to the data provided to/from the
application. */
 uint16_t len; /**< Total length of the data. */
} ble_data_t;

Required changes

Updated advertising API

The define has been removed.BLE_GAP_ADV_NONCON_INTERVAL_MIN

The define has been increased from to BLE_GAP_ADV_INTERVAL_MAX 0x4000 0xFFFFFF.

ble_gap_scan_params_t::timeout and have been renamed ble_gap_adv_params_t::timeout ble_gap_scan_params_t::
 and and their units have been changed from seconds to 10ms units.duration ble_gap_adv_params_t::duration,

ble_gap_adv_params_t::type has been changed to and is of the new type ble_gap_adv_params_t::properties ble_gap_adv_
. To advertise with legacy packets, the advertising properties have to be configured as follows:properties_t

ble_gap_adv_params_t adv_params = {0};

// BLE_GAP_ADV_TYPE_ADV_IND
memset(&adv_params, 0, sizeof(adv_params));
adv_params.properties.connectable = 1;
adv_params.properties.scannable = 1;
adv_params.properties.legacy_pdu = 1;

//BLE_GAP_ADV_TYPE_ADV_DIRECT_IND
memset(&adv_params, 0, sizeof(adv_params));
adv_params.properties.connectable = 1;
adv_params.properties.directed = 1;
adv_params.properties.legacy_pdu = 1;

//BLE_GAP_ADV_TYPE_ADV_SCAN_IND
memset(&adv_params, 0, sizeof(adv_params));
adv_params.properties.scannable = 1;
adv_params.properties.legacy_pdu = 1;

//BLE_GAP_adv_TYPE_ADV_NONCON_IND

memset(&adv_params, 0, sizeof(adv_params));
adv_params.properties.legacy_pdu = 1;

ble_gap_adv_params_t has several new parameters:

/**@brief GAP advertising parameters. */

typedef struct
{
 ble_gap_addr_t const *p_peer_addr; /**< Address of a
known peer.
 - When privacy
is enabled and the local device use @ref
BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE addresses, the device
identity list is searched for a matching
 entry. If the
local IRK for that device identity is set, the local IRK for that
device will be used to generate the advertiser address field in the
advertise packet.
 - If @ref
ble_gap_adv_properties_t::directed is set, this must be set to the
targeted initiator. If the initiator is in the device identity list,
 the peer IRK
for that device will be used to generate the initiator address field in
the ADV_DIRECT_IND packet. */
 ble_gap_adv_properties_t properties; /**< Advertising
event properties. See @ref ble_gap_adv_properties_t. */
 uint32_t interval; /**< Advertising
interval. See @ref BLE_GAP_ADV_INTERVALS.
 - If @ref
ble_gap_adv_properties_t::directed and @ref ble_gap_adv_properties_t::
high_duty, this parameter is ignored. */
 uint16_t duration; /**< Advertising
duration between 0x0001 and 0xFFFF in 10ms units. Setting the value to
0x0000 disables the timeout.
 Advertising
will be automatically stopped when the duration specified by this
parameter (if not 0x0000) is reached. @sa BLE_GAP_ADV_TIMEOUT_VALUES.
 @note If @ref
ble_gap_adv_properties_t::directed and @ref ble_gap_adv_properties_t::
high_duty are set, this parameter is ignored. */
 uint8_t max_ext_adv; /**< Maximum
extended advertising events that shall be sent prior to disabling the
extended advertising. Setting the value to 0 disables the limitation.
 Advertising
will be automatically stopped when the count of extended advertising
events specified by this parameter (if not 0) is reached.
 @note If @ref
ble_gap_adv_properties_t::directed and @ref ble_gap_adv_properties_t::

high_duty are set, this parameter is ignored.
 @note
max_ext_adv will be ignored if @ref ble_gap_adv_properties_t::
legacy_pdu is set.*/
 ble_gap_adv_ch_mask_t channel_mask; /**< Advertising
channel mask for the primary channels. See @ref ble_gap_adv_ch_mask_t.
*/
 uint8_t fp; /**< Filter Policy,
see @ref BLE_GAP_ADV_FILTER_POLICIES. */
 uint8_t primary_phy; /**< Indicates
the PHY on which the advertising packets are transmitted on the primary
advertising channel. See @ref BLE_GAP_PHYS.
 @note The
primary_phy shall indicate @ref BLE_GAP_PHY_1MBPS if @ref
ble_gap_adv_properties_t::legacy_pdu is set. */
 uint8_t secondary_phy; /**< Indicates the
PHY on which the advertising packets are transmitted on the secondary
advertising channel. See @ref BLE_GAP_PHYS.
 @note This is
the PHY that will be used to create connection and send AUX_ADV_IND
packets on. secondary_phy will be ignored when @ref
ble_gap_adv_properties_t::legacy_pdu is set. */
 uint8_t secondary_max_skip; /**< Maximum
advertising events the controller can skip before sending the
AUX_ADV_IND packets on the secondary channel.
 @note
secondary_max_skip will be ignored if @ref ble_gap_adv_properties_t::
legacy_pdu is set. */
 uint8_t advertising_sid:7; /**< Advertising Set
ID to distinguish between advertising data transmitted by this device.
@note advertising_sid will be ignored if @ref ble_gap_adv_properties_t::
legacy_pdu is set. */
 uint8_t scan_req_notification:1; /**< Enable scan
request notifications for this advertising set. */
 uint8_t adv_fragmentation_len; /**< Maximum PDU
length of advertising and scan response packets. If set to 0 @ref
BLE_GAP_ADV_SR_MAX_FRAGMENTATION_SIZE will be used.
 @note
adv_fragmentation_len will be ignored if @ref ble_gap_adv_properties_t::
legacy_pdu is set.*/
} ble_gap_adv_params_t;

The has to be set to for legacy advertising. It can be set to ble_gap_adv_params_t::primary_phy BLE_GAP_PHY_1MBPS BLE_GAP_P
 or for extended advertising.HY_1MBPS BLE_GAP_PHY_CODED

The can be ignored for legacy advertising. It can be set to ble_gap_adv_params_t::secondary_phy BLE_GAP_PHY_1MBPS,
 or for extended advertising.BLE_GAP_PHY_2MBPS, BLE_GAP_PHY_CODED

The following fields are not used in this alpha and should be set to 0:

ble_gap_adv_params_t::max_ext_adv
ble_gap_adv_params_t::secondary_max_skip
ble_gap_adv_params_t::advertising_sid
ble_gap_adv_params_t::scan_req

ble_gap_adv_params_t::fragmentation_len

Updated scanning and connection API

ble_gap_scan_params_t has received some new parameters. and ble_gap_scan_params_t::use_whitelist ble_gap_scan_pa
 have been combined into which should be set to a value rams_t::adv_dir_report ble_gap_scan_params_t::filter_policy

from . BLE_GAP_SCAN_FILTER_POLICIES

/**@brief GAP scanning parameters. */
typedef struct
{
 uint8_t active : 1; /**< If 1, perform active scanning
(scan requests). */
 uint8_t filter_policy : 2; /**< Scanning filter policy. See @ref
BLE_GAP_SCAN_FILTER_POLICIES. */
 uint8_t filter_duplicates: 2; /**< Filter duplicates. @ref
BLE_GAP_SCAN_DUPLICATES_POLICIES. */
 uint8_t scan_phy; /**< PHY to scan on. See @ref
BLE_GAP_PHYS. */
 uint16_t interval; /**< Scan interval. See @ref
BLE_GAP_SCAN_INTERVALS. */
 uint16_t window; /**< Scan window. See @ref
BLE_GAP_SCAN_WINDOW. */
 uint16_t duration; /**< Duration of a scanning session
in units of 10ms. Range: 0x0001 - 0xFFFF (10ms to 10.9225m). If set to
0x0000, scanning will continue until it is explicitly disabled. @sa
sd_ble_gap_connect @sa sd_ble_gap_scan_stop */
 uint16_t period; /**< Time interval between two
subsequent scanning sessions in units of 1.28s. Range: 0x0001 - 0xFFFF
(1.28s - 83,884.8s).
 If @ref ble_gap_scan_params_t::
duration is not 0x0000, the time specified by Period must be larger
than the time
 specified by @ref
ble_gap_scan_params_t::duration. If Period is set to 0x0000, scanning
will automatically end after the time specified by Duration is expired.
*/
} ble_gap_scan_params_t;

ble_gap_scan_params_t::scan_phy has to be set to either or . BLE_GAP_PHY_1MBPS BLE_GAP_PHY_CODED ble_gap_scan_param
 and are not used in this alpha and shall be set to 0.s_t::period ble_gap_scan_params_t::filter_duplicates

The defines and have been increased from to .BLE_GAP_SCAN_INTERVAL_MAX BLE_GAP_SCAN_WINDOW_MAX 0x4000 0xFFFF

ble_gap_adv_report_t has been modified and has some new parameters.

/**@brief Event structure for @ref BLE_GAP_EVT_ADV_REPORT. */
typedef struct
{
 ble_gap_adv_report_type_t type; /**<
Advertising report type. See @ref ble_gap_adv_report_type_t. */

 ble_gap_addr_t peer_addr; /**<
Bluetooth address of the peer device. If the peer_addr resolved: @ref
ble_gap_addr_t::addr_id_peer is set to 1

and the address is the device's identity address. */
 ble_gap_addr_t direct_addr; /**<
Set when the scanner is unable to resolve the private resolvable
address of the initiator field of a directed advertisement

packet and the scanner has been enabled to report this with either @ref
BLE_GAP_SCAN_FP_ALL_NOT_RESOLVED_DIRECTED, or @ref
BLE_GAP_SCAN_FP_WHITELIST_NOT_RESOLVED_DIRECTED. */
 uint8_t primary_phy; /**<
Indicates the PHY on which the advertising packets are received on the
primary advertising channel. See @ref BLE_GAP_PHYS. */
 uint8_t secondary_phy; /**<
Indicates the PHY on witch the advertising packets are received on the
secondary advertising channel. See @ref BLE_GAP_PHYS. */
 uint16_t periodic_interval; /**<
If periodic advertising exists, as part of this advertising set, the
periodic_interval specifies the interval of the periodic advertising,

in 1.25ms units. If set to 0, it indicates that no periodic advertising
exists as part of this set. */
 int8_t tx_power; /**<
TX Power reported by the advertiser. */
 int8_t rssi; /**<
Received Signal Strength Indication in dBm. */
 uint8_t set_id; /**<
Set ID of received advertising report. */
 uint8_t dlen; /**<
Advertising or scan response data length. */
 uint8_t data[BLE_GAP_ADV_SR_MAX_LEN_DEFAULT]; /**<
Advertising or scan response data. */
} ble_gap_evt_adv_report_t;

ble_gap_adv_report_t:type has been changed from to If uint8_t ble_gap_adv_report_type_t. ble_gap_adv_report_type
 is set, then the following parameters can be ignored: _t::legacy_pdu

ble_gap_adv_report_t::secondary_phy (will be set to be BLE_GAP_PHY_NOT_SET if is set)legacy_pdu
ble_gap_adv_report_t::periodic_interval (currently not supported)
ble_gap_adv_report_t::tx_power (currently not supported, set to 0x7F)
ble_gap_adv_report_t::set_id (currently not supported)

sd_ble_gap_adv_data_set has been changed to expect an advertising handle in addition to two structures.ble_data_t

Usage:

uint8_t adv_array[] = {<advertising data>};
ble_data_t adv_data = {.p_data=adv_array, .len=sizeof(adv_array)};

uint8_t sr_array[] = {<scan response data>};
ble_data_t sr_data = {.p_data=sr_array, .len=sizeof(sr_array)};

uint32_t errcode = sd_ble_gap_adv_data_set
(BLE_GAP_ADV_SET_HANDLE_DEFAULT, &adv_data, &sr_data);

sd_ble_gap_adv_start and now expect an advertising handle as the first argument, and currently it should be sd_ble_gap_adv_stop
set to .BLE_GAP_ADV_SET_HANDLE_DEFAULT

Clock configuration rename.

nrf_clock_lf_cfg_t::xtal_accuracy has been renamed and the following defines have been nrf_clock_lf_cfg_t::accuracy,
renamed:

Old Define New Define

NRF_CLOCK_LF_XTAL_ACCURACY_250_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_500_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_150_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_100_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_75_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_50_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_30_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_20_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_10_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_5_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_2_PPM
NRF_CLOCK_LF_XTAL_ACCURACY_1_PPM

NRF_CLOCK_LF_ACCURACY_250_PPM
NRF_CLOCK_LF_ACCURACY_500_PPM
NRF_CLOCK_LF_ACCURACY_150_PPM
NRF_CLOCK_LF_ACCURACY_100_PPM
NRF_CLOCK_LF_ACCURACY_75_PPM
NRF_CLOCK_LF_ACCURACY_50_PPM
NRF_CLOCK_LF_ACCURACY_30_PPM
NRF_CLOCK_LF_ACCURACY_20_PPM
NRF_CLOCK_LF_ACCURACY_10_PPM
NRF_CLOCK_LF_ACCURACY_5_PPM
NRF_CLOCK_LF_ACCURACY_2_PPM
NRF_CLOCK_LF_ACCURACY_1_PPM

s140_nrf52840_5.0.0-2.alpha
This section describes how to migrate to s140_nrf52840_5.0.0-2.alpha from s140_nrf52840_5.0.0-1.alpha.

Required changes

SoftDevice RAM usage

The RAM usage of the SoftDevice has changed. should be used to find the for a particular sd_ble_enable() APP_RAM_BASE
configuration.

New configuration API

Configuration parameters passed to have been moved to the SoftDevice configuration API.sd_ble_enable()

API updates

A new SV call is added to set the configuration. This API can be called many times to configure different parts sd_ble_cfg_set()
of the BLE stack. All configurations are optional. Configuration parameters not set by this API will take their default values.
The SV call parameter is removed from . The SV call ble_enable_params_t * p_ble_enable_params sd_ble_enable() sd

 must be used instead. The parameters of this call are given in the following table:_ble_cfg_set()

Old API: ble_enable_params_t member New API: in cfg_id sd_ble_cfg_set()

common_enable_params.vs_uuid_count BLE_COMMON_CFG_VS_UUID

common_enable_params.p_conn_bw_counts BLE_CONN_CFG_GAP (*)

gap_enable_params.periph_conn_count
gap_enable_params.central_conn_count

central_sec_countgap_enable_params.

BLE_GAP_CFG_ROLE_COUNT

gap_enable_params.p_device_name BLE_GAP_CFG_DEVICE_NAME

gatt_enable_params BLE_CONN_CFG_GATT (*)

gatts_enable_params.service_changed BLE_GATTS_CFG_SERVICE_CHANGED

gatts_enable_params.attr_tab_size BLE_GATTS_CFG_ATTR_TAB_SIZE

(*) These configurations can be set per link.

Usage

Example pseudo code to set per link ATT_MTU using the new configuration API:

const uint16_t client_rx_mtu = 158;
const uint32_t long_att_conn_cfg_tag = 1;

/* set ATT_MTU for connections identified by long_att_conn_cfg_tag */
ble_cfg_t cfg;
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = long_att_conn_cfg_tag;
cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = client_rx_mtu;
sd_ble_cfg_set(BLE_CONN_CFG_GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t long_att_conn_handle;
/* Establish connection with long_att_conn_cfg_tag */
sd_ble_gap_adv_start(..., long_att_conn_cfg_tag);

[...]

/* Establish connection with BLE_CONN_CFG_TAG_DEFAULT, it will use
default ATT_MTU of 23 bytes */
sd_ble_gap_connect(..., BLE_CONN_CFG_TAG_DEFAULT);

[...]

/* Start ATT_MTU exchange */
sd_ble_gattc_exchange_mtu_request(long_att_conn_handle, client_rx_mtu);

BLE bandwidth configuration

The BLE bandwidth configuration and application packet concept has been changed. Previously, the application could specify a bandwidth
setting, which would result in a given queue size and a correpsonding given radio time allocated. Now the queue sizes and the allocated
radio time have been separated. The application can now configure:

Event length
Write without response queue size
Handle Value Notification queue size

These settings are configurable per link.

Note that now the configured queue sizes are not directly related to on-air bandwidth:

The application can configure one single packet to be queued in the SoftDevice, but still achieve full throughput if the application
can queue packets fast enough during connection events.
Even if the application configures a large number of packets to be queued, not all of them will be sent during a single connection
event if the configured event length is not large enough to send the packets.

API updates

The ble_enable_params_t::common_enable_params.p_conn_bw_counts parameter of the SV call is sd_ble_enable()
replaced by the SV call with parameter set to . The following table shows how sd_ble_cfg_set() cfg_id BLE_CONN_CFG_GAP
the old bandwidth configuration corresponds to the new one for the default ATT_MTU:

Old API: BLE_CONN_BWS New API: in ble_gap_conn_cfg_t::event_length sd_
ble_cfg_set()

BLE_CONN_BW_LOW BLE_GAP_EVENT_LENGTH_MIN

BLE_CONN_BW_MID BLE_GAP_EVENT_LENGTH_DEFAULT

BLE_CONN_BW_HIGH 6

The bandwidth configuration is further described in the SDS.
The option is removed. Instead, during connection creation, the application should supply the BLE_COMMON_OPT_CONN_BW conn_c

 defined by the parameter in the SV call.fg_tag ble_conn_cfg_t::conn_cfg_tag sd_ble_cfg_set()
A new parameter is added to and SV calls. To create a conn_cfg_tag sd_ble_gap_adv_start() sd_ble_gap_connect()
connection with a default configuration, should be provided in this parameter.BLE_CONN_CFG_TAG_DEFAULT
The event is split on two events: and BLE_EVT_TX_COMPLETE BLE_GATTC_EVT_WRITE_CMD_TX_COMPLETE BLE_GATTS_EVT_H

.VN_TX_COMPLETE
The SV call is removed. Instead, the application can now configure packet counts per link, sd_ble_tx_packet_count_get()
using the SV call with the parameter set to and .sd_ble_cfg_set() cfg_id BLE_CONN_CFG_GATTC BLE_CONN_CFG_GATTS

Usage

Example pseudo code to set configuration that corresponds to the old bandwidth configuration both in throughput and BLE_CONN_BW_HIGH
packet queueing capability:

const uint32_t high_bw_conn_cfg_tag = 1;
ble_cfg_t cfg;

/* configure connections identified by high_bw_conn_cfg_tag */

/* set connection event length */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gap_conn_cfg.event_length = 6; /* 6 * 1.25 ms = 7.5
ms corresponds to the old BLE_CONN_BW_HIGH for default ATT_MTU */
cfg.conn_cfg.params.gap_conn_cfg.conn_count = 1; /* application needs
one link with this configuration */
sd_ble_cfg_set(BLE_CONN_CFG_GAP, &cfg, ...);

/* set HVN queue size */

memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gatts_conn_cfg.hvn_tx_queue_size = 7; /*
application wants to queue 7 HVNs */
sd_ble_cfg_set(BLE_CONN_CFG_GATTS, &cfg, ...);

/* set WRITE_CMD queue size */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gattc_conn_cfg.write_cmd_tx_queue_size = 0; /*
application is not giong to send WRITE_CMD, so set to 0 to save memory
*/
sd_ble_cfg_set(BLE_CONN_CFG_GATTC, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t high_bw_conn_handle;
/* Establish connection with high_bw_conn_cfg_tag */
sd_ble_gap_adv_start(..., high_bw_conn_cfg_tag);

Data Length Update Procedure

The application now has to respond to the Data Length Update Procedure when initiated by the peer. See the description of the Data Length
Update Procedure in the New functionality section for more details.

Required changes:

case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
{
 /* Allow SoftDevice to choose Data Length Update Procedure parameters
automatically. */
 sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle,
NULL, NULL);
 break;
}
case BLE_GAP_EVT_DATA_LENGTH_UPDATE:
{
 /* Data Length Update Procedure completed, see p_ble_evt->evt.gap_evt.
params.data_length_update.effective_params for negotiated parameters. */
 break;
}

Access to registersRAM[x].POWER

SoftDevice APIs are updated to provide access to the registers instead of the deprecated .RAM[x].POWER RAMON/RAMONB

API updates

sd_power_ramon_set() SV call is replaced with .sd_power_ram_power_set()
sd_power_ramon_clr() SV call is replaced with . sd_power_ram_power_clr()
sd_power_ramon_get() SV call is replaced with .sd_power_ram_power_get()

API rename

Some APIs were renamed. Applications that use the old names must be updated.

API updates

BLE_EVTS_PTR_ALIGNMENT is renamed to .BLE_EVT_PTR_ALIGNMENT
BLE_EVTS_LEN_MAX is renamed to .BLE_EVT_LEN_MAX
GATT_MTU_SIZE_DEFAULT is renamed to .BLE_GATT_ATT_MTU_DEFAULT
The GAP option is renamed to . BLE_GAP_OPT_COMPAT_MODE BLE_GAP_OPT_COMPAT_MODE_1
ble_gap_opt_compat_mode_t structure is renamed to .ble_gap_opt_compat_mode_1_t

::mode_1_enableble_gap_opt_compat_mode_t structure member is renamed to ble_gap_opt_compat_mode_1_t::
.enable

ble_gap_opt_t::compat_mode structure member is renamed to .ble_gap_opt_t::compat_mode_1

Proprietary L2CAP API removed

The proprietary API for sending and receiving data over L2CAP is removed.

API updates

The SV calls , , and are sd_ble_l2cap_cid_register() sd_ble_l2cap_cid_unregister() sd_ble_l2cap_tx()
removed.
BLE_L2CAP_EVT_RX event is removed.
The following defines are removed: , , , BLE_L2CAP_MTU_DEF BLE_L2CAP_CID_INVALID BLE_L2CAP_CID_DYN_BASE BLE_L2CA

.P_CID_DYN_MAX

New functionality

Data Length Update Procedure

The application is given control of the Data Length Update Procedure. The application can initiate the procedure and has to respond when
initiated by the peer.

API updates

A new SV call is added to initiate or respond to a Data Length Update Procedure.sd_ble_gap_data_length_update()
The event is replaced with . BLE_EVT_DATA_LENGTH_CHANGED BLE_GAP_EVT_DATA_LENGTH_UPDATE
A new event is added to notify that a Data Length Update request has been BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST
received. must be called by the application after this event has been received to continue sd_ble_gap_data_length_update()
the Data Length Update Procedure.
The GAP option is removed. The SV call should be used BLE_GAP_OPT_EXT_LEN ()sd_ble_gap_data_length_update
instead.

Usage

The Data Length Update Procedure can be initiated locally or by peer device.
Following is the pseudo code for the case where Data Length Update Procedure is initiated by application:

const uint16_t client_rx_mtu = 247;
const uint32_t long_att_conn_cfg_tag = 1;

/* ATT_MTU must be configured first */
ble_cfg_t cfg;
memset(&cfg, 0, sizeof(ble_cfg_t));

cfg.conn_cfg.conn_cfg_tag = long_att_conn_cfg_tag;
cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = client_rx_mtu;
sd_ble_cfg_set(BLE_CONN_CFG_GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t long_att_conn_handle;
/* Establish connection */
sd_ble_gap_adv_start(..., long_att_conn_cfg_tag);

[...]

/* Start Data Length Update Procedure, can be done without ATT_MTU
exchange */
ble_gap_data_length_params_t params = {
 .max_tx_octets = client_rx_mtu + 4,
 .max_rx_octets = client_rx_mtu + 4,
 .max_tx_time_us = BLE_GAP_DATA_LENGTH_AUTO,
 .max_rx_time_us = BLE_GAP_DATA_LENGTH_AUTO
};
sd_ble_gap_data_length_update(long_att_conn_handle, ¶ms, NULL);

[...]

case BLE_GAP_EVT_DATA_LENGTH_UPDATE:
{
 /* Data Length Update Procedure completed, see p_ble_evt->evt.gap_evt.
params.data_length_update.effective_params for negotiated parameters. */
 break;
}

New compatibility mode

A new compatibility mode is added to enable interoperability with central devices that may initiate version exchange and feature exchange
control procedures in parallel. To enable this mode, use the SV call with the parameter set to sd_ble_opt_set() opt_id BLE_GAP_OPT_

.COMPAT_MODE_2

Slave latency configuration

It is now possible to disable and enable slave latency on an active peripheral link. To disable or re-enable slave latency, use the sd_ble_op
 SV call with the parameter set to .t_set() opt_id BLE_GAP_OPT_SLAVE_LATENCY_DISABLE

Support for high accuracy LFCLK oscillator source

It is now possible to configure the SoftDevice with higher accuracy LFCLK oscillator source. Four new levels are defined:

#define NRF_CLOCK_LF_XTAL_ACCURACY_10_PPM (8) /**< 10 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_5_PPM (9) /**< 5 ppm */

#define NRF_CLOCK_LF_XTAL_ACCURACY_2_PPM (10) /**< 2 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_1_PPM (11) /**< 1 ppm */

New power failure levels

It is now possible to configure the SoftDevice with all the new power failure levels introduced in NRF52. Levels that are added:

NRF_POWER_THRESHOLD_V17 /**< Set the power failure threshold to
1.7 V. */
NRF_POWER_THRESHOLD_V18 /**< Set the power failure threshold to
1.8 V. */
NRF_POWER_THRESHOLD_V19 /**< Set the power failure threshold to
1.9 V. */
NRF_POWER_THRESHOLD_V20 /**< Set the power failure threshold to
2.0 V. */
NRF_POWER_THRESHOLD_V22 /**< Set the power failure threshold to
2.2 V. */
NRF_POWER_THRESHOLD_V24 /**< Set the power failure threshold to
2.4 V. */
NRF_POWER_THRESHOLD_V26 /**< Set the power failure threshold to
2.6 V. */
NRF_POWER_THRESHOLD_V28 /**< Set the power failure threshold to
2.8 V. */

1.
2.

s140_nrf52840_5.0.0-1.alpha
This section describes how to migrate to s140_nrf52840_5.0.0-1.alpha from s132_nrf52_3.0.0. This SoftDevice is designed to take
advantage of the new features of the nrf52840 chip.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed and therefore a change to the application project file is required.

For Keil this means:

Go into the properties of the project and find the Target tab
Change IROM1 Start to . 0x20000

If the project uses a scatter file or linker script instead, then these must be updated accordingly.

The RAM usage of SoftDevice has also changed. should be used to find the APP_RAM_BASE for a particular sd_ble_enable()
configuration.

Renamed defines

Some defines have been renamed to make the API more consistent. Any code using these defines has to be updated with the new names:

GATT_MTU_SIZE_DEFAULT renamed to BLE_GATT_MTU_SIZE_DEFAULT
BLE_EVTS_LEN_MAX renamed to BLE_EVT_LEN_MAX
BLE_EVTS_PTR_ALIGNMENT renamed to BLE_EVT_PTR_ALIGNMENT

New functionality

Multiple PHYs

The SoftDevice introduces support for using multiple PHYs to adapt the speed and reliability of data transmission to the channel capacity.
For higher throughput, a 2 Mbps PHY is supported. For higher reliability, a 125kbps Coded PHY is supported.

API updates

A new GAP option, , has been added to indicate to the controller about which PHYs the BLE_GAP_OPT_PREFERRED_PHYS_SET
controller shall prefer so it can respond to any requests to update PHYs by peers.
A new SV call, , has been added to request the controller to attempt to change to a new PHY. sd_ble_gap_phy_request()
A new event, , has been added to indicate that the PHY of a connection has changed or that a local BLE_GAP_EVT_PHY_UPDATE
initiated PHY update procedure has finished.

Usage

Example pseudo code for setting the preferred PHYs for new connections
 This will only have an effect if the peer device initiates the procedure to change the PHY. The stack will not initiate a PHY Update Note:

procedure autonomously.

ble_opt_t opts;
opts.gap_opt.preferred_phys.tx_phys = BLE_GAP_PHY_1MBPS |
BLE_GAP_PHY_2MBPS;
opts.gap_opt.preferred_phys.rx_phys = BLE_GAP_PHY_1MBPS |
BLE_GAP_PHY_2MBPS;

TEST_SD_UTIL_NRF_SUCCESS_OR_ASSERT(sd_ble_opt_set
(BLE_GAP_OPT_PREFERRED_PHYS_SET, &opts));

[Advertise and connect / Scan and connect]

Request the controller to attempt to change to a new PHY for an established connection:

ble_gap_phys_t phys = {BLE_GAP_PHY_CODED, BLE_GAP_PHY_CODED};
sd_ble_gap_phy_request(conn_handle, &phys);

Handle PHY Update event:

/* Handle the event */
case BLE_GAP_EVT_PHY_UPDATE:
 if (ble_event.evt.gap_evt.params.phy_update.status ==
BLE_HCI_STATUS_CODE_SUCCESS)
 {
 // The PHY was changed (after either the application or the peer
requested it)
 // ble_event.evt.gap_evt.params.phy_update.tx_phy and ble_event.evt.
gap_evt.params.phy_update.rx_phy contain the new PHYs
 }
 else
 {
 // A PHY update was requested which could not be performed
successfully
 }

Higher TX power on nRF52840

The SoftDevice now supports configuring higher TX power to be used with nRF52840.

The following additional values are supported by the SV-call +2dBm, +5dBm, +6dBm, +7dBm, +8dBm, sd_ble_gap_tx_power_set()
+9dBm.

These power levels can be used in the same way the existing power levels are used in the s132_nrf52_3.0.0 SoftDevice.

static uint8_t raw_adv_data_data_buffer[BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_MAX_SUPPORTED]; /* 255 bytes of advertising
data. */static ble_gap_adv_data_t adv_data = {.adv_data.p_data = raw_adv_data_data_buffer, .adv_data.len = sizeof
(raw_adv_data_data_buffer)};
int main(void){ uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET; ble_gap_adv_params_t adv_params = { .
properties= { .type=BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED }, .
interval = BLE_GAP_ADV_INTERVAL_MAX, .duration = BLE_GAP_ADV_TIMEOUT_LIMITED_MAX, .
channel_mask = {0}, .max_adv_evts = 0, .filter_policy = BLE_GAP_ADV_FP_ANY, .primary_phy =
BLE_GAP_PHY_AUTO, .secondary_phy = BLE_GAP_PHY_AUTO, }; /* Enable the BLE Stack */ sd_ble_enable(...);

 [...] sd_ble_gap_adv_set_configure(&adv_handle, &adv_data, &adv_params);
 /* Start advertising */ sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT); [...]}

	s14x_nrf5x migration document

