Contents

Target Audience L 9
Acknowledgements L o 9
Credits e 10
Reading 10
Introduction 10
What Is MVC?o 11
What is Backbone.js? oL 12
When Do I Need A JavaScript MVC Framework? 12
Why Consider Backbone.js? 13
Setting Expectationso 14
Fundamentals 16
MVC . . 16
Smalltalk-80 MVC 16
MVC Applied To The Web 17
Client-Side MVC & Single Page Apps 20
Client-Side MVC - Backbone Style 21
Implementation Specifics L. 24
What does MVC give us?o o 28
Delving Deeper into MVC 28
Summaryo e e 29
Further reading oo 29

Fast facts 29
Backbone.jso Lo 29
Used by o o 30

Backbone Basics 32

Gettingset up 36
Models e 37
VIiews e 44
Collections e 51
RESTful Persistence 64
Events L 67
Routers 74
Backbone’s Sync APT oo 79
Dependencies 83
Summary ..o e 83

Exercise 1: Todos - Your First Backbone.js App 83
Static HTML 84
Todomodel L 87
Todo collection 88
Application View 90
Individual Todo View 96
Startup 98
Inaction. 98
Completing & deleting todos L. 100
Todo routing 103
Summary e 105

Exercise 2: Book Library - Your First RESTful Backbone.js App105

Setting up e 106
Wiring in the interface o oo 113
Adding models oL 114
Removingmodels oL 115
Creating the back-end 116
Install node.js, npm, and MongoDB 116
Install node modules 116

Create a simple web server 117

Connect to the database 119
Talking to the server oo 127
Summary 133
Backbone Extensions 134
MarionetteJS (Backbone.Marionette) 134
Boilerplate Rendering Code 135
Reducing Boilerplate With Marionette.ItemView 137
Memory Management L. 137
Region Management 141
Marionette Todoappo 143

Is the Marionette implementation of the Todo app more main-
tainable? oL o 155
Marionette And Flexibility 155
And SoMuch More 157
Thorax 157
Hello World 157
Embedding child views oo 158
View helperso 159
collection helper oL 160
Custom HTML data attributes 161
Thorax Resources 163
Common Problems & Solutions 164
Modular Development 190
Introduction L oL 190
Organizing modules with RequireJS and AMD 191
Maintainability problems with multiple script files 191
Need for better dependency management 192
Asynchronous Module Definition (AMD) 192
Writing AMD modules with RequireJS 193

Getting Started with RequireJS 195
Require.js and Backbone Examples 197

Keeping Your Templates External Using RequireJS And The
Text Plugino L 201

Optimizing Backbone apps for production with the RequireJS
Optimizer e 203

Exercise 3: Your First Modular Backbone + RequireJS App 206

Overview 206
Markup 207
Configuration options 208
Modularizing our models, views and collections 209
Route-based module loading 215
JSON-based module configuration 215
Module loader Router 216
Using NodeJS to handle pushState 217

An asset package alternative for dependency management 218
Paginating Backbone.js Requests & Collections 218
Introductiono 218
Backbone.Paginator 219

Live Examples o o 220
Paginator.requestPagero 221
Gotchas! 222
Gotchas! 223
Paginator.clientPager oL 225
Plugins 231
Bootstrapping Lo 232
Styling 233
Conclusions 234

Backbone Boilerplate And Grunt-BBB 234

Getting Started 236
Backbone Boilerplate and Grunt-BBB 236
Creating a new project 236
index.html L L 237
config.js 238

MAINLJS .« o v o o e e e e e e e 241

APDJS - e e e e e e e e e e 242
Creating Backbone Boilerplate Modules 244
router.js oL oL 246

Other Useful Tools & Projects 248
Yeoman e 248
Backbone DevTools.o 249
Conclusions L e 250
Backbone & jQuery Mobile 250
Mobile app development with jQuery Mobile 250

Basic Backbone app setup for jQuery Mobile 254
Workflow with Backbone and jQueryMobile 257
Applying advanced jQM techniques to Backbone 266

Unit Testing 274
Jasmine 275
Behavior-Driven Development 275
Suites, Specs, & Spies 276
beforeEach() and afterEach() 280
Shared scope 282
Gettingset up Lo 284
TDD With Backbone 285
Models 285
Collections e 287

View testing Lo 290
Conclusions L 298
Exercise 299
Further reading 299

QUnit 299
Introduction 299
Getting Setup L 299
Assertions 302
Adding structure to assertions 304
Assertion examples 306

equal - a comparison assertion. It passes if actual == expected . 306

notEqual - a comparison assertion. It passes if actual != expected 306

strictEqual - a comparison assertion. It passes if actual ===
expected 306

notStrictEqual - a comparison assertion. It passes if actual ==
expected L L 307

deepEqual - a recursive comparison assertion. Unlike strictE-
qual(), it works on objects, arrays and primitives. 307

notDeepEqual - a comparison assertion. This returns the oppo-

site of deepEqualo 307

raises - an assertion which tests if a callback throws any exceptions307
Fixtures 308
Fixtures example: oo 308
Asynchronous code L Lo 311
SinonJS 312
What is SinonJS?o 312
Stubs and mocks 315
Stubs . . . 315
Mocks 317
Exercise 318

Collections e 319
Views o 321
ADPD . 322
Further Reading & Resources 323
Resources 324
Books & Courses 324
Extensions/Libraries L oL L 324
Conclusions 324
Appendix 326
A Simple JavaScript MVC Implementation 326
Event System o 326
Models 328
Views 329
Controllers 329
Practical Usage 330
MVP . . 332
Models, Views & Presenters 332
MVP or MVC? o e 333
MVC, MVP and Backbone.js 334
Namespacing o 336
Backbone Dependency Details., 341
DOM Manipulation 341
Utilities o 341
RESTful persistence 342
Routing 342
Backbone Vs. Other Libraries And Frameworks 343
Prelude

Not so long ago, “data-rich web application” was an oxymoron. Today, these
applications are everywhere and you need to know how to build them.

Traditionally, web applications left the heavy-lifting of data to servers that
pushed HTML to the browser in complete page loads. The use of client-side
JavaScript was limited to improving the user experience. Now this relationship
has been inverted - client applications pull raw data from the server and render
it into the browser when and where it is needed.

Think of the Ajax shopping cart which doesn’t require a refresh on the page
when adding an item to your basket. Initially, jQuery became the go-to library
for this paradigm. Its nature was to make Ajax requests then update text on
the page and so on. However, this pattern with jQuery revealed that we have
implicit model data on the client side. With the server no longer being the only
place that knows about our item count, it was a hint that there was a natural
tension and pull of this evolution.

The rise of arbitrary code on the client-side which can talk to the server however
it sees fit has meant an increase in client-side complexity. Good architecture
on the client has gone from an afterthought to essential - you can’t just hack
together some jQuery code and expect it to scale as your application grows.
Most likely, you would end up with a nightmarish tangle of UI callbacks entwined
with business logic, destined to be discarded by the poor soul who inherits your
code.

Thankfully, there are a growing number of JavaScript libraries that can help
improve the structure and maintainability of your code, making it easier to
build ambitious interfaces without a great deal of effort. Backbone.js has quickly
become one of the most popular open-source solutions to these issues and in this
book we will take you through an in-depth walkthrough of it.

http://documentcloud.github.com/backbone/

Begin with the fundamentals, work your way through the exercises, and learn
how to build an application that is both cleanly organized and maintainable. If
you are a developer looking to write code that can be more easily read, struc-
tured, and extended - this guide can help.

Improving developer education is important to me, which is why this book is
released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported license. This means you can purchase or grab a copy of the book for
free or help to further improve it. Corrections to existing material are always
welcome and I hope that together we can provide the community with an up-
to-date resource that is of help.

My extended thanks go out to Jeremy Ashkenas and DocumentCloud for cre-
ating Backbone.js and these members of the community for their assistance
making this project far better than I could have imagined.

Target Audience

This book is targeted at novice to intermediate developers wishing to learn
how to better structure their client-side code. An understanding of JavaScript
fundamentals is required to get the most out of it, however we have tried to
provide a basic description of these concepts where possible.

Acknowledgements

I am indebted to the fantastic work done by the technical reviewers who helped
review and improve this book. Their knowledge, energy, and passion have helped
shape it into a better learning resource and they continue to serve as a source
of inspiration. Thanks go out to:

e Marc Friedman
e Derick Bailey

e Jeremy Ashkenas
e Samuel Clay

e Mat Scales

o Alex Graul

e Dusan Gledovic
e Sindre Sorhus

I would also like to thank my loving family for their patience and support while
I worked on this book, as well as my brilliant editor Mary Treseler.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://addyosmani.github.com/backbone-fundamentals/
https://github.com/addyosmani/backbone-fundamentals/
https://github.com/jashkenas
http://www.documentcloud.org
https://github.com/addyosmani/backbone-fundamentals/contributors
https://github.com/dcmaf
https://github.com/derickbailey
https://github.com/jashkenas
https://github.com/samuelclay
http://github.com/wibblymat
https://github.com/alexgraul
https://github.com/g6scheme
https://github.com/sindresorhus

Credits

None of this work would have been possible without the time and effort invested
by the other developers and authors in the community who helped contribute
to it. I would like to extend my thanks to:

o Derick and Marc (once again)
o Ryan Eastridge

o Jack Franklin

e David Amend

o Mike Ball

o Ugis Ozols

o Bjorn Ekengren

as well as our other excellent contributors that made this project possible.

Reading

I assume your level of knowledge about JavaScript goes beyond the basics and
as such certain topics such as object literals are skipped. If you need to learn
more about the language, I am happy to suggest:

¢ Eloquent JavaScript

o JavaScript: The Definitive Guide by David Flanagan (O’Reilly)

o Effective JavaScript by David Herman (Pearson)

« JavaScript: The Good Parts by Douglas Crockford (O’Reilly)

e Object-Oriented JavaScript by Stoyan Stefanov (Packt Publishing)

Introduction

Frank Lloyd Wright once said “You can’t make an architect. You can however
open the doors and windows toward the light as you see it.” In this book, I
hope to shed some light on how to improve the structure of your web appli-
cations, opening doors to what will hopefully be more maintainable, readable
applications in your future.

The goal of all architecture is to build something well; in our case, to craft
code that is enduring and delights both ourselves and the developers who will
maintain our code long after we are gone. We all want our architecture to be
simple, yet beautiful.

Modern JavaScript frameworks and libraries can bring structure and organi-
zation to your projects, establishing a maintainable foundation right from the

10

https://github.com/eastridge
https://github.com/jackfranklin
https://github.com/raDiesle
https://github.com/mdb
https://github.com/ugisozols
https://github.com/Ekengren
https://github.com/addyosmani/backbone-fundamentals/graphs/contributors
http://eloquentjavascript.net/
http://shop.oreilly.com/product/9780596805531.do
http://www.informit.com/store/effective-javascript-68-specific-ways-to-harness-the-9780321812186
http://shop.oreilly.com/product/9780596517748.do
http://www.amazon.com/Object-Oriented-Javascript-Stoyan-Stefanov/dp/1847194141

start. They build on the trials and tribulations of developers who have had to
work around callback chaos similar to that which you are facing now or may in
the near future.

When developing applications using just jQuery, the piece missing is a way to
structure and organize your code. It’s very easy to create a JavaScript app
that ends up a tangled mess of jQuery selectors and callbacks, all desperately
trying to keep data in sync between the HTML for your Ul, the logic in your
JavaScript, and calls to your API for data.

Without something to help tame the mess, you're likely to string together a
set of independent plugins and libraries to make up the functionality or build
everything yourself from scratch and have to maintain it yourself. Backbone
solves this problem for you, providing a way to cleanly organize code, separating
responsibilities into recognizable pieces that are easy to maintain.

In “Developing Backbone.js Applications,” I and a number of other experienced
authors will show you how to improve your web application structure using the
popular JavaScript library, Backbone.js

What Is MVC?

A number of modern JavaScript frameworks provide developers an easy path to
organizing their code using variations of a pattern known as MVC (Model-View-
Controller). MVC separates the concerns in an application into three parts:

e Models represent the domain-specific knowledge and data in an applica-
tion. Think of this as being a ‘type’ of data you can model — like a
User, Photo, or Todo note. Models can notify observers when their state
changes.

e Views typically constitute the user interface in an application (e.g.,
markup and templates), but don’t have to be. They observe Models, but
don’t directly communicate with them.

o Controllers handle input (e.g., clicks, user actions) and update Models.

Thus, in an MVC application, user input is acted upon by Controllers which
update Models. Views observe Models and update the user interface when
changes occur.

JavaScript MVC frameworks don’t always strictly follow the above pattern.
Some solutions (including Backbone.js) merge the responsibility of the Con-
troller into the View, while other approaches add additional components into
the mix.

For this reason we refer to such frameworks as following the MV* pattern; that
is, you're likely to have a Model and a View, but a distinct Controller might
not be present and other components may come into play.

11

What is Backbone.js?

Bﬂh. B Backbone.js x \§ l'i,
« C [Y backbonejs.org =
Backbone.js 0910
= GitHub Repositary
= Annatated Source
.

Introduction

. o Backbone.js gives structure to web applications by providing models with key-value
Events binding and custom events, collections with a rich APl of enumerable functions,
—on views with declarative event handling, and connects it all to your existing APl over a
-t RESTful JSON interface.
= trigger
- once
- listenTo The project is hosted on GitHub, and the annotated source code is available, as well
- stoplistening as an online test suite, an example application, a list of tutorials and a long list of real:
- Cxalog of Bulle-in Evems world projects that use Backbone. Backbone is available for use under the MIT
Model software license.
- extend
- constructor | initialize You can report bugs and discuss features on the GitHub issues paga, on Freenode
-get IRC in the #documentcloud channel, post questions to the Google Group, add pages
- set
- escape to the wiki or send tweets to @documentcloud.
- has
- unset -

[»] Joud.

= clear 12 80000 L .

Backbone.js is a lightweight JavaScript library that adds structure to your client-
side code. It makes it easy to manage and decouple concerns in your application,
leaving you with code that is more maintainable in the long term.

Developers commonly use libraries like Backbone.js to create single-page ap-
plications (SPAs). SPAs are web applications that load into the browser and
then react to data changes on the client side without requiring complete page
refreshes from the server.

Backbone is mature, popular, and has both a vibrant developer community
as well as a wealth of plugins and extensions available that build upon it. It
has been used to create non-trivial applications by companies such as Disqus,
Walmart, SoundCloud and LinkedIn.

Backbone focuses on giving you helpful methods for querying and manipulating
your data rather than re-inventing the JavaScript object model. It’s a library,
rather than a framework, that plays well with others and scales well, from
embedded widgets to large-scale applications.

As it’s small, there is also less your users have to download on mobile or slower
connections. The entire Backbone source can be read and understood in just a
few hours.

When Do I Need A JavaScript MVC Framework?

When building a single-page application using JavaScript, whether it involves
a complex user interface or is simply trying to reduce the number of HTTP

12

requests required for new Views, you will likely find yourself inventing many of
the pieces that make up an MV* framework.

At the outset, it isn’t terribly difficult to write your own application framework
that offers some opinionated way to avoid spaghetti code; however, to say that
it is equally as trivial to write something as robust as Backbone would be a
grossly incorrect assumption.

There’s a lot more that goes into structuring an application than tying together a
DOM manipulation library, templating, and routing. Mature MV* frameworks
typically include not only the pieces you would find yourself writing, but also
include solutions to problems you’ll find yourself running into later on down the
road. This is a time-saver that you shouldn’t underestimate the value of.

So, where will you likely need an MV* framework and where won’t you?

If you're writing an application where much of the heavy lifting for view ren-
dering and data manipulation will be occurring in the browser, you may find a
JavaScript MV* framework useful. Examples of applications that fall into this
category are GMail, NewsBlur and the LinkedIn mobile app.

These types of applications typically download a single payload containing all
the scripts, stylesheets, and markup users need for common tasks and then
perform a lot of additional behavior in the background. For instance, it’s trivial
to switch between reading an email or document to writing one without sending
a new page request to the server.

If, however, you're building an application that still relies on the server for
most of the heavy-lifting of page/view rendering and you’re just using a little
JavaScript or jQuery to make things more interactive, an MV* framework may
be overkill. There certainly are complex Web applications where the partial
rendering of views can be coupled with a single-page application effectively, but
for everything else, you may find yourself better sticking to a simpler setup.

Maturity in software (framework) development isn’t simply about how long a
framework has been around. It’s about how solid the framework is and more
importantly how well it’s evolved to fill its role. Has it become more effective
at solving common problems? Does it continue to improve as developers build
larger and more complex applications with it?

Why Consider Backbone.js?

Backbone provides a minimal set of data-structuring (Models, Collections) and
user interface (Views, URLs) primitives that are helpful when building dynamic
applications using JavaScript. It’s not opinionated, meaning you have the free-
dom and flexibility to build the best experience for your web application how
you see fit. You can either use the prescribed architecture it offers out of the
box or extend it to meet your requirements.

13

The library doesn’t focus on widgets or replacing the way you structure objects
- it just supplies you with utilities for manipulating and querying data in your
application. It also doesn’t prescribe a specific template engine - while you are
free to use the Micro-templating offered by Underscore.js (one of its dependen-
cies), views can bind to HTML constructed using your templating solution of
choice.

Looking at the large number of applications built with Backbone, it’s clear that
it scales well. Backbone also works quite well with other libraries, meaning you
can embed Backbone widgets in an application written with AngularJS, use it
with TypeScript, or just use an individual class (like Models) as a data backer
for simpler apps.

There are no performance drawbacks to using Backbone to structure your ap-
plication. It avoids run loops, two-way binding, and constant polling of your
data structures for updates and tries to keep things simple where possible. That
said, should you wish to go against the grain, you can of course implement such
things on top of it. Backbone won’t stop you.

With a vibrant community of plugin and extension authors, there’s a likelihood
that if you're looking to achieve some behavior Backbone is lacking, a com-
plementary project exists that works well with it. This is made simpler by
Backbone offering literate documentation of its source code, allowing anyone an
opportunity to easily understand what is going on behind the scenes.

Having been refined over two and a half years of development, Backbone is
a mature library that will continue to offer a minimalist solution for building
better web applications. I regularly use it and hope that you find it as useful
an addition to your toolbelt as I have.

Setting Expectations

The goal of this book is to create an authoritative and centralized repository
of information that can help those developing real-world apps with Backbone.
If you come across a section or topic which you think could be improved or
expanded on, please feel free to submit an issue (or better yet, a pull-request)
on the book’s GitHub site. It won’t take long and you’ll be helping other
developers avoid the problems you ran into.

Topics will include MVC theory and how to build applications using Backbone’s
Models, Views, Collections, and Routers. T’ll also be taking you through ad-
vanced topics like modular development with Backbone.js and AMD (via Re-
quireJS), solutions to common problems like nested views, how to solve routing
problems with Backbone and jQuery Mobile, and much more.

Here is a peek at what you will be learning in each chapter:

Chapter 2, Fundamentals traces the history of the MVC design pattern and

14

http://backbonejs.org/#examples
https://github.com/addyosmani/backbone-fundamentals

introduces how it is implemented by Backbone.js and other JavaScript frame-
works.

Chapter 3, Backbone Basics covers the major features of the Backbone.js core
and the technologies and techniques you will need to know in order to apply it.

Chapter 4, Exercise 1: Todos - Your First Backbone.js App takes you step-by-
step through development of a simple client-side Todo List application.

Chapter 5, Exercise 2: Book Library - Your First RESTful Backbone.js App
walks you through development of a Book Library application which persists its
model to a server using a REST API.

Chapter 6, Backbone Extensions describes Backbone.Marionette and Thorax,
two extension frameworks which add features to Backbone.js that are useful for
developing large-scale applications.

Chapter 7, Common Problems and Solutions reviews common issues you may

encounter when using Backbone.js and ways of addressing them.

Chapter 8, Modular Development looks at how AMD modules and RequireJS
can be used to modularize your code.

Chapter 9, Exercise 3: Todos - Your First Modular Backbone + RequireJS App
takes you through rewriting the app created in Exercise 1 to be more modular
with the help of RequireJS.

Chapter 10, Paginating Backbone Requests & Collections walks through how
to use the Backbone.Paginator plugin to paginate data for your Collections.

Chapter 11, Backbone Boilerplate And Grunt BBB introduces powerful tools
you can use to bootstrap a new Backbone.js application with boilerplate code.

Chapter 12, Mobile Applications addresses the issues that arise when using
Backbone with jQuery Mobile.

Chapter 13, Jasmine covers how to unit test Backbone code using the Jasmine
test framework.

Chapter 14, QUnit discusses how to use QUnit for unit testing.

Chapter 15, SinonJS discusses how to use SinonJS for unit testing your Back-
bone apps.

Chapter 16, Resources provides references to additional Backbone-related re-
sources.

Chapter 17, Conclusions wraps up our tour through the world of Backbone.js
development.

Chapter 18, Appendix returns to our design pattern discussion by contrasting
MVC with the Model-View-Presenter (MVP) pattern and examines how Back-
bone.js relates to both. A walkthrough of writing a Backbone-like library from
scratch and other topics are also covered.

15

Fundamentals

Design patterns are proven solutions to common development problems that
can help us improve the organization and structure of our applications. By
using patterns, we benefit from the collective experience of skilled developers
who have repeatedly solved similar problems.

Historically, developers creating desktop and server-class applications have had
a wealth of design patterns available for them to lean on, but it’s only been in the
past few years that such patterns have been applied to client-side development.

In this chapter, we’re going to explore the evolution of the Model-View-
Controller (MVC) design pattern and get our first look at how Backbone.js
allows us to apply this pattern to client-side development.

MVC

MVC is an architectural design pattern that encourages improved application
organization through a separation of concerns. It enforces the isolation of
business data (Models) from user interfaces (Views), with a third component
(Controllers) traditionally managing logic, user-input, and coordination of Mod-
els and Views. The pattern was originally designed by Trygve Reenskaug
while working on Smalltalk-80 (1979), where it was initially called Model-View-
Controller-Editor. MVC was described in depth in “Design Patterns: Elements
of Reusable Object-Oriented Software” (The “GoF” or “Gang of Four” book)
in 1994, which played a role in popularizing its use.

Smalltalk-80 MVC

It’s important to understand the issues that the original MVC pattern was
aiming to solve as it has changed quite heavily since the days of its origin. Back
in the 70’s, graphical user-interfaces were few and far between. An approach
known as Separated Presentation began to be used as a means to make a clear
division between domain objects which modeled concepts in the real world (e.g.,
a photo, a person) and the presentation objects which were rendered to the
user’s screen.

The Smalltalk-80 implementation of MVC took this concept further and had an
objective of separating out the application logic from the user interface. The idea
was that decoupling these parts of the application would also allow the reuse of
Models for other interfaces in the application. There are some interesting points
worth noting about Smalltalk-80’s MVC architecture:

¢ A Domain element was known as a Model and was ignorant of the user-
interface (Views and Controllers)

16

http://en.wikipedia.org/wiki/Trygve_Reenskaug
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612
http://martinfowler.com/eaaDev/uiArchs.html

o Presentation was taken care of by the View and the Controller, but there
wasn’t just a single View and Controller. A View-Controller pair was
required for each element being displayed on the screen and so there was
no true separation between them

e The Controller’s role in this pair was handling user input (such as key-
presses and click events) and doing something sensible with them

e The Observer pattern was used to update the View whenever the Model
changed

Developers are sometimes surprised when they learn that the Observer pattern
(nowadays commonly implemented as a Publish/Subscribe system) was included
as a part of MVC’s architecture decades ago. In Smalltalk-80’s MVC, the View
and Controller both observe the Model: anytime the Model changes, the Views
react. A simple example of this is an application backed by stock market data -
for the application to show real-time information, any change to the data in its
Model should result in the View being refreshed instantly.

Martin Fowler has done an excellent job of writing about the origins of MVC
over the years and if you are interested in further historical information about
Smalltalk-80’s MVC, I recommend reading his work.

MVC Applied To The Web

The web heavily relies on the HTTP protocol, which is stateless. This means
that there is not a constantly open connection between the browser and server;
each request instantiates a new communication channel between the two. Once
the request initiator (e.g. a browser) gets a response the connection is closed.
This fact creates a completely different context when compared to the one of
the operating systems on which many of the original MVC ideas were developed.
The MVC implementation has to conform to the web context.

An example of a server-side web application framework which tries to apply
MVC to the web context is Ruby On Rails.

At its core are the three MVC components we would expect - the Model, View
and Controller architecture. In Rails:

e Models represent the data in an application and are typically used to
manage rules for interacting with a specific database table. You generally
have one table corresponding to one model with much of your application’s
business logic living within these models.

e Views represent your user interface, often taking the form of HTML that
will be sent down to the browser. They’re used to present application data
to anything making requests from your application.

o Controllers offer the glue between models and views. Their responsibility
is to process requests from the browser, ask your models for data and then
supply this data to views so that they may be presented to the browser.

17

http://martinfowler.com/eaaDev/uiArchs.html
http://guides.rubyonrails.org/

lusers
@users @ User.all
View {— Controller {— Model & Data Source
(e.g database, API etc)
HTML ﬂ
Browser

Although there’s a clear separation of concerns that is MVC-like in Rails, it is
actually using a different pattern called Model2. One reason for this is that
Rails does not notify views from the model or controllers - it just passes model
data directly to the view.

That said, even for the server-side workflow of receiving a request from a URL,
baking out an HTML page as a response and separating your business logic
from your interface has many benefits. In the same way that keeping your UI
cleanly separate from your database records is useful in server-side frameworks,
it’s equally as useful to keep your UI cleanly separated from your data models
in JavaScript (as we will read more about shortly).

Other server-side implementations of MVC (such as the PHP Zend frame-
work) also implement the Front Controller design pattern. This pattern
layers an MVC stack behind a single point of entry. This single point
of entry means that all HTTP requests (e.g., http://www.example.com,
http://www.example.com/whichever-page/, etc.) are routed by the server’s
configuration to the same handler, independent of the URI.

When the Front Controller receives an HTTP request it analyzes it and decides
which class (Controller) and method (Action) to invoke. The selected Controller
Action takes over and interacts with the appropriate Model to fulfill the request.
The Controller receives data back from the Model, loads an appropriate View,
injects the Model data into it, and returns the response to the browser.

For example, let’s say we have our blog on www.example. com and we want to edit
an article (with id=43) and request http://www.example.com/article/edit/43:

On the server side, the Front Controller would analyze the URL and invoke the
Article Controller (corresponding to the /article/ part of the URI) and its Edit
Action (corresponding to the /edit/ part of the URI). Within the Action there
would be a call to, let’s say, the Articles Model and its Articles: :getEntry (43)

18

http://en.wikipedia.org/wiki/Model2
http://zend.com
http://en.wikipedia.org/wiki/Front_Controller_pattern

method (43 corresponding to the /43 at the end of the URI). This would return
the blog article data from the database for editing. The Article Controller would
then load the (article/edit) View which would include logic for injecting the
article’s data into a form suitable for editing its content, title, and other (meta)
data. Finally, the resulting HTML response would be returned to the browser.

As you can imagine, a similar flow is necessary with POST requests after
we press a save button in a form. The POST action URI would look like
/article/save/43. The request would go through the same Controller,
but this time the Save Action would be invoked (due to the /save/ URI
chunk), the Articles Model would save the edited article to the database
with Articles::saveEntry(43), and the browser would be redirected to the
/article/edit/43 URI for further editing.

Finally, if the user requested http://www.example.com/ the Front Controller
would invoke the default Controller and Action; e.g., the Index Controller and
its Index action. Within Index Action there would be a call to the Articles model
and its Articles: :getLastEntries(10) method which would return the last
10 blog posts. The Controller would load the blog/index View which would
have basic logic for listing the blog posts.

The picture below shows this typical HT TP request/response lifecycle for server-
side MVC:

Entry point
HTTP Request Front Controller
(does routing)

]

Data Source
Controller ﬁ Model ﬁ (e.g. database, API etc)

HTTP Response View

The Server receives an HTTP request and routes it through a single entry point.
At that entry point, the Front Controller analyzes the request and based on it
invokes an Action of the appropriate Controller. This process is called routing.
The Action Model is asked to return and/or save submitted data. The Model
communicates with the data source (e.g., database or API). Once the Model
completes its work it returns data to the Controller which then loads the ap-
propriate View. The View executes presentation logic (loops through articles
and prints titles, content, etc.) using the supplied data. In the end, an HTTP
response is returned to the browser.

19

Client-Side MVC & Single Page Apps

Several studies have confirmed that improvements to latency can have a positive
impact on the usage and user engagement of sites and apps. This is at odds with
the traditional approach to web app development which is very server-centric,
requiring a complete page reload to move from one page to the next. Even with
heavy caching in place, the browser still has to parse the CSS, JavaScript, and
HTML and render the interface to the screen.

In addition to resulting in a great deal of duplicated content being served back
to the user, this approach affects both latency and the general responsiveness
of the user experience. A trend to improve perceived latency in the past few
years has been to move towards building Single Page Applications (SPAs) - apps
which after an initial page load are able to handle subsequent navigations and
requests for data without the need for a complete reload.

When a user navigates to a new view, additional content required for the view is
requested using an XHR (XMLHttpRequest), typically communicating with a
server-side REST APT or endpoint. Ajax (Asynchronous JavaScript and XML)
makes communication with the server asynchronous so that data is transferred
and processed in the background, allowing the user to work on other parts of a
page without interaction. This improves usability and responsiveness.

SPAs can also take advantage of browser features like the History API to up-
date the address seen in the location bar when moving from one view to another.
These URLs also make it possible to bookmark and share a particular applica-
tion state, without the need to navigate to completely new pages.

The typical SPA consists of smaller pieces of interface representing logical enti-
ties, all of which have their own UI, business logic and data. A good example is
a basket in a shopping web application which can have items added to it. This
basket might be presented to the user in a box in the top right corner of the
page (see the picture below):

The basket and its data are presented in HTML. The data and its associated
View in HTML changes over time. There was a time when we used jQuery (or
a similar DOM manipulation library) and a bunch of Ajax calls and callbacks
to keep the two in sync. That often produced code that was not well-structured
or easy to maintain. Bugs were frequent and perhaps even unavoidable.

The need for fast, complex, and responsive Ajax-powered web applications de-
mands replication of a lot of this logic on the client side, dramatically increasing
the size and complexity of the code residing there. Eventually this has brought
us to the point where we need MVC (or a similar architecture) implemented on
the client side to better structure the code and make it easier to maintain and
further extend during the application life-cycle.

Through evolution and trial and error, JavaScript developers have harnessed
the power of the traditional MVC pattern, leading to the development of several
MVC-inspired JavaScript frameworks, such as Backbone.js.

20

http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://en.wikipedia.org/wiki/Ajax_(programming)
http://diveintohtml5.info/history.html

Header

ltem 1 35.00
ltem 40 ltem2 13.50
Total 48.50

ftem 41

ftem 42

Footer

Client-Side MVC - Backbone Style

Let’s take our first look at how Backbone.js brings the benefits of MVC to client-
side development using a Todo application as our example. We will build on
this example in the coming chapters when we explore Backbone’s features but
for now we will just focus on the core components’ relationships to MVC.

Our example will need a div element to which we can attach a list of Todo’s. It
will also need an HTML template containing a placeholder for a Todo item title
and a completion checkbox which can be instantiated for Todo item instances.
These are provided by the following HTML:

<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<title></title>
<meta name="description" content="">
</head>
<body>
<div id="todo">
</div>

21

<script type="text/template" id="item-template">
<div>
<input id="todo_complete" type='"checkbox" <Y%= completed 7 'checked="checked"'
<= title %>
</div>
</script>
<script src="jquery.js"></script>
<script src="underscore.js"></script>
<script src="backbone.js"></script>
<script src="demo.js"></script>
</body>
</html>

In our Todo application (demo.js), Backbone Model instances are used to hold
the data for each Todo item:

// Define a Todo Model
var Todo = Backbone.Model.extend({
// Default todo attribute values

defaults: {
title: '',
completed: false
¥
b;

// Instantiate the Todo Model with a title, with the completed attribute
// defaulting to false
var myTodo = new Todo({

title: 'Check attributes property of the logged models in the console.'

b;

Our Todo Model extends Backbone.Model and simply defines default values for
two data attributes. As you will discover in the upcoming chapters, Backbone
Models provide many more features but this simple Model illustrates that first
and foremost a Model is a data container.

Each Todo instance will be rendered on the page by a TodoView:
var TodoView = Backbone.View.extend ({
tagName: '1i',

// Cache the template function for a single item.
todoTpl: _.template($('#item-template').html()),

22

events: {
'dblclick label': 'edit',
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close'

+s

// Called when the view ts first created

initialize: function() {
this.$el = $('#todo');
// Later we'll look at:
// this.listenTo(someCollection, 'all', this.render);
// but you can actually run this exzample right now by
// calling todoView.render();

1},

// Re-render the titles of the todo item.

render: function() {
this.$el.html(this.todoTpl(this.model.toJSON()));
// $el here is a reference to the jQuery element
// assoctated with the view, todoTpl is a reference
// to an Underscore template and toJSON() returns an
// object containing the model's attributes
// Altogether, the statement is replacing the HTML of
// a DOM element with the result of instantiating a
// template with the model's attributes.
this.input = this.$('.edit');
return this;

1,

edit: function() {
// executed when todo label is double clicked
1,

close: function() {
// ezecuted when todo loses focus

1,

updateOnEnter: function(e) {
// exzecuted on each keypress when in todo edit mode,
// but we'll wait for enter to get in action
}
s

// create a view for a todo
var todoView = new TodoView({model: myTodol});

23

TodoView is defined by extending Backbone.View and is instantiated with an
associated Model. In our example, the render () method uses a template to
construct the HTML for the Todo item which is placed inside an li element.
Each call to render () will replace the content of the li element using the current
Model data. Thus, a View instance renders the content of a DOM element using
the attributes of an associated Model. Later we will see how a View can bind
its render () method to Model change events, causing the View to re-render
whenever the Model changes.

So far, we have seen that Backbone.Model implements the Model aspect of
MVC and Backbone.View implements the View. However, as we noted earlier,
Backbone departs from traditional MVC when it comes to Controllers - there
is no Backbone.Controller!

Instead, the Controller responsibility is addressed within the View. Recall that
Controllers respond to requests and perform appropriate actions which may
result in changes to the Model and updates to the View. In a single-page ap-
plication, rather than having requests in the traditional sense, we have events.
Events can be traditional browser DOM events (e.g., clicks) or internal applica-
tion events such as Model changes.

In our TodoView, the events attribute fulfills the role of the Controller config-
uration, defining how events occurring within the View’s DOM element are to
be routed to event-handling methods defined in the View.

While in this instance events help us relate Backbone to the MVC pattern,
we will see them playing a much larger role in our SPA applications. Back-
bone.Event is a fundamental Backbone component which is mixed into both
Backbone.Model and Backbone.View, providing them with rich event manage-
ment capabilities. Note that the traditional controller role (Smalltalk-80 style)
is performed by the template, not by the Backbone.View.

This completes our first encounter with Backbone.js. The remainder of this
book will explore the many features of the framework which build on these
simple constructs. Before moving on, let’s take a look at common features of
JavaScript MV* frameworks.

Implementation Specifics

An SPA is loaded into the browser using a normal HTTP request and response.
The page may simply be an HTML file, as in our example above, or it could be
a view constructed by a server-side MVC implementation.

Once loaded, a client-side Router intercepts URLs and invokes client-side logic
in place of sending a new request to the server. The picture below shows typical
request handling for client-side MVC as implemented by Backbone:

URL routing, DOM events (e.g., mouse clicks), and Model events (e.g., attribute
changes) all trigger handling logic in the View. The handlers update the DOM

24

HTTP Request Router

DOM updates ﬂ model updates syncs
P Collection Of Data Source
Dom <:> View C::> Models <::> (e.g database, API etc)
DOM events model events

and Models, which may trigger additional events. Models are synced with Data
Sources which may involve communicating with back-end servers.

Models

e The built-in capabilities of Models vary across frameworks; however, it’s
common for them to support validation of attributes, where attributes
represent the properties of the Model, such as a Model identifier.

e When using Models in real-world applications we generally also need a way
of persisting Models. Persistence allows us to edit and update Models with
the knowledge that their most recent states will be saved somewhere, for
example in a web browser’s localStorage data-store or synchronized with
a database.

e A Model may have multiple Views observing it for changes. By observing
we mean that a View has registered an interest in being informed whenever
an update is made to the Model. This allows the View to ensure that
what is displayed on screen is kept in sync with the data contained in
the model. Depending on your requirements, you might create a single
View displaying all Model attributes, or create separate Views displaying
different attributes. The important point is that the Model doesn’t care
how these Views are organized, it simply announces updates to its data
as necessary through the framework’s event system.

e It is not uncommon for modern MVC/MV* frameworks to provide a means
of grouping Models together. In Backbone, these groups are called Col-
lections. Managing Models in groups allows us to write application logic
based on notifications from the group when a Model within the group
changes. This avoids the need to manually observe individual Model in-
stances. We’ll see this in action later in the book. Collections are also
useful for performing any aggregate computations across more than one
model.

25

Views

o Users interact with Views, which usually means reading and editing Model
data. For example, in our Todo application, Todo Model viewing happens
in the user interface in the list of all Todo items. Within it, each Todo
is rendered with its title and completed checkbox. Model editing is done
through an “edit” View where a user who has selected a specific Todo
edits its title in a form.

¢ We define a render() utility within our View which is responsible for
rendering the contents of the Model using a JavaScript templating engine
(provided by Underscore.js) and updating the contents of our View, refer-
enced by this.$el.

e We then add our render () callback as a Model subscriber, so the View
can be triggered to update when the Model changes.

e You may wonder where user interaction comes into play here. When users
click on a Todo element within the View, it’s not the View’s responsibility
to know what to do next. A Controller makes this decision. In Backbone,
this is achieved by adding an event listener to the Todo’s element which
delegates handling of the click to an event handler.

Templating

In the context of JavaScript frameworks that support MVC/MV*| it is worth
looking more closely at JavaScript templating and its relationship to Views.

It has long been considered bad practice (and computationally expensive) to
manually create large blocks of HTML markup in-memory through string con-
catenation. Developers using this technique often find themselves iterating
through their data, wrapping it in nested divs and using outdated techniques
such as document .write to inject the ‘template’ into the DOM. This approach
often means keeping scripted markup inline with standard markup, which can
quickly become difficult to read and maintain, especially when building large
applications.

JavaScript templating libraries (such as Mustache or Handlebars.js) are often
used to define templates for Views as HTML markup containing template vari-
ables. These template blocks can be either stored externally or within script
tags with a custom type (e.g ‘text/template’). Variables are delimited using a
variable syntax (e.g <%= title %> for Underscore and {{title}} for Handle-
bars).

JavaScript template libraries typically accept data in a number of formats, in-
cluding JSON; a serialisation format that is always a string. The grunt work of
populating templates with data is generally taken care of by the framework itself.
This has several benefits, particularly when opting to store templates externally
which enables applications to load templates dynamically on an as-needed basis.

26

Let’s compare two examples of HTML templates. One is implemented using the
popular Handlebars.js library, and the other uses Underscore’s ‘microtemplates’.

Handlebars.js:

<div class="view">
<input class="toggle" type="checkbox" {{#if completed}} "checked" {{/if}}>
<label>{{title}}</label>
<button class="destroy'"></button>

</div>

<input class="edit" value="{{titlel}}">

Underscore.js Microtemplates:

<div class="view">
<input class="toggle" type="checkbox" <= completed ? 'checked' : '' %>>
<label><%= title %></label>
<button class="destroy"></button>

</div>

<input class="edit" value="<J= title %>">

You may also use double curly brackets (i.e {{}}) (or any other tag you feel
comfortable with) in Microtemplates. In the case of curly brackets, this can be
done by setting the Underscore templateSettings attribute as follows:

_.templateSettings = { interpolate : /\{\{(.+?)\}\}/g };

A note on Navigation and State

It is also worth noting that in classical web development, navigating between
independent views required the use of a page refresh. In single-page JavaScript
applications, however, once data is fetched from a server via Ajax, it can be
dynamically rendered in a new view within the same page. Since this doesn’t
automatically update the URL, the role of navigation thus falls to a “router”,
which assists in managing application state (e.g., allowing users to bookmark
a particular view they have navigated to). As routers are neither a part of
MVC nor present in every MVC-like framework, I will not be going into them
in greater detail in this section.

Controllers In our Todo application, a Controller would be responsible for
handling changes the user made in the edit View for a particular Todo, updating
a specific Todo Model when a user has finished editing.

It’s with Controllers that most JavaScript MVC frameworks depart from the
traditional interpretation of the MVC pattern. The reasons for this vary, but in

27

my opinion, JavaScript framework authors likely initially looked at server-side
interpretations of MVC (such as Ruby on Rails), realized that the approach
didn’t translate 1:1 on the client-side, and so re-interpreted the C in MVC to
solve their state management problem. This was a clever approach, but it can
make it hard for developers coming to MVC for the first time to understand
both the classical MVC pattern and the “proper” role of Controllers in other
JavaScript frameworks.

So does Backbone.js have Controllers? Not really. Backbone’s Views typically
contain “Controller” logic, and Routers are used to help manage application
state, but neither are true Controllers according to classical MVC.

In this respect, contrary to what might be mentioned in the official documen-
tation or in blog posts, Backbone isn’t truly an MVC framework. It’s in fact
better to see it a member of the MV* family which approaches architecture
in its own way. There is of course nothing wrong with this, but it is impor-
tant to distinguish between classical MVC and MV* should you be relying on
discussions of MVC to help with your Backbone projects.

What does MVC give us?

To summarize, the MVC pattern helps you keep your application logic separate
from your user interface, making it easier to change and maintain both. Thanks
to this separation of logic, it is more clear where changes to your data, interface,
or business logic need to be made and for what your unit tests should be written.

Delving Deeper into MVC

Right now, you likely have a basic understanding of what the MVC pattern
provides, but for the curious, we’ll explore it a little further.

The GoF (Gang of Four) do not refer to MVC as a design pattern, but rather
consider it a “set of classes to build a user interface.” In their view, it’s ac-
tually a variation of three other classical design patterns: the Observer (Pub-
lish/Subscribe), Strategy, and Composite patterns. Depending on how MVC
has been implemented in a framework, it may also use the Factory and Decorator
patterns. I've covered some of these patterns in my other free book, “JavaScript
Design Patterns For Beginners” if you would like to read about them further.

As we’ve discussed, Models represent application data, while Views handle what
the user is presented on screen. As such, MVC relies on Publish/Subscribe for
some of its core communication (something that surprisingly isn’t covered in
many articles about the MVC pattern). When a Model is changed it “pub-
lishes” to the rest of the application that it has been updated. The “subscriber,”
generally a Controller, then updates the View accordingly. The observer-viewer

28

nature of this relationship is what facilitates multiple Views being attached to
the same Model.

For developers interested in knowing more about the decoupled nature of MVC
(once again, depending on the implementation), one of the goals of the pattern
is to help define one-to-many relationships between a topic and its observers.
When a topic changes, its observers are updated. Views and Controllers have a
slightly different relationship. Controllers facilitate Views’ responses to different
user input and are an example of the Strategy pattern.

Summary

Having reviewed the classical MVC pattern, you should now understand how
it allows developers to cleanly separate concerns in an application. You should
also now appreciate how JavaScript MVC frameworks may differ in their inter-
pretation of MVC, and how they share some of the fundamental concepts of the
original pattern.

When reviewing a new JavaScript MVC/MV* framework, remember - it can
be useful to step back and consider how it’s opted to approach Models, Views,
Controllers or other alternatives, as this can better help you understand how
the framework is intended to be used.

Further reading

If you are interested in learning more about the variation of MVC which Back-
bone.js uses, please see the MVP (Model-View-Presenter) section in the ap-
pendix.

Fast facts

Backbone.js

e Core components: Model, View, Collection, Router. Enforces its own
flavor of MV*

¢ Event-driven communication between Views and Models. As we’ll see,
it’s relatively straight-forward to add event listeners to any attribute in
a Model, giving developers fine-grained control over what changes in the
View

e Supports data bindings through manual events or a separate Key-value
observing (KVO) library

e Support for RESTful interfaces out of the box, so Models can be easily
tied to a backend

o Extensive eventing system. It’s trivial to add support for pub/sub in
Backbone

29

http://lostechies.com/derickbailey/2011/07/19/references-routing-and-the-event-aggregator-coordinating-views-in-backbone-js/

¢ Prototypes are instantiated with the new keyword, which some developers
prefer

e Agnostic about templating frameworks, however Underscore’s micro-
templating is available by default

e (Clear and flexible conventions for structuring applications. Backbone
doesn’t force usage of all of its components and can work with only those
needed

Used by

Disqus

Disqus chose Backbone.js to power the latest version of their commenting widget.
They felt it was the right choice for their distributed web app, given Backbone’s
small footprint and ease of extensibility.

DIsSQUS

Elevating the discussion, anywhere
on the web.

Gt this oo your Site

f

3 comments & a2stan | -
/t Pt s BERD0AS I your EamEl .

Poat 53 Srangar

Docuion = Commurnty My Diacpn @

Wirriln Chaf cll - 7 =i age

1 i e ot Pl 8 et wiBS0r AATGNGEY Uk, My NG,
WhATS oL RAMe Snd what are you deing Bten?

Toa w - Pugly S

E Barifyn Moneod - swutes w
VAt jurst pErasl? Wihaare: mre e Aty

Tim v - gy o+ B

D ChinFreshey o T g - paes
| P 0 T Wb BT WO T
B = o Paphy - Share

Khan Academy

Offering a web app that aims to provide free world-class education to anyone
anywhere, Khan use Backbone to keep their frontend code both modular and
organized.

MetaLab

30

Enerciie Duskboard | Kha

ol (=} wrwKhanacademy.oeg /e x

KHANACADEMY

ledge M

I'll do it

W11 shills)

sx, (411 skillg)

COACH VOLUNTEER ABOUT

31

MetaLab created Flow, a task management app for teams using Backbone.
Their workspace uses Backbone to create task views, activities, accounts, tags
and more.

Lo i) Floss = Tadhs]
@Fow res [B ¥ = CETTT—
roCu b CET TO KNOW FLOW = THE BASSCS

B iax T CET TO KNOW FLOW = TEAMWORK

-

1 Upeoming
M Flagged L3 Croatn and delegaie a fask o one of your contacs L
2| Delegated
A SO CONLREE B T + Meniu In T S0ebsr
i T @
FreeT— Croatn a new project and invile some coniacs

P CIT TD KNOW FLOW > PRO TIPS

T DOCIMINTCLOUD

¥ LT TO KNOW FLOW
The Baia Fitrar, using DocumaniCious’s Backhens [fon) (st () (i [B B W
Teammeorh
Mo Tigs
DocumeraCisud Flow, using DocumentClaud's Backbane
DocumentCiosd
March 25, 2011
jasen | [samuel | ey
TASK LTS 1
L A — LT Ntk PTG
Followed Tasks
Unrrad Tasks
Unisgged Tazke

Complened Tashi

oo«

Walmart Mobile

Walmart chose Backbone to power their mobile web applications, creating two
new extension frameworks in the process - Thorax and Lumbar. We’ll be dis-
cussing both of these later in the book.

AirBnb

Airbnb developed their mobile web app using Backbone and now use it across
many of their products.

Code School

Code School’s course challenge app is built from the ground up using Backbone,
taking advantage of all the pieces it has to offer: routers, collections, models
and complex event handling.

Backbone Basics

In this section, you'll learn the essentials of Backbone’s models, views, collec-
tions, events, and routers. This isn’t by any means a replacement for the official

32

Search Results | Hem Details

PlayStation 3 320GB Uncharted 3 Bundle

33

Cl|

MYE Wacation Rentaly And Rooma For Raed = Airbnb
BOST Bappont -

|@no
() Bagiah - (T} USD - | L your spacs.

Aealipl remnvwens s togin W wenLen

NYC
Py s o ac
ey ¥ g
= LE R T
@ "‘I

fecaain '
e
.\-.,.Mg 3
(4

R e
N T - st

frvernd

[510] £ '

Eant "lige

U Wimea St

Kité Beach Cab

wbo Flata , Do

Wiaratuy

34

800 Code Schood = CoffeeScripn

Given the code below, change the greet function so that
it accepts two arguments instead of just one. It shoukd
alert both arguments, separated by a single white space.

(camsaa) () ()

I e

1. When dé<laring functions that Lk Mgumonts, you Mist use panns

myFanction = (argl; argd) =-» myOtherPanctionfargl: argl)

2. When caling hunciions thal Eake anguments, you can omil the parens:

myPanction = (argl, arg2) = eyp(therPanction argl, azgk

Submit Code

35

nalpof
3 s &
- -

Lovel1 | Chasgs Livel

Waarialis Aasagremont
ForBor

Furenes 8

Furtoe 1
Forcson W

RematchVideo (D

Fheafrats @
Demnload Sthides 88
Domabadlida 88

documentation, but it will help you understand many of the core concepts be-
hind Backbone before you start building applications using it.

Getting set up

Before we dive into more code examples, let’s define some boilerplate markup
you can use to specify the dependencies Backbone requires. This boilerplate
can be reused in many ways with little to no alteration and will allow you to
run code from examples with ease.

You can paste the following into your text editor of choice, replacing the com-
mented line between the script tags with the JavaScript from any given example:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<body>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min. js"></script>
<script src="http://documentcloud.github.com/underscore/underscore-min. js"></script>
<script src="http://documentcloud.github.com/backbone/backbone-min.js"></script>
<script>

// Your code goes here
</script>
</body>
</html>

You can then save and run the file in your browser of choice, such as Chrome or
Firefox. Alternatively, if you prefer working with an online code editor, jsFiddle
and jsBin versions of this boilerplate are also available.

Most examples can also be run directly from within the console in your browser’s
developer tools, assuming you’ve loaded the boilerplate HTML page so that
Backbone and its dependencies are available for use.

For Chrome, you can open up the DevTools via the Chrome menu in the top
right hand corner: select “Tools > Developer Tools” or alternatively use the
Control + Shift + I shortcut on Windows/Linux or Command + Option + I
on Mac.

Next, switch to the Console tab, from where you can enter in and run any piece
of JavaScript code by hitting the return key. You can also use the Console as a
multi-line editor using the Shift + Enter shortcut on Windows, or Ctrl + Enter
shortcut on Mac to move from the end of one line to the start of another.

36

http://jsfiddle.net/jnf8B/
http://jsbin.com/iwiwox/1/edit

@ Elements ‘\.; Resources @Nﬂwork U2 Sources @T\meline C Profiles gﬁmdils | ECunsulu

» var Meal = Backbone.Model.extend({

defaults: {
"appetizer": ‘“caesar salad",
“entree": “hamburger",
"dessert": "cheesecake"
}
1
var Lunch = new Meal({ appetizer: "soup", entree: “pizza" });

Lunch

¥child {cid: "c4", attributes: Object, _changing: false, _previousAttributes: Object, changed: Object.}
_changing: false
_pending: false
» _previousAttributes: Object
vattributes: Object
appetizer: "soup"
B = @ & <topframe>v (L) | Errors Warnings Logs Debug &

Models

Backbone models contain data for an application as well as the logic around this
data. For example, we can use a model to represent the concept of a todo item
including its attributes like title (todo content) and completed (current state of
the todo).

Models can be created by extending Backbone.Model as follows:

var Todo = Backbone.Model.extend({});

// We can then create our own concrete instance of a (Todo) model
// with no values at all:

var todol = new Todo();

// Following logs: {}

console.log(JSON.stringify(todol));

// or with some arbitrary data:

var todo2 = new Todo({
title: 'Check the attributes of both model instances in the console.',
completed: true

B

// Following logs: {"title":"Check the attributes of both model instances in the console
console.log(JSON.stringify(todo2));

Initialization The initialize() method is called when a new instance of a
model is created. Its use is optional; however you'll see why it’s good practice
to use it below.

var Todo = Backbone.Model.extend({
initialize: function(){
console.log('This model has been initialized.');

}

37

B

var myTodo = new Todo();
// Logs: This model has been initialized.

Default values

There are times when you want your model to have a set of default values (e.g.,
in a scenario where a complete set of data isn’t provided by the user). This can
be set using a property called defaults in your model.

var Todo = Backbone.Model.extend({
// Default todo attribute values

defaults: {
title: "',
completed: false
}
s

// Now we can create our concrete instance of the model
// with default values as follows:
var todol = new Todo();

// Following logs: {"title":"","completed": falsel}
console.log(JSON.stringify(todol));

// Or we could instantiate it with some of the attributes (e.g., with custom title):
var todo2 = new Todo({
title: 'Check attributes of the logged models in the console.'

B

// Following logs: {"title":"Check attributes of the logged models in the comnsole.","com
console.log(JSON.stringify(todo2));

// Or override all of the default attributes:

var todo3 = new Todo({
title: 'This todo is done, so take no action on this one.',
completed: true

b;

// Following logs: {"title":"This todo is done, so take nmo action on this one.","complet
console.log(JSON.stringify(todo3));

Getters & Setters Model.get()

Model.get () provides easy access to a model’s attributes.

38

var Todo = Backbone.Model.extend ({
// Default todo attribute walues

defaults: {
title: '',
completed: false
¥
b;

var todol = new Todo();
console.log(todol.get('title')); // empty string
console.log(todol.get('completed')); // false

var todo2 = new Todo({
title: "Retrieved with model's get() method.",
completed: true
3
console.log(todo2.get('title')); // Retrieved with model's get() method.
console.log(todo2.get('completed')); // true

If you need to read or clone all of a model’s data attributes, use its toJSON()
method. This method returns a copy of the attributes as an object (not a JSON
string despite its name). (When JSON.stringify() is passed an object with
a toJSON() method, it stringifies the return value of toJSON() instead of the
original object. The examples in the previous section took advantage of this
feature when they called JSON.stringify() to log model instances.)

var Todo = Backbone.Model.extend({
// Default todo attribute values

defaults: {
title: '',
completed: false
}
b

var todol = new Todo();

var todolAttributes = todol.toJSON();

// Following logs: {"title":"","completed":falsel}
console.log(todolAttributes);

var todo2 = new Todo({
title: "Try these examples and check results in console.",
completed: true

B

// logs: {"title":"Try these exzamples and check results in console.","completed":truel}
console.log(todo2.toJSONQ)) ;

39

Model.set()

Model.set () sets a hash containing one or more attributes on the model. When
any of these attributes alter the state of the model, a “change” event is triggered
on it. Change events for each attribute are also triggered and can be bound to
(e.g. change:name, change:age).

var Todo = Backbone.Model.extend({
// Default todo attribute values

defaults: {
title: '',
completed: false
}
s

// Setting the value of attributes via instantiation
var myTodo = new Todo ({
title: "Set through instantiation."
s
console.log('Todo title: ' + myTodo.get('title')); // Todo title: Set through instantiat
console.log('Completed: ' + myTodo.get('completed')); // Completed: false

// Set single attribute wvalue at a time through Model.set():

myTodo.set("title", "Title attribute set through Model.set().");

console.log('Todo title: ' + myTodo.get('title')); // Todo title: Title attribute set th
console.log('Completed: ' + myTodo.get('completed')); // Completed: false

// Set map of attributes through Model.set():
myTodo.set ({
title: "Both attributes set through Model.set().",
completed: true
ION
console.log('Todo title: ' + myTodo.get('title')); // Todo title: Both attributes set th
console.log('Completed: ' + myTodo.get('completed')); // Completed: true

Direct access

Models expose an .attributes attribute which represents an internal hash
containing the state of that model. This is generally in the form of a JSON
object similar to the model data you might find on the server but can take other
forms.

Setting values through the .attributes attribute on a model bypasses triggers
bound to the model.

Passing {silent:true} on change doesn’t delay individual "change:attr"
events. Instead they are silenced entirely:

40

var Person = new Backbone.Model();

Person.on("change:name", function() { console.log('Name changed'); });
Person.set ({name: 'Andrew'});

// log entry: Name changed

Person.set({name: 'Jeremy'}, {silent: truel});
// no log entry

console.log(Person.hasChanged("name")) ;
// true: change was recorded
console.log(Person.hasChanged(null));

// true: something (anything) has changed

Remember where possible it is best practice to use Model.set (), or direct
instantiation as explained earlier.

Listening for changes to your model If you want to receive a notifica-
tion when a Backbone model changes you can bind a listener to the model for
its change event. A convenient place to add listeners is in the initialize()
function as shown below:

var Todo = Backbone.Model.extend({
// Default todo attribute wvalues

defaults: {
title: '',
completed: false
},

initialize: function(){
console.log('This model has been initialized.');
this.on('change', function(){
console.log('- Values for this model have changed.');
s
}
s

var myTodo = new Todo();

myTodo.set('title', 'The listener is triggered whenever an attribute value changes.');
console.log('Title has changed: ' + myTodo.get('title'));

myTodo.set('completed', true);

console.log('Completed has changed: ' + myTodo.get('completed'));

myTodo.set ({

41

title: 'Changing more than one attribute at the same time only triggers the listener o
completed: true

b;

// Above logs:

// This model has been initialized.

// — Values for this model have changed.

// Title has changed: The listener ts triggered whenever an attribute value changes.
// - Values for this model have changed.

// Completed has changed: true

// = Values for this model have changed.

You can also listen for changes to individual attributes in a Backbone model. In
the following example, we log a message whenever a specific attribute (the title
of our Todo model) is altered.

var Todo = Backbone.Model.extend({
// Default todo attribute values

defaults: {
title: '',
completed: false
+s

initialize: function(){
console.log('This model has been initialized.');
this.on('change:title', function(){
console.log('Title value for this model has changed.');
3
1,

setTitle: function(newTitle)q{
this.set({ title: newTitle });
}
b;

var myTodo = new Todo();

// Both of the following changes trigger the listener:
myTodo.set('title', 'Check what\'s logged.');

myTodo.setTitle('Go fishing on Sunday.');

// But, this change type ts not observed, so no listener ts triggered:

myTodo.set('completed', true);
console.log('Todo set as completed: ' + myTodo.get('completed'));

42

// Above logs:

// This model has been initialized.

// Title value for this model has changed.
// Title value for this model has changed.
// Todo set as completed: true

Validation Backbone supports model validation through model.validate(),
which allows checking the attribute values for a model prior to setting them. By
default, validation occurs when the model is persisted using the save () method
or when set () is called if {validate:true} is passed as an argument.

var Person = new Backbone.Model ({name: 'Jeremy'});

// Validate the model name
Person.validate = function(attrs) {
if (lattrs.name) {
return 'I need your name';
}
};

// Change the mname

Person.set ({name: 'Samuel'});
console.log(Person.get('name'));
// 'Samuel’

// Remove the name attribute, force wvalidation
Person.unset('name', {validate: true});

// false

Above, we also use the unset () method, which removes an attribute by deleting
it from the internal model attributes hash.

Validation functions can be as simple or complex as necessary. If the attributes
provided are valid, nothing should be returned from .validate(). If they are
invalid, an error value should be returned instead.

Should an error be returned:

e Aninvalid event will be triggered, setting the validationError property
on the model with the value which is returned by this method.

e .save() will not continue and the attributes of the model will not be
modified on the server.

A more complete validation example can be seen below:

43

var Todo = Backbone.Model.extend ({
defaults: {
completed: false
},

validate: function(attributes){
if (attributes.title === undefined){
return "Remember to set a title for your todo.";
b
1,

initialize: function(){
console.log('This model has been initialized.');
this.on("invalid", function(model, error){
console.log(error);
s
}
s

var myTodo = new Todo();
myTodo.set('completed', true, {validate: truel}); // logs: Remember to set a title for yo
console.log('completed: ' + myTodo.get('completed')); // completed: false

Note: the attributes object passed to the validate function represents what
the attributes would be after completing the current set () or save(). This ob-
ject is distinct from the current attributes of the model and from the parameters
passed to the operation. Since it is created by shallow copy, it is not possible
to change any Number, String, or Boolean attribute of the input within the
function, but it is possible to change attributes in nested objects.

An example of this (by @fivetanley) is available here.

Note also, that validation on initialization is possible but of limited use, as the
object being constructed is internally marked invalid but nevertheless passed
back to the caller (continuing the above example):

var emptyTodo = new Todo(null, {validate: truel});
console.log(emptyTodo.validationError);

Views

Views in Backbone don’t contain the HTML markup for your application; they
contain the logic behind the presentation of the model’s data to the user. This is
usually achieved using JavaScript templating (e.g., Underscore Microtemplates,
Mustache, jQuery-tmpl, etc.). A view’s render () method can be bound to a

44

http://jsfiddle.net/2NdDY/270/

model’s change() event, enabling the view to instantly reflect model changes
without requiring a full page refresh.

Creating new views Creating a new view is relatively straightforward
and similar to creating new models. To create a new View, simply extend
Backbone.View. We introduced the sample TodoView below in the previous
chapter; now let’s take a closer look at how it works:

var TodoView = Backbone.View.extend({
tagName: '1i',

// Cache the template function for a single item.
todoTpl: _.template("An example template"),

events: {
'dblclick label': 'edit',
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close'

+s

// Re-render the title of the todo item.

render: function() {
this.$el.html(this.todoTpl(this.model.toJSON()));
this.input = this.$('.edit');
return this;

1,

edit: function() {
// executed when todo label is double clicked
},

close: function() {
// ezecuted when todo loses focus

1,

updateOnEnter: function(e) {
// executed on each keypress when in todo edit mode,
// but we'll wait for enter to get in action
}
s

var todoView = new TodoView();

45

// log reference to a DOM element that corresponds to the view instance
console.log(todoView.el); // logs

What is el? The central property of a view is el (the value logged in the
last statement of the example). What is el and how is it defined?

el is basically a reference to a DOM element and all views must have one. Views
can use el to compose their element’s content and then insert it into the DOM
all at once, which makes for faster rendering because the browser performs the
minimum required number of reflows and repaints.

There are two ways to associate a DOM element with a view: a new element
can be created for the view and subsequently added to the DOM or a reference
can be made to an element which already exists in the page.

If you want to create a new element for your view, set any combination of the
following properties on the view: tagName, id, and className. A new element
will be created for you by the framework and a reference to it will be available
at the el property. If nothing is specified tagName defaults to div.

In the example above, tagName is set to ‘li’, resulting in creation of an li element.
The following example creates a ul element with id and class attributes:

var TodosView = Backbone.View.extend({
tagName: 'ul', // required, but defaults to 'div' if not set
className: 'container', // opttional, you can assign multiple classes to
// this property like so: 'container homepage'
id: 'todos' // optional
s

var todosView = new TodosView();
console.log(todosView.el); // logs <ul %id="todos" class="container">

The above code creates the DOM element below but doesn’t append it to the
DOM.

<ul id="todos" class="container">

If the element already exists in the page, you can set el as a CSS selector that
matches the element.

el: '#footer'
Alternatively, you can set el to an existing element when creating the view:

var todosView = new TodosView({el: $('#footer')});

46

Note: When declaring a View, options, el, tagName, id and className may
be defined as functions, if you want their values to be determined at runtime.

eland()

View logic often needs to invoke jQuery or Zepto functions on the el element and
elements nested within it. Backbone makes it easy to do so by defining the $el
property and $() function. The view.$el property is equivalent to $(view.el)
and view.$(selector) is equivalent to $(view.el).find(selector). In our
TodosView example’s render method, we see this.$el used to set the HTML
of the element and this.$() used to find subelements of class ‘edit’.

setElement

If you need to apply an existing Backbone view to a different DOM element
setElement can be used for this purpose. Overriding this.el needs to both
change the DOM reference and re-bind events to the new element (and unbind
from the old).

setElement will create a cached $el reference for you, moving the delegated
events for a view from the old element to the new one.

// We create two DOM elements representing buttons
// which could eastily be containers or something else
var buttonl = $('<button></button>');

var button2 = $('<button></button>');

// Define a new view
var View = Backbone.View.extend({
events: {
click: function(e) {
console.log(view.el === e.target);
}
}
s

// Create a new instance of the view, applying it
// to buttonl

var view = new View({el: buttonil});

// Apply the view to button2 using setElement
view.setElement (button?2) ;

buttonl.trigger('click');
button2.trigger('click'); // returns true

The “el” property represents the markup portion of the view that will be ren-
dered; to get the view to actually render to the page, you need to add it as a

47

new element or append it to an existing element.

// We can also provide raw markup to setElement

// as follows (just to demonstrate it can be done):
var view = new Backbone.View;

view.setElement (' <p><a>test</p>');
console.log(view.$('a b') .html()); // outputs "test”

Understanding render ()

render () is an optional function that defines the logic for rendering a template.
We'll use Underscore’s micro-templating in these examples, but remember you
can use other templating frameworks if you prefer. Our example will reference
the following HTML markup:

<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<title></title>
<meta name="description" content="">
</head>
<body>
<div id="todo">
</div>
<script type="text/template" id="item-template">
<div>

<input id="todo_complete" type="checkbox" <J= completed 7 'checked="checked"'
<%= title %>
</div>
</script>
<script src="underscore-min.js"></script>
<script src="backbone-min.js"></script>
<script src="jquery-min.js"></script>
<script src="example.js"></script>
</body>
</html>

The _.template method in Underscore compiles JavaScript templates into func-
tions which can be evaluated for rendering. In the TodoView, I'm passing the
markup from the template with id item-template to _.template() to be com-
piled and stored in the todoTpl property when the view is created.

The render () method uses this template by passing it the toJSON() encoding
of the attributes of the model associated with the view. The template returns

48

its markup after using the model’s title and completed flag to evaluate the
expressions containing them. I then set this markup as the HTML content of
the el DOM element using the $el property.

Presto! This populates the template, giving you a data-complete set of markup
in just a few short lines of code.

A common Backbone convention is to return this at the end of render (). This
is useful for a number of reasons, including:

o Making views easily reusable in other parent views.
e Creating a list of elements without rendering and painting each of them
individually, only to be drawn once the entire list is populated.

Let’s try to implement the latter of these. The render method of a simple
ListView which doesn’t use an ItemView for each item could be written:

var ListView = Backbone.View.extend({
// Compile a template for this wview. In this case '...'
// is a placeholder for a template such as
// $("#1ist_template").html ()
template: _.template(..),

render: function() {
this.$el.html(this.template(this.model.attributes));
return this;
}
b

Simple enough. Let’s now assume a decision is made to construct the items
using an ItemView to provide enhanced behaviour to our list. The ItemView
could be written:

var ItemView = Backbone.View.extend({
events: {7},
render: function(){
this.$el.html (this.template(this.model.attributes));
return this;
}
b;

Note the usage of return this; at the end of render. This common pattern
enables us to reuse the view as a sub-view. We can also use it to pre-render

49

the view prior to rendering. Using this requires that we make a change to our
ListView’s render method as follows:

var ListView = Backbone.View.extend({
render: function(){

// Assume our model exzposes the items we will
// display in our list
var items = this.model.get('items');

// Loop through each of our items using the Underscore
// _.each iterator
_.each(items, function(item){

// Create a new instance of the ItemView, passing
// it a specific model item
var itemView = new ItemView({ model: item });
// The itemView's DOM element is appended after it
// has been rendered. Here, the 'return this' is helpful
// as the itemView renders its model. Later, we ask for
// its output ("el")
this.$el.append(itemView.render().el);
}, this);
}
s

The events hash

The Backbone events hash allows us to attach event listeners to either
el-relative custom selectors, or directly to el if no selector is provided.
An event takes the form of a key-value pair 'eventName selector':
'callbackFunction' and a number of DOM event-types are supported,
including click, submit, mouseover, dblclick and more.

// A sample view
var TodoView = Backbone.View.extend({
tagName: '1i',

// with an events hash containing DOM events
// specific to an ttem:
events: {
'click .toggle': 'toggleCompleted',
'dblclick label': 'edit',
'keypress .edit': 'updateOnEnter',

90

'click .destroy': 'clear',
'blur .edit': 'close'

1,

What isn’t instantly obvious is that while Backbone uses jQuery’s .delegate()
underneath, it goes further by extending it so that this always refers to the
current view object within callback functions. The only thing to really keep in
mind is that any string callback supplied to the events attribute must have a
corresponding function with the same name within the scope of your view.

The declarative, delegated jQuery events means that you don’t have to worry
about whether a particular element has been rendered to the DOM yet or not.
Usually with jQuery you have to worry about “presence or absence in the DOM”
all the time when binding events.

In our TodoView example, the edit callback is invoked when the user double-
clicks a label element within the el element, updateOnEnter is called for each
keypress in an element with class ‘edit’, and close executes when an element
with class ‘edit’ loses focus. Each of these callback functions can use this to
refer to the TodoView object.

Note that you can also bind methods yourself using _.bind(this.viewEvent,
this), which is effectively what the value in each event’s key-value pair is doing.
Below we use _.bind to re-render our view when a model changes.

var TodoView = Backbone.View.extend({
initialize: function() {
this.model.bind('change', _.bind(this.render, this));
}
b;

_.bind only works on one method at a time, but supports currying and as it
returns the bound function means that you can use _.bind on an anonymous
function.

Collections

Collections are sets of Models and are created by extending Backbone.Collection.

Normally, when creating a collection you’ll also want to define a property speci-
fying the type of model that your collection will contain, along with any instance
properties required.

In the following example, we create a TodoCollection that will contain our Todo
models:

ol

var Todo = Backbone.Model.extend ({
defaults: {
title: '',
completed: false
}
b;

var TodosCollection = Backbone.Collection.extend({
model: Todo
B;

var myTodo = new Todo({title:'Read the whole book', id: 2});

// pass array of models on collection instantiation
var todos = new TodosCollection([myTodo]);
console.log("Collection size: " + todos.length); // Collection size:

Adding and Removing Models The preceding example populated the col-
lection using an array of models when it was instantiated. After a collection has
been created, models can be added and removed using the add() and remove ()
methods:

var Todo = Backbone.Model.extend({

defaults: {
title: '',
completed: false
}
b;

var TodosCollection = Backbone.Collection.extend({
model: Todo,
B;

var a = new Todo({ title: 'Go to Jamaica.'}),
new Todo({ title: 'Go to China.'}),

new Todo({ title: 'Go to Disneyland.'});

o o
o

var todos = new TodosCollection([a,b]);
console.log("Collection size: " + todos.length);
// Logs: Collection size: 2

todos.add(c);

console.log("Collection size: " + todos.length);
// Logs: Collection size: 3

92

todos.remove([a,bl);
console.log("Collection size: " + todos.length);
// Logs: Collection size: 1

todos.remove(c);
console.log("Collection size: " + todos.length);
// Logs: Collection size: 0

Note that add() and remove () accept both individual models and lists of mod-
els.

Also note that when using add () on a collection, passing {merge: true} causes
duplicate models to have their attributes merged in to the existing models,
instead of being ignored.

var items = new Backbone.Collection;

items.add([{ id : 1, name: "Dog" , age: 3}, { id : 2, name: "cat" , age:

items.add([{ id : 1, name: "Bear" }], {merge: true 1});
items.add([{ id : 2, name: "lion" }1); // merge: false

console.log(JSON.stringify(items.toJSON()));
// [{H,I;dll'.l’ "mame" : ”Bea'r’”, uagen..‘?}) {”’Ld”.‘Z, "name" : "CCLt”, /Iagell:Z}]

Retrieving Models There are a few different ways to retrieve a model from
a collection. The most straight-forward is to use Collection.get() which
accepts a single id as follows:

var myTodo = new Todo({title:'Read the whole book', id: 23});

// pass array of models on collection instantiation
var todos = new TodosCollection([myTodo]) ;

var todo2 = todos.get(2);

// Models, as objects, are passed by reference
console.log(todo2 === myTodo); // true

In client-server applications, collections contain models obtained from the server.
Anytime you’re exchanging data between the client and a server, you will need
a way to uniquely identify models. In Backbone, this is done using the id, cid,
and idAttribute properties.

Each model in Backbone has an id, which is a unique identifier that is either
an integer or string (e.g., a UUID). Models also have a cid (client id) which

93

231);

is automatically generated by Backbone when the model is created. Either
identifier can be used to retrieve a model from a collection.

The main difference between them is that the cid is generated by Backbone; it
is helpful when you don’t have a true id - this may be the case if your model
has yet to be saved to the server or you aren’t saving it to a database.

The idAttribute is the identifying attribute name of the model returned from
the server (i.e., the id in your database). This tells Backbone which data field
from the server should be used to populate the id property (think of it as a
mapper). By default, it assumes id, but this can be customized as needed. For
instance, if your server sets a unique attribute on your model named “userld”
then you would set idAttribute to “userld” in your model definition.

The value of a model’s idAttribute should be set by the server when the model
is saved. After this point you shouldn’t need to set it manually, unless further
control is required.

Internally, Backbone.Collection contains an array of models enumerated
by their id property, if the model instances happen to have one. When
collection.get(id) is called, this array is checked for existence of the model
instance with the corresponding id.

// extends the previous example
var todoCid = todos.get(todo2.cid);

// As mentioned in previous example,
// models are passed by reference
console.log(todoCid === myTodo); // true

Listening for events As collections represent a group of items, we can listen
for add and remove events which occur when models are added to or removed
from a collection. Here’s an example:

var TodosCollection = new Backbone.Collection();

TodosCollection.on("add", function(todo) {
console.log("I should " + todo.get("title") + ". Have I done it before? " + (todo.get
b

TodosCollection.add ([
{ title: 'go to Jamaica', completed: false 1},
{ title: 'go to China', completed: false 7},
{ title: 'go to Disneyland', completed: true }
s

o4

// The above logs:

// I should go to Jamaica. Have I done it before? No.

// I should go to China. Have I done it before? No.

// I should go to Disneyland. Have I done it before? Yeah!

In addition, we’re also able to bind to a change event to listen for changes to
any of the models in the collection.

var TodosCollection = new Backbone.Collection();

// log a message if a model in the collection changes
TodosCollection.on("change:title", function(model) {

console.log("Changed my mind! I should " + model.get('title'));
N

TodosCollection.add ([
{ title: 'go to Jamaica.', completed: false, id: 3 },
1

var myTodo = TodosCollection.get(3);

myTodo.set('title', 'go fishing');
// Logs: Changed my mind! I should go fishing

jQuery-style event maps of the form obj.on({click: action}) can also be
used. These can be clearer than needing three separate calls to .on and should
align better with the events hash used in Views:

var Todo = Backbone.Model.extend({

defaults: {
title: "',
completed: false
}
s

var myTodo = new Todo();
myTodo.set({title: 'Buy some cookies', completed: true});

myTodo. on ({
'change:title' : titleChanged,
'change:completed' : stateChanged
s

function titleChanged(){

%)

console.log('The title was changed!');
b

function stateChanged(){
console.log('The state was changed!');

}

myTodo.set({title: 'Get the groceries'});
// The title was changed!

Backbone events also support a once() method, which ensures that a callback
only fires one time when a notification arrives. It is similar to Node’s once, or
jQuery’s one. This is particularly useful for when you want to say “the next
time something happens, do this”.

// Define an object with two counters

var TodoCounter = { counterA: 0, counterB: 0 };
// Miz in Backbone Events

_.extend(TodoCounter, Backbone.Events);

// Increment counterd, triggering an event

var incrA = function(){
TodoCounter.counterA += 1;
TodoCounter.trigger('event');

};

// Increment counterB
var incrB = function(){
TodoCounter.counterB += 1;

};

// Use once rather than having to explicitly unbind
// our event listener

TodoCounter.once('event', incrA);
TodoCounter.once('event', incrB);

// Trigger the event once again
TodoCounter.trigger('event');

// Check out output
console.log(TodoCounter.counterA === 1); // true
console.log(TodoCounter.counterB === 1); // true

counterA and counterB should only have been incremented once.

96

http://backbonejs.org/#Events-once
http://nodejs.org/api/events.html#events_emitter_once_event_listener
http://api.jquery.com/one/

Resetting/Refreshing Collections Rather than adding or removing
models individually, you might want to update an entire collection at once.
Collection.set() takes an array of models and performs the necessary add,
remove, and change operations required to update the collection.

var TodosCollection = new Backbone.Collection();

TodosCollection.add ([
{ id: 1, title: 'go to Jamaica.', completed: false 1},
{ id: 2, title: 'go to China.', completed: false },
{ id: 3, title: 'go to Disneyland.', completed: true }
DK

// we can listen for add/change/remove events
TodosCollection.on("add", function(model) {

console.log("Added " + model.get('title'));
s

TodosCollection.on("remove", function(model) {
console.log("Removed " + model.get('title'));
19N

TodosCollection.on("change:completed", function(model) {
console.log("Completed " + model.get('title'));
s

TodosCollection.set ([

{ id: 1, title: 'go to Jamaica.', completed: true },

{ id: 2, title: 'go to China.', completed: false 1},

{ id: 4, title: 'go to Disney World.', completed: false }
D;

// Above logs:

// Completed go to Jamaica.
// Removed go to Dismeyland.
// Added go to Disney World.

If you need to simply replace the entire content of the collection then
Collection.reset() can be used:

var TodosCollection = new Backbone.Collection();
// we can listen for reset events

TodosCollection.on("reset", function() {
console.log("Collection reset.");

o7

B

TodosCollection.add ([
{ title: 'go to Jamaica.', completed: false },
{ title: 'go to China.', completed: false },
{ title: 'go to Disneyland.', completed: true }
1;

console.log('Collection size: ' + TodosCollection.length); // Collection size:

TodosCollection.reset ([

{ title: 'go to Cuba.', completed: false }
DK
// Above logs 'Collection reset.'’

console.log('Collection size: ' + TodosCollection.length); // Collection size:

Another useful tip is to use reset with no arguments to clear out a collection
completely. This is handy when dynamically loading a new page of results where
you want to blank out the current page of results.

myCollection.reset();

Note that using Collection.reset () doesn’t fire any add or remove events. A
reset event is fired instead as shown in the previous example. The reason you
might want to use this is to perform super-optimized rendering in extreme cases
where individual events are too expensive.

Also note that listening to a reset event, the list of previous models is available
in options.previousModels, for convenience.

var todo = new Backbone.Model();

var todos = new Backbone.Collection([todo])

.on('reset', function(todos, options) {
console.log(options.previousModels);
console.log([todo]);
console.log(options.previousModels[0] === todo); // true

b

todos.reset([]);

The set() method available for Collections can also be used for “smart” up-
dating of sets of models. This method attempts to perform smart updating
of a collection using a specified list of models. When a model in this list isn’t
present in the collection, it is added. If it’s present, its attributes will be merged.
Models which are present in the collection but not in the list are removed.

98

http://backbonejs.org/#Collection-reset

// Define a model of type 'Beatle’ with a 'job' attribute
var Beatle = Backbone.Model.extend ({
defaults: {
job: 'musician'
}
s

// Create models for each member of the Beatles

var john = new Beatle({ firstName: 'John', lastName: 'Lennon'});

var paul = new Beatle({ firstName: 'Paul', lastName: 'McCartney'});
var george = new Beatle({ firstName: 'George', lastName: 'Harrison'});
var ringo = new Beatle({ firstName: 'Ringo', lastName: 'Starr'});

// Create a collection using our models
var theBeatles = new Backbone.Collection([john, paul, george, ringol);

// Create a separate model for Pete Best
var pete = new Beatle({ firstName: 'Pete', lastName: 'Best'});

// Update the collection
theBeatles.set([john, paul, george, petel);

// Fires a “remove event for 'Ringo’', and an “add” event for 'Pete’.
// Updates any of John, Paul and Georges's attributes that may have
// changed over the years.

Underscore utility functions Backbone takes full advantage of its hard
dependency on Underscore by making many of its utilities directly available on
collections:

forEach: iterate over collections

var todos = new Backbone.Collection();

todos.add ([
{ title: 'go to Belgium.', completed: false },
{ title: 'go to China.', completed: false },
{ title: 'go to Austria.', completed: true }

DR

// iterate over models in the collection

todos.forEach(function(model){
console.log(model.get('title'));

b;

99

// Above logs:
// go to Belgtum.
// go to China.
// go to Austria.

sortBy(): sort a collection on a specific attribute

// sort collection
var sortedByAlphabet = todos.sortBy(function (todo) {
return todo.get("title").toLowerCase();

B;
console.log("- Now sorted: ");

sortedByAlphabet.forEach(function(model){
console.log(model.get('title'));

s

// Above logs:

// - Now sorted:

// go to Austria.

// go to Belgium.

// go to China.

map(): iterate through a collection, mapping each value through a
transformation function

var count = 1;

console.log(todos.map(function(model){
return count++ + ". " + model.get('title');

s

// Above logs:

//1. go to Belgium.

//2. go to China.

//3. go to Austria.

min() /max(): retrieve item with the min or max value of an attribute

todos.max (function(model){
return model.id;
}).id;

todos.min(function(model){

return model.id;
P .id;

60

pluck(): extract a specific attribute

var captions = todos.pluck('caption');
// returns list of captions

filter(): filter a collection

Filter by an array of model IDs

var Todos = Backbone.Collection.extend({
model: Todo,
filterById: function(ids){
return this.models.filter(
function(c) {
return _.contains(ids, c.id);
1)
}
b

index0f (): return the index of a particular item within a collection

var people = new Backbone.Collection;

people.comparator = function(a, b) {
return a.get('name') < b.get('name') 7 -1 : 1;

};

var tom = new Backbone.Model ({name: 'Tom'});
var rob = new Backbone.Model ({name: 'Rob'});
var tim = new Backbone.Model ({name: 'Tim'});

people.add(tom) ;
people.add(rob) ;
people.add(tim) ;

console.log(people.index0f (rob) === 0); // true
console.log(people.index0f (tim) === 1); // true
console.log(people.index0f (tom) === 2); // true

any(): confirm if any of the values in a collection pass an iterator
truth test

todos.any(function(model){
return model.id === 100;

61

B

// or

todos.some (function(model){
return model.id === 100;

B;

size(): return the size of a collection

todos.size();

// equivalent to
todos.length;

isEmpty(): determine whether a collection is empty
var isEmpty = todos.isEmpty();
groupBy(): group a collection into groups of like items

var todos = new Backbone.Collection();

todos.add ([
{ title: 'go to Belgium.', completed: false },
{ title: 'go to China.', completed: false },
{ title: 'go to Austria.', completed: true }
D

// create groups of completed and incomplete models

var byCompleted = todos.groupBy('completed');

var completed = new Backbone.Collection(byCompleted[truel);
console.log(completed.pluck('title'));

// logs: ["go to Austria."]

In addition, several of the Underscore operations on objects are available as
methods on Models.

pick(): extract a set of attributes from a model

var Todo = Backbone.Model.extend({

defaults: {
title: '',
completed: false
}

62

3
var todo = new Todo({title: 'go to Austria.'});

console.log(todo.pick('title'));
// logs {title: "go to Austria'}

omit(): extract all attributes from a model except those listed

var todo = new Todo({title: 'go to Austria.'});
console.log(todo.omit('title'));
// logs {completed: falsel

keys() and values(): get lists of attribute names and values

var todo = new Todo({title: 'go to Austria.'});
console.log(todo.keys());
// logs: ["title", "completed"]

console.log(todo.values());
//logs: ["go to Austria."”, falsel

pairs(): get list of attributes as [key, value] pairs

var todo = new Todo({title: 'go to Austria.'});
var pairs = todo.pairs();

console.log(pairs[0]);
// logs: ["title", "go to Austria."]

console.log(pairs[1]);
// logs: ["completed", false]

invert(): create object in which the values are keys and the attributes
are values

var todo = new Todo({title: 'go to Austria.'});
console.log(todo.invert());

// logs: {'go to Austria.': 'title', 'false': 'completed'}

The complete list of what Underscore can do can be found in its official docu-
mentation.

63

http://documentcloud.github.com/underscore/
http://documentcloud.github.com/underscore/

Chainable API Speaking of utility methods, another bit of sugar in Back-
bone is its support for Underscore’s chain() method. Chaining is a common
idiom in object-oriented languages; a chain is a sequence of method calls on the
same object that are performed in a single statement. While Backbone makes
Underscore’s array manipulation operations available as methods of Collection
objects, they cannot be directly chained since they return arrays rather than
the original Collection.

Fortunately, the inclusion of Underscore’s chain () method enables you to chain
calls to these methods on Collections.

The chain() method returns an object that has all of the Underscore array
operations attached as methods which return that object. The chain ends with
a call to the value () method which simply returns the resulting array value. In
case you haven’t seen it before, the chainable API looks like this:

var collection = new Backbone.Collection([
{ name: 'Tim', age: 5 7},
{ name: 'Ida', age: 26 },
{ name: 'Rob', age: 55 }

IDH

var filteredNames = collection.chain() // start chain, returns wrapper around collection
.filter (function(item) { return item.get('age') > 10; }) // returns wrapped array excl
.map(function(item) { return item.get('name'); }) // returns wrapped array containing
.value(); // terminates the chain and returns the resulting array

console.log(filteredNames); // logs: ['Ida’, 'Rob']

Some of the Backbone-specific methods do return this, which means they can
be chained as well:

var collection = new Backbone.Collection();
collection

.add({ name: 'John', age: 23 1})

.add({ name: 'Harry', age: 33 })

.add({ name: 'Steve', age: 41 });

var names = collection.pluck('name');

console.log(names); // logs: ['John', 'Harry', 'Steve']

RESTful Persistence

Thus far, all of our example data has been created in the browser. For most
single page applications, the models are derived from a data store residing on

64

a server. This is an area in which Backbone dramatically simplifies the code
you need to write to perform RESTful synchronization with a server through a
simple APT on its models and collections.

Fetching models from the server

Collections.fetch() retrieves a set of models from the server in the form of
a JSON array by sending an HTTP GET request to the URL specified by the
collection’s url property (which may be a function). When this data is received,
a set () will be executed to update the collection.

var Todo = Backbone.Model.extend({

defaults: {
title: '',
completed: false
}
s

var TodosCollection = Backbone.Collection.extend ({
model: Todo,
url: '/todos'

b;

var todos = new TodosCollection();
todos.fetch(); // sends HTTP GET to /todos

Saving models to the server

While Backbone can retrieve an entire collection of models from the server at
once, updates to models are performed individually using the model’s save ()
method. When save() is called on a model that was fetched from the server,
it constructs a URL by appending the model’s id to the collection’s URL and
sends an HTTP PUT to the server. If the model is a new instance that was
created in the browser (i.e., it doesn’t have an id) then an HTTP POST is sent
to the collection’s URL. Collections.create() can be used to create a new
model, add it to the collection, and send it to the server in a single method call.

var Todo = Backbone.Model.extend({

defaults: {
title: '',
completed: false
3
s

var TodosCollection = Backbone.Collection.extend({
model: Todo,
url: '/todos'

65

B

var todos = new TodosCollection();
todos.fetch();

var todo2 = todos.get(2);
todo2.set('title', 'go fishing');
todo2.save(); // sends HTTP PUT to /todos/2

todos.create({title: 'Try out code samples'}); // sends HTTP POST to /todos and adds to

As mentioned earlier, a model’s validate () method is called automatically by
save () and will trigger an invalid event on the model if validation fails.

Deleting models from the server

A model can be removed from the containing collection and the server by calling
its destroy() method. Unlike Collection.remove() which only removes a
model from a collection, Model.destroy() will also send an HTTP DELETE
to the collection’s URL.

var Todo = Backbone.Model.extend ({

defaults: {
title: '',
completed: false
}
s

var TodosCollection = Backbone.Collection.extend ({
model: Todo,
url: '/todos'

b;

var todos = new TodosCollection();
todos.fetch();

var todo2 = todos.get(2);
todo2.destroy(); // sends HITP DELETE to /todos/2 and removes from collection

Calling destroy on a Model will return false if the model isNew:

var todo = new Backbone.Model();
console.log(todo.destroy());
// false

Options

66

Each RESTful API method accepts a variety of options. Most importantly, all
methods accept success and error callbacks which can be used to customize the
handling of server responses.

Specifying the {patch: true} option to Model.save() will cause it to use
HTTP PATCH to send only the changed attributes (i.e partial updates) to the
server instead of the entire model i.e model.save(attrs, {patch: true}):

// Save partial using PATCH

model.clear().set({id: 1, a: 1, b: 2, c: 3, d: 4});
model.save();

model.save({b: 2, d: 4}, {patch: true});
console.log(this.syncArgs.method) ;

// 'patch'’

Similarly, passing the {reset: true} optionto Collection.fetch() will result
in the collection being updated using reset () rather than set ().

See the Backbone.js documentation for full descriptions of the supported op-
tions.

Events

Events are a basic inversion of control. Instead of having one function call
another by name, the second function is registered as a handler to be called
when a specific event occurs.

The part of your application that has to know how to call the other part of your
app has been inverted. This is the core thing that makes it possible for your
business logic to not have to know about how your user interface works and is
the most powerful thing about the Backbone Events system.

Mastering events is one of the quickest ways to become more productive with
Backbone, so let’s take a closer look at Backbone’s event model.

Backbone.Events is mixed into the other Backbone “classes”, including:

e Backbone

e Backbone.Model

¢ Backbone.Collection
¢ Backbone.Router

e Backbone.History

o Backbone.View

Note that Backbone .Events is mixed into the Backbone object. Since Backbone
is globally visible, it can be used as a simple event bus:

67

Backbone.on('event', function() {console.log('Handled Backbone event');});
Backbone.trigger('event'); // logs: Handled Backbone event

on(), off(), and trigger() Backbone.Events can give any object the ability
to bind and trigger custom events. We can mix this module into any object easily
and there isn’t a requirement for events to be declared before being bound to a
callback handler.

Example:

var our(Object = {};

// Mizin
_.extend(ourObject, Backbone.Events);

// Add a custom event
ourObject.on('dance', function(msg){
console.log('We triggered ' + msg);

B

// Trigger the custom event
ourObject.trigger('dance', 'our event');

If you're familiar with jQuery custom events or the concept of Publish/Subscribe,
Backbone.Events provides a system that is very similar with on being analogous
to subscribe and trigger being similar to publish.

on binds a callback function to an object, as we’ve done with dance in the above
example. The callback is invoked whenever the event is triggered.

The official Backbone.js documentation recommends namespacing event names
using colons if you end up using quite a few of these on your page. e.g.:

var our(Object = {};

// Mizin
_.extend(ourObject, Backbone.Events);

function dancing (msg) { console.log("We started " + msg); }
// Add namespaced custom events
ourObject.on("dance:tap", dancing);

ourObject.on("dance:break", dancing);

// Trigger the custom events
ourObject.trigger("dance:tap", "tap dancing. Yeah!");

68

ourObject.trigger("dance:break", "break dancing. Yeah!");

// This one triggers nothing as no listener listens for it
ourObject.trigger("dance", "break dancing. Yeah!");

A special all event is made available in case you would like notifications for
every event that occurs on the object (e.g., if you would like to screen events in
a single location). The all event can be used as follows:

var ourObject = {};

// Mizin
_.extend(ourObject, Backbone.Events);

function dancing (msg) { console.log("We started " + msg); }

ourObject.on("all", function(eventName){
console.log("The name of the event passed was " + eventName);

s

// This time each event will be caught with a catch 'all' event listener
ourObject.trigger("dance:tap", "tap dancing. Yeah!");
ourObject.trigger("dance:break", "break dancing. Yeah!");
ourObject.trigger("dance", "break dancing. Yeah!");

off removes callback functions that were previously bound to an object. Going
back to our Publish/Subscribe comparison, think of it as an unsubscribe for
custom events.

To remove the dance event we previously bound to ourObject, we would simply
do:

var ourObject = {};

// Mizin
_.extend(ourObject, Backbone.Events);

function dancing (msg) { console.log("We " + msg); }
// Add namespaced custom events
ourObject.on("dance:tap", dancing);

ourObject.on("dance:break", dancing);

// Trigger the custom events. Each will be caught and acted upon.
ourObject.trigger("dance:tap", "started tap dancing. Yeah!");

69

ourObject.trigger("dance:break", "started break dancing. Yeah!");

// Removes event bound to the object
ourObject.off ("dance:tap");

// Trigger the custom events again, but one is logged.

ourObject.trigger("dance:tap", "stopped tap dancing."); // won't be logged as it's not 1
ourObject.trigger("dance:break", "break dancing. Yeah!");

To remove all callbacks for the event we pass an event name (e.g., move) to the
off () method on the object the event is bound to. If we wish to remove a
specific callback, we can pass that callback as the second parameter:

var ourObject = {};

// Mizin
_.extend (ourObj ect, Backbone.Events);

function dancing (msg) { console.log("We are dancing. " + msg); }
function jumping (msg) { console.log("We are jumping. " + msg); }

// Add two listeners to the same event
ourObject.on("move", dancing);

ourObject.on("move", jumping) ;

// Trigger the events. Both listeners are called.
ourObject.trigger("move", "Yeah!");

// Removes specified listener
ourObject.off("move", dancing);

// Trigger the events again. One listener left.
ourObject.trigger("move", "Yeah, jump, jump!");

Finally, as we have seen in our previous examples, trigger triggers a callback
for a specified event (or a space-separated list of events). e.g.:

var ourObject = {};

// Mizin
_.extend(ourObject, Backbone.Events);

function doAction (msg) { console.log("We are " + msg); }

// Add event listeners

70

ourObject.on("dance", doAction);
ourObject.on("jump", doAction);
ourObject.on("skip", doAction);

// Single event
ourObject.trigger("dance", 'just dancing.');

// Multiple events
ourObject.trigger("dance jump skip", 'very tired from so much action.');

trigger can pass multiple arguments to the callback function:

var our(Object = {};

// Mizin
_.extend(ourObject, Backbone.Events);

function doAction (action, duration) {
console.log("We are " + action + ' for ' + duration);

3

// Add event listeners
ourObject.on("dance", doAction);
ourObject.on("jump", doAction);
ourObject.on("skip", doAction);

// Passing multiple arguments to single event
ourObject.trigger("dance", 'dancing', "5 minutes");

// Passing multiple arguments to multiple events
ourObject.trigger("dance jump skip", 'on fire', "15 minutes");

listenTo() and stopListening() While on() and off () add callbacks di-
rectly to an observed object, 1istenTo () tells an object to listen for events on
another object, allowing the listener to keep track of the events for which it is
listening. stopListening() can subsequently be called on the listener to tell it
to stop listening for events:

var a = _.extend({}, Backbone.Events);
var b = _.extend({}, Backbone.Events);
var ¢ = _.extend({}, Backbone.Events);

// add listeners to A for events on B and C
a.listenTo(b, 'anything', function(event){ console.log("anything happened"); });

71

a.listenTo(c, 'everything', function(event){ console.log("everything happened"); 1});

// trigger an event
b.trigger('anything'); // logs: anything happened

// stop listening
a.stopListening();

// A does mot receive these events
b.trigger('anything');
c.trigger('everything');

stopListening() can also be used to selectively stop listening based on the
event, model, or callback handler.

If you use on and off and remove views and their corresponding models at the
same time, there are generally no problems. But a problem arises when you
remove a view that had registered to be notified about events on a model, but
you don’t remove the model or call off to remove the view’s event handler.
Since the model has a reference to the view’s callback function, the JavaScript
garbage collector cannot remove the view from memory. This is called a “ghost
view” and is a form of memory leak which is common since the models generally
tend to outlive the corresponding views during an application’s lifecycle. For
details on the topic and a solution, check this excellent article by Derick Bailey.

Practically, every on called on an object also requires an off to be called in
order for the garbage collector to do its job. 1listenTo() changes that, allowing
Views to bind to Model notifications and unbind from all of them with just one
call - stopListening().

The default implementation of View.remove () makes a call to stopListening(),
ensuring that any listeners bound using listenTo() are unbound before the
view is destroyed.

var view = new Backbone.View();
var b = _.extend({}, Backbone.Events);

view.listenTo(b, 'all', function(){ console.log(true); 1});
b.trigger('anything'); // logs: true

view.listenTo(b, 'all', function(){ console.log(false); 1});

view.remove(); // stopListening() <mplicitly called
b.trigger('anything'); // does not log anything

Events and Views Within a View, there are two types of events you can
listen for: DOM events and events triggered using the Event API. It is important

72

http://lostechies.com/derickbailey/2011/09/15/zombies-run-managing-page-transitions-in-backbone-apps/

to understand the differences in how views bind to these events and the context
in which their callbacks are invoked.

DOM events can be bound to using the View’s events property or using
jQuery.on(). Within callbacks bound using the events property, this refers
to the View object; whereas any callbacks bound directly using jQuery will have
this set to the handling DOM element by jQuery. All DOM event callbacks
are passed an event object by jQuery. See delegateEvents() in the Backbone
documentation for additional details.

Event API events are bound as described in this section. If the event is bound
using on() on the observed object, a context parameter can be passed as the
third argument. If the event is bound using listenTo() then within the call-
back this refers to the listener. The arguments passed to Event APT callbacks
depends on the type of event. See the Catalog of Events in the Backbone docu-
mentation for details.

The following example illustrates these differences:

<div id="todo">
<input type='checkbox' />
</div>

var View = Backbone.View.extend({
el: '#todo',

// bind to DOM event using events property
events: {

'click [type="checkbox"]': 'clicked',
},

initialize: function () {
// bind to DOM event using jQuery
this.$el.click(this. jqueryClicked) ;

// bind to API event
this.on('apiEvent', this.callback);
1,

// 'this' is view

clicked: function(event) {
console.log("events handler for " + this.el.outerHTML);
this.trigger('apiEvent', event.type);

},

// 'this' is handling DOM element

73

jqueryClicked: function(event) {
console.log("jQuery handler for " + this.outerHTML);
T,

callback: function(eventType) {
console.log("event type was " + eventType);

}
DR

var view = new View();

Routers

In Backbone, routers provide a way for you to connect URLs (either hash frag-
ments, or real) to parts of your application. Any piece of your application that
you want to be bookmarkable, shareable, and back-button-able, needs a URL.

Some examples of routes using the hash mark may be seen below:

http://example. com/#about
http://example. com/#search/seasonal-horns/page2

An application will usually have at least one route mapping a URL route to a
function that determines what happens when a user reaches that route. This
relationship is defined as follows:

'route' : 'mappedFunction'

Let’s define our first router by extending Backbone.Router. For the purposes of
this guide, we’re going to continue pretending we’re creating a complex todo ap-
plication (something like a personal organizer/planner) that requires a complex
TodoRouter.

Note the inline comments in the code example below as they continue our lesson
on routers.

var TodoRouter = Backbone.Router.extend({
/* define the route and function maps for this router */
routes: {
"about" : "showAbout",
/* Sample usage: http://exzample.com/#about */

"todo/:id" : "getTodo",

74

3,

/* This s an example of using a ":param” variable which allows us to match
any of the components between two URL slashes */
/* Sample usage: http://example.com/#todo/5 */

"search/:query" : "searchTodos",

/* We can also define multiple routes that are bound to the same map function,
in this case searchTodos(). Note below how we're optionally passing in a
reference to a page number if one is supplied */

/* Sample usage: http://exzample.com/#search/job */

"search/:query/p:page" : "searchTodos",
/* As we can see, URLs may contain as many ":param"s as we wish */
/* Sample usage: http://example.com/#search/job/p1 */

"todos/:id/download/*documentPath" : "downloadDocument",

/* This is an exzample of using a *splat. Splats are able to match any number of
URL components and can be combined with ":param"s*/

/* Sample usage: http://example.com/#todos/5/download/files/Meeting_schedule.doc

/* If you wish to use splats for anything beyond default routing, it's probably
idea to leave them at the end of a URL otherwise you may need to apply regular
expression parsing on your fragment */

"*other" : "defaultRoute",

/* This is a default route that also uses a *splat. Consider the
default route a wildcard for URLs that are either not matched or where
the user has incorrectly typed in a route path manually */

/* Sample usage: http://example.com/# <anything> */

"optional(/:item)": "optionalltem",

"named/optional/(y:z)": "namedOptionalItem"

/* Router URLs also support optional parts via parentheses, without having
to use a regex. */

showAbout: function(){

s

getTodo: function(id){

3,

/*
Note that the id matched in the above route will be passed to this function
*/

console.log("You are trying to reach todo " + id);

searchTodos: function(query, page){

5

var page_number = page || 1;
console.log("Page number: " + page_number + " of the results for todos containin,

3,

downloadDocument: function(id, path){

3,

defaultRoute: function(other){
console.log('Invalid. You attempted to reach:' + other);
X
3

/* Now that we have a router setup, we need to instantiate it */

var myTodoRouter = new TodoRouter();

Backbone offers an opt-in for HTML5 pushState support via window.history.pushState.
This permits you to define routes such as http://backbonejs.org/just /an/example.

This will be supported with automatic degradation when a user’s browser

doesn’t support pushState. Note that it is vastly preferred if you're capable

of also supporting pushState on the server side, although it is a little more

difficult to implement.

Is there a limit to the number of routers I should be using?

Andrew de Andrade has pointed out that DocumentCloud, the creators of Back-
bone, usually only use a single router in most of their applications. You're very
likely to not require more than one or two routers in your own projects; the
majority of your application routing can be kept organized in a single router
without it getting unwieldy.

Backbone.history Next, we need to initialize Backbone.history as it han-
dles hashchange events in our application. This will automatically handle routes
that have been defined and trigger callbacks when they’ve been accessed.

The Backbone.history.start() method will simply tell Backbone that it’s
okay to begin monitoring all hashchange events as follows:

var TodoRouter = Backbone.Router.extend({
/* define the route and function maps for this router */
routes: {

"about" : "showAbout",
"search/:query" : "searchTodos",
"search/:query/p:page" : "searchTodos"

1,

76

showAbout: function(){},

searchTodos: function(query, page){
var page_number = page || 1;
console.log("Page number: " + page_number + " of the results for todos containing th
b
s

var myTodoRouter = new TodoRouter();
Backbone.history.start();

// Go to and check console:

// http://localhost/#search/job/p3 logs: Page number: 3 of the results for todos conta
// http://localhost/#search/job logs: Page number: 1 of the results for todos conta
// etc.

Note: To run the last example, you’ll need to create a local development envi-
ronment and test project, which we will cover later on in the book.

If you would like to update the URL to reflect the application state at a partic-
ular point, you can use the router’s .navigate () method. By default, it simply
updates your URL fragment without triggering the hashchange event:

// Let's tmagine we would like a specific fragment (edit) once a user opens a single tod
var TodoRouter = Backbone.Router.extend ({
routes: {
"todo/:id": "viewTodo",
"todo/:id/edit": "editTodo"
// ... other routes
1,

viewTodo: function(id){

console.log("View todo requested.");

this.navigate("todo/" + id + '/edit'); // updates the fragment for us, but doesn't t
1},

editTodo: function(id) {
console.log("Edit todo opened.");
}
s

var myTodoRouter = new TodoRouter() ;

Backbone.history.start();

7

// Go to: http://localhost/#todo//

//

// URL 4s updated to: http://localhost/#todo/4/edit

// but editTodo() function is mot invoked even though location we end up s mapped to it
/7

// logs: View todo requested.

It is also possible for Router.navigate() to trigger the route along with up-
dating the URL fragment by passing the trigger:true option.

Note: This usage is discouraged. The recommended usage is the one described
above which creates a bookmarkable URL when your application transitions to
a specific state.

var TodoRouter = Backbone.Router.extend({
routes: {
"todo/:id": "viewTodo",
"todo/:id/edit": "editTodo"
// ... other routes
},

viewTodo: function(id){

console.log("View todo requested.");

this.navigate("todo/" + id + '/edit', {trigger: truel}); // updates the fragment and
1},

editTodo: function(id) {
console.log("Edit todo opened.");

}
s

var myTodoRouter = new TodoRouter();
Backbone.history.start();

// Go to: http://localhost/#todo/4

//

// URL s updated to: http://localhost/#todo/4/edit
// and this time editTodo() function is invoked.

/7

// logs:

// View todo requested.

// Edit todo opened.

A “route” event is also triggered on the router in addition to being fired on
Backbone.history.

78

Backbone.history.on('route', onRoute);

// Trigger 'route' event on router instance.
router.on('route', function(name, args) {
console.log(name === 'routeEvent');

B

location.replace('http://example.com#route-event/x"');
Backbone.history.checkUrl();

Backbone’s Sync API

We previously discussed how Backbone supports RESTful persistence via its
fetch() and create() methods on Collections and save(), and destroy()
methods on Models. Now we are going to take a closer look at Backbone’s sync
method which underlies these operations.

The Backbone.sync method is an integral part of Backbone.js. It assumes a
jQuery-like $.ajax() method, so HTTP parameters are organized based on
jQuery’s API. Since some legacy servers may not support JSON-formatted re-
quests and HTTP PUT and DELETE operations, Backbone can be configured
to emulate these capabilities using the two configuration variables shown below
with their default values:

Backbone.emulateHTTP = false; // set to true if server cannot handle HTTP PUT or HITP DE

Backbone.emulateJSON

The inline Backbone.emulateHTTP option should be set to true if extended
HTTP methods are not supported by the server. The Backbone.emulateJSON

option should be set to true if the server does not understand the MIME type
for JSON.

// Create a new library collection
var Library = Backbone.Collection.extend({
url : function() { return '/library'; %}

B

// Define attributes for our model
var attrs = {

title : "The Tempest",
author : "Bill Shakespeare",
length : 123

};

// Create a new Library instance

79

false; // set to true if server cannot handle application/json re

var library = new Library;

// Create a new instance of a model within our collection
library.create(attrs, {wait: falsel});

// Update with just emulateHTTP
library.first() .save({id: '2-the-tempest', author: 'Tim Shakespeare'}, {
emulateHTTP: true

I

// Check the ajazSettings being used for our request
console.log(this.ajaxSettings.url === '/library/2-the-tempest'); // true
console.log(this.ajaxSettings.type === 'POST'); // true
console.log(this.ajaxSettings.contentType === 'application/json'); // true

// Parse the data for the request to confirm it is as expected
var data = JSON.parse(this.ajaxSettings.data);

console.log(data.id === '2-the-tempest'); // true
console.log(data.author === 'Tim Shakespeare'); // true
console.log(data.length === 123); // true

Similarly, we could just update using emulateJSON:

library.first() .save({id: '2-the-tempest', author: 'Tim Shakespeare'}, {
emulateJSON: true

19N

console.log(this.ajaxSettings.url === '/library/2-the-tempest'); // true
console.log(this.ajaxSettings.type === 'PUT'); // true
console.log(this.ajaxSettings.contentType ==='application/x-www-form-urlencoded'); // tr

var data = JSON.parse(this.ajaxSettings.data.model);

console.log(data.id === '2-the-tempest');
console.log(data.author ==='Tim Shakespeare');
console.log(data.length === 123);

Backbone.sync is called every time Backbone tries to read, save, or delete
models. It uses jQuery or Zepto’s $.ajax() implementations to make these
RESTful requests, however this can be overridden as per your needs.

Overriding Backbone.sync

The sync function may be overridden globally as Backbone.sync, or at a finer-
grained level, by adding a sync function to a Backbone collection or to an
individual model.

80

Since all persistence is handled by the Backbone.sync function, an alternative
persistence layer can be used by simply overriding Backbone.sync with a func-
tion that has the same signature:

Backbone.sync = function(method, model, options) {

};

The methodMap below is used by the standard sync implementation to map
the method parameter to an HTTP operation and illustrates the type of action
required by each method argument:

var methodMap = {
'create': 'POST',
'update': 'PUT',

'patch': 'PATCH',
'delete': 'DELETE',
'read': 'GET'

};

If we wanted to replace the standard sync implementation with one that simply
logged the calls to sync, we could do this:

var id_counter = 1;

Backbone.sync = function(method, model) {
console.log("I've been passed " + method + " with " + JSON.stringify(model));
if (method === 'create'){ model.set('id', id_counter++); }

};

Note that we assign a unique id to any created models.

The Backbone.sync method is intended to be overridden to support other persis-
tence backends. The built-in method is tailored to a certain breed of RESTful
JSON APIs - Backbone was originally extracted from a Ruby on Rails applica-
tion, which uses HTTP methods like PUT in the same way.

The sync method is called with three parameters:

e method: One of create, update, patch, delete, or read
o model: The Backbone model object
e options: May include success and error methods

Implementing a new sync method can use the following pattern:

81

Backbone.sync = function(method, model, options) {

function success(result) {
// Handle successful results from MyAPI
if (options.success) {
options.success(result);
}
}

function error(result) {
// Handle error results from MyAPI
if (options.error) {
options.error(result);
}
}

options || (options = {});

switch (method) {
case 'create':
return MyAPI.create(model, success, error);

case 'update':
return MyAPI.update(model, success, error);

case 'patch':
return MyAPI.patch(model, success, error);

case 'delete':
return MyAPI.destroy(model, success, error);

case 'read':

if (model.cid) {
return MyAPI.find(model, success, error);

} else {
return MyAPI.findAll(model, success, error);

}

}
}s;

This pattern delegates API calls to a new object (MyAPI), which could be a
Backbone-style class that supports events. This can be safely tested separately,
and potentially used with libraries other than Backbone.

There are quite a few sync implementations out there. The following examples
are all available on GitHub:

82

o Backbone localStorage: persists to the browser’s local storage

o Backbone offline: supports working offline

o Backbone Redis: uses Redis key-value store

o backbone-parse: integrates Backbone with Parse.com

¢ backbone-websql: stores data to WebSQL

e Backbone Caching Sync: uses local storage as cache for other sync imple-
mentations

Dependencies
The official Backbone.js documentation states:

Backbone’s only hard dependency is either Underscore.js (>= 1.4.3)
or Lo-Dash. For RESTful persistence, history support via Back-
bone.Router and DOM manipulation with Backbone.View, include
json2.js, and either jQuery (>= 1.7.0) or Zepto.

What this translates to is that if you require working with anything beyond
models, you will need to include a DOM manipulation library such as jQuery
or Zepto. Underscore is primarily used for its utility methods (which Back-
bone relies upon heavily) and json2.js for legacy browser JSON support if Back-
bone.sync is used.

Summary

In this chapter we have introduced you to the components you will be using
to build applications with Backbone: Models, Views, Collections, and Routers.
We’ve also explored the Events mix-in that Backbone uses to enhance all com-
ponents with publish-subscribe capabilities and seen how it can be used with
arbitrary objects. Finally, we saw how Backbone leverages the Underscore.js
and jQuery/Zepto APIs to add rich manipulation and persistence features to
Backbone Collections and Models.

Backbone has many operations and options beyond those we have covered here
and is always evolving, so be sure to visit the official documentation for more
details and the latest features. In the next chapter you will start to get your
hands dirty as we walk you through the implementation of your first Backbone
application.

Exercise 1: Todos - Your First Backbone.js App

Now that we’'ve covered fundamentals, let’s write our first Backbone.js
application. We’ll build the Backbone Todo List application exhibited on

83

http://backbonejs.org/
http://backbonejs.org/

TodoMVC.com. Building a Todo List is a great way to learn Backbone’s
conventions. It’s a relatively simple application, yet technical challenges
surrounding binding, persisting model data, routing, and template rendering
provide opportunities to illustrate some core Backbone features.

B —
© OO /[sackoone s + Todomve x| 2 (1

& = C A [} todomvc.com/architecture-examples/backbone/#/ w04 oS

Write my first app

v
v

v

1 item left All Active Gompleted Clear complated (4)

Let’s consider the application’s architecture at a high level. We’ll need:

a Todo model to describe individual todo items

e a TodoList collection to store and persist todos

e a way of creating todos

e a way to display a listing of todos

e a way to edit existing todos

e a way to mark a todo as completed

e a way to delete todos

e a way to filter the items that have been completed or are remaining

Essentially, these features are classic CRUD methods. Let’s get started!

Static HTML

We'll place all of our HTML in a single file named index.html.

Header and Scripts First, we’ll set up the header and the basic application
dependencies: jQuery, Underscore, Backbone.js and the Backbone LocalStorage
adapter.

84

http://todomvc.com
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://jquery.com
http://underscorejs.org
https://github.com/jeromegn/Backbone.localStorage
https://github.com/jeromegn/Backbone.localStorage

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Backbone.js o TodoMVC</title>
<link rel="stylesheet" href="assets/base.css">
</head>
<body>
<script type="text/template" id="item-template"></script>
<script type="text/template" id="stats-template'"></script>
<script src="js/lib/jquery.min.js"></script>
<script src="js/lib/underscore-min.js"></script>
<script src="js/lib/backbone-min.js"></script>
<script src="js/lib/backbone.localStorage.js"></script>
<script src="js/models/todo.js"></script>
<script src="js/collections/todos.js"></script>
<script src="js/views/todos.js"></script>
<script src="js/views/app.js'"></script>
<script src="js/routers/router.js"></script>
<script src="js/app.js"></script>
</body>
</html>

In addition to the aforementioned dependencies, note that a few other
application-specific files are also loaded. These are organized into folders
representing their application responsibilities: models, views, collections, and
routers. An app.js file is present to house central initialization code.

Note: If you want to follow along, create a directory structure as demonstrated
in index.html:

1. Place the index.html in a top-level directory.

2. Download jQuery, Underscore, Backbone, and Backbone LocalStorage
from their respective web sites and place them under js/lib

3. Create the directories js/models, js/collections, js/views, and js/routers

You will also need base.css and bg.png, which should live in an assets direc-
tory. And remember that you can see a demo of the final application at
TodoMVC.com.

We will be creating the application JavaScript files during the tutorial. Don’t
worry about the two ‘text/template’ script elements - we will replace those soon!

Application HTML Now let’s populate the body of index.html. We’ll need
an <input> for creating new todos, a <ul id="todo-list" /> for listing the

85

https://raw2.github.com/tastejs/todomvc/gh-pages/architecture-examples/backbone/bower_components/todomvc-common/base.css
https://raw2.github.com/tastejs/todomvc/gh-pages/architecture-examples/backbone/bower_components/todomvc-common/bg.png
http://todomvc.com

actual todos, and a footer where we can later insert statistics and links for
performing operations such as clearing completed todos. We’ll add the following
markup immediately inside our body tag before the script elements:

<section id="todoapp">
<header id="header">

<hi1>todos</h1>
<input id="new-todo" placeholder="What needs to be done?" autofocus>
</header>

<section id="main">
<input id="toggle-all" type="checkbox">
<label for="toggle-all">Mark all as complete</label>
<ul id="todo-list">
</section>
<footer id="footer"></footer>
</section>
<div id="info">
<p>Double-click to edit a todo</p>
<p>Written by Addy Osmani</p>
<p>Part of TodoMVC</p>
</div>

Templates To complete index.html, we need to add the templates which we
will use to dynamically create HTML by injecting model data into their place-
holders. One way of including templates in the page is by using custom script
tags. These don’t get evaluated by the browser, which just interprets them as
plain text. Underscore micro-templating can then access the templates, render-
ing fragments of HTML.

We'll start by filling in the #item-template which will be used to display indi-
vidual todo items.

<!-- index.html —-->

<script type="text/template" id="item-template">
<div class="view">
<input class="toggle" type="checkbox" <= completed ? 'checked' : '' ¥%>>
<label><Y= title %></label>
<button class="destroy"></button>
</div>
<input class="edit" value="<J= title %>">
</script>

The template tags in the above markup, such as <%= and <%-, are specific to
Underscore.js and are documented on the Underscore site. In your own applica-

86

tions, you have a choice of template libraries, such as Mustache or Handlebars.
Use whichever you prefer, Backbone doesn’t mind.

We also need to define the #stats-template template which we will use to pop-
ulate the footer.

<!-- endex.html —-->

<script type="text/template" id="stats-template">
<¥%= remaining %> <J= remaining === 1 7 'item'
<ul id="filters">
<1li>
A11
</1i>
<1li>
Active
</1i>
<1i>
Completed
</1i>

<% if (completed) { %>
<button id="clear-completed">Clear completed (<%= completed %>)</button>
<h ¥} w

</script>

The #stats-template displays the number of remaining incomplete items and
contains a list of hyperlinks which will be used to perform actions when we
implement our router. It also contains a button which can be used to clear all
of the completed items.

Now that we have all the HTML that we will need, we’ll start implementing our
application by returning to the fundamentals: a Todo model.

Todo model

The Todo model is remarkably straightforward. First, a todo has two attributes:
a title stores a todo item’s title and a completed status indicates if it’s com-
plete. These attributes are passed as defaults, as shown below:

// js/models/todo. js

var app = app || {3;

87

// Todo Model
/) —=mmmmmm--
// Our basic **Todo** model has “title”, “order , and “completed” attributes.

app.Todo = Backbone.Model.extend({

// Default attributes ensure that each todo created has “title ™ and “completed ™ keys

defaults: {
title: '',
completed: false
3,

// Toggle the “completed” state of this todo item.
toggle: function() {
this.save({
completed: !this.get('completed')
b
}

3

Second, the Todo model has a toggle() method through which a Todo item’s
completion status can be set and simultaneously persisted.

Todo collection

Next, a TodoList collection is used to group our models. The collection uses
the LocalStorage adapter to override Backbone’s default sync () operation with

one that will persist our Todo records to HTML5 Local Storage. Through local
storage, they’re saved between page requests.

// js/collections/todos. js

var app = app || {};

// Todo Collection
/) ——mmmm

// The collection of todos is backed by *localStorage* instead of a remote
// server.

var TodoList = Backbone.Collection.extend({

// Reference to this collection's model.

88

model: app.Todo,

// Save all of the todo items under the “"todos-backbone” namespace.
localStorage: new Backbone.LocalStorage('todos-backbone'),

// Filter down the list of all todo items that are finished.
completed: function() {
return this.filter(function(todo) {
return todo.get('completed');
b
},

// Filter doun the list to only todo items that are still not finished.
remaining: function() {
return this.without.apply(this, this.completed());

b,

// We keep the Todos in sequential order, despite being saved by unordered
// GUID <n the database. This generates the next order number for new items.
nextOrder: function() {

if (!'this.length) {

return 1;

}

return this.last().get('order') + 1;
s

// Todos are sorted by their original insertion order.
comparator: function(todo) {
return todo.get('order');
X
b;

// Create our global collection of **Todos**.
app.Todos = new TodoList();

The collection’s completed() and remaining() methods return an array of
finished and unfinished todos, respectively.

A nextOrder () method implements a sequence generator while a comparator ()
sorts items by their insertion order.

Note: this.filter, this.without and this.last are Underscore methods
that are mixed in to Backbone.Collection so that the reader knows how to find
out more about them.

89

Application View

Let’s examine the core application logic which resides in the views. Each view
supports functionality such as edit-in-place, and therefore contains a fair amount
of logic. To help organize this logic, we’ll use the element controller pattern.
The element controller pattern consists of two views: one controls a collection
of items while the other deals with each individual item.

In our case, an AppView will handle the creation of new todos and rendering of
the initial todo list. Instances of TodoView will be associated with each individ-
ual Todo record. Todo instances can handle editing, updating, and destroying
their associated todo.

To keep things short and simple, we won’t be implementing all of the applica-
tion’s features in this tutorial, we’ll just cover enough to get you started. Even
so, there is a lot for us to cover in AppView, so we’ll split our discussion into
two sections.

// js/views/app.js
var app = app || {3};

// The Application
/) mmmmmm e

// Our overall **AppView** is the top-level piece of UI.
app.AppView = Backbone.View.extend({

// Instead of generating a new element, bind to the existing skeleton of
// the App already present in the HTML.
el: '#todoapp',

// Our template for the line of statistics at the bottom of the app.
statsTemplate: _.template($('#stats-template').html()),

// At initialization we bind to the relevant events on the “Todos~
// collection, when items are added or changed.
initialize: function() {

this.allCheckbox = this.$('#toggle-all') [0];

this.$input = this.$('#new-todo');

this.$footer = this.$('#footer');

this.$main = this.$('#main');

this.listenTo(app.Todos, 'add', this.addOne);
this.listenTo(app.Todos, 'reset', this.addAll);

90

// Add a single todo item to the list by creating a view for tt,

// appending its element to the “".
addOne: function(todo) {
var view = new app.TodoView({ model: todo });
$('#todo-1list') .append(view.render().el);
},

// Add all items im the **Todos** collection at once.
addAll: function() {
this.$('#todo-1list') .html('"');
app.Todos.each(this.addOne, this);
}

B

A few notable features are present in our initial version of AppView, including a
statsTemplate, an initialize method that’s implicitly called on instantiation,
and several view-specific methods.

An el (element) property stores a selector targeting the DOM element with
an ID of todoapp. In the case of our application, el refers to the matching
<section id="todoapp" /> element in index.html.

The call to _ .template uses Underscore’s micro-templating to construct a stat-
sTemplate object from our #stats-template. We will use this template later
when we render our view.

Now let’s take a look at the initialize function. First, it’s using jQuery to
cache the elements it will be using into local properties (recall that this.$()
finds elements relative to this.$el). Then it’s binding to two events on the
Todos collection: add and reset. Since we’re delegating handling of updates
and deletes to the TodoView view, we don’t need to worry about those here.
The two pieces of logic are:

e When an add event is fired the addOne () method is called and passed the
new model. addOne() creates an instance of TodoView view, renders it,
and appends the resulting element to our Todo list.

o When a reset event occurs (i.e., we update the collection in bulk as
happens when the Todos are loaded from Local Storage), addA11() is
called, which iterates over all of the Todos currently in our collection and
fires addOne () for each item.

Note that we were able to use this within addA11 () to refer to the view because
listenTo() implicitly set the callback’s context to the view when it created the
binding.

91

and

Now, let’s add some more logic to complete our AppView!

// js/views/app. js
var app = app || {};

// The Application
/) mmmmmmmm e

// Our overall **AppView** is the top-level piece of UI.
app.AppView = Backbone.View.extend({

// Instead of generating a new element, bind to the existing skeleton of
// the App already present in the HTML.
el: '#todoapp',

// Our template for the line of statistics at the bottom of the app.
statsTemplate: _.template($('#stats-template').html()),

// New
// Delegated events for creating new items, and clearing completed ones.
events: {

'keypress #new-todo': 'createOnEnter',

'click #clear-completed': 'clearCompleted',
'click #toggle-all': 'toggleAllComplete'
+s

// At initialization we bind to the relevant events on the “Todos’
// collection, when items are added or changed. Kick things off by
// loading any preexisting todos that might be saved in *localStorage*.
initialize: function() {
this.allCheckbox = this.$('#toggle-all') [0];
this.$input = this.$('#new-todo');
this.$footer = this.$('#footer');
this.$main = this.$('#main');

this.listenTo(app.Todos, 'add', this.addOne);
this.listenTo(app.Todos, 'reset', this.addAll);

// New

this.listenTo(app.Todos, 'change:completed', this.filterOne);
this.listenTo(app.Todos, 'filter', this.filterAll);
this.listenTo(app.Todos, 'all', this.render);

app.Todos.fetch();

92

3,

// New
// Re-rendering the App just means refreshing the statistics -- the rest
// of the app doesn't change.
render: function() {
var completed = app.Todos.completed().length;
var remaining = app.Todos.remaining().length;

if (app.Todos.length) {
this.$main.show();
this.$footer.show();

this.$footer.html(this.statsTemplate ({
completed: completed,
remaining: remaining

1D

this.$('#filters 1i a')
.removeClass('selected')

.filter(' [href="#/' + (app.TodoFilter || '') + '"]")
.addClass('selected');
} else {

this.$main.hide();
this.$footer.hide();
}

this.allCheckbox.checked = !remaining;

3,

// Add a single todo item to the list by creating a view for it, and
// appending its element to the “".
addOne: function(todo) {
var view = new app.TodoView({ model: todo });
$('#todo-list') .append(view.render().el);
3,

// Add all items in the **Todos** collection at once.
addAll: function() {
this.$('#todo-1list') .html('"');
app.Todos.each(this.add0One, this);
},

// New

filterOne : function (todo) {
todo.trigger('visible');

93

3,

// New

filterAll : function () {
app.Todos.each(this.filterOne, this);

},

// New
// Generate the attributes for a new Todo item.
newAttributes: function() {
return {
title: this.$input.val().trim(),
order: app.Todos.nextOrder(),
completed: false
};
},

// New
// If you hit return in the main input field, create new Todo model,
// persisting it to localStorage.
createOnEnter: function(event) {
if (event.which !== ENTER_KEY || !this.$input.val().trim()) {
return;

3

app.Todos.create(this.newAttributes());
this.$input.val('');
1,

// New
// Clear all completed todo items, destroying their models.
clearCompleted: function() {
_.invoke(app.Todos.completed(), 'destroy');
return false;

3,

// New
toggleAllComplete: function() {
var completed = this.allCheckbox.checked;

app.Todos.each(function(todo) {
todo.save ({
'completed': completed
s
b

94

}
B

We have added the logic for creating new todos, editing them, and filtering them
based on their completed status.

o events: We've defined an events hash containing declarative callbacks for
our DOM events. It binds those events to the following methods:

e createOnEnter(): Creates a new Todo model and persists it in local-
Storage when a user hits enter inside the <input/> field. Also resets the
main <input/> field value to prepare it for the next entry. The model is
populated by newAttributes(), which returns an object literal composed
of the title, order, and completed state of the new item. Note that this
is referring to the view and not the DOM element since the callback was
bound using the events hash.

e clearCompleted(): Removes the items in the todo list that have been
marked as completed when the user clicks the clear-completed checkbox
(this checkbox will be in the footer populated by the #stats-template).

e toggleAllComplete(): Allows a user to mark all of the items in the todo
list as completed by clicking the toggle-all checkbox.

e initialize(): We’ve bound callbacks to several additional events:

e We've bound a filterOne() callback on the Todos collection for a
change:completed event. This listens for changes to the completed
flag for any model in the collection. The affected todo is passed to the
callback which triggers a custom visible event on the model.

e We've bound a filterAll() callback for a filter event, which works
a little similar to addOne() and addAll(). Its responsibility is to toggle
which todo items are visible based on the filter currently selected in the
UT (all, completed or remaining) via calls to filterOne().

o We've used the special all event to bind any event triggered on the Todos
collection to the view’s render method (discussed below).

The initialize() method completes by fetching the previously saved todos
from localStorage.

e render(): Several things are happening in our render () method:

e The #main and #footer sections are displayed or hidden depending on
whether there are any todos in the collection.

e The footer is populated with the HTML produced by instantiating the
statsTemplate with the number of completed and remaining todo items.

95

e The HTML produced by the preceding step contains a list of filter links.
The value of app.TodoFilter, which will be set by our router, is being
used to apply the class ‘selected’ to the link corresponding to the currently
selected filter. This will result in conditional CSS styling being applied to
that filter.

¢ The allCheckbox is updated based on whether there are remaining todos.

Individual Todo View

Now let’s look at the TodoView view. This will be in charge of individual Todo
records, making sure the view updates when the todo does. To enable this
functionality, we will add event listeners to the view that listen for events on an
individual todo’s HT'ML representation.

// js/views/todos. js
var app = app || {3};

// Todo Item View
/) =mmmmmmmmen

// The DOM element for a todo ttem...
app.TodoView = Backbone.View.extend ({

//... is a list tag.
tagName: '1i',

// Cache the template function for a single item.
template: _.template($('#item-template').html()),

// The DOM events specific to an ttem.
events: {
'dblclick label': 'edit',
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close'

3,

// The TodoView listens for changes to its model, re-rendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {

this.listenTo(this.model, 'change', this.render);

3,

96

// Re-renders the titles of the todo ttem.

render: function() {
this.$el.html(this.template(this.model.toJSON()));
this.$input = this.$('.edit');
return this;

3,

// Switch this view into “"editing” mode, displaying the input field.
edit: function() {

this.$el.addClass('editing');

this.$input.focus();
},

// Close the “"editing" mode, saving changes to the todo.
close: function() {
var value = this.$input.val().trim();

if (value) {
this.model.save({ title: value });
}

this.$el.removeClass('editing');

3,

// If you hit “enter”, we're through editing the item.
updateOnEnter: function(e) {
if (e.which === ENTER_KEY) {
this.close();
}
}
b;

In the initialize() constructor, we set up a listener that monitors a todo
model’s change event. As a result, when the todo gets updated, the application
will re-render the view and visually reflect its changes. Note that the model
passed in the arguments hash by our AppView is automatically available to us
as this.model.

In the render () method, we render our Underscore.js #item-template, which
was previously compiled into this.template using Underscore’s _.template()
method. This returns an HTML fragment that replaces the content of the
view’s element (an li element was implicitly created for us based on the tagName
property). In other words, the rendered template is now present under this.el
and can be appended to the todo list in the user interface. render () finishes by
caching the input element within the instantiated template into this.input.

Our events hash includes three callbacks:

97

e edit(): changes the current view into editing mode when a user double-
clicks on an existing item in the todo list. This allows them to change the
existing value of the item’s title attribute.

o updateOnEnter (): checks that the user has hit the return/enter key and
executes the close() function.

e close(): trims the value of the current text in our <input/> field, ensur-
ing that we don’t process it further if it does not contain any text (e.g *’).
If a valid value has been provided, we save the changes to the current todo
model and close editing mode by removing the corresponding CSS class.

Startup

So now we have two views: AppView and TodoView. The former needs to be
instantiated on page load so its code gets executed. This can be accomplished
through jQuery’s ready () utility, which will execute a function when the DOM
is loaded.

// js/app.js

var app = app || {};
var ENTER_KEY = 13;

$(function() {

// Kick things off by creating the **App**.
new app.AppView();

B

In action

Let’s pause and ensure that the work we’ve done so far functions as intended.

If you are following along, open file://*path*/index.html in your browser
and monitor its console. If all is well, you shouldn’t see any JavaScript errors
other than regarding the router.js file that we haven’t created yet. The todo
list should be blank as we haven’t yet created any todos. Plus, there is some
additional work we’ll need to do before the user interface fully functions.

However, a few things can be tested through the JavaScript console.

In the console, add a new todo item: app.Todos.create({ title: 'My first
Todo item'}); and hit return.

98

/ LI
800 / || Backbone.js = TodoMVC x| 3 L Ll

€& & C [todomvc.com/architecture-examples/b... 77 | e @ & A 8 de=e =

() CElements Resources Network Sources Timeline Profiles Audits | Console |

> window.app.Todos.create({title: 'My first Todo items'});|

O = a © <twopframe>¥ <page context> v (1) | Errors Warnings Logs £

If all is functioning properly, this should log the new todo we’ve just added to
the todos collection. The newly created todo is also saved to Local Storage and
will be available on page refresh.

app.Todos.create () executes a collection method (Collection.create(attributes,
[options])) which instantiates a new model item of the type passed into the
collection definition, in our case app.Todo:

// from our js/collections/todos.js
var TodoList = Backbone.Collection.extend({

model: app.Todo // the model type used by collection.create() to instantiate new m
)}
Run the following in the console to check it out:

var secondTodo = app.Todos.create({ title: 'My second Todo item'});
secondTodo instanceof app.Todo // returns true

Now refresh the page and we should be able to see the fruits of our labour.

99

»
© O O /[ackbone,js - Todomve x \i | .

ey

& > C M [} todomvc.com/architecture-examples/backbone/#/ e O 1L O0OBHE =

What needs to be done?

My first Todo item

My second Todo item

2 items left All Active Completed

The todos added through the console should still appear in the list since they
are populated from the Local Storage. Also, we should be able to create a new
todo by typing a title and pressing enter.

Excellent, we’re making great progress, but what about completing and deleting
todos?

Completing & deleting todos

The next part of our tutorial is going to cover completing and deleting todos.
These two actions are specific to each Todo item, so we need to add this func-

tionality to the TodoView view. We will do so by adding togglecompleted ()
and clear () methods along with corresponding entries in the events hash.

// js/views/todos.js
var app = app || {3};

// Todo Item View
e

// The DOM element for a todo item...
app.TodoView = Backbone.View.extend ({

//... 1s a list tag.

100

tagName: '1i',

// Cache the template function for a single item.
template: _.template($('#item-template').html()),

// The DOM events specific to an ttem.
events: {
'click .toggle': 'togglecompleted', // NEW
'dblclick label': 'edit',

'click .destroy': 'clear', // NEW
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close'

3,

// The TodoView listens for changes to its model, re-rendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {
this.listenTo(this.model, 'change', this.render);
this.listenTo(this.model, 'destroy', this.remove); // NEW
this.listenTo(this.model, 'visible', this.toggleVisible); // NEW
3,

// Re-render the titles of the todo titem.
render: function() {
this.$el.html(this.template(this.model.toJSON()));

this.$el.toggleClass('completed', this.model.get('completed')); // NEW
this.toggleVisible(); // NEW

this.$input = this.$('.edit');
return this;

3,

// NEW - Toggles wistbility of item
toggleVisible : function () {

this.$el.toggleClass('hidden', this.isHidden());
b,

// NEW - Determines if item should be hidden
isHidden : function () {
var isCompleted = this.model.get('completed');
return (// hidden cases only
('isCompleted && app.TodoFilter === 'completed')
|l (isCompleted && app.TodoFilter === 'active')
)3

101

3,

// NEW - Toggle the “"completed"™ state of the model.
togglecompleted: function() {

this.model.toggle();
},

// Switch this view into “"editing” mode, displaying the input field.
edit: function() {

this.$el.addClass('editing');

this.$input.focus();
3,

// Close the “"editing" mode, saving changes to the todo.
close: function() {
var value = this.$input.val().trim();

if (value) {

this.model.save({ title: value });
} else {

this.clear(); // NEW
}

this.$el.removeClass('editing');

3,

// If you hit “enter”, we're through editing the item.
updateOnEnter: function(e) {
if (e.which === ENTER_KEY) {
this.close();
}
}3

// NEW - Remove the item, destroy the model from *localStorage* and delete its view.
clear: function() {
this.model.destroy();
b
s

The key part of this is the two event handlers we’ve added, a togglecompleted
event on the todo’s checkbox, and a click event on the todo’s <button
class="destroy" /> button.

Let’s look at the events that occur when we click the checkbox for a todo item:

1. The togglecompleted() function is invoked which calls toggle () on the

102

todo model.

2. toggle() toggles the completed status of the todo and calls save() on
the model.

3. The save generates a change event on the model which is bound to our
TodoView’s render() method. We've added a statement in render ()
which toggles the completed class on the element depending on the model’s
completed state. The associated CSS changes the color of the title text
and strikes a line through it when the todo is completed.

4. The save also results in a change:completed event on the model which
is handled by the AppView’s filterOne() method. If we look back at
the AppView, we see that filterOne() will trigger a visible event on the
model. This is used in conjunction with the filtering in our routes and
collections so that we only display an item if its completed state falls in
line with the current filter. In our update to the TodoView, we bound the
model’s visible event to the toggleVisible () method. This method uses
the new isHidden() method to determine if the todo should be visible
and updates it accordingly.

Now let’s look at what happens when we click on a todo’s destroy button:

1. The clear() method is invoked which calls destroy() on the todo model.

2. The todo is deleted from local storage and a destroy event is triggered.

3. In our update to the TodoView, we bound the model’s destroy event to
the view’s inherited remove () method. This method deletes the view and
automatically removes the associated element from the DOM. Since we
used listenTo() to bind the view’s listeners to its model, remove () also
unbinds the listening callbacks from the model ensuring that a memory
leak does not occur.

4. destroy() also removes the model from the Todos collection, which trig-
gers a remove event on the collection.

5. Since the AppView has its render () method bound to all events on the
Todos collection, that view is rendered and the stats in the footer are
updated.

That’s all there is to it!
If you want to see an example of those, see the complete source.

Todo routing

Finally, we move on to routing, which will allow us to easily filter the list of
items that are active as well as those which have been completed. We'll be
supporting the following routes:

103

https://github.com/tastejs/todomvc/tree/gh-pages/architecture-examples/backbone

#/ (all - default)

#/active

#/completed
© 0 0 /[gackbones « Todove x L\ " Q
&« > C A [todomvc.com/architectur les/backbone/#/c . Tt

What needs to be done?

v | Learnabout-models
v | Looksatcotllections
v | Read-aboutviews

v | Studyrouters

1 item left All Active Completed Clear completed (4)

When the route changes, the todo list will be filtered on a model level and the
selected class on the filter links in the footer will be toggled as described above.
When an item is updated while a filter is active it will be updated accordingly
(e.g., if the filter is active and the item is checked, it will be hidden). The active
filter is persisted on reload.

// js/routers/router.js

// Todo Router

/) e
var Workspace = Backbone.Router.extend({
routes:{
'"xfilter': 'setFilter'
3,

setFilter: function(param) {
// Set the current filter to be used
if (param) {
param = param.trim();

3

104

app.TodoFilter = param || '';

// Trigger a collection filter event, causing hiding/unhiding
// of Todo view items
app.Todos.trigger('filter');
}
b

app.TodoRouter = new Workspace();
Backbone.history.start();

Our router uses a *splat to set up a default route which passes the string after
‘# /" in the URL to setFilter () which sets app.TodoFilter to that string.

As we can see in the line app.Todos.trigger('filter'), once the filter has
been set, we simply trigger ‘filter’ on our Todos collection to toggle which items
are visible and which are hidden. Recall that our AppView’s filterAll()
method is bound to the collection’s filter event and that any event on the col-
lection will cause the AppView to re-render.

Finally, we create an instance of our router and call Backbone.history.start ()
to route the initial URL during page load.

Summary

We’ve now built our first complete Backbone.js application. The latest version
of the full app can be viewed online at any time and the sources are readily
available via TodoMVC.

Later on in the book, we’ll learn how to further modularize this application
using RequireJS, swap out our persistence layer to a database back-end, and
finally unit test the application with a few different testing frameworks.

Exercise 2: Book Library - Your First RESTful
Backbone.js App

While our first application gave us a good taste of how Backbone.js applications
are made, most real-world applications will want to communicate with a back-
end of some sort. Let’s reinforce what we have already learned with another
example, but this time we will also create a RESTful API for our application
to talk to.

In this exercise we will build a library application for managing digital books
using Backbone. For each book we will store the title, author, date of release,
and some keywords. We'll also show a picture of the cover.

105

http://www.todomvc.com

Setting up

First we need to create a folder structure for our project. To keep the front-end
and back-end separate, we will create a folder called site for our client in the
project root. Within it we will create css, img, and js directories.

As with the last example we will split our JavaScript files by their function, so
under the js directory create folders named lib, models, collections, and views.
Your directory hierarchy should look like this:

site/

css/

img/

js/
collections/
1lib/
models/
views/

Download the Backbone, Underscore, and jQuery libraries and copy them to
your js/lib folder. We need a placeholder image for the book covers. Save this
image to your site/img folder:

Eloquent JavaSeript

o) elig=e gl Ty

)

5
I,

—

Just like before we need to load all of our dependencies in the site/index.html
file:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"/>

106

<title>Backbone.js Library</title>
<link rel="stylesheet" href="css/screen.css">

</head>

<body>
<script src="js/lib/jquery.min.js"></script>
<script src="js/lib/underscore-min.js"></script>
<script src="js/lib/backbone-min.js"></script>
<script src="js/models/book.js"></script>
<script src="js/collections/library.js"></script>
<script src="js/views/book.js"></script>
<script src="js/views/library.js"></script>
<script src="js/app.js"></script>

</body>

</html>

We should also add in the HTML for the user interface. We’ll want a form for
adding a new book so add the following immediately inside the body element:

<div id="books">
<form id="addBook" action="#">
<div>
<label for="coverImage'">CoverImage: </label><input id="coverImage" type="fil
<label for="title">Title: </label><input id="title" type="text" />
<label for="author'">Author: </label><input id="author" type="text" />
<label for="releaseDate">Release date: </label><input id="releaseDate'" type=
<label for="keywords">Keywords: </label><input id="keywords" type="text" />
<button id="add">Add</button>
</div>
</form>
</div>

and we’ll need a template for displaying each book which should be placed before
the script tags:

<script id="bookTemplate" type="text/template">
<img src="<Y%= coverImage %>"/>

<1i><%= title %></1i>
<1i><%= author %></1i>
<1i><%= releaseDate %></1i>
<1li><%= keywords %></1i>

<button class="delete'">Delete</button>
</script>

107

To see what this will look like with some data in it, go ahead and add a manually
filled-in book to the books div.

<div class="bookContainer">

<1i>Title</1i>
Author</1i>
Release Date</1li>
Keywords</1i>

<button class="delete">Delete</button>
</div>

Open this file in a browser and it should look something like this:

Backbone.js Library - Google Chrome

| 7] Backbone.js Library S

& | [file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/sitefindex.htmly s ’EI 2 M

Coverlmage: | Choose File | No file chosen Title: Author: I
Release date: Keywords: | Add

* Title

* Author

* Release Date
* Keywords

Delete

Not so great. This is not a CSS tutorial, but we still need to do some formatting.
Create a file named screen.css in your site/css folder:

body {
background-color: #eee;

108

}

.bookContainer {
outline: 1px solid #aaa;
width: 350px;
height: 130px;
background-color: #fff;
float: left;
margin: 5px;

}

.bookContainer img {
float: left;
margin: 10px;

}

.bookContainer ul {
list-style-type: none;
margin-bottom: 0;

}

.bookContainer button {
float: right;
margin: 10px;

}

#addBook label {
width: 100px;
margin-right: 10px;
text-align: right;
line-height: 25px;
X

#addBook label, #addBook input {
display: block;
margin-bottom: 10px;
float: left;

X

#addBook label[for="title"], #addBook label[for="releaseDate"] {
clear: both;
}

#addBook button {

display: block;
margin: 5px 20px 10px 10px;

109

float: right;
clear: both;
}

#addBook div {
width: 550px;

}

#addBook div:after {
content: "";
display: block;
height: 0;

visibility: hidden;
clear: both;
font-size: O;
line-height: O;

Now it looks a bit better:

Backbone.js Library - Google Chrome

| 7] Backbone.js Library

& | [file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/sitefindex.htmly s ’EI 2 M

Coverlmage: | Choose File | No file chosen

Title: I Author:
Release date: I Keywords:

| Add |
BoquentJovasaript~ Title

== Author
Release Date
Keywords

Delete

So this is what we want the final result to look like, but with more books. Go
ahead and copy the bookContainer div a few more times if you would like to see
what it looks like. Now we are ready to start developing the actual application.

110

Creating the Model, Collection, Views, and App First, we’ll need a
model of a book and a collection to hold the list. These are both very simple,
with the model only declaring some defaults:

// site/js/models/book. js

var app = app || {3;

app.Book = Backbone.Model.extend ({
defaults: {
coverImage: 'img/placeholder.png',
title: 'No title',
author: 'Unknown',
releaseDate: 'Unknown',
keywords: 'None'

}
b;

// site/js/collections/library.js

var app = app || {3};
app.Library = Backbone.Collection.extend({

model: app.Book
s

Next, in order to display books we’ll need a view:

// site/js/views/book. js
var app = app || {3;
app.BookView = Backbone.View.extend ({
tagName: 'div',
className: 'bookContainer',
template: _.template($('#bookTemplate').html()),
render: function() {
//this.el is what we defined in tagName. use $el to get access to jQuery html ()
this.$el.html(this.template(this.model.toJSONQ)));

return this;

B

111

We’ll also need a view for the list itself:

// site/js/views/library. js
var app = app || {3};

app.LibraryView = Backbone.View.extend ({
el: '#books',

initialize: function(initialBooks) {
this.collection = new app.Library(initialBooks);
this.render();

3,

// render library by rendering each book in its collection
render: function() {
this.collection.each(function(item) {
this.renderBook(item);
}, this);
},

// render a book by creating a BookView and appending the
// element it renders to the library's element
renderBook: function(item) {

var bookView = new app.BookView({

model: item

s

this.$el.append(bookView.render().el);
}

s

Note that in the initialize function we accept an array of data that we pass to
the app.Library constructor. We’ll use this to populate our collection with some
sample data so that we can see everything is working correctly. Finally, we have
the entry point for our code, along with the sample data:

// site/js/app.js
var app = app || {};

$(function() {
var books = [

{ title: 'JavaScript: The Good Parts', author: 'Douglas Crockford', releaseDate:
{ title: 'The Little Book on CoffeeScript', author: 'Alex MacCaw', releaseDate:

{ title: 'Scala for the Impatient', author: 'Cay S. Horstmann', releaseDate:

112

'20

{ title: 'American Psycho', author: 'Bret Easton Ellis', releaseDate: '1991', ke
{ title: 'Eloquent JavaScript', author: 'Marijn Haverbeke', releaseDate: '2011',

1;

new app.LibraryView(books);
s

Our app just passes the sample data to a new instance of app.LibraryView
that it creates. Since the initialize() constructor in LibraryView invokes the
view’s render () method, all the books in the library will be displayed. Since
we are passing our entry point as a callback to jQuery (in the form of its $ alias),
the function will execute when the DOM is ready.

If you view index.html in a browser you should see something like this:

Backbone.js Library - Google Chrome

|] Backbone.js Library

@ | [file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/sitefindex.htmly s ’ﬂ 2 F

Coverlmage: | Choose File | No file chosen

Title: I Author:
Release date: I Keywords:

(ko
goweationsupl JavaScript: The Good Parts doqentienset The Little Book on CoffeeScript
S Douglas Crockford e Alex MacCaw
2008 2012
; JavaScript Programming CoffeeScript Programming
=== | Detete s Delete
BoesthowsSoipt Scala for the Impatient BoentlowsSoit American Psycho
S Cay S. Horstmann L Bret Easton Ellis
2012 1991
Scala Programming Novel Splatter
= Delete e Delete
Bogent oot Eloquent JavaScript
el Marijn Haverbeke
Y 2011 -

This is a complete Backbone application, though it doesn’t yet do anything
interesting.

Wiring in the interface

Now we’ll add some functionality to the useless form at the top and the delete
buttons on each book.

113

Adding models

When the user clicks the add button we want to take the data in the form and
use it to create a new model. In the LibraryView we need to add an event
handler for the click event:

events:q{
'click #add':'addBook'

3,

addBook: function(e) {
e.preventDefault();

var formData = {};

$('#addBook div').children('input').each(function(i, el) {
if($C el).val() = "')
{
formDatal el.id] = $(el).valQ);
}
s

this.collection.add(new app.Book(formData));
1,

We select all the input elements of the form that have a value and iterate over
them using jQuery’s each. Since we used the same names for ids in our form as
the keys on our Book model we can simply store them directly in the formData
object. We then create a new Book from the data and add it to the collection.
We skip fields without a value so that the defaults will be applied.

Backbone passes an event object as a parameter to the event-handling function.
This is useful for us in this case since we don’t want the form to actually submit
and reload the page. Adding a call to preventDefault on the event in the
addBook function takes care of this for us.

Now we just need to make the view render again when a new model is added.
To do this, we put

this.listenTo(this.collection, 'add', this.renderBook);

in the initialize function of LibraryView.
Now you should be ready to take the application for a spin.

You may notice that the file input for the cover image isn’t working, but that
is left as an exercise to the reader.

114

Backbone.js Library - Google Chrome

| | Backbone js Library

4 & | [file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/sitefindex.html 77 ’El -
Coverlmage: | Choose File | No file chosen =
Title: IDeveIcping Backbone. s / Author: I;ddy Osmani
Release date: Eﬂ Keywords: |Backbene JavaScript MV
LAdg |
Boqueat JovsSaipt JavaScript: The Good Parts ElquentJosSapt The Little Book on CoffeeScript
el Douglas Crockford e Alex MacCaw
2008 2012
JavaScript Programming CoffeeScript Programming
S | Delete R Delete
BoentoSipt~ Scala for the Impatient HoquentJoSipt A merican Psycho
e Cay S. Horstmann e Bret Easton Ellis
2012 1991
Scala Programming Novel Splatter
= | Detete Sk Delete
Boeathowsoipt - Eloquent JavaScript Boentjowsoi Developing Backbone.js Applications
s Marijn Haverbeke s Addy Osmani
2011 2013 -

Removing models

Next, we need to wire up the delete button. Set up the event handler in the
BookView:

events: {
'click .delete': 'deleteBook'
},

deleteBook: function() {
//Delete model
this.model.destroy();

//Delete view
this.remove();

3,

You should now be able to add and remove books from the library.

115

Creating the back-end

Now we need to make a small detour and set up a server with a REST api.
Since this is a JavaScript book we will use JavaScript to create the server using
node.js. If you are more comfortable in setting up a REST server in another
language, this is the API you need to conform to:

url HTTP Method Operation

/api/books GET Get an array of all books

/api/books/:id GET Get the book with id of :id

/api/books POST Add a new book and return the book with an id attribute added
/api/books/:id PUT Update the book with id of :id

/api/books/:id DELETE Delete the book with id of :id

The outline for this section looks like this:

¢ Install node.js, npm, and MongoDB
o Install node modules

o Create a simple web server

e Connect to the database

¢ Create the REST API

Install node.js, npm, and MongoDB

Download and install node.js from nodejs.org. The node package manager (npm)
will be installed as well.

Download, install, and run MongoDB from mongodb.org (you need Mongo to
be running to store data in a Mongo database). There are detailed installation
guides on the website.

Install node modules

Create a file called package. json in the root of your project. It should look
like

"name": "backbone-library",
"version": "0.0.1",
"description": "A simple library application using Backbone",
"dependencies": {
"express": "~3.1.0",
"path": "~0.4.9",

116

http://docs.mongodb.org/manual/installation/

"mongoose": "~3.5.5"

Amongst other things, this file tells npm what the dependencies are for our
project. On the command line, from the root of your project, type:

npm install

You should see npm fetch the dependencies that we listed in our package.json
and save them within a folder called node modules.

Your folder structure should look something like this:

node_modules/
.bin/
express/
mongoose/
path/
site/
css/
img/
js/
index.html
package. json

Create a simple web server

Create a file named server.js in the project root containing the following code:

// Module dependencies.

var application_root = __dirname,
express = require('express'), //Web framework
path = require('path'), //Utilities for dealing with file paths
mongoose = require('mongoose'); //MongoDB integration

//Create server
var app = express();

// Configure server

app.configure(function() {
//parses request body and populates request.body
app.use(express.bodyParser());

117

//checks request.body for HTTP method overrides
app.use(express.methodOverride());

//perform route lookup based on url and HTTP method
app.use(app.router);

//Where to serve static content
app.use(express.static(path.join(application_root, 'site')));

//Show all errors in development
app.use(express.errorHandler ({ dumpExceptions: true, showStack: true }));

B

//Start server
var port = 4711;
app.listen(port, function() {
console.log('Express server listening on port %d in %s mode', port, app.settings.en

B;

We start off by loading the modules required for this project: Express for cre-
ating the HTTP server, Path for dealing with file paths, and mongoose for
connecting with the database. We then create an Express server and configure
it using an anonymous function. This is a pretty standard configuration and for
our application we don’t actually need the methodOverride part. It is used for
issuing PUT and DELETE HTTP requests directly from a form, since forms
normally only support GET and POST. Finally, we start the server by running
the listen function. The port number used, in this case 4711, could be any free
port on your system. I simply used 4711 since it is unlikely to have been used
by anything else. We are now ready to run our first server:

node server.js

If you open a browser on http://localhost:4711 you should see something like
this:

This is where we left off in Part 2, but we are now running on a server instead of
directly from the files. Great job! We can now start defining routes (URLSs) that
the server should react to. This will be our REST API. Routes are defined by
using app followed by one of the HT'TP verbs get, put, post, and delete, which
corresponds to Create, Read, Update and Delete. Let us go back to server.js
and define a simple route:

// Routes
app.get('/api', function(request, response) {
response.send('Library API is running');

b;

118

Backbone.js Library - Google Chrome

| | Backbone js Library

§ @ | [localhost:4711

Coverlmage: | Choose File | No file chosen

Title: I Author:
Release date: | Keywords:

| Add |
Bogentlowoipt JavaScript: The Good Parts toquentJoneipt~ The Little Book on CoffeeScript
e Douglas Crockford e Alex MacCaw
2008 2012
JavaScript Programming CoffeeScript Programming
o | Detete o Delete
Boeathowsoipt | Scala for the Impatient Boentlowsoit American Psycho
s Cay S. Horstmann s Bret Easton Ellis
2012 1991
Scala Programming Novel Splatter
— | Delete DS Delete
BogeatloSaipt - Eloquent JavaScript
el Marijn Haverbeke
2011 -

The get function takes a URL as the first parameter and a function as the
second. The function will be called with request and response objects. Now you
can restart node and go to our specified URL:

Connect to the database

Fantastic. Now, since we want to store our data in MongoDB, we need to define
a schema. Add this to server.js:

//Connect to database
mongoose.connect('mongodb://localhost/library_database');

//Schemas

var Book = new mongoose.Schema ({
title: String,
author: String,
releaseDate: Date

s

//Models
var BookModel = mongoose.model('Book', Book);

119

localhost:4711/api - Google Chrome

|] localhost:4711/api *®

{ € | [4 localhost

Library API is running

As you can see, schema definitions are quite straight forward. They can be
more advanced, but this will do for us. I also extracted a model (BookModel)
from Mongo. This is what we will be working with. Next up, we define a GET
operation for the REST API that will return all books:

//Get a list of all books
app.get('/api/books', function(request, response) {
return BookModel.find(function(err, books) {
if(terr) {
return response.send(books);
} else {
return console.log(err);
}
s
I

The find function of Model is defined like this: function find (conditions,
fields, options, callback) — but since we want a function that returns all
books we only need the callback parameter. The callback will be called with
an error object and an array of found objects. If there was no error we return
the array of objects to the client using the send function of the response object,
otherwise we log the error to the console.

120

To test our API we need to do a little typing in a JavaScript console. Restart
node and go to localhost:4711 in your browser. Open up the JavaScript console.
If you are using Google Chrome, go to View->Developer->JavaScript Console.
If you are using Firefox, install Firebug and go to View->Firebug. Most other
browsers will have a similar console. In the console type the following:

jQuery.get('/api/books/', function(data, textStatus, jgqXHR) {
console.log('Get response:');
console.dir(data);
console.log(textStatus);
console.dir(jgqXHR);
s

..and press enter and you should get something like this:

Developer Tools - http:/flocalhost:4711/

Elements Resources MNetwork Sources Timeline Profiles Audits | Console | Tincr

» jQuery.get{ 'fapi/books/', function{ data, textStatus, jgXHR } {
console. log('Get response:');
le.dir({ data }:
co le.log({ textStatus);
console.dir{ jgXHR):
Tii
» Object {readyState: 1, getResponseHeader: function, getAllResponseHeaders:
function, setRequestHeader: function, overrideMimeType: function.}
Get response:
s Array[0]
SUCCESS

> Dbject

BH = Q @ <topframe> ¥ <page context> v (D | Erors Wamings $§

Fl

Here I used jQuery to make the call to our REST API, since it was already
loaded on the page. The returned array is obviously empty, since we have not
put anything into the database yet. Let’s go and create a POST route that
enables adding new items in server.js:

//Insert a new book
app.post('/api/books', function(request, response) {
var book = new BookModel ({
title: request.body.title,
author: request.body.author,
releaseDate: request.body.releaseDate
s

book.save(function(err) {

121

if(terr) {
return console.log('created');
} else {
return console.log(err);
X
return response.send(book);
s
ION

We start by creating a new BookModel, passing an object with title, author, and
releaseDate attributes. The data are collected from request.body. This means
that anyone calling this operation in the API needs to supply a JSON object
containing the title, author, and releaseDate attributes. Actually, the caller can
omit any or all attributes since we have not made any of them mandatory.

We then call the save function on the BookModel passing in a callback in the
same way as with the previous get route. Finally, we return the saved Book-
Model. The reason we return the BookModel and not just “success” or similar
string is that when the BookModel is saved it will get an _ id attribute from
MongoDB, which the client needs when updating or deleting a specific book.
Let’s try it out again. Restart node and go back to the console and type:

jQuery.post('/api/books', {

'title': 'JavaScript the good parts',

"author': 'Douglas Crockford',

'releaseDate': new Date(2008, 4, 1).getTime()
}, function(data, textStatus, jgXHR) {

console.log('Post response:');

console.dir(data);

console.log(textStatus);

console.dir(jgXHR);
19N

..and then

jQuery.get('/api/books/', function(data, textStatus, jqXHR) {
console.log('Get response:');
console.dir(data);
console.log(textStatus);
console.dir(jgqXHR);
s

You should now get a one-element array back from our server. You may wonder
about this line:

122

'releaseDate': new Date(2008, 4, 1).getTime()

MongoDB expects dates in UNIX time format (milliseconds from the start of
Jan 1st 1970 UTC), so we have to convert dates before posting. The object
we get back however, contains a JavaScript Date object. Also note the _id
attribute of the returned object.

g Developer Tools - http://localhost: 4711/

Elements Resources MNetwork Sources Timeline Profiles Audits | Censole | Tincr

.log{ 'Get response:');
ata):

('fapifbooks/', function(data, textStatus, jgXHR) { ‘

of textStatus):
{ jaXHR };
I3 H
» Object {readyState: 1, getResponseHeader: function, getAllResponseHeaders: function, setRequestHeader:
function, overrideMimeType: function.}
Get response:
YArray[l]
Y0O: Object
vi B
id: "511ccl7f895116ac6cBOEBOl"
author: "Douglas Crockford"
releaseDate: "2008-04-38T23:00:00.000Z"
title: "JavaScript the good parts”

3 prote : Dbject
ength: 1
¥ proto : Array[0]
success
» Object
>
n‘ = Q| e <top frame> ¥ <page context> LAl Al Errors Warnings Logs Debug ﬁ

Let’s move on to creating a GET request that retrieves a single book in server.js:

//Get a single book by id
app.get('/api/books/:id', function(request, response) {
return BookModel.findById(request.params.id, function(err, book) {
if(lerr) {
return response.send(book);
} else {
return console.log(err);
}
I
3

Here we use colon notation (:id) to tell Express that this part of the route
is dynamic. We also use the findById function on BookModel to get a single

123

result. If you restart node, you can get a single book by adding the id previously
returned to the URL like this:

jQuery.get('/api/books/4f95a8cb1baadb8alb000006', function(data, textStatus, jgXHR) {
console.log('Get response:');
console.dir(data);
console.log(textStatus);
console.dir(jgXHR);
s

Let’s create the PUT (update) function next:

//Update a book
app.put('/api/books/:id', function(request, response) {
console.log('Updating book ' + request.body.title);
return BookModel.findById(request.params.id, function(err, book) {
book.title = request.body.title;
book.author = request.body.author;
book.releaseDate = request.body.releaseDate;

return book.save(function(err) {
if(lerr) {
console.log('book updated');
} else {
console.log(err);
}
return response.send(book);
b
b;
b;

This is a little larger than previous ones, but is also pretty straight forward — we
find a book by id, update its properties, save it, and send it back to the client.

To test this we need to use the more general jQuery ajax function. Again, in
these examples you will need to replace the id property with one that matches
an item in your own database:

jQuery.ajax({
url: '/api/books/4f95a8cblbaa9b8a1b000006",
type: 'PUT',
data: {
'title': 'JavaScript The good parts',
'author': 'The Legendary Douglas Crockford',
'releaseDate': new Date(2008, 4, 1).getTime()

124

},

success: function(data, textStatus, jqXHR) {
console.log('Post response:');
console.dir(data);
console.log(textStatus);
console.dir(jgqXHR);

}

s

Finally we create the delete route:

//Delete a book
app.delete('/api/books/:id', function(request, response) {
console.log('Deleting book with id: ' + request.params.id);
return BookModel.findById(request.params.id, function(err, book) {
return book.remove(function(err) {
if(terr) {
console.log('Book removed');
return response.send('');
} else {
console.log(err);
}
IO
s
19N

..and try it out:

jQuery.ajax({
url: '/api/books/4f95a5251baa9b8a1b000001",
type: 'DELETE',
success: function(data, textStatus, jgqXHR) {
console.log('Post response:');
console.dir(data);
console.log(textStatus);
console.dir(jgXHR);
}
s

So now our REST API is complete — we have support for all four HTTP verbs.
What’s next? Well, until now I have left out the keywords part of our books.
This is a bit more complicated since a book could have several keywords and we
don’t want to represent them as a string, but rather an array of strings. To do
that we need another schema. Add a Keywords schema right above our Book
schema:

125

//Schemas

var Keywords = new mongoose.Schema ({
keyword: String

s

To add a sub schema to an existing schema we use brackets notation like so:

var Book = new mongoose.Schema ({

title: String,

author: String,

releaseDate: Date,

keywords: [Keywords] // NEW
N

Also update POST and PUT:

//Insert a new book
app.post('/api/books', function(request, response) {
var book = new BookModel ({
title: request.body.title,
author: request.body.author,
releaseDate: request.body.releaseDate,

keywords: request.body.keywords // NEW
s
book.save(function(err) {
if(lerr) {
return console.log('created');
} else {
return console.log(err);
}
return response.send(book);
s

s

//Update a book
app.put('/api/books/:id', function(request, response) {
console.log('Updating book ' + request.body.title);
return BookModel.findById(request.params.id, function(err, book) {
book.title = request.body.title;
book.author = request.body.author;
book.releaseDate = request.body.releaseDate;
book.keywords = request.body.keywords; // NEW

return book.save(function(err) {
if(lerr) {

126

console.log('book updated');

} else {
console.log(err);

}

return response.send(book);

b
s
s

There we are, that should be all we need, now we can try it out in the console:

jQuery.post('/api/books', {

'title': 'Secrets of the JavaScript Ninja',
'author': 'John Resig',
'releaseDate': new Date(2008, 3, 12).getTime(),
'keywords': [

{ 'keyword': 'JavaScript' },

{ 'keyword': 'Reference' }
]

}, function(data, textStatus, jgqXHR) {
console.log('Post response:');
console.dir(data);
console.log(textStatus);
console.dir(jgXHR);

s

You now have a fully functional REST server that we can hook into from our
front-end.

Talking to the server

In this part we will cover connecting our Backbone application to the server
through the REST API.

As we mentioned in chapter 3 Backbone Basics, we can retrieve models from a
server using collection.fetch() by setting collection.url to be the URL
of the API endpoint. Let’s update the Library collection to do that now:

var app = app || {};

app.Library = Backbone.Collection.extend({
model: app.Book,
url: '/api/books' // NEW

s

127

This results in the default implementation of Backbone.sync assuming that the
APT looks like this:

url HTTP Method Operation

/api/books GET Get an array of all books

/api/books/:id GET Get the book with id of :id

/api/books POST Add a new book and return the book with an id attribute added
/api/books/:id PUT Update the book with id of :id

/api/books/:id DELETE Delete the book with id of :id

To have our application retrieve the Book models from the server on page load
we need to update the LibraryView. The Backbone documentation recommends
inserting all models when the page is generated on the server side, rather than
fetching them from the client side once the page is loaded. Since this chapter is
trying to give you a more complete picture of how to communicate with a server,
we will go ahead and ignore that recommendation. Go to the LibraryView
declaration and update the initialize function as follows:

initialize: function() {
this.collection = new app.Library();
this.collection.fetch({reset: true}); // NEW
this.render();

this.listenTo(this.collection, 'add', this.renderBook);
this.listenTo(this.collection, 'reset', this.render); // NEW
},

Now that we are populating our Library from the database using this.collection.fetch(),
the initialize () function no longer takes a set of sample data as an argument

and doesn’t pass anything to the app.Library constructor. You can now

remove the sample data from site/js/app.js, which should reduce it to a single

statement which creates the LibraryView:

// site/js/app.js
var app = app || {};

$(function() {
new app.LibraryView();

b;

We have also added a listener on the reset event. We need to do this since the
models are fetched asynchronously after the page is rendered. When the fetch
completes, Backbone fires the reset event, as requested by the reset: true

128

Backbone.js Library - Google Chrome

| | Backbone js Library *®

€ 9 @ |[localhost

Coverlmage: | Choose File | No file chosen

Title: I Author:
Release date: | Keywords:

iyl
Boentionsipl Secrets of the JavaScript Ninja
e John Resig
2008-04-11T23:00:00.000Z
3‘63 [object Object],[object Object]
s Delete

option, and our listener re-renders the view. If you reload the page now you
should see all books that are stored on the server:

As you can see the date and keywords look a bit weird. The date delivered
from the server is converted into a JavaScript Date object and when applied to
the underscore template it will use the toString() function to display it. There
isn’t very good support for formatting dates in JavaScript so we will use the
dateFormat jQuery plugin to fix this. Go ahead and download it from here and
put it in your site/js/lib folder. Update the book template so that the date is
displayed with:

<1i><%= $.format.date(new Date(releaseDate), 'MMMM yyyy') %></1li>
and add a script element for the plugin
<script src="js/lib/jquery-dateFormat-1.0.js"></script>

Now the date on the page should look a bit better. How about the keywords?
Since we are receiving the keywords in an array we need to execute some code
that generates a string of separated keywords. To do that we can omit the
equals character in the template tag which will let us execute code that doesn’t
display anything:

129

http://github.com/phstc/jquery-dateFormat

<1i><}% _.each(keywords, function(keyobj) {%> <J= keyobj.keyword ¥%><% }); %></1li>

Here I iterate over the keywords array using the Underscore each function and
print out every single keyword. Note that I display the keyword using the <%=
tag. This will display the keywords with spaces between them.

Reloading the page again should look quite decent:

Backbone.js Library - Google Chrome

| Backbone.js Library x

€ 9 @ |[localhost

Coverlmage: | Choose File | No file chosen

Title: | Author:
Release date: I Keywords:

Boeathowsaipt | Secrets of the JavaScript Ninja
s John Resig
April 2008

;,63 JavaScript Reference

Delete

Now go ahead and delete a book and then reload the page: Tadaa! the deleted
book is back! Not cool, why is this? This happens because when we get the
BookModels from the server they have an _id attribute (notice the underscore),
but Backbone expects an id attribute (no underscore). Since no id attribute
is present, Backbone sees this model as new and deleting a new model doesn’t
need any synchronization.

To fix this we can use the parse function of Backbone.Model. The parse function
lets you edit the server response before it is passed to the Model constructor.
Add a parse method to the Book model:

parse: function(response) {
response.id = response._id;
return response;

130

Simply copy the value of _id to the needed id attribute. If you reload the page
you will see that models are actually deleted on the server when you press the
delete button.

Another, simpler way of making Backbone recognize _id as its unique identifier
is to set the idAttribute of the model to _id.

If you now try to add a new book using the form you’ll notice that it is a similar
story to delete — models won’t get persisted on the server. This is because
Backbone.Collection.add doesn’t automatically sync, but it is easy to fix. In
the LibraryView we find in views/library.js change the line reading:

this.collection.add(new Book(formData));
...to:
this.collection.create(formData);

Now newly created books will get persisted. Actually, they probably won’t if you
enter a date. The server expects a date in UNIX timestamp format (milliseconds
since Jan 1, 1970). Also, any keywords you enter won’t be stored since the server
expects an array of objects with the attribute ‘keyword’.

We'll start by fixing the date issue. We don’t really want the users to manually
enter a date in a specific format, so we’ll use the standard datepicker from jQuery
UI. Go ahead and create a custom jQuery UI download containing datepicker
from here. Add the css theme to site/css/ and the JavaScript to site/js/lib.
Link to them in index.html:

<link rel="stylesheet" href="css/cupertino/jquery-ui-1.10.0.custom.css">

“cupertino” is the name of the style I chose when downloading jQuery UL

The JavaScript file must be loaded after jQuery.

<script src="js/lib/jquery.min.js"></script>
<script src="js/lib/jquery-ui-1.10.0.custom.min.js"></script>

Now in app.js, bind a datepicker to our releaseDate field:

var app = app || {3;

$(function() {
$('#releaseDate').datepicker();
new app.LibraryView();

b;

131

http://jqueryui.com/download/

Backbone.js Library - Google Chrome

| | Backbone js Library

s w

€ 2 @ |[localhost:a711

Coverlmage: | Choose File | No file chosen
Title: IDeveloplng Backbone.js / Author: ;ddy Osmani
Release date: : Keywords: |Backbene JavaScript MV

[February 2013 o | Ada

Su Mo Tu We Th Fr 8Sa

j
o tpy, i [
[M)
s
[4,]
[-;]
~
LT
w [%)

St 10 11 12 13 14 15 16
17, 18 19 20 21 22 23
24 25 26 27 28

You should now be able to pick a date when clicking in the releaseDate field:

Finally, we have to make sure that the form input is properly transformed into
our storage format. Change the addBook function in LibraryView to:

addBook: function(e) {
e.preventDefault();

var formData = {};

$('#addBook div').children('input').each(function(i, el) {

if($C el).val() != "')
{
if(el.id === 'keywords') {
formDatal el.id] = [];
_.each($(C el).val().split(' '), function(keyword) {
formDatal el.id].push({ 'keyword': keyword });
b;
} else if(el.id === 'releaseDate') {
formDatal el.id] = $('#releaseDate').datepicker('getDate').getTime(
} else {

formDatal[el.id] $C el).val();

}

132

}
// Clear input field value
$C el).val('");

s

this.collection.create(formData);

3,

Our change adds two checks to the form input fields. First, we’re checking if
the current element is the keywords input field, in which case we're splitting the
string on each space and creating an array of keyword objects.

Then we’re checking if the current element is the releaseDate input field, in which
case we're calling datePicker (" ~“getDate'') which returns a Date object. We
then use the getTime function on that to get the time in milliseconds.

Now you should be able to add new books with both a release date and keywords!

Backbone.js Lib