CME 338 Final Paper: Hessian-free optimization for training convolutional
neural networks in Tensorflow

Adele Kuzmiakova
Stanford University

adele.kuzmiakova@stanford.edu

ABSTRACT

Second-order methods for deep learning optimization
enjoy several advantages over first-order methods, includ-
ing no need for extensive hyperparameter tuning, faster con-
vergence rates, and better scaling to large mini batch sizes.
Despite these strengths, second-order algorithms are rarely
applied in practice due to their high computational cost. We
test several Hessian free variants, which aim to approxi-
mate the local curvature of the loss function, allowing us
to compute more efficient updates. We also implement and
test several preconditioners in order to reduce the number of
conjugate gradient (CG) iterations. Experiments with these
Hessian free variants in the context of convolutional neu-
ral networks with multiple convolutional layers show better
convergence and generalization than a stochastic gradient
descent (SGD) method. Moreover, the performance of the
Hessian free methods is on par with the Adam optimizer.
One of the barriers for a large-scale adoption of the Hessian
free optimizer in Tensorflow is long training time, which
could possibly be taken care of by a block-diagonal approx-
imation of the curvature matrix.

1. Introduction

Optimization algorithms used in deep learning play an
important role in the training of the neural networks; they
are designed to minimize an objective function consisting of
the model’s internal learnable parameters, such as weights
and bias terms. First order methods, which solely rely on
gradient information of the objective function, are simple
to design and implement. Traditionally, SGD methods have
been one of the most extensively employed first-order meth-
ods throughout the last several decades [14}[27]]. The cen-
tral idea is to use gradient to form a linear approximation
and take the step towards the minima of that approximation.
Key advantages of SGDs are that they are simple to imple-
ment and are fast in training neural networks with many
training examples [3]. Yet, despite their ease of imple-
mentation, SGDs come with several disadvantages. One
prominent drawback of SGDs is that they require manual

fine-tuning of hyperparameters [2]], such as learning rate
and convergence criterion, which are often problem-specific
and not known apriori. A standard strategy in this case is to
run the learning algorithm with a variety of possible hyper-
parameters and select the one with the best performance on
the validation set. Another drawback of SGDs is that they
are known to be sensitive to ill-conditioning [23]. A final
disadvantage of SGDs is that they are inherently sequential,
and thus difficult to parallelize.

Compared to first-order methods, second-order methods,
which use both the gradient and Hessian information, have
higher cost per iteration associated with the computation
and use of the typically dense Hessian matrix. However,
on the flip side, these methods are usually much more sta-
ble to train and easier to check for convergence. They can
also enjoy parallelism by computing the gradient on multi-
ple GPUs or distributing that computation tasks across mul-
tiple machines [21]. Yet, in most of computer vision tasks
with deep architectures, employing the Hessian update is
virtually impractical because computing (and inverting) the
Hessian in its explicit form is an O(n?) operation. As a re-
sult, there exists a variety of quasi-Newton methods, which
seek to approximate and efficiently store the inverse Hes-
sian [20]. An example includes limited-memory BFGS
(L-BFGS), which uses the representation of gradients over
time to find a low rank Hessian approximation. Alterna-
tive approaches might include approximating diagonal or
block-diagonal Hessian implicitly. However, none of these
methods have been reported to be successful in deep learn-
ing applications with architectures containing multiple con-
volutional or fully-connected layers in sequence. Instead,
one promising approach is Hessian-free optimization alter-
native, which is a quasi-Newton method because it uses no
low-rank approximations. It is referred to as “free” because
we never explicitly compute the Hessian. When compared
to first-order optimization methods, Hessian-free method
requires orders of magnitudes fewer iterations than SGD
(~ 102 vs ~ 10* — 10°). In the context of deep learning ap-
plications, Hessian-free is useful for problems where high-
quality estimation of the gradient and curvature is practical



or the local curvature properties of the objective function
are particularly extreme [4} 11,112, 9].

In this work, we explore a Hessian-free algorithm, in the
context of convolutional neural networks. Convolutional
neural networks are building blocks in many computer vi-
sion tasks designed to tackle image recognition or visual
pattern classification. In terms of convolutional neural net-
work architectures, we use two architecture variants: “shal-
low”, which contains two convolutional layers each fol-
lowed by the pooling layer, and “deep”, which contains four
convolutional layers each followed by the pooling layer. We
model the objective as an unconditional black box where we
only get information about the function value of the gradient
at each step. We also describe modifications to the standard
Hessian-free algorithm so that it can be adapted to the deep
learning computer vision tasks, which typically exhibit non-
convex objective behavior.

2. Background

Optimization research has a long history in deep learn-
ing application. When it comes to deep learning, SGD can
be widely considered as the favorite optimization method.
SGD utilizes either constant learning rates or learning rates
of the form % [27]. Also common and useful is to com-
pute the gradient over batches of the training data, i. e.
mini-batch gradient descent, particularly if we are work-
ing with many training examples [8]. However, sometimes
tuning the learning rates can be an expensive process. As
opposed to tuning the learning rate globally and equally for
all parameters, we can also tune the learning rate adaptively
per parameter. Examples of such optimizers include RM-
SProp [25], Adam [10], and Adagrad [7]. These meth-
ods are relatively simple to implement and fast to evaluate
(O(n) complexity) on the mini-batch. Convergence rates
for these algorithms methods range from sub-linear to lin-
ear. However, due to ill-conditioning and large hyper pa-
rameter space, SGD methods tend to take a large number
of iterations to converge to a sufficiently low generalization
error. This is primarily attributed to sensitivity to the ill-
conditioning problem and large hyper parameter space.

On the other hand, it has been shown that the second-
order methods enjoy convergence faster rates, ranging from
linear to quadratic [18]], and can provide very low general-
ization errors [26]. A popular group of second-order opti-
mization methods in the context of deep learning is based
on Newtons method, which iterates the following update:

x4z —[H(z) 'V (1)

Here, x is a vector of parameters, H () represents the
Hessian matrix: H(z) = V2f(z), and V f(z) is the gradi-
ent vector. As a result, the Hessian describes the local cur-
vature of the loss function, which allows us to compute a

more efficient update. Specifically, multiplying the gradient
by the inverse Hessian leads to taking larger steps in direc-
tions of shallow curvature and shorter steps in directions of
steep curvature. Note that the Hessian update formula in
Eq [I] does not include learning rate hyperparameter. This
is a large benefit compared to first-order algorithms, which
require extensive fine-tuning of the learning rate parameter.

3. Hessian-free algorithm for ConvNets
3.1. Basics

The central idea motivating Hessian-free method is to it-
eratively update the parameters = € R of an objective
function f by computing search directions p and updating
x as ¢ + ap for some «. In the simplest case, in each itera-
tion k we produce a new estimate x; by minimizing a local
quadratic model gx(p) of the objective f(z + p), which
is formed using gradient and curvature information local to
T

(p) = F(ee) + 9" g(ox) + 5" H(rn)p
= f(zr +p)

2

Here we denote g(xr) = Vf(xr). Therefore, finding
a good search direction will then involve minimizing this
quadratic expression with respect to p. However, in practice
H(z) may be indefinite and not the best representation of
f for large p. As a result, the Hessian is damped where
B(zy) = H(xk)+ A for some constant A > 0. Damping is
more thoroughly discussed in Section[3.2] Then, we would
like to compute:

pr = argmin f(zy +p) = B(ar)pr = —g(zx)  3)
P

The new iterate xj, is computed as x = ap_1p;_;
where p;_; is the minimzer to Eq (3| The step length «y
is typically chosen through a line search from a subset of
possible values o € [0,1]. The problem in Eq [3| is re-
duced to a linear system. Hessian free method attempts to
solve this system using the conjugate gradient (CG) iter-
ative method since it requires only matrix-vector products
containing B(xy). CG is an optimizer that works well for
the quadratic objectives of the form ¢(z) = 27 Az — b7z
where A € RV*¥ is positive definite and b € RN . Apply-
ing CG in the context oqu we have x = pi, A = B(xy),
and b = g(x). We will ignore the constant term f(xg).
One nice property of CG algorithm is that after a few 1 it-
erations, we are likely to find an optimal solution to any
convex quadratic function ¢(z) over the Krylov subspace
Ki(A,70) = span{rg, Arg, A%rg,...A""1rq} where ro =



Axob and z is the initial solution. Any other gradient-
based method, including Nesterovs accelerated gradient de-
scent [17]], applied directly to ¢, has been shown to produce
solutions, which lie in the Krylov subspace, and therefore,
will always be outperformed by CG.

Therefore, the advantage of this method is that it is rel-
atively easy to compute the matrix-vector product B(zy) d
using finite differences to approximate the limit. Multiply-
ing B(x) with a direction vector d amounts to taking a
directional derivative of the gradient:

B(xg)d = (H(zg) + A)d
— lim g(x +k+ed) — g(xk) 4

e—0 €

Here we calculate the limit using finite differences with
€ = v/machine precision. As a result, in the Hessian-free
form B(xy) d is computed for the exact value of H (xy),
as opposed to some some low-rank or diagonal approxima-
tion employed in other quasi-Newton methods. The pseudo-
algorithm for the Hessian-free optimization is described be-
low in[Il

Algorithm 1 Hessian-Free Optimization
1: fork=1,2,...do
gk < V()
3 Update X using the Levenberg-Marquardt method
4: Define By (d) = H(xp)d+ A d
5: pr. < CG-solve(By, —gi)
6
7
8

Tk+1 < Tk + Dk
: k+—k+1
: end for

A drawback of computing the matrix-vector products us-
ing finite differences may be potentially expensive function
evaluation of non-linear functions, especially when using
deep nets with more than 10* optimizable parameters. To
tackle this problem, a proposal has been made to compute
the Gauss-Newton matrix, which is a positive semi-definite
approximation of the Hessian [24] 16| [15]. In the context of
neural nets, the Gauss-Newton approach can be extended to
deep learning architectures where output units correspond
to the error in the loss function, such as logistic units with
softmax loss or regression estimates (continuous values)
with mean squared error. The possiblity of implementing
the Gauss-Newton method in the convolutional neural net-
work architectures is further discussed in Section 3.4

3.2. Damping

Damping (or regularization) is important to consider in
the Hessian free approach because we run CG with implicit
access to the true Hessian at each iteration. Therefore, we
need to use an adaptive damping parameter A\ because the

relative scale of H () is changing and H () must remain
positive semidefinite. The expression for damped Hessian
is defined in Section We start with A\ = 1 and update
A according to a Levenberg-Marquardt style heuristic: if
pr < Lthen A — aXandif pp > 3 then A — a7 '\
Here py, is the reduction ratio measuring the accuracy of the
second-order approximation:

[k —pi) — flzg)

ar(pk) — q(0)

Selecting the optimal value of ) is problem-dependent:
if A is too large, then the natural gradient degenerates to
the weighted gradient. On the other hand, if A is too small,
the natural gradient could be too aggressive due to the low
rank of H(xy). Additionally, p measures similarity between
the actual loss and its second order approximation. If the
approximation is reliable, we can afford a larger stepsize
on low curvature directions and therefore we can reduce the
damping parameter \.

PE =

3.3. Equilibrium pre-conditioner

Any gradient descent method will make slow progress
when the curvature of the loss function is very different in
separate directions. The negative gradient will be pointing
towards the directions of high curvature. As a result, ev-
ery gradient step will very little progress in small curvature
directions, which leads to slow convergence. Precondition-
ing can locally transform the optimization surface so that
the curvature is equal in all directions. As a result, a good
choice of preconditioning can significantly accelerate CG
method. In terms of preconditioner choices, one of the most
widely used preconditioners for Hessian-free optimization
is the Jacobi preconditioner [3]]. It is given by the diagonal
of the Hessian P’/ = |diag(H)| where | - | are element-wise
absolute values. The Jacobi preconditioner has been applied
in the context of the Gauss-Newton matrix, which can ap-
proximate the Hessian under certain conditions [14} 22].
Here we will slightly modify this idea such that the equilib-
rium preconditioner can be formulated as:

P® = |diag(B?)| ()

Therefore, the equilibrium preconditioner here can be

thought of as the Jacobi preconditioner of the absolute

damped Hessian | B(xy)|. A nice property of the eqilibrium

preconditioner is that it will be more conservative than the

Jacobi preconditioner of the absolute damped Hessian due
to Jensen inequality:

PP <|BJ;!
The pseudo-code for the preconditioned CG with equi-
librium conditioner, P¥, can be represented in Algorithm

The quadratic objective ¢(xy) is computed as g(zx) =
5(ri —b) ;.



Algorithm 2 Equilibrium preconditioning of CG
Input: b, A, xo, P

Output: z;

ro < AJ}O —b

: P < |diag(B?)|

: Yo < solution of Py = rq

Po < —Yo

140

: while termination conditions do not apply do
rTy i

Tit1 < i + oup;

Yit1 ¢ solution of Py = r; 4y

Biv1 ‘Ti:;::rl

Pi+1 < —Yit1 T Bit1pi

12: 141+1

13: end while

14: return x;

R A S o T

—_ =
—_ o

3.4. Negative curvature

Even though the Hessian-free algorithm uses damping,
it is possible that CG may compute directions of negative
curvature, i. e. direction d such that d” B(zy) d < 0.
That is reasonable since the optimizing function objective in
the context of deep neural nets is non-convex. As a result,
we modify the CG routine so that it if directions of nega-
tive curvature are found, the routine will continue stepping
along the last non-negative curvature direction. Although
the presence of negative curvature may be considered a po-
tential drawback, exploiting and evaluating negative curva-
ture is important, especially for training deep convolutional
neural networks [16]. Additionally, it has been shown in
[19] that if an algorithm uses negative curvature directions,
it will eventually converge to second-order critical point.

If one wishes to avoid the negative curvature entirely, one
might use the Gauss-Newton matrix, as mentioned in Sec-
tion[3.1] Since the Gauss-Newton matrix is a positive semi-
definite, this guarantees that CG will work for any positive
A. An additional benefit of using the Gauss-Newton matrix
instead of the Hessian is that the associated matrix-vector
product routine for the Gauss-Newton requires up to 50%
less memory and runs almost twice as fast. In this work, the
Gauss-Newton matrix was not used because of Tensorflow’s
and Theano’s abstraction and its access to only the Hessian
matrix. However, depending on the framework used (e.g.
PyTorch, Tensorflow, Theano, or hand-coding the layers
manually in MatLab), experiments with the Gauss-Newton
matrix are worth performing because it may significantly
change the search directions even in scenarios where nega-
tive curvature is not present.

3.5. Implementing an optimizer in a deep learning
framework

Currently, Tensorflow and PyTorch are two most popu-
lar deep learning frameworks. In the past, Theano was also
widely used but it is no longer being developed or updated
by its authors in Montreal. Therefore, we discard Theano
from consideration and focus on the two remaining frame-
works. Both Tensorflow and PyTorch operate on tensors
and view any computational model as a directed acyclic
graph, but they significantly differ in terms of how we de-
fine them.

Tensorflow: It provides a simple dataflow based pro-
gramming abstraction that allows users to deploy applica-
tions on distributed clusters, local workstations, mobile de-
vices, and custom-designed accelerators. In TensorFlow we
define graph statically before we can run a model. For in-
stance, aa communication is performed via “tf.Session” ob-
ject and “tf.Placeholder”, which are tensors that will be sub-
stituted by external data at runtime. Many optimization al-
gorithms require each layer to have defined gradients, and
building layers out of simple operators makes it easy to dif-
ferentiate these models automatically. In addition to the
functional operators, Tensorflow represents mutable state
as nodes in the dataflow graph, thus enabling experimen-
tation with different update rules [1l]. Finally, Tensorflow
also includes a Tensorboard, which is a powerful visual-
ization tool. TensorBoard operates by reading TensorFlow
events files, which contain summary data that we can gener-
ate when running TensorFlow, and allows to visualize real-
time loss, accuracy, or any other error metric.

PyTorch: It is a port to the popular Torch framework
(implemented in C with a wrapper in Lua) with the Torch
binaries wrapped in GPU accelerated Python. Besides the
GPU acceleration and the efficient usages of memory, the
main driver behind the popularity of PyTorch is the use of
dynamic computational graphs. The advantage of these dy-
namic graphs is that the graphs are defined by the run (“de-
fine by run”) instead of the traditional “define and run”. Es-
pecially in cases where the input can vary, for example with
unstructured data such as blobs of text, this is extremely
useful and efficient. While this flexibility is useful for quick
prototyping, PyTorch lacks the advantages of a dataflow
graph as a portable representation across small-scale exper-
imentation, production training, and deployment.

We briefly experimented with both PyTorch and Ten-
sorflow for implementing Hessian free methods but in the
end we chose Tensorflow. As described above, Tensorflow
has several advantages. It is relatively straightforward to
do higher order directional derivatives, including Hessian-
vector products. This has been done in Pytorch as well but
for now it remains a bit ad-hoc in a sense that further modi-
fications might not be scalable, e.g. we cannot differentiate
the Hessian norm.



4. Experiments
4.1. Datasets

The algorithms were tested on the MNIST and CIFAR-
10 datasets. The purpose of the MNIST dataset is to per-
form classification of images of handwritten digits. The
dataset consists of 60,000 training samples and 10,000 test
samples. The features are the gray-scale values of the im-
ages with a resolution of 28 x 28 pixels. The CIFAR-
10 dataset consists of 60000 32 x 32 colour images in 10
classes, with 6000 images per class. There are 50,000 train-
ing images and 10,000 test images. All images are color
images and thus contain RGB channel values. To improve
stability and convergence properties, the pixel values from
both datasets were normalized to [0, 1] from [0, 255]. We
run all experiments on a Google Cloud Platform GPU in-
stance (8 vCPUs, 52GB memory, and 1 GPU NVIDIA Tesla
K80). The stopping criterion in terms of classification con-
vergence was that the test accuracies from the last 3 epochs
didn’t vary by more than 5%.

4.2. Algorithms

We are interested in comparing the performance of the
Hessian free algorithm with those from the off-the-shelf al-
gorithms: SGD, Adam, and RMSprop. We explore dif-
ferent variants of Hessian free methods: 1) with no pre-
conditioner, denoted as HF, 2) with Jacobi pre-conditioner,
denoted as HF-J, and with Equilibrium pre-conditioner, de-
noted as HF-E. In terms of SGD parameters, we briefly
made experiments with different learning rate from the set
of values {1074,107°,107¢}. The best performing learn-
ing rate was 10~° and therefore, we chose this value for all
subsequent experiments in this paper. In Adam optimizer,
we use the following values: « = 0.001, 5, = 0.9, B2 =
0.999, and € = 108.

4.3. Convolutional neural network architectures

Convolutional neural network is made of a sequence
of layers where each layer transforms one volume of ac-
tivations to another via a differentiable function. A typi-
cal convolutional neural network architecture consists of 3
main types of layers stacked together: convolutional layer,
pooling layer, and fully-connected layer. Here we experi-
ment with 2 different forms of architecture: “shallow” and
“deep”. The “shallow” variant consists of 2 convolutional
layers, each containing the optimizer. Each convolutional
layer is followed by a pooling layer. At the end we use
a fully-connected layer with Softmax loss function. The
“deep” variant consists of 4 convolutional layers, each con-
taining the optimizer. Again, at the end we attached a fully-
connected layer with Softmax loss function. The purpose
behind introducing 2 architecture types is to explore what
happens when the gradient is evaluated multiple times on a

MNIST dataset

90+

80+

70+

daap

60 1
algorithm

Adam
HF
— HF-E

50 -

— HF-J
90+ 7

/Z SGD

RMSprop

Test accuracy (%)

80+

70+

Moj[eys

60 -

50

Epoch

Figure 1. Test accuracy (%) on the MNIST dataset. The upper
panel represents deep network architecture while the bottom panel
represents shallow network architecture.

different set of activation volumes (2 vs 4).

S. Results
5.1. The effect of different preconditioners

In this section we explore the effect of different precon-
ditioners (none, Equilibrium, and Jacobi) on the test accura-
cies from classifications on MNIST and CIFAR-10 datasets
in Figure[T|and 2] respectively.

In the case of MNIST dataset, most of the optimizers
converged to 92 - 93% accuracy on the test set. Adam con-
verged the fastest of all optimizers. In terms of Hessian
free variants of algorithms, there is not a significant differ-
ence in their performance and all typically converged to the
93% accuracy within 8 epochs. However, we notice that
in the shallow architecture containing 2 convolutional lay-
ers, Hessian free algorithm with no preconditioning took 1
or 2 additional epochs to arrive at the expected accuracy.
As for training time-per-epoch on the GPU instance, the ar-
chitecture with Adam optimizer used on average 5 seconds
per epoch, the one with HF-E optimizer used on average 45
seconds per epoch, the one with HF-J optimizer used on av-



erage 48 seconds per epoch, and the one with HF optimizer
(no preconditioner applied) used on average 75 seconds per
epoch. The added computational burden for Hessian free
variants compared to first order methods comes from the
fact that typically the Hessian free method requires hun-
dreds of CG iterations for one update. In this context, we
limit the number of CG iterations to 100. Therefore, mak-
ing even a single optimization step is fairly computationally
expensive relative to first order methods. Adding a precon-
ditioner, either Jacobi or Equilibrium, did help in terms of
computational time since it reduced the number of CG iter-
ations. Also, training time with Equilibrium preconditioner
was around 60% less than in case of training Hessian free
method with no preconditioner. When comparing the two
preconditioners (Equilibrium and Jacobi), we cannot distin-
guish which one is better with statistical confidence. How-
ever, the Equilibrium preconditioner is guaranteed to be at
least as robust as (if not better than) the Jacobi precondi-
tioner due to Jansen inequality. Overall, for all 3 Hessian
free methods, training time is comparatively slow (up to
two orders of magnitudes slower than in Adam). One of
the main reasons is that a relatively large number of Krylov
subspace iterations may be required for a solution to ap-
proximate the Hessian within each Hessian free iteration.

In the CIFAR-10 case, most of the optimizers converged
to 92% - 94% test accuracy. Both Adam and HF-E con-
verged the fastest; within 6 epochs in the “deep” convolu-
tional neural network setup, which is encouraging. In terms
of training time-per-epoch on the GPU instance, Adam used
on average 6 seconds, HF-E used on average 52 seconds,
HF-J used on average 55 seconds, and HF (no precondition-
ing) used on average 83 seconds per epoch. This is slightly
longer than in the MNIST case due to 3 RGB channels be-
ing used in CIFAR-10.

One generalizable conclusion from both MNIST and
CIFAR-10 datasets is that Adam performs slightly better
than SGD. Adam offers several advantages over the sim-
ple SGD in a sense that Adam uses moving averages of the
parameters (momentum). This is beneficial because it en-
ables Adam to use a larger effective step size, helping the
algorithm to converge to final step size without fine tuning.
A relative downside of Adam is that it requires more com-
putation to be performed for each parameter in each training
step in order to maintain the moving averages and variance,
and calculate the scaled gradient. Hence, it uses more mem-
ory to store the average and variance for each parameter. If
this is a problem, a simple SGD could potentially be used
instead but more likely it would require more careful hyper-
parameter tuning (more thorough than what we did with the
learning rate) before it could converge as quickly as Adam.

CIFAR-10 dataset

90

80 -

daap

70+

60+ algorithm
Adam
50+ HF

— HF-E

— HF-J

90+ RMSprop

SGD
80+

70+

Test accuracy (%)

Moj[eys

60 -

50

TN

Epoch

Figure 2. Test accuracy (%) on the CIFAR-10 dataset. The upper
panel represents deep network architecture while the bottom panel
represents shallow network architecture.

5.2. The effect of minibatches

While Section discusses results from experiments
done on the entire datasets, here we perform the same ex-
periments on mini-batches. An underlying question to con-
sider is how to set the size of the gradient and curvature
mini-batches. The answer is typically problem-dependent
and specific to the input dimensions and architecture. For
instance, inputs with large dimensions (such as 229 x 229)
may require the batch size to be very small if batch normal-
ization is applied. In both datasets, MNIST and CIFAR-10,
we set the size of each mini-batch to 27. We use the entire
training set for computing gradients and mini-batches for
computing matrix-vector products.

In Figure [3] we compare the test accuracy for different
optimizers on the MNIST mini-batch data. We see that
Adam performs the best (as expected) but Hessian free vari-
ants require more epoch to reach the expected convergence
of around 93% test accuracy. Considering simple models,
SGD and Adam will likely find a good fit after one or two
passes over the dataset or its mini-batch. It may be diffi-
cult for the mini-batch Hessian free method to do much in
the same number of gradient and function evaluations. One



MNIST dataset: minibatches

90+

80 -

70+

dasp

60-

algorithm
Adam
HF

— HF-E

50 -

N\

— HF-J
90
RMSprop

SGD

Test accuracy (%)

80+

70+

Mojjeys

60 -

50+

1 2 3 4 5 6 7 8 9 10 11 12 13

Epoch
Figure 3. Test accuracy (%) on the MNIST dataset using mini-
batches. The upper panel represents deep network architecture
while the bottom panel represents shallow network architecture.

of the advantages of using mini-batches is a faster train-
ing time. For instance, in a mini-batch setting, Adam used
on average 5 seconds per epoch, Hessian free with Equilib-
rium preconditioner used on average 21 seconds per epoch,
Hessian free with Jacobi preconditioner used on average 23
seconds per epoch, and Hessian free with no preconditioner
used on average 28 seconds per epoch. Hence an impor-
tant aspect of splitting the dataset into mini-batches is that
Hessian-vector multiplications are carried out with a signifi-
cantly smaller sample size than the one used for the function
and gradient. Mini-batches are good for parallelizing com-
putation, especially on GPUs, and lead to faster execution
times since computing curvature information on large mini-
batches can easily be distributed across several machines.

The similar trend can be seen on experiments from the
CIFAR-10 dataset in Figure[d Adam performs the best and
the Hessian-free variants tend to converge more slowly to
the expected test accuracy. However, the training time for
Hessian free variants in the mini-batch setting was faster:
Hessian free with Equilibrium preconditioner used on aver-
age 25 seconds per epoch, Hessian free with Jacobi precon-
ditioner used on average 26 seconds per epoch, and Hessian

CIDAR-10 dataset: minibatches

90~

80+

70+

daap

60
algorithm

Adam
HF
— HF-E

50

— HF-J
90
RMSprop

SGD

Test accuracy (%)

80+

NN/

60 -

Moj[eys

50

\

123456 7 8 910111213
Epoch
Figure 4. Test accuracy (%) on the CIFAR-10 dataset using mini-

batches. The upper panel represents deep network architecture
while the bottom panel represents shallow network architecture.

free with no preconditioner used on average 34 seconds per
epoch.

6. Conclusions

In this paper we explored the performance of differ-
ent Hessian free methods on the MNIST and CIFAR-10
datasets in the context of convolutional neural network ar-
chitectures. We also implemented and tested several pre-
conditioners in order to reduce the number of CG itera-
tions. Experiments with these Hessian free variants show
better convergence and generalization than RMSprop or
SGD method. Moreover, the performance of the Hessian
free methods is on par with the Adam optimizer.

Despite being a promising procedure, the Hessian
free method currently faces some formidable challenges
amongst machine learning practitioners. One of the main
barriers for wide-scale deployment and adoption of the Hes-
sian free methods is their long computational time. The
CG routine inside the Hessian free setup requires on the
order of 102 to 10? iterations per single step. This means
a computational overhead of about 102 to 10® more per
iteration, which is a signficant downside to any marginal



benefits compared to Adam. To speed up the training and
evaluation time for Hessian free methods, one area for po-
tential research may be experimenting with some type of a
block-diagonal approximation of the curvature matrix or its
sub-sampling in order to improve Hessian free convergence
properties. In its essence, the Hessian matrix is closely
block-diagonal. Past research on a block-diagonal approxi-
mation of the Fisher information matrix showed promising
results where training time for a one-layer perceptron was
reduced by one order of magnitude [13].

However, even after we eliminate the memory concerns,
another large downside of a naive application of the Hessian
free method is that its gradient and function values must be
computed over the entire training set, which could contain
hundreds thousands or millions of training examples in the
real-world applications. Unlike mini-batch Adam or SGD,
getting the Hessian free to work effectively on mini-batches
is more tricky. Ideally, the size of the mini-batch should be a
hyperparameter itself. It may be worth experimenting with
selecting different mini-batches for computing gradient and
computing curvature (e.g. gradient mini-batches and curva-
ture mini-batches). Finally, another interesting area for fur-
ther research is including localized adaptations where the
Hessian free routine could adapt its behaviour based on the
mini-batch size and number of conjugate gradient iterations
(which is not fixed anymore). This behavior is more char-
acteristic of SGD and could be seen as a stochastic variant
of the Hessian free method.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: A system for large-scale machine
learning. Symposium on Operating Systems Design and Im-
plementation, 2016.

[2] A. Berahas, R. Bollapragada, and J. Nocedal. An investiga-
tion of newton-sketch and subsampled newton method. arXiv
preprint, 2017.

[3] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. Proceedings of COMPSTAT, 2010.

[4] N. Boulanger-Lewandowsk, Y. Bengio, and P. Vincent.
Modeling temporal dependencies in high- dimensional se-
quences: Application to polyphonic music generation and
transcription. Proceeding of the ICML, 2012.

[5] O. Chapelle and D. Erhan. Improved preconditioner for hes-
sian free optimization. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

[6] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli,
and Y. Bengio. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. Con-
ference: Advances in Neural Information Processing Sys-
tems, 2014.

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
JMLR, 2011.

P. Goyal, P. Dollar, R. Girshick, P. Noordhuisi,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch sgd: training imagenet in 1 hour.
arXiv, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 1997.

D. Kingma and J. Ba. A method for stochastic optimization.
arXiv, 2014.

B. Kingsbury, T. Sainath, and H. Soltau. Scalable minimum
bayes risk training of deep neural network acoustic mod-
els using distributed hessian-free optimization. Interspeech,
2012.

R. Kiros. Training neural networks with stochastic hessian-
free optimization. International Conference on Learning
Representations, 2013.

N. Le Roux, P. Manzagol, and Y. Bengio. Topmoumoute
online natural gradient algorithm. NIPS, 2008.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient
based learning applied to document recognition. Proceeding
of the IEEE, 1998.

J. Mertens. Deep learning via hessian-free optimization. Pro-
ceedings of the 27th International Conference on Machine
Learning, 2010.

E. Mizutani and S. E. Dreyfus. Second-order stagewise back-
propagation for hessian-matrix analyses and investigation of
negative curvature. Neural Networks, 2008.

Y. Nesterov. A method for unconstrained convex minimiza-
tion problem with the rate of convergence o (1/k2). Doklady
AN SSSR, 1983.

J. Nocedal and S. Wright. Numerical optimization. Springer
Science and Business Media, 2006.

A. Olivare, J. Moguerza, and F. Prieto. Nonconvex optimiza-
tion using negative curvature within a modified linesearch.
European Journal of Operational Research, 2008.

B. Pearlmutter. Fast exact multiplication by the hessian. Neu-
ral Computation, 1994.

R. Raina, A. Madhavan, and A. Ng. Large-scale deep unsu-
pervised learning using graphics processors. /CML, 2009.

P. Razvan and Y. Bengio. Revisiting natural gradient for deep
networks. International Conference on Learning Represen-
tations, 2014.

F. Roosta-Khorasani and M. Mahoney. Sub-sampled newton
methods i: globally convergent algorithms. arXiv preprint,
2016.

N. Schraudolph. Fast curvature matrix-vector products for
second-order gradient descent. Neural Computation, 2002.

T. Tieleman and G. Hinton. Divide the gradient by a run-
ning average of its recent magnitude. Neural Networks for
Machine Learning, 2012.



[26] P. Xu, F. Roosta-Khorasani, and M. Mahoney. Second-order
optimization for non-convex machine learning: An empirical
study. arXiv, 2017.

[27] M. Zinkevich, M. Weime, A. Smola, and L. Li. Parallelized
stochastic gradient descent. NIPS, 2010.



