
Stanford University, Management Science and Engineering (and ICME)

MS&E 318 (CME 338) Large-Scale Numerical Optimization

Student: Adele Kuzmiakova Spring 2018

Homework 3, Due Wednesday May 2
http://stanford.edu/class/msande318/homework.html

1. Please see the previous scans attached.

2. (a) Figure 1 compares the log base 10 norm of residuals ‖rk‖ for each iteration
k using 4 solvers: PCG, MINRES, SYMMLQ, and LSQR. Additionally,
Figure 2 summarizes the results in terms of number of total iterations,
relative residuals, and error term for each of these solvers.

Figure 1: Log base 10 norm of residuals over k iterations.

Figure 2: A comparison between 4 solvers in terms of total iterations, relative
residuals, and the error term at convergence.

(b) All four solvers (PCG, MINRES, SYMMLQ, and LSQR) converged within
a specified tolerance set to 1e-9 and hence their relative residuals in Fig-
ure 2 are on the same order of magnitude (order of 1e-10). In terms
of log base 10 norm of residuals, ‖rk‖ , we notice that LSQR performs

http://stanford.edu/class/msande318/homework.html

2 MS&E 318 (CME 338) Large-Scale Numerical Optimization

the best while SYMMLQ performs the worst. The difference between
these two methods is approximately four orders of magnitude, which is
significant. In terms of the number of iterations needed to reach the con-
vergence, solvers PCG, MINRES, and SYMMLQ used 29-30 iterations
while LSQR needed 68 iterations (almost twice as much). There are a
couple of properties we can check on A and B in order to explain these
differences:

(i) A is symmetric (checked by issymmetric(A)), which favors PCG,
MINRES, and SYMMLQ solvers in terms of the number of iterations
since they work well for symmetric case Ax = b. LSQR is typically
applied on unsymmetric square or rectangular A.

(ii) A is ill-conditioned since its condition number is 1.1441e+07. This
situation favors LSQR, which is consistent with Question 3 where C
is also ill-conditioned and LSQR performs the best.

(iii) B is reasonably well-conditioned since its condition number is 2353.
Therefore small differences between 3 solvers (PCG, MINRES, and
SYMMLQ) should not be affected by cond(B).

Generally, it is reasonable to expect that PCG, MINRES, and SYMMLQ
converge to the specified tolerance within roughly the same number of it-
erations. All four solvers seek to minimize ‖rk‖ where rk = Vk+1tk+1 and
tk+1 ≡ β1e1 −Hkyk. Specifically, PCG, MINRES, and SYMMLQ utilize
Lanczos process while LSQR utilizes Golub-Kahan process. Therefore,
each solver deals with a different subproblem:

(i) CG: makes tk+1 = 0 everywhere except its last element

(ii) MINRES: minimizes ‖rk‖ such that xk = V kyk

(iii) SYMMLQ: makes tk+1 = 0 everywhere except its last two elements
while keeping ‖yk‖ as small as possible

(iv) LSQR: similar as MINRES, minimizes ‖rk‖ such that xk = V kyk

(c) The following stopping rules are implemented:

(i) PCG: uses the condition (normr <= tolb || stag >= maxstagsteps

|| moresteps), where normr = ‖rk‖, tolb = tol ‖b‖, maxstagsteps
is set to 3 and refers to a stagnation where two consecutive iterations
produce roughly the same results, and moresteps is an indicator for
exceeding the maximum number of steps.

(ii) MINRES: uses the condition (normr <= tolb || stag >= maxstagsteps

|| moresteps), with parameters being the same as above.

(iii) SYMMLQ: uses the condition (normr <= tolb || stag >= maxstagsteps

|| moresteps), with parameters being the same as above.

(iii) LSQR: uses the condition (normr <= tolb), with parameters being
the same as above. Additionally, LSQR checks for convergence in
min |b−Ax|

As a result, PCG, MINRES, and SYMMLQ use the same stopping criteria
consisting of ‖rk‖ being below some treshold, number of iterations not ex-
ceeding the maximum limit, and stagnation not exceeding 3 steps. LSQR

Spring 2018, Homework 3 3

also utilizes ‖rk‖ being below some treshold and considers convergence
in min |b−Ax|. This explains why PCG, MINRES, and SYMMLQ used
roughly the same number of iterations whereas the additional criterion in
LSQR might have led to additional iterations with better performance.

3. (a) Figure 3 compares the log base 10 norm of residuals ‖rk‖ for each iteration
k for case when Cx = b with C being indefinite. Additionally, Figure 4
summarizes the results in terms of number of total iterations, relative
residuals, and error term.

Figure 3: Log base 10 norm of residuals over k iterations for case Cx = b.

Figure 4: A comparison between 4 solvers in terms of total iterations, relative
residuals, and the error term at convergence for case Cx = b.

(b) Since C is not a positive-definite matrix, the PCG solver terminated after
5 iterations. In Figure 4, we see that flag = 4 is being raised to explain
the early stopping. The flag refers to the condition when one of the

scalar quantities calculated during PCG became too small or too

4 MS&E 318 (CME 338) Large-Scale Numerical Optimization

large to continue computing. Hence the solver stopped the process
once it was realized that C is ill-conditioned. In situations when C is
positive-definite, each Tk is theoretically positive-definite and PCG can
obtain Cholesky factors Tk = LkDkTk

T . In situations when C is not
positive-definite, some Tk may be singular but Tk cannot be singular
twice in a row. In this case, it was probably the second scenario leading
to the breakdown.

(c) Consistent with the problem setup in Question 2, here C is also ill-
conditioned (its condition number is 8.2837e+04). Similarly, LSQR per-
forms the best and SYMMLQ performs the worst. The difference between
the two methods is approximately 5 orders of magnitude, which is sig-
nificant. In terms of the number of iterations to reach the convergence,
MINRES and SYMMLQ utilized roughly the same number of iterations
(195 and 199). This is expected due to the same convergence criteria sum-
marized in Question 2. Again LSQR needs more than twice the number
of iterations to reach the convergence but leads to a better performance
since the system is ill-conditioned.

4. Figures 5 and 6 show the distribution of eigenvalues for case Cx = b. λ(C)
lie on the interval [-2.1830, 7.3331], however, some of them are repeated – for
instance, λ(C) = 0.5032 is repeated three times. Additionally, from Figure 6
we can deduce that a significant majority of eigenvalues are concentrated on
the interval [0.5, 0.6]. More precisely, roughly 280 eigenvalues are concentrated
around the value of 0.5. The repeated values of λ(C) suggest that C could
be viewed as a matrix with fewer than n distinct eigenvalues either because
some of them repeated or some of them are very similar to each other to the
extent of being regarded as essentially the same. In previous problem set,
we established that if A has m < n distinct eigenvalues, the Lanczos process
will use at most m iterations. Similarly, in our case the number of distinct
eigenvalues is also less than n, and hence the solvers would require significantly
fewer than n iterations.

Spring 2018, Homework 3 5

Figure 5: Distribution of eigenvalues for case Cx = b..

Figure 6: Distribution of eigenvalues for case Cx = b.

6 MS&E 318 (CME 338) Large-Scale Numerical Optimization

Figure 7: Coefficients of c such that V c = b.

We can also obtain the full eigendecomposition of C and write the relationship
V c = b, where V represents an orthogonal matrix whose columns are corre-
sponding eigenvectors of C and c represents a vector whose coefficients satisfy
the following equalities:

(i) V c = b

(ii) c = V T b

Hence, c is coefficient vector, which represents b in terms of the eigenvector
basis of C. Figure 7 reveals that a majority of coefficients are near-zero values
though they never actually become zero. Therefore, it may be plausible that
the Lanczos process discards some of these near-zero coefficient eigenvectors,
leading to an additional reduction in the number of iterations necessary to
solve Cx = b.

In conclusion, the combination of repeated or near-equivalent eigenvalues of
C and near-zero coefficients for eigenvectors of C could explain why the sym-
metric solvers require significantly fewer than n iterations.

Please find the code used to produce the graphs below.

Spring 2018, Homework 3 7

% CGtest8.m is a script for comparing {cg, symmlq, minres}

% on sparse matrix Boeing/bcsstm34, n=588, nnz=24270).

% See http://faculty.cse.tamu.edu/davis/welcome.html (Tim Davis).

% The matrix A is from a structural problem.

% It is symmetric indefinite with lambda_min = -2.6830.

%

% 09 Apr 2017: Problem Boeing/bcsstm34 used for Homework 3.

% 22 Apr 2018: Removed pcg and minres on C^2x = Cb.

%--

load bcsstm34.mat; % lambda(min) = -2.6830, lambda(max) = 6.8331

A = Problem.A; % Save original matrix A

condest(A)

[n,n] = size(A);

x = 1./(1:n)’;

%--

sigma1 = 2.7;

B = A + sigma1*speye(n); condB = condest(B);

b = B*x;

tol = 1e-9; % Not highly accurate

maxit = 1000;

[xC,flagC,relresC,iterC,resvecC] = pcg (B,b,tol,maxit);

[xL,flagL,relresL,iterL,resvecL] = symmlq(B,b,tol,maxit);

[xM,flagM,relresM,iterM,resvecM] = minres(B,b,tol,maxit);

[xS,flagS,relresS,iterS,resvecS,lsvec] = lsqr (B,b,tol,maxit);

errC = norm(xC-x,inf); % The inf-norm is best for large vectors

errL = norm(xL-x,inf);

errM = norm(xM-x,inf);

errS = norm(xS-x,inf);

fprintf(’\nPOS-DEFINITE B = A + sigma1*I,’)

fprintf(’ sigma1 =%5.2f, condest(B) = %8.1e\n\n’, sigma1, condB)

fprintf(’ flag iter relres error\n’)

fprintf(’ CG Bx = b%4g %5g %8.1e %8.1e b\n’, flagC,iterC,relresC,errC)

fprintf(’ SYMMLQ Bx = b%4g %5g %8.1e %8.1e r\n’, flagL,iterL,relresL,errL)

fprintf(’ MINRES Bx = b%4g %5g %8.1e %8.1e g\n’, flagM,iterM,relresM,errM)

fprintf(’ LSQR Bx = b%4g %5g %8.1e %8.1e m\n’, flagS,iterS,relresS,errS)

figure(1)

hold off; plot(log10(resvecL),’r-’)

hold on; plot(log10(resvecC),’b-’)

hold on; plot(log10(resvecM),’g-’)

hold on; plot(log10(lsvec) ,’m-’)

xlabel(’Number of iterations’) % x-axis label

ylabel(’Log base 10 of norm of residuals’) % y-axis label

legend(’symmlq’,’pcg’, ’minres’, ’lsqr’)

title(’Figure 1: Log base 10 of norm of residuals vs number of iterations’)

%--

sigma2 = 0.5;

C = A + sigma2*speye(n); condC = condest(C);

8 MS&E 318 (CME 338) Large-Scale Numerical Optimization

b = C*x; Cfun = @(x) C*x; % Treat C as a function

%b2 = C*b; Cfun2 = @(x) C*(C*x); % Treat C*C as a function

[xC,flagC,relresC,iterC,resvecC] = pcg (Cfun ,b ,tol,maxit);

[xL,flagL,relresL,iterL,resvecL] = symmlq(Cfun ,b, tol,maxit);

[xM,flagM,relresM,iterM,resvecM] = minres(Cfun ,b ,tol,maxit);

[xS,flagS,relresS,iterS,resvecS,lsvec] = lsqr (C ,b ,tol,maxit);

errC = norm(xC-x,inf);

errL = norm(xL-x,inf);

errM = norm(xM-x,inf);

errS = norm(xS-x,inf);

fprintf(’\n INDEFINITE C = A + sigma2*I,’)

fprintf(’ sigma2 =%5.2f, condest(C) = %8.1e\n\n’, sigma2, condC)

fprintf(’ flag iter relres error\n’)

fprintf(’ CG Cx = b%4g %5g %8.1e %8.1e b\n’, flagC,iterC,relresC,errC)

fprintf(’ SYMMLQ Cx = b%4g %5g %8.1e %8.1e r\n’, flagL,iterL,relresL,errL)

fprintf(’ MINRES Cx = b%4g %5g %8.1e %8.1e g\n’, flagM,iterM,relresM,errM)

fprintf(’ LSQR Cx = b%4g %5g %8.1e %8.1e m\n’, flagS,iterS,relresS,errS)

figure(2)

hold off; plot(log10(resvecC),’b-’)

hold on; plot(log10(resvecL),’r-’)

hold on; plot(log10(resvecM),’g-’)

hold on; plot(log10(lsvec) ,’m-’)

xlabel(’Number of iterations’) % x-axis label

ylabel(’Log base 10 of norm of residuals’) % y-axis label

legend(’pcg’, ’symmlq’, ’minres’, ’lsqr’)

title(’Figure 3: Log base 10 of norm of residuals vs number of iterations’)

%--

% Plot the eigenvalues of C.

%--

lambda = eig(full(C));

figure(3)

hold off; plot(lambda,’b.’)

xlabel(’Eigenvalue number’); ylabel(’\lambda(C)’);

title(’Eigenvalues of C’);

% Show if the eigenvalues are clustered.

figure(4)

hold off; plot(lambda,250*ones(n,1),’b.’)

hold on

y1 = -3; yn = 7;

step = 0.25; nbar = (yn - y1)/step + 1;

y = zeros(nbar,1);

nlam = zeros(nbar,1);

for i = 1:nbar

y2 = y1 + step;

nlam(i) = length(find(lambda>y1 & lambda<=y2));

Spring 2018, Homework 3 9

y(i) = y1 + 0.5*step;

y1 = y2;

end

bar(y, nlam)

xlabel(’\lambda(C)’); ylabel(’No. of \lambda(C)’);

title(’Distribution of eigenvalues of C’);

[V, D] = eig(full(C));

c = V\b;

figure(5)

plot(sort(c, 1, ’descend’))

xlabel(’Index for length of c’) % x-axis label

ylabel(’Coefficients of c’) % y-axis label

title(’Figure 7: Coefficients of c such that Vc = b’)

