R T

Abhu kel Sirgh

Chapter 6

Pipelining and Superscalar
Techniques

This chapter deals with advanced pipelining and superscalar design in processor
development. We' begin with a discussion of conventional linear pipelines and analyze
their performance. A generalized ripeline medol is introduced o iuciude moninear
interstage connections. Collision-free scheduling techniques are described for performing
dynamic functions.

Specific techniques for building instruction pipelines, arithmetic pipelines, and
memory-access pipelines are presented. The discussion includes instruction prefetch-
ing, internal data forwarding, software interlocking, hardware scoreboarding, hazard
avoidance, branch handling, and instruction-issuing techniques. Both static and mul-
tifunctional arithmetic pipelines are designed. Superpipelining and superscalar design
techniques are studied along with a performance analysis.

6.1 Linear Pipeline Processors

A linear pipeline processor is a cascade of Processing stages which are linearly
connected to perform a fixed function over a stream of data flowing from one end to
the other. In modern computers, linear pipelines are applied for instruction execution,
arithmetic computation, and memory-access operations.

6.1.1 Asynchronous and Synchronous Models

A linear pipeline processor is constructed with k processing stages. External inputs
(operands) are fed into the pipeline at the first stage ;. The processed results are passed
from stage S, to stage 8,4, forallt =1,2,. ..k~ 1. The final result emerges from the
pipecline at the last stage Sy.

Depending on the control of data flow along the pipeline, we model linear pipelines
in two categories: asynchronous and Synenronous,

265

266 Pipelining and Superscalar Techniques

~

Asynchronous Model As shown in Fig. 6.1a, data flow between adjacent stages in
an asynchronous pipeline is controlled by a handshaking protocol. When stage S; is
ready to transmit, it sends a ready signal to stage S;y,. After stage S| receives the
incoming data, it returns an acknowledge signal to Si.

Asynchronous pipelines are useful in designing comrmunication channels in message-
passing multicomputers where pipelined wormhole routing is practiced (see Chapter 9).
Asynchronous pipelines way have a -variable throughput rate. Different amounts of
delay may be experienced in different stages.

input r:") —— Output
Ready 5, | PBeadyl Sp Sk Ready
Ack Ack f———— Ak

L L L L L

(b} A synchronous pipeline model

—> Time (clock cycies)
1 2 3 4

Captions:

>< Si=stage
L =Laich
) >< T = Clack period
>< Tm = Mazimum stage delay
d = Latch delay

Ack = Acknowledge signal.
T I o

{¢) Reservation table of a four-stage linear pipeline

Synchronous Model Synchronous pipelines are lustrated in Fig. 6.1b. Clocked
latches are used to interface between stages. The latches are made with master-slave
flip-flops, which can isolate inputs from outputs. Upon the arrival of a clock pulse, all

. 6.1 Linear Pipeline Processors 267

b

latches transfer data to the next stage simultaneously.

The pipeline stages are combinational logic circuits. It is desired to have approxi-
mately equal delays in all stages. These delays determine the clock period and thus the
speed of the pipeline. Unless otherwise specified, only synchronous pipelines are studied
in this book.

The utilization pattern of successive stages in a synchronous pipeline is specified by
a reservation table. For a linear pipeline, the utilization follows the diagonal streamline
pattern shown in Fig. 6.1c. This table is essentially a space-time diagram depicting the
precedence relationship in using the pipeline stages. For a k-stage linear pipeline, k
clock cycles are needed to flow through the pipeline. i

Successive tasks or operations are initiated one per cycle to enter the pipeline. Once
the pipeline is filled up, one result emerges from the pipeline for each additional cycle.
This throughput is sustained only if the successive tasks are independent of each other.

6.1.2 Clocking and Timing Control

The clock cycle 7 of a pipeline is determined below. Let 7; be the time delay of the
circuitry in stage S; and d the time delay of a latch, as shown in Fig. 6.1b.

Clock Cycle and Throughput Denote the mazimum stage delay as r,,, and we can
write T as
r=max{n, ¥ +d=r, +d (6.1)

At the rising edge of the clock pulse, the data is latched to the master flip-flops of each
latch register. The clock pulse has a width equal to d. In general, 7., >> d for one to
two orders of magnitude. This implies that the maximum stage delay 7., dominates the
clock period.

The pipeline frequency is defined as the inverse of the clock period:

f=t (6.2)

T
If one result is expected to come out of the pipeline per cycle, f represents the marimum
throughput of the pipeline. Depending on the initiation rate of successive tasks entering
the pipeline, the actua! throughput of the pipeline may be lower than f. This is because
more than one clock cycle has elapsed between successive task initiations.

Clock Skewing Ideally, we expect the clock pulses to arrive at all stages (latches)
at the same time. However, due to a problem known as elock skewing, the same clock
pulse may arrive at different stages with a time offset of 5. Let fmaz be the time delay
of the longest logic path within a stage and t,,.;, that of the shortest logic path within
a stage.

To avold a race in two successive stages, we must choose 1, » f,.. + & and
d < fim — 8. These constraints translate into the following bounds on the clock period
when clock skew takes effect:

Q4+ tmar + 8 <7 < Top + tpin — 8 {6.3)

288 Pipe]iuiug and Superscalar Techniques)

A

In the ideal case 5 — 0, tnaz = 7, and toin = d. Thus, we have 7 = Tm + d, consistent
with the definition in Eq. 6.1 without the effect of clock skewing.

on this nonpipelined processor is 77 = nkr.

Speedup Factor The speedup factor of 3 k-stage pipeline OVer an equivalent pop-
Pipelined processor is defined as
T nkr nk

Skzﬁ=m=m§?ﬁ (6:5)

Example 6.1 Pipeline speedup versys stream length

The maximum speedup is 5y ~ k as " = oc. This maximum speedup ig very
difficult to achieve becayse of data dependences between successive tagkg (instruc-
tions), program branches, interrupts, and other factors to be studied in subsequent
sections.

Figure 6.25 plots the Speedup factor as 3 function of N, the nember of tasks
(operations or instructions) performed by the pipeline. For smal) values of n, the
speedup can be VeIy poor. The smallest value of Sk is 1 when n = 1

The larger the number & of subdivided pipeline stages, the higher the potential
speedup performance. When n = 64, an eight-stage Pipeline has 5 speedup value of
7.1and a four-stage bipeline has » speedup of 3.7, However, the aumber of pipeline
stages cannot increase indefinitely duc tq practical constraipts on costs, control
complexity, circyjt implementation, and Packaging limitationg, Furthcrmore, the

Optima]l Number of Stages The finest leve] of pipélining Is calied micropz'pclz'ning,
with a subdivision of pipeline stages at the logic gate leve]. Ip practice, most pipelining
Is staged at the functional level with 2 < k < 15, Very fow Pipelines are designed to
exceed 10 stages ip real computers,

On the other hand, the coarse level for Pipeline stages can be conducted at the
: brocessor level, caljed macropipelining. The optimal choice of the number of pipeline
] stages should be able 1 maximize a performance/cost ratjo,

nt

(=P

Figure 6.2 Speedup factors und the optimal number of pipeline

R S S S

6.1 Linear Pipeline Processors 269
A
[si
L /'____,__m
Speedup
Factor
8 k=10 stagas
| | I .
32 84 128 n

No. of operations

{a) Speedup factor as a function of the pumber of operations {Eq. 6.5)

Cost Rati
5 tio Poak

_—

—> k
ko No. of stages
(Optirnaly

{b) Optimal number of pipeline stages {Eqgs. 6.6 and 6.7)

stages for a linear
pipeline unit,

function. To execute the same bTogram on a k-stage pipeline with an equal flow-through
delay ¢, one needs a clock period of p = t/k + d, where d is the latch delay. Thus, the
pipeline has a maximum throughput of § = 1/p = 1/(t/k+d}. The total pipeline cost is
roughly estimated by e+ kh, where ¢ covers the cost of al] logic stages and 4, represents

the cost of each latch. A pipeline performance/cost ratio (PCR) has been defined by
Larson (1973):

f 1 \
= = —— 6
FOR= 10 (k£ d)(c T 7] (6:6:

Figure 6.2b plots the PCR as a function of k. The peak of the PCR curve corre.

270 Pipelining and Superscalar Techniques

sponds to an optimal choice for the number of desired pipeline stages:

=/ — (6.
kg ih (6.7)
where ¢ is the total flow-through delay of the pipeline. The total stage cost ¢, the latch
delay d, and the latch cost & can be adjusted to achieve the optimal valne k.

Efficiency and Throughput The efficiency Ex of a linear k-stage pipeline is defined

as
Sk n

il il

(6.8)

Obviously, the efficiency approaches 1 when n — o¢, and a lower bound on £,
is 1/k when n = 1. The pipeline throughput H; is defined as the number of tasks
(operations) performed per unit time:

_ 7 _ nf
_[k+(n—l)]r T k+(n-1)

Hy (6.9)

The mazimum throughput f occurs when Ex — 1 as n — 0o. This coincides with
the speedup definition given in Chapter 3. Note that Hy, = Ej - f = Ei/m = Sy /kr.

6.2 Nonlinear Pipeline Processors

A dynamic pipeline can be reconfigured to perform variable functions at different
times. The traditiona! linear pipelines are static pipelines because they are used to
perform fixed functions.

A dynamic pipeline allows feedforward and feedback connections in addition to the
streamline connections. For this reason, some authors call such a structure a nonlinear
pipeline,

6.2.1 Reservation and Latency Analysis

In a static pipeline, it is easy to partition a given function into a sequence of
linearly ordered subfunctions. However, function partitioning in a dynamic pipeline
becomes quite involved because the pipeline stages are interconnected with loops in
addition to streamline connections.

A multifunction dynamic pipeline is shown in Fig, 6.3a. This pipeline has three
stages. Besides the streamiine connections from S to §; and from 8, to 53, there is a
Jecdforward connection from 51 to Sy and two feedback connections from S3 to 8§, and
from S to S,

These feedforward and feedback connections make the scheduling of successive
events into the pipeline a nontrivial task. With these connections, the output of the
pipeline is not necessarily from the last stage. In fact, following different dataflow
patterns, one can use the same pipeline to evaluate different functions,

6.2 Nonlinear Pipeline Processors 271

b
Output X
—— - Cutput Y
fapat 8 = » s, | s —»
{a) A three-stage pipeline
— Time
)) . 1 2 3 4 5 6 7 8
bibiles oy P, s¢| X X X FL: 245 F
{tonoig)= Cx Stages S2| (X[IX PL: LiBb
Sy X X X

b) R ation table for function X
{b) Reservation table for function {DY " w‘umn&(

— Ti . .
12 3 45 6 Fe s net
sy Y PL itk 2o
Cy=(o o) Stages Sz Y
%3 Y Y Y

{c) Reservation table for function Y

Figure 6.3 A dynamic pipeline with feedforward and feedback connections for two
different functions.

Reservation Tables The reservation table for a static linear pipeline is trivial in the
sense that dataflow follows a linear streamline. The reservation table for a dynamic
pipeline becomes more interesting because a nonlinear pattern is followed. Given a
pipeline configuration, muitiple reservation tables can be generated for the evaluation
: of different functions.
Two reservation tables are given in Figs. 6.3b and 6.3c, corresponding to a function
X and a function Y, respectively. Eaclh function evaluation is specified by one reservation
table. A static pipeline is specified by a single reservation table. A dynamic pipeline
; may be specified by more than one reservation table.

Flach reservation table displays the time-space flow of data through the pipeline for
one function evaluation. Different functions may follow different paths on the reservation
table. A number of pipeline configurations mav be represented by the same reservation
table. There is a many-to-many mapping between various pipeline configurations and
different reservation tables.

The number of columns in a reservation table is called the evaluation time of a
given function. For example, the function X requires eight clock cveles to evaluate, and
function Y requires six cvcles, us shown in Figs. 6.3b and 6.3¢, respectively.

A pipeline tnitiation table corresponds to each function evaluation. All initiations

272 Pipelining and Superscalar Techniques

hl
to a static pipeline use the same reservation table. On the other hand, a dynamic
pipeline may allow different initiations to follow a mix of reservation tables. The check-
marks in each row of the reservation table correspond to the time instants (cycles) that
a particular stage will be used.

There may be multiple checkmarks in a row, which means repeated usage of the
same stage in different cycles. Contiguous checkmarks in a row simply imply the ex-
tended usage of a stage over more than one cycle. Multiple checkmarks in a column
mean that multiple stages are used in parallel during a particular clock cycle.

Latency Analysis The number of time units (clock cycles) between two initiations
of a pipeline is the latency between them. Latency values must be nonnegative integers,
A latency of & means that two initiations are separated by k clock cycles. Any attempt
by two or more initiations to use the same pipeline stage at the same time will cause a
colltsion.

A collision implies resource conflicts between two initiations in the pipeline. There-
fore, all collisions must be avoided in scheduling a sequence of pipeline initiations. .
Seme latencies will cause collisions, and some will not. Latencies that cause collisions i
are called forbidden latencies. In using the pipeline in Fig. 6.3 to evaluate the function _

X, latencies 2 and 5 are forbidden, as illustrated in Fig, 6.4.
—s Time 1
1t 2 3 4 5 & 7 8 @8 1w 1u .
S| x Xz X3 | X | X XX Xa.X3
‘ Stages 8, X3 XX X2.X3 X3.%4 X4 ene
: !; 53 X, Xy.Xz X, X Xy . X,
3
(a}) Collision: with scheduling latency 2
& ——> Tine
) 12 a3 4 5 & 7 8 9 10 n
Sel X X1 Xy Xy
Stages 3, X, X, X, X .en
-8 X, X, Xy | X X,

(b) Collision with scheduling latency 5
Figure 6.4 Collisions with fuorbidden latencies 2 and 5 in using the pipeline in

Fig. 6.3 to evaluate the finction X.

Che 7th initiation is denoted as X, in Fip. 6.4. With latency 2. initiations X and
X collide in stage 2 at time 4. At time 7, these initiations collide in stage 3. Simslarly.

i
H
i
{
¥
i
)
‘
£
T
i
13
!
b
¥
t

274 Pipelining and Superscalar Techniques

hl
by the number of latencies along the cycle. The latency cycle (1,8) thus has an average
latency of (1 + 8)/2 = 4.5. A constant cyele is a latency cycle which contains only one
latency value. Cycles (3) and (6) in Figs. 6.5b and 6.5¢ are both constant cycles. The
average latency of a constant cycle is simply the latency itself. In the next section, we
describe how to obtain these latency cycles systematically.

6.2.2 Collision-Free Scheduling

When scheduling events in a pipeline, the main objective is to obtain the shortest
average latency between initiations without causing collisions. In what follows, we
present a systematic method for achieving such collision-free scheduling.

We study below collision vectors, state diagrams, single cycles, greedy cycles, and
minimal average latency (MAL). These pipeline design theory was originally developed
by Davidson (1971} and his students.

Collision Vectors By examining the reservation table, one can distinguish the set of
permissible latencies from the set of forbidden latencies. For a reservation table with g
columns, the mazimum forbidden latency m < n — 1. The permissible latency p should
be as small as possible. The choice js made in the range 1 < p<m-—1.

A permissible latency Of.P_i 1 corresponds to the ideal case. In theory, a latency
of 1 can always be achieved in a static_pipeline which follows a linoar {diagonal ar
streamlined) reservation table as shown in Fig. 6.1c.

The combined set of permissible and forbidden latencies can be easily displayed by
a collision vector, which is an m-bit binary vector ¢ = (ConCrny - -C9C1). The valye
of Ci = 1 if latency i causes a collision and Ci = 0if lateney 7 is permissible. Note that
it is always true that ¢, = 1, corresponding to the maximum forbidden latency.

For the two reservation tables in Fig. 6.3, the collision vector Cx = (1011010) is
obtained for function X, and Cy = (1010) for function Y. From Cx, we can immediately
tell that fatencies 7, 5, 4, and 2 are forbidden and latencies 6,3, and 1 are permissible.
Similarly, 4 and 2 are forbidden latencies and 3 and 1 are permissible latencies for
function Y.

State Diagrams From the above collision VeCtor, one can construct a state dingram
specifying the permissible state transitions among successive initiations. The coliision
vector, like Cx above, corresponds to the inttial state of the pipeline at time 1 and
thus is called an initial collision vector. Let p be a permissible latency within the range
l<p<m-1i.

The next state of the pipeline at time 1 + P is obtained with the assistance of an
me-bit right shift register as in Fig. 6.6a. The initial collision vector O 18 initially loaded
nto the register. The register is then shifted to the right. Each 1-bit shift corresponds
10 an increase in the latency by 1. When a 0 bit viierges from the right end after P
shifts, it means p is a permissible latency. Likewise, a4 | bit being shifted out neans a
collision, and thus the corresponding latency should be forbidden.

Logical 0 enters from the left end of the shift register. The next state after p shifts
is thus obtained by bitwizse-ORing the initial collision vector with the shifted repgister

AT s s b S o e e i 5,

6.2 Nonlinear Pipeline Processors ’ 275
A
contents. For example, from the initial state Cx = (1011010}, the next state (1111111)

is reached after one right shift of the register, and the next state (1011011) is reached
after three shifts or six shifts.

Crn Cpn ... C) = Initial collision vector
e
A A —_— 1
“r - sos 0" safa
“17 collision
L] i vos

{a) State transition using an n-bit right shift register, where n is the
maximurm forbidden latency

1011011 |11111T1|

6

(b) State diagram for function X {c) State diagram for function Y

Figure 6.6 Two state diagrams obtained from the two reservation tables in Fig. 6.2,
respectively.

Example 6.2 The state transition diagram for a pipeline unit

A state diagram is obtained in Fig. 6.6b for function X. From the initial state
(1011010), onlyv three outgoing transitions are possible, corresponding to the three
permissible latencies 6, 3, and 1 in the initial collision vector. Similarly, from state
(1011011), one reaches the same state after either three shifts or six shifts.

When the number of shifts is m+1 or greater, all trapsitions are redirected hack

to the ipjtial state. For example, after eight or more (denoied as &*Y ghifts, the
next state must be the initial state, regardless of which state the transition starts
from. In Fig. 6 6c, 2 state diagram is obtained for the reservation table in Fig. 6.3c¢
using a 4-bit shift register. Once the initial collision vector is determined, the
corresponding state diagram is uniquely determined. Different reservation tables

276 " Pipelining and Superscalar Techniques

b
may result in the same or different initial collision vectors(s).

This implies that even different reservation tables may produce the same state
diagram. However, different reservation tables may produce different collision vec-
tors and thus different state diagrams. _

= z

The 0’s and 1’s in the present state, say at time ¢, of a state diagram indicate the
permissible and forbidden latencies, respectively, at time t. The bitwise ORing of the
shifted version of the present state with the initial collision vector is meant to prevent
collisions from future initiations starting at time ¢+ 1 and cnward. p

_Thus the state diagram covers all permissibie state transitions that avuid collisions.

All latencies equal to or gréater than m are permissiblar This implies that collisions ¢in

" always be avoided if events are scheduled far apart (with latencies of mt}. However,
such long latencies are not tolerable from the viewpoint of pipeline throughput.

Greedy Cycles From the state diagram, we can determine optimal latency cycles
which result in the MAL. There are infinitely many latency cvcles one ean trace from
the state diagram. For example, (1, &), (1, 8, 6, 8), (3), (8), (3, 8), (3,6, 3) ..., are
legitimate cycles traced from the state diagram in Fig. 6.6b. Among these cycles, onky
simple cycles are of interest.

A simple cycle is a latency cycle in which each state appears only once. In the
state diagram in Fig. 6.6b, only (3), (6), (8), (1, 8), (3, 8), and (6, 8) are simple cycles.
The cycle (1, 8, 6, 8) is not simple because it travels through the state (1011010) twice.
Similarly, the cycle (3, 6, 3, 8, 6) is not simple because it repeats the state (1011011}
three times,

Some of the simple cycles are grecdy cycles. A greedy cycle is one whosge edges are
all made with minimum latencies from their respective starting states. For example,
in Fig. 6.6b the cycles (1, 8) and (3) are greedy cycles. Greedy cycles in Fig. 6.6¢ are
(1, 5) and (3). Such cycles must first be simple, and their average latencies must be
Io_“__'grﬁt__}.,@gi@hg&ig__o_f_gthggVsjmple cycles. The greedy cycle (1, 8) in Fig. 6.6b has an
average latency of (14 8)/2 = 4.5, which is lower than that of the simple cvcle (6, &)
= (6 +8)/2 =7 The greedy cycle (3) has a constant latency which equals the MAL
for evaluating function X without causing a collision.

The MAL in Fig. 6.6c is 3, corresponding to ecither of the two greedy cycles. The
minimum-latency edges in the state diagrams are marked with asterisks.

At least one of the greedy cycles will Jead to the MAL. The collision-free scheduling
of pipeline events is thus reduced to finding greedy cycles from the set of simple cycles.
The greedy cycle vielding the MAL is the final choice,

FHE T rRRR e s

.

6.2.3 Pipcline Schedule Optimization

An optimization technique based on the MAL is given below. The idea is to insert
noncompute delay stages into the original pipeline. This will modify the reservatior
table, resulting in a new collision vector and an improved state diagram. The purpose
is to yield an optimal latency cyele, which is absolutely the shortest.

average latency (MAL) achievable by any control strategy on a statically reconfigured
pipeline executing a given reservation table:

{1) The MAL is lower-bounded by the maximum number of checkmarks in any row
of the reservation table.

(2) The MAL is lower than or equal to the average latency of any greedy cycle in
the state diagram.

{3) The average latency of any greedy eycle is upper-bounded by the number of 1'%
in the initial collision vector plus 1. This is alsq an upper bound on the MAL,

Interested readers may refer to Shar (1972) or find proofs of these bounds in Kogge
{1981). These results Suggest that the optimal latency cycle must be selected from one
of the lowest greedy cycles. However, a greedy cycle is not sufficient to guarantes the
optimality of the MAL. The lower bound guarantees the optimality. For example, the
MAL = 3 for both function X and functiop Y and has met the lower bound of 3 from
their respective reservation tables,

From Fig. 6.6b, the upper bound on the MAL for function X ig equal to 4+ 1 = 5,
a rather loose bound, Op the other hand, Fig. 6.6¢ shows a rather tight upper bound of
2+1=3on the MAL. Therefore, all greedy cycles for function Y lead to the optimal
latency value of 3, which cannot be lowered further.

To optimize the MAL, one needs to find the lower bound by modifying the reserva.
tion table. {The approach Jg—tareduccfhe‘mﬁg.:_nmumuurﬁ“ber of checkmarks in any row.;
The modified Teservation table must preserve the original function being evaluated. Pa-

Delay Insertion The purpose of delay insertion s to modify the reservation table,
vielding a new collision vector. Thig leads to a modified state diagram, which may
produce greedy cycles meeting the lower bound on the MAL,

Before delay insertion, the three-stage pipeline in Fig. 6.7ais specified by the reser-
vation table in Fig. 671, This table leads to a collision vector ¢ = {1011}, corresponding
to forbidden latencies 1,2 and 4. The torresponding state diagram (Fig. 6.7¢) containg

only one seif—reﬂecting State with a greedy cycle of latency 3 equal to the MATL,.
Based on the giver reservation table, the maximum number of checkmarks in any

Example 6.3 Inserting noncompute delays tg reduce the MATL

To insert a noncormpute stage 1) after stage 57 will delay hoth X1 and X,
Gperations cne cvele Levond time 4. To insert yet another noencompute stage I,
after the second usage of 5) will delay the operation X, by another cycle,

These delayed Operations, as gronped in Fig. 6.7b, result in a new pipeline
configuration in Fig. 6.8a. Both delay elements Dy and D, are inserted as exira
stages, as shown in Fiz. 6.8 with an enlarged reservation table having 3 + 2 - 5
rowsand 5+ 2 = 7 columps,

e - " : " } R S et

278 Pipelining and Superscalar Technigmes

Output

Input ——

il N =

(a) A three-stage pipeline

o[x Y
T X X . e

59 X i X ;

(c) New state transition

‘bt Reservation table and operations being delayed diagram with MAL = 3

Figure 6.7 A pipeline with a minimum average latency of 3,

Output Dy

Input | 5 s t 5

Ca

{a) Insertion of two honcompute delay stages

— Time
1 2 3 4 5] 7

-

5[X . :
Stagee S X X o
&
= x ‘—"X1
Doty Dy D,
sagea .
- J o I

ih; Modified reservation table ((tl:]+h§3)721ﬁ=ed25tate diagram with a reduced MAL =
Figure 5.8 Insertion of two delay stages to obtain an optimal MAL for the pipeline
in Fig. 6.7.

gf

e
i
e
i

-

6.2 Nonlinear Pipeline Processors) 279

In total, the operation X 1 has been delayed one cycle from time 4 to time 5 and
the operation X, has been delayed two eycles from time 5 to time 7. All Temaining
operations (marked as X in Fig. 6.8b) are unchanged. This new table leads to a
new collision vector { 100010) and a modified state diagram in Fig, 6.8¢.

This diagram displays a greedy cycle (1,3), resulting in a reduced MAL =
(1+3)/2=2. The delay insertion thus improves the pipeline performance, vielding
a lower bound for the MAL.

Pipeline Throughput This is essentially the initiation rate or the average number
of task initiations per clock cycle. If NV tasks are initiated within n pipeline cycles. then
the initiation rate or pipeline throughput is measured as N/n, This rate is determined
primarily by the inverse of the MAL adapted. Therefore, the scheduling strategy does
affect the pipeline performance.

In general, the shorter the adapted MAL, the higher the throughput that can be

MAL is reduced to 1, the pipeline throughput becomes a fraction.

Pipeline Efficiency Another important measure is pipeline efficiency. The per-
centage of time that each pipeline stage is used over a sufficiently long series of task
initiations is the stage utilization. The accumulated rate of all stage utilizations deter-
mines the pipeline efficiency.

Let us reexamine latency cycle (3) in Fig. 6.5b. Within each latency cvele of
three clock evrles, there are two pipetine stages, §, and Sy, which are completelv and
contimiously utilized after time 6. The pipeline stage S7 is used for two cvcles and is
idle for one cycle.

Therefore, the entire Pipeline can be considered 8/9 = 88.8% efficient for latency
cycle (3). On the other hand, the pipeline is only 14/27 = 51 8%, efficient for latency
cycle (1, 8) and 8/16 = 509 efficient for latency eyele (6), as illustrated in Figs. 6.5a
and 6.5¢, respectively. Note that none of the three stages is fully utilized with respect
LG two initiation cycles.

The pipeline throughput and pipeline efficiency are related to each other, Higher
throughput results from a shorter latency cycle. Higher efficiency implics less idle time
for pipeline stages. The above example demonstrates that higher throughput aiso ac-
companies higher efficiency. Other examples may show a contrary conclusion. The
relationship between the two measures is a function of the reservation table and of the
initiation cycle adopted.

At lcast one stage of the pipeline should be fully (100%) utilized at the steady state
in any acceptable inttiation cycle; otherwise, the pipeline capability has not been fullv
explored. In such rases, the initiation cycle may not be optimal and another initiation
cyele should be examined for improvement.

6.3 Instruction Pipeline Design 293

Instruction flow .
R

T ki Lok ‘e ez | s j 1 f—

—’{ T ,(" tlock cycle

{a) A k-stage pipeline

Onginai instruction flow Branch taken
- J(
o Lyppy = * Lezlps by =+ -

1, = Branch tzken
A delay slat of length k-1

[, = Branch targec

& = No, of pipeline stages

T = clack cycle {stage delay}
b = Delay slot size

I:+2 Iu—l I.!

Branch target
New instruction fiow

! {b) An instruction stream containing a branch taken

Figure 6.18 The decision of a branch taken at the last stage of an instructjon

pipeline causes b < k — | previeusly loaded instructions to he drained
from the pipeline.

Branch Prediction Branch can he predicted either based on branch code tvpes
statically or based on branch history during program execution. The probabilizy of
branch with respect to a particular branch Instruction type can be used to predict
| branch. This requires collecting the frequency and probabilities of branch taken and
i branch types across a large number of program traces. Such a static branch striiegy
may not be alwavs accurate.
; The static prediction direction (taken or not taken) is usually wired into the sro-
cessor. According to past experience, the best performance is given by predicting tzien.
This results from the fact that most conditional branch instructions are taken i ro-
gram execution. The wired-in static prediction cannot e changed once committed
. to the hardware. However, the scheme can be modified to allow the programme: or
cotupiler to select the direction of each branch on a semi-static prediction basis.
A dynamic branch strategy uses recent branch history to predict whether or not
the branch wiil be taken next time when it occurs. To be accurate, one mav meed

294 Pipelining and Superscalar Techniques

u
to use the entire history of the branch to predict the future choice. This is infeasible
to implement. Therefore, most dynamic prediction is determined with limited recent
history, as illustrated in Fig. 6.19.

4 ™

\ | Y,
_/%__J

-

~
Bra\gch Branch Branch

instruction Prediction target
address Statistics address

(a} Branch target buffer organization

Captions:

T = Branch taken

N = Not-taken branch

NN = Last twa branches not taken

NT = Not branch taken and previous taken

TT = Both last two branch taken

TN = Last branch taken and previous not taken

{b} A typical state diagram

Figure 6.19 Branch history buffer and a state transition diagram used in dynamic
branch prediction. {Courtesy of Lee and Smith, JEEE Computer, 1984)

Cragon (1992) has classified dynamic branch strategies into three major classes:
One class predicts the branch direction based upon information found at the decode
stage. The second class uses a cache to store target addresses at the stage the effective
address of the branch target is computed. The third scheme uses a cache to store target
instructions at the fetch stage. All dynamic predictions are adjusted dynamically as a
program is executed.

Dynamic prediction demands additional hardwaie to keep track of the past behavier
of the branch instructions at run time. The amount of history recorded should be small.
Otherwise, the prediction logic becomes too costly to implement.

Lee and Smith (1984) have shown the use of a branch target buffer (BTB) to

|
|
|
i‘ . 6.3 Instruction Pipeline Design " 205

e implement branch prediction (Fig. 6.19a). The BTB is used to hold recent branch
ot information inciuding the address of the branch target used. The address of the branch
') instruction locates its entry in the BTB.
For example, a state transition diagram (Fig. 6.19b) has been given by Lee and
Smith for backtracking the last two branches in a given prograni. The BTRH eniry
contains the backtracking information whick will guide the prediction. Prediction in-
i formation is updated upon completion of the current branch.
The BTB can be extended to store not only the branch target address but also
the target instruction itself and a few of its successor instructions, in order to allow
zero delay in converting conditional branches to unconditional branches. The taken (T)
and not-taken (N) labels in the state diagram correspond to actual program behavior,
Different programs may use different state diagrams which are modified dynamically
according to historical program events.

Delayad branch
1 2 3 4 5 <]

W] ¢ d e s

t delay mstruction { { e S

d a s l

(a) A delayed branch for 2 cycles when the branch condition is resolved at the decode stage

—-fa

l
t

Delayed branch

1 2 3 & &] 7

W[] o] e

2 delay h ¢ d
instructions f

“~jalm fo
]

&
s 1]

(b) A delayed branch for 3 cycles when the branct “ondition is resolved at the excrute stape
{ Y] £

Time
: Delayod branch

& 2 @ 8

e

instructions
I}
w©
a
Z
o
a

S08:
ode

bive

4

5

I t €

3 delay la f d
INSIruchons _‘f—

+ {Target) |,

g | s
o1

et (¢} A delayed branch for 4 cveles when the branch condition is resolved at the store stage
35 A

~lalo{n

Figure 6.20 The concept of delayed branch by moving independent instructions or
“or NOP filiers into the delay slot of a four-stage pipeline.

1adl.

' to Delayed Branches Examining the branch benalty, we realize that the branel, penzlty

