Programming Assignment 2:
Algorithmic Warm-up

Revision: February 19, 2020

Introduction

Welcome to your second programming assignment of the Algorithmic Toolbox at Coursera! It consists of eight
programming challenges. Three of them require you just to implement carefully the algorithms covered in
the lectures. The remaining challenges will require you to first design an algorithm and then to implement it.
For all the challenges, we provide starter solutions in C++, Java, and Python3. These solutions implement
straightforward algorithms that usually work only for small inputs. To verify this, you may want to submit
these solutions to the grader. This will usually give you a “time limit exceeded” message for Python
starter files and either “time limit exceeded” or “wrong answer” message for C++ and Java solutions (the
reason for wrong answer being an integer overflow issue). Your goal is to replace a naive algorithm with
an efficient one. In particular, you may want to use the naive implementation for stress testing your efficient
implementation.

In this programming assignment, the grader will show you the input data if your solution fails on any
of the tests. This is done to help you to get used to the algorithmic problems in general and get some
experience debugging your programs while knowing exactly on which tests they fail. However, for all the
following programming assignments, the grader will show the input data only in case your solution fails on
one of the first few tests.

Learning Outcomes

Upon completing this programming assignment you will be able to:
1. See the huge difference between a slow algorithm and a fast one.

2. Play with examples where knowing something interesting about a problem helps to design an algorithm
that is much faster than a naive one.

3. Implement solutions that work much more faster than straightforward solutions for the following pro-
gramming challenges:
(a) compute a small Fibonacci number;
compute the last digit of a large Fibonacci number;
compute a huge Fibonacci number modulo m;
compute the last digit of a sum of Fibonacci numbers;
compute the last digit of a partial sum of Fibonacci numbers;
compute the greatest common divisor of two integers;

compute the least common multiple of two integers.
4. Implement the algorithms covered in the lectures, design new algorithms.

5. Practice implementing, testing, and debugging your solution. In particular, you will find out how in
practice, when you implement an algorithm, you bump into unexpected questions and problems not
covered by the general description of the algorithm. You will also check your understanding of the
algorithm itself and most probably see that there are some aspects you did not think of before you
had to actually implement it. You will overcome all those complexities, implement the algorithms, test
them, debug, and submit to the system.

Passing Criteria: 4 out of 8

Passing this programming assignment requires passing at least 4 out of 8 programming challenges from this
assignment. In turn, passing a programming challenge requires implementing a solution that passes all the
tests for this problem in the grader and does so under the time and memory limits specified in the problem
statement.

Contents
1 Fibonacci Number 3
2 Last Digit of a Large Fibonacci Number 4
3 Greatest Common Divisor 6
4 Least Common Multiple 7
5 Fibonacci Number Again 8
6 Last Digit of the Sum of Fibonacci Numbers 9
7 Last Digit of the Sum of Fibonacci Numbers Again 10
8 Last Digit of the Sum of Squares of Fibonacci Numbers 11
9 Appendix 12
9.1 Compiler Flags e 12
9.2 Frequently Asked Questions 13

1 Fibonacci Number

Problem Introduction

Recall the definition of Fibonacci sequence: Fy =0, F; =1, and F; = F;_1 + F;_5 for
i > 2. Your goal in this problem is to implement an efficient algorithm for computing
Fibonacci numbers. The starter files for this problem contain an implementation of
the following naive recursive algorithm for computing Fibonacci numbers in C++,
Java, and Python3:

FiBoNaccI(n) :
ifn<l1:
return n
return FIBONAcCCI(n — 1) + FIBoNACCI(n — 2)

Try compiling and running a starter solution on your machine. You will see that
computing, say, Fyo already takes noticeable time.

Another way to appreciate the dramatic difference between an exponential time algo-
rithm and a polynomial time algorithm is to use the following visualization by David
Galles: http://www.cs.usfca.edu/"galles/visualization/DPFib.html. Try com-
puting Fyo by a recursive algorithm by entering “20” and pressing the “Fibonacci Re-
cursive” button. You will see an endless number of recursive calls. Now, press “Skip
Forward” to stop the current algorithm and call the iterative algorithm by pressing
“Fibonacci Table”. This will compute Fyy very quickly. (Note that the visualization
uses a slightly different definition of Fibonacci numbers: Fy = 1 instead of Fy = 0.
This of course has almost no influence on the running time.)

Problem Description

Task. Given an integer n, find the nth Fibonacci number F),.
Input Format. The input consists of a single integer n.
Constraints. 0 < n < 45.

Output Format. Output F,.

Sample 1.
Input:
10

Output:
55

Fio = 55.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

http://www.cs.usfca.edu/~galles/visualization/DPFib.html
https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/8gGUdEHYEeaXnBKVQldqyw

2 Last Digit of a Large Fibonacci Number

Problem Introduction

Your goal in this problem is to find the last digit of n-th Fibonacci number. Recall that Fibonacci numbers
grow exponentially fast. For example,

Fyp0 =280571172992510140037611 932413038677 189525 .

Therefore, a solution like
F[0] < 0
F[1] «+ 1
for ¢ from 2 to n:

F[i] + F[i— 1]+ Fi — 2]
print (F[n| mod 10)
will turn out to be too slow, because as i grows the ith iteration of the loop computes the sum of longer
and longer numbers. Also, for example, Figgg does not fit into the standard C++ int type. To overcome
this difficulty, you may want to store in F[i] not the ith Fibonacci number itself, but just its last digit (that
is, F; mod 10). Computing the last digit of F; is easy: it is just the last digit of the sum of the last digits of
Fi,1 and Fi,QZ
F[i] + (F[i — 1] 4+ F[i — 2]) mod 10
This way, all F'[i]’s are just digits, so they fit perfectly into any standard integer type, and computing a sum
of F[i — 1] and F[i — 2] is performed very quickly.

Problem Description

Task. Given an integer n, find the last digit of the nth Fibonacci number F,, (that is, F;, mod 10).
Input Format. The input consists of a single integer n.

Constraints. 0 <n < 107.

Output Format. Output the last digit of Fj,.

Sample 1.

Input:
3

Output:
2

Fy=2.

Sample 2.
Input:
331
Output:
9

F331 = 668996 615 388005 031 531 000 081 241 745 415 306 766 517 246 774 551 964 595 292 186 469.

Sample 3.
Input:
327305

Output:
5

F397305 does not fit into one line of this pdf, but its last digit is equal to 5.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/J3CgxEHZEea1pw5frt5utw

3 Greatest Common Divisor
Problem Introduction

The greatest common divisor GCD(a,b) of two non-negative integers a and b

(which are not both equal to 0) is the greatest integer d that divides both a and b. GCD(1344,217)
Your goal in this problem is to implement the Euclidean algorithm for computing =GCD(217,42)
the greatest common divisor. =GCD(42,7)
Efficient algorithm for computing the greatest common divisor is an important =GCD(7,0)

basic primitive of commonly used cryptographic algorithms like RSA. 7

Problem Description

Task. Given two integers a and b, find their greatest common divisor.

Input Format. The two integers a,b are given in the same line separated by space.
Constraints. 1 < a,b < 2-10°.

Output Format. Output GCD(a, b).

Sample 1.
Input:
18 35

Output:
1

18 and 35 do not have common non-trivial divisors.

Sample 2.
Input:
28851538 1183019

Output:
17657

28851538 = 17657 - 1634, 1183019 = 17657 - 67.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/iivloUHZEeaJZA6Ew5-W7Q

4 Least Common Multiple

Problem Introduction

The least common multiple of two positive integers a and b is the least positive
integer m that is divisible by both a and b.

Problem Description

Task. Given two integers a and b, find their least common multiple.
Input Format. The two integers a and b are given in the same line separated by space.
Constraints. 1 < a,b < 107.

Output Format. Output the least common multiple of a and b.

Sample 1.
Input:
68

Output:
24

Among all the positive integers that are divisible by both 6 and 8 (e.g., 48, 480, 24), 24 is the smallest
one.

Sample 2.
Input:
761457 614573

Output:
467970912861

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/sN2Y7EHZEeakuhJbRt69hQ

5 Fibonacci Number Again

Problem Introduction

In this problem, your goal is to compute F,, modulo m, where n may be really huge: up to 10**. For such
values of n, an algorithm looping for n iterations will not fit into one second for sure. Therefore we need to
avoid such a loop.

To get an idea how to solve this problem without going through all F; for ¢ from 0 to n, let’s see what
happens when m is small — say, m =2 or m = 3.

T 01 2 3 4 5 6 7 & 9 10 11 12 13 14 15

F; 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
Fimod2 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
F,mod3 0 1 1 2 0 2 2 1 0 1 1 2 0 2 2 1

Take a detailed look at this table. Do you see? Both these sequences are periodic! For m = 2, the period
is 011 and has length 3, while for m = 3 the period is 01120221 and has length 8. Therefore, to compute,
say, Fy915 mod 3 we just need to find the remainder of 2015 when divided by 8. Since 2015 = 251 -8 4+ 7, we
conclude that Fyp15 mod 3 = F7; mod 3 = 1.

This is true in general: for any integer m > 2, the sequence F,, mod m is periodic. The period always
starts with 01 and is known as Pisano period.

Problem Description

Task. Given two integers n and m, output F,, mod m (that is, the remainder of F,, when divided by m).
Input Format. The input consists of two integers n and m given on the same line (separated by a space).
Constraints. 1 <n < 104, 2 <m < 103.

Output Format. Output F,, mod m.

Sample 1.
Input:
239 1000

Output:
161

Fs39 mod 1000 = 39679027 332006 820 581 608 740 953 902 289 877 834 488 152161 (mod 1000) = 161.

Sample 2.
Input:
2816213588 239

Output:
151

Fg 816213 588 does not fit into one page of this ﬁle, but F2 816213 588 mod 239 = 151.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/7eKhCEHZEeaPHQrkCWo3rw

6 Last Digit of the Sum of Fibonacci Numbers

Problem Introduction

The goal in this problem is to find the last digit of a sum of the first n Fibonacci numbers.

Problem Description

Task. Given an integer n, find the last digit of the sum Fy + Fy + -+ - + F,.
Input Format. The input consists of a single integer n.

Constraints. 0 < n < 10™.

Output Format. Output the last digit of Fo + Fy + -+ - + F,.

Sample 1.

Input:
3

Output:
4

F+PA+EB+F=0+14+14+2=4.

Sample 2.
Input:
100

Output:
5

The sum is equal to 927372692 193 078 999 175, the last digit is 5.

What To Do

Instead of computing this sum in a loop, try to come up with a formula for Fy + Fy + F» + --- + F,,. For
this, play with small values of n. Then, use a solution for the previous problem.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

Solution

A detailed solution (with Python code) for this challenge is covered in the companion MOOCBook. We
strongly encourage you to do your best to solve the challenge yourself before looking into the book! There
are at least three good reasons for this.

e By solving this challenge, you practice solving algorithmic problems similar to those given at technical
interviews.

e The satisfaction and self confidence that you get when passing the grader is priceless =)

e Even if you fail to pass the grader yourself, the time will not be lost as you will better understand the
solution from the book and better appreciate the beauty of the underlying ideas.

https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/7eKhCEHZEeaPHQrkCWo3rw
http://bit.ly/31cDyZb

7 Last Digit of the Sum of Fibonacci Numbers Again

Problem Introduction

Now, we would like to find the last digit of a partial sum of Fibonacci numbers: Fy, + Fippp1 + -+ - + Fi.

Problem Description

Task. Given two non-negative integers m and n, where m < n, find the last digit of the sum F,,, + Fi,,+1 +
e+ F.

Input Format. The input consists of two non-negative integers m and n separated by a space.
Constraints. 0 < m <n < 10'4.

Output Format. Output the last digit of Fi, + Froq1 + - + Fa.-

Sample 1.
Input:
37

Output:
1

Fs+Fy+Fs+Fg+Fr=2+3+5+8+13=31.

Sample 2.
Input:
10 10

Output:
5

Fio = 55.

Sample 3.
Input:
10 200

Output:
2

Fio+ Fi1 4 -+ Fyoo = 734544 867 157 818 093 234 908 902 110 449 296 423 262

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

10

https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/BBInmle-Eeae9QqgbelakQ

8 Last Digit of the Sum of Squares of Fibonacci Numbers

Problem Description

Task. Compute the last digit of Fg + FZ + --- + F2.
Input Format. Integer n.
Constraints. 0 <n < 10'.

Output Format. The last digit of F§ + F? + -+ + F2.

Sample 1.
Input:
7
Output:
3

FG+Fi+ - +F2=04+14+1+4+9+25+ 64+ 169 = 273.

Sample 2.
Input:
73
Output:
1

F2+ .-+ F% =1052478208 141 359 608 061 842 155 201.

Sample 3.
Input:
1234567890
Output:
0

What To Do

Since the brute force search algorithm for this problem is too slow (n may be as large as 10'®), we need to come
up with a simple formula for FZ + F2+---+ F2. The figure below represents the sum F?2+ F3 + F3 + F7 + F?
as the area of a rectangle with vertical side F5 = 5 and horizontal side F5 + F, =3+ 5 = Fg.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

11

https://www.coursera.org/learn/algorithmic-toolbox/discussions/weeks/2/threads/Cd8shVFZEeivzw657cHXhg

9 Appendix

9.1 Compiler Flags
C (gcc 7.4.0). File extensions: .c. Flags:

gcc -pipe -02 -std=cll <filename> -1m

C++ (g++ 7.4.0). File extensions: .cc, .cpp. Flags:

g++ -pipe -02 -std=c++14 <filename> -1m

If your C/C++ compiler does not recognize -std=c++14 flag, try replacing it with -std=c++0x flag
or compiling without this flag at all (all starter solutions can be compiled without it). On Linux
and MacOS, you most probably have the required compiler. On Windows, you may use your favorite
compiler or install, e.g., cygwin.

C+# (mono 4.6.2). File extensions: .cs. Flags:

mcs

Go (golang 1.13.4). File extensions: .go. Flags
go

Haskell (ghc 8.0.2). File extensions: .hs. Flags:
ghc -02

Java (OpenJDK 1.8.0_232). File extensions: .java. Flags:

javac -encoding UTF-8
java -Xmx1024m

JavaScript (NodeJS 12.14.0). File extensions: . js. No flags:

nodejs

Kotlin (Kotlin 1.3.50). File extensions: .kt. Flags:

kotlinc
java -Xmx1024m

Python (CPython 3.6.9). File extensions: .py. No flags:
python3

Ruby (Ruby 2.5.1p57). File extensions: .rb.
ruby

Rust (Rust 1.37.0). File extensions: .rs.

rustc

Scala (Scala 2.12.10). File extensions: .scala.

scalac

12

9.2 Frequently Asked Questions
Why My Submission Is Not Graded?

You need to create a submission and upload the source file (rather than the executable file) of your solution.
Make sure that after uploading the file with your solution you press the blue “Submit” button at the bottom.
After that, the grading starts, and the submission being graded is enclosed in an orange rectangle. After the
testing is finished, the rectangle disappears, and the results of the testing of all problems are shown.

What Are the Possible Grading Outcomes?

There are only two outcomes: “pass” or “no pass.” To pass, your program must return a correct answer on
all the test cases we prepared for you, and do so under the time and memory constraints specified in the
problem statement. If your solution passes, you get the corresponding feedback "Good job!" and get a point
for the problem. Your solution fails if it either crashes, returns an incorrect answer, works for too long, or
uses too much memory for some test case. The feedback will contain the index of the first test case on which
your solution failed and the total number of test cases in the system. The tests for the problem are numbered
from 1 to the total number of test cases for the problem, and the program is always tested on all the tests
in the order from the first test to the test with the largest number.
Here are the possible outcomes:

e Good job! Hurrah! Your solution passed, and you get a point!

e Wrong answer. Your solution outputs incorrect answer for some test case. Check that you consider
all the cases correctly, avoid integer overflow, output the required white spaces, output the floating
point numbers with the required precision, don’t output anything in addition to what you are asked
to output in the output specification of the problem statement.

e Time limit exceeded. Your solution worked longer than the allowed time limit for some test case.
Check again the running time of your implementation. Test your program locally on the test of max-
imum size specified in the problem statement and check how long it works. Check that your program
doesn’t wait for some input from the user which makes it to wait forever.

e Memory limit exceeded. Your solution used more than the allowed memory limit for some test case.
Estimate the amount of memory that your program is going to use in the worst case and check that it
does not exceed the memory limit. Check that your data structures fit into the memory limit. Check
that you don’t create large arrays or lists or vectors consisting of empty arrays or empty strings, since
those in some cases still eat up memory. Test your program locally on the tests of maximum size
specified in the problem statement and look at its memory consumption in the system.

e Cannot check answer. Perhaps the output format is wrong. This happens when you output
something different than expected. For example, when you are required to output either “Yes” or
“No”, but instead output 1 or 0. Or your program has empty output. Or your program outputs not
only the correct answer, but also some additional information (please follow the exact output format
specified in the problem statement). Maybe your program doesn’t output anything, because it crashes.

e Unknown signal 6 (or 7, or 8, or 11, or some other). This happens when your program
crashes. It can be because of a division by zero, accessing memory outside of the array bounds, using
uninitialized variables, overly deep recursion that triggers a stack overflow, sorting with a contradictory
comparator, removing elements from an empty data structure, trying to allocate too much memory,
and many other reasons. Look at your code and think about all those possibilities. Make sure that you
use the same compiler and the same compiler flags as we do.

e Internal error: exception... Most probably, you submitted a compiled program instead of
a source code.

13

e Grading failed. Something wrong happened with the system. Report this through Coursera or edX
Help Center.

May I Post My Solution at the Forum?

Please do not post any solutions at the forum or anywhere on the web, even if a solution does not pass the
tests (as in this case you are still revealing parts of a correct solution). Our students follow the Honor Code:
“T will not make solutions to homework, quizzes, exams, projects, and other assignments available to anyone
else (except to the extent an assignment explicitly permits sharing solutions).”

Do I Learn by Trying to Fix My Solution?

My implementation always fails in the grader, though I already tested and stress tested it a lot. Would not it
be better if you gave me a solution to this problem or at least the test cases that you use? I will then be able
to fix my code and will learn how to avoid making mistakes. Otherwise, I do not feel that I learn anything
from solving this problem. I am just stuck.

First of all, learning from your mistakes is one of the best ways to learn.

The process of trying to invent new test cases that might fail your program is difficult but is often
enlightening. Thinking about properties of your program makes you understand what happens inside your
program and in the general algorithm you’re studying much more.

Also, it is important to be able to find a bug in your implementation without knowing a test case and
without having a reference solution, just like in real life. Assume that you designed an application and
an annoyed user reports that it crashed. Most probably, the user will not tell you the exact sequence of
operations that led to a crash. Moreover, there will be no reference application. Hence, it is important to
learn how to find a bug in your implementation yourself, without a magic oracle giving you either a test case
that your program fails or a reference solution. We encourage you to use programming assignments in this
class as a way of practicing this important skill.

If you have already tested your program on all corner cases you can imagine, constructed a set of manual
test cases, applied stress testing, etc, but your program still fails, try to ask for help on the forum. We
encourage you to do this by first explaining what kind of corner cases you have already considered (it may
happen that by writing such a post you will realize that you missed some corner cases!), and only afterwards
asking other learners to give you more ideas for tests cases.

14

	Fibonacci Number
	Last Digit of a Large Fibonacci Number
	Greatest Common Divisor
	Least Common Multiple
	Fibonacci Number Again
	Last Digit of the Sum of Fibonacci Numbers
	Last Digit of the Sum of Fibonacci Numbers Again
	Last Digit of the Sum of Squares of Fibonacci Numbers
	Appendix
	Compiler Flags
	Frequently Asked Questions

