NLP ENSAE ParisTech - Language Modeling - Spring 2019

Authors: Dorian Baudry & Alexandre Filiot.

1. Introduction

For this project, we chose to study language modeling. LM
goal is to assign probability to a text. It is used in various ap-
plications: speech recognition, machine translation, OCR...
A current metric to evaluate the qualities of the latter tasks is
the perplexity (hereinafter PP). As suggested by (Jurafsky &
Martin, 2014), “an intrinsic improvement in perplexity does
not guarantee an extrinsic improvement in the performance
of a language processing task. Nonetheless, because perplex-
ity often correlates with such improvements, it is commonly
used as a quick check on an algorithm”. Here, perplexity is
our main metric of interest and quantifies the ability of
our models to predict the next word, a group of words or
a sentence, based on previous information.

2. Guidelines

Our project focuses on word level LM models. As done in
class, we wanted to look over the different models encoun-
tered in language modeling, from the most basic ones to
deeper models. To this extent, we have implemented e 72-
gram models and their variations (smoothing, backoff,
interpolation) from scratch e recurrent deep networks
(RNN, LSTM, GRU, BiLSTM) and feed foward ones
(neural n-grams) with Keras. Thus, our project aims at
putting theory into practise. To do so, we consider the 2
word level datasets available (wiki and tatoeba). The
models are compared according to their perplexities on val-
idation (tuning) and test full sets. Finally, we have also
tested those models on text generation task.

3. n-grams

As a very beginning, we implemented classical n-gram
models. From our observations, n-grams suffer from 3
main caveats. The first one is its generalization capacity.
Some longer testing n-grams (e.g. n > 4) don’t appear in
training, which makes PP tends to oo as the corresponding
probabilities are zero. To tackle this issue, we used the
Laplace expression with both counts equal to 0, namely,
—1/V with V the vocabulary size. This approximation
allowed us to represent the perplexity as a function of n
(see figure 1). The second issue comes from underflow.
Despite the log-sum-exp trick, some training sentences have

0 probability (see notebook for examples) because of their
length. Last but not least, the perplexity (on train or test)
tends to 1 as probabilities tends to 1 with increasing n.
Indeed, counts become rather null or equal to 1, which
makes probabilities all equal to a constant C' = #{n — 1 —
contexts}/#{n — grams} which tends to 1 with n.

Figure 1. Perplexity as a function of n-grams (tatoeba dataset)

Perplexity as a function of n grams (tatoeba)

[| —e— Train
10° - \ +— Validation

Test

n-grams are surprisingly good at generating text. To
generate next words from, say, 6 starting words, we re-
cursively used 5-grams models, then 4-grams if no con-
text could be found...until 2-grams. If no bigrams ex-
ist, then we draw the next word randomly among un-
igrams. Here are some examples of generated words
(bold) based on tatoeba dataset: I am happy to
meet you — I need you to do that - what
are you planning to stay </s> - the cat
is playing with the ball </s> — The dogs
eat the last orange. Those propositions are more
meaningful than those obtained with a training on wiki
dataset as the latter has been obtained using crawling.
Tatoeba is a collection of basic sentences that best fit
to our expectations (basic predictions).

4. Variations of n-grams

We also implemented Laplace and Kneser-Ney smooth-
ings, stupid backoff and Good-Turing estimation. Figure
2 shows the evolution of perplexity on test and val sets
as a function of n (tatoeba). Values and graphs sim-
ilar to figures 1 & 2 can be found in the notebook and
README . md file. It is first interesting to notice the con-
vergence to 1 as a function of n-grams. We are more
sceptical about our implementation of Kneser-Ney smooth-

NLP ENSAE ParisTech - Language Modeling - Spring 2019

Figure 2. Perplexity as a function of n-grams (tat oeba dataset).
Left: validation, right: test set.

ing as perplexities are extremely low for short n-grams.
Despite this, the text generation is quite the same with
some improvements, as for Kneser-Ney smoothing which
makes new meaningful propositions. To take the previ-
ous sentences, we now have now with the latter (other sen-
tences are displayed in the notebook): I am happy to
meet you — I need you to do that for us
— what are you planning to do </s> — the
cat is playing with the ball </s> - The
dogs eat the last orange.

5. Deep networks

In order to compare with the latter models, we im-
plemented with Keras some of the architectures stud-
ied in class: Recurrent (RNN), Gated Recurrent Unit
(GRU) and Feed Forward (FFNN) networks; LSTM,
BiDirectional LSTM (BiLSTM) and a fancier archi-
tecture named BiLSTM2DCNN'. Model selection was
based on validation PP for the following parameters: e
ngram € {2,3,4,5,6} (length of n-grams) e mcells
€ {16, 32,64, 128,256, 512,1024, 2048} (number of mem-
ory cells in recurrent layers) e dropout_rate2 €
{0,0.1,0.2,0.3,0.4} (dropout rate after recurrent layer) o
embedding € {10, 20, 50, 100, 200, 300} (size of embed-
ding space). Concerning the latter, we also tried Fast-Text
pre-trained 300-sized embedding from (Joulin et al., 2016).
Figure 3 well reflects the influence of those parameters on
the whole bunch of networks. Namely, perplexities and
accuracies are optimal for n = 4; improve with embed-
ding size and number of memory cells. Dropout reduces
overfitting, in particular for larger networks (see notebook:
4.3. Influence of parameters), but does not improve per-
formance. Models were selected on tatoeba data set
with a batch size of 256 in order to save computational re-
sources. We didn’t fine-tune on wiki data set but re-trained
the best architectures on it later on. The perplexities are
reported in table 1. They were computed as exp H (W)

ISee Peng et al. (2016), "Text Classification Improved by Inte-
grating Bidirectional LSTM with Two-dimensional Max Pooling”.

with H (W) the cross-entropy averaged on the batch-size
we set to 1. Regarding text generation, results are still more
satisfying on tatoeba (which is logical as we fine-tuned
on it) but less than before, with a tendency to loop over
stop words. Now we have the following: I am happy
to be a <unk> to - I need you to do that
by themselves — what are you planning do
that by themselves did — the cat is very
good at doing that - The dogs eat <unk>
of the <unk> of.

Perplexity as a function of ngram (LSTM) Perplexity as a function of embedding (LSTM)
—#— Train

120 - —4~ validation

i

—8- Train
—#- Validation
Test 110 Test

o 50.0 1000 000
Perplexity as a function of dropout2 (LSTM)

30 40 E‘J [‘J 100
Perplexity as a function of mcells (LSTM)

—4- Taain
~4- Validation
Test

100
100 -
- &
- o
| o
6032 1280 560 01 02 o3

oo

o — Tain
~#~ Validation
Test

Figure 3. Influence of parameters on perplexity and accuracies
(LSTM, tatoeba).

Table 1. PPs on test and val full sets for deep models.

TATOEBA WIKI

VAL TEST VAL TEST
LSTM (512) 62.0 67.4 155.4 157.6
BILSTM (2048) 59.2 63.7 144.3 145.2
RNN (512) 66.5 71.1 172.1 174.5
GRU (256) 61.2 66.7 161.5 162.4
FFNN (2048) 103.4 117.0 | 512.3 594.0
BILSTMCNN (512) 66.0 70.8 167.1 166.4

6. Feedback & Discussion

Perplexity on his own does not fully characterise the quality
of our models. That’s why, before concluding, a model’s
improvements in PP need to be confirmed with some on
a real LM task. Poor results on n-grams (which may be
due to our implementation) contrast with their good ability
to predict text, and conversely for deep networks. The use
of recurrent layers, especially BiLSTMs (BERT’s core),
offer dramatic performance gains compared to feed-forward
networks. More realistic data set as wiki was harder to
exploit. As an opening, one could have tested a batch size of
1; transformers and focus more on Kneser-Ney smoothing.

References

Joulin, A., Grave, E., et al. Fasttext.zip: Compressing text classifi-
cation models. arXiv preprint arXiv:1612.03651, 2016.

Jurafsky, D. and Martin, J. H. Speech and language processing -
chapter 4: N-grams. 2014.

