
A Artifact Appendix

A.1 Abstract

The artifact discovers the vulnerability gap between manual
models and automl models against various kinds of attacks
(adversarial, poison, backdoor, extraction and membership)
in image classification domain. It implements all datasets,
models, and attacks used in our paper.

We expect the artifact could support the paper’s claim
that automl models are more vulnerable than manual models
against various kinds of attacks, which could be explained by
their small gradient variance.

A.2 Artifact check-list (meta-information)
• Binary: on pypi with any platform.

• Model: Our pretrained models are available on
Google Drive (link). Follow the model path style
{model_dir}/image/{dataset}/{model}.pth to place

them in correct location.

• Data set: CIFAR10, CIFAR100 and ImageNet32. Use
--download flag to download them automatically at first run-

ning. ImageNet32 requires manual set-up at their website due
to legality.

• Run-time environment:
At any platform (Windows and Ubuntu tested).

‘Pytorch‘ and ‘torchvision‘ required. (CUDA 11.3 recom-
mended)

‘adversarial-robustness-toolbox‘ required for extraction attack
and membership attack.

• Hardware: GPU with CUDA support is recommended.

• Execution: Model training and backdoor attack would be time-
consuming. It would cost more than half day on a Nvidia
Quodro RTX6000.

• Metrics: Model accuracy, attack success rate, clean accuracy
drop and cross entropy.

• Output: console output and saved model files (.pth).

• Experiments: OS scripts. Recommend to run scripts 3-5 times
to reduce the randomness of experiments.

• How much disk space required (approximately)?: less than
5GB.

• How much time is needed to prepare workflow (approxi-
mately)?: within 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: 3-4 days.

• Publicly available?: on GitHub.

• Code licenses (if publicly available)?: GPL-3.

• Archived (provide DOI)?: GitHub commit
ff315234561602203615d11166f8f346b4f29dd4.

A.3 Description
A.3.1 How to access

• GitHub: pip install -e .
• PYPI: pip install autovul
• Docker Hub: docker pull local0state/autovul
• GitHub Packages: docker pull ghcr.io/ain-soph/autovul

A.3.2 Hardware dependencies

Recommend to use GPU with CUDA 11.3 and CUDNN 8.0. Less
than 5GB disk space is needed.

A.3.3 Software dependencies

You need to install python==3.9, pytorch==1.10.x, torchvision==0.11.x
manually.

ART (IBM) is required for extraction attack and membership
attack. pip install adversarial-robustness-toolbox

A.3.4 Data sets

We use CIFAR10, CIFAR100 and ImageNet32 datasets. Use
--download flag to download them automatically at first running.

ImageNet32 requires manual set-up at their website due to legality.

A.3.5 Models

Our pretrained models are available on Google Drive (link). Follow
the model path style {model_dir}/image/{dataset}/{model}.pth to
place them in correct location.

A.4 Installation
• GitHub: pip install -e .
• PYPI: pip install autovul
• Docker Hub: docker pull local0state/autovul
• GitHub Packages: docker pull ghcr.io/ain-soph/autovul

(optional) Config Path

You can set the config files to customize data storage location and
many other default settings. View /configs_example as an example
config setting.

We support 3 configs (priority ascend):

• package (DO NOT MODIFY)

– autovul/base/configs/*.yml

– autovul/vision/configs/*.yml

• user

– /.autovul/configs/base/*.yml

– /.autovul/configs/vision/*.yml

• workspace

– ./configs/base/*.yml

– ./configs/vision/*.yml

1

https://pypi.org/project/autovul/
https://drive.google.com/drive/folders/1GrjEO89hYrdLhDMkBLC26jp1C7BwIKwm?usp=sharing
https://image-net.org/download-images.php
https://github.com/ain-soph/autovul/tree/ff315234561602203615d11166f8f346b4f29dd4
https://github.com/ain-soph/autovul
https://pypi.org/project/autovul/
https://hub.docker.com/r/local0state/autovul
https://github.com/ain-soph/autovul/pkgs/container/autovul
https://image-net.org/download-images.php
https://drive.google.com/drive/folders/1GrjEO89hYrdLhDMkBLC26jp1C7BwIKwm?usp=sharing
https://github.com/ain-soph/autovul
https://pypi.org/project/autovul/
https://hub.docker.com/r/local0state/autovul
https://github.com/ain-soph/autovul/pkgs/container/autovul

A.5 Experiment workflow
Bash Files

Check the bash files under /bash to reproduce our paper results.

Train Models

You need to first run /bash/train.sh to get pretrained models.
If you run it for the first time, please run with --download flag

the to download the dataset:
bash ./bash/train.sh "--download"

It takes a relatively long time to train all models, here we provide
our pretrained models on Google Drive (link). Follow the model path
style {model_dir}/image/{dataset}/{model}.pth to place them in
correct location.

Run Attacks

/bash/adv_attack.sh

/bash/poison.sh

/bash/backdoor.sh
/bash/extraction.sh
/bash/membership.sh

Run Other Exps

/bash/grad_var.sh

/bash/mitigation_backdoor.sh

/bash/mitigation_extraction.sh
For mitigation experiments, the architecture names in our paper

map to:

• darts-i: diy_deep

• darts-ii: diy_noskip

• darts-iii: diy_deep_noskip

These are the 3 options for --model_arch {arch} (with

--model darts)

A.6 Evaluation and expected results
Our paper claims that automl models are more vulnerable than man-
ual models against various kinds of attacks, which could be explained
by low gradient variance.

Training

Most models around 96%-97% accuracy on CIFAR10.

Attack

For automl models on CIFAR10,

• adversarial: higher success rate around 10% (±4%).

• poison: lower accuracy drop around 5% (±2%).

• backdoor: higher success rate around 2% (±1%) and lower
accuracy drop around 1% (±1%).

• extraction: lower inference cross entropy around 0.3 (±0.1%).

• membership: higher auc around 0.04 (±0.01%).

Others

• gradient variance: automl with lower gradient variance
around 2.2 (±0.5).

• mitigation architecture: deep architectures
(darts-i, darts-iii) have larger cross entropy for extrac-
tion attack around 0.5, and higher accuracy drop for poisoning
attack around 7% (±3%) with setting of 40% poisoning
fraction.

A.7 Experiment customization
Use -h or --help flag for example python files to check available
arguments.

A.8 Notes

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/
artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

2

https://drive.google.com/drive/folders/1GrjEO89hYrdLhDMkBLC26jp1C7BwIKwm?usp=sharing
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Methodology

