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Abstract


This research introduces a certainty function, to replace the entropy function used to calculate 

information gain when building decision trees, in algorithms like ID3[1], C4.5[2] and C5.0. The 

new function is simpler than the entropy function and calculates certainty more accurately, 

potentially consuming less time in the process.


I will also introduce another formula that help deal with causal analysis. It is the certainty-raising 

inequality. This formula can be derived from the original certainty function, and provide insights 

into the cause-effect relations in the data.


Keywords:  ID3, C4.5, C5.0, entropy, certainty, uncertainty, decision tree, splitting criteria, 

purity, impurity. 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Calculating certainty in decision trees: Certainty vs Entropy.


The creation of decision trees and respective inductive rules for a given dataset, is based on the 

calculation of information gain of its non-class attributes, with respect to the class attribute, and 

the selection of the ones that provide more information gain, in order to split the dataset into 

smaller sets containing the same value of the attribute used to split it. There are several 

algorithms based on this technique like the ID3 [1], C4.5 [2] and C5.0. Usually the calculation of 

the entropy of attributes is involved, and subsequently the calculation of information gain, which 

is the difference in entropy before and after the dataset is split.


The conditional entropy of attribute value  is described by the function:





Where N is the number of values of the class attribute, C is the class attribute and A is the current 

attribute.


And the total conditional entropy of the attribute is calculated by:
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5

This method has proved effective so far in that it creates small trees and overall good predictive 

accuracy.


In this paper, I will describe the use of another function that can be used as a splitting criterion. It 

is, unlike entropy, a purity function, and will call it certainty function for the sake of clarity. The 

conditional certainty function could be described as: 





Which reads as the summation of the absolute value of the joint probability of  and , minus 

the average probability of .


And it is used to calculate the certainty of attribute value  of attribute  respect to class attribute 

 value.


The idea behind the formula is that above and below the average is considered certainty and 

added, so being  the total probability for the attribute value , which is distributed for the  

values of class attribute , it follows that  is the average probability.


And the total attribute certainty is the sum of the certainty of its values:





ci aj

aj

j A

i

p(aj) j N

C p(aj)/N

I(C |aj) =
N

∑
i=1

p(ci ∩ aj) −   
p(aj)

N

I(C|A) =
M

∑
j=1

I(C|aj)



6

Where  is the number of values of the attribute .


The key insights that led me to this function was the realization that instead of minimizing 

uncertainty, we should maximize certainty. And also, that conditional probability was not 

required, the joint probability would suffice, although later I have found that this is the 

equivalent to doing the following:





So, this could be called “conditional certainty”.


It can be shown that this function reaches a minimum of zero when the classes in all the 

examples are equally distributed, and conversely reaches a maximum of 1 when there are two 

classes and all the examples belong to the same class. When there are more than two classes the 

maximum can be greater than 1, behaving in this way similarly to the Entropy criteria but the 

other way around. Thus, this is a purity function instead of the more common impurity functions, 

such as Entropy and Gini. It is easy to see that when building decision trees what we need to find 

is purity instead of impurity because we need to determine the most important attributes, not the 

least important ones. It seems that Quinlan realized this and turned the Entropy into Information 

Gain and subsequently Gain Ratio, which are measures that we want to maximize instead of 

M A
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minimizing, while keeping the entropy around. The certainty function is meant to eliminate the 

need for impurity functions.


This way we can select the attribute with greater conditional certainty as the root of our tree. And 

the root attribute can be considered the main cause of the class attribute. For example, the 

attribute “pressure" would be the main cause of class attribute “storm”. More about causality 

analysis in the next section.


The formal definition of the function is as follows:


Let X be a discrete random variable on a finite set , with probability distribution 

function p(x) = Pr(X=x). The certainty I(X) of X is defined as:





	 


The main idea is that above and below the average is certainty. Being 1 the sum of all 

probabilities, then 1/N is the average. For binary classification N = 2. Then it can be shown that:





and then plotting the function would result in the following graph:


X = {x1, …, xn}

I(X ) =
N

∑
x∈X

p(x) −
1
N

I(X ) =
N

∑
x∈X

p(x) −
1
N

= p(x) −
1
2

+ 1 − p(x) −
1
2

= p(x) − 0.5 + 0.5 − p(x)



8




Fig. 1: Certainty function plot for two-class probabilistic system.
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Certainty and causality.


In the topic of causality and probability theory, there is an inequality that stands out from the 

very beginning. It is the probability-raising inequality. The probability-raising inequality states 

that for an event to be a cause of another, the conditional probability of the effect, given that the 

cause occurs, must be greater that the probability of the effect alone.


The general form of the original inequality is the following:





I will introduce what can constitute a better approach, although it may look very similar. Instead 

of comparing the probabilities we will compare certainties. So the new inequality now takes the 

form of:





The main difference is that in the original inequality, we are comparing events a and c, while in 

the new one, we are comparing whole attributes or variables A and C .


The idea is that if an attribute can increase the certainty of a probabilistic system, then this 

attribute is of great importance in reference to this system. This way we can consider attribute A 

a cause of attribute C. This could be called the certainty-raising inequality.


P(c|a) > P(c)

I(C |A) > I(C )
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If we want to know whether an event a causes event c then we have to calculate the “causal 

certainty”:


This results are important to be able to better analyze and assess the data and the different 

attributes. For example, a medical doctor would be able to better identify the cause of an illness 

in a patient. 

I(C A) p(c a)  > I(C) p(c)
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Results


In order to compare results, the algorithm ID3 was run over several datasets from the UCI 

website, using C5.0 and the certainty function. The first 80% of the examples in the datasets was 

used to train, the rest as test. Many datasets were tested but only those which its correct guesses 

were at least three times the number of incorrect guesses were selected, as a way to filter out the 

datasets with insufficient examples to learn a good model. 


The certainty function almost perfectly fits the training data: this was confirmed with the full 

KDDCUP 1999 dataset with 5 million examples, the training error for the certainty function was 

just 12, while the C5.0 train errors were 338! At the same time the test error was also lower: 87 

vs 123! This was also confirmed with the Skin Segmentation dataset with 245,057 examples; 

the train and test error for the certainty function were 9 and 36 respectively, while C5.0 were 189 

and 66. Yet another example is the Statlog (Shuttle) dataset, for which the certainty function 

produced a perfect fit of 0 training errors and just 3 test errors, while the C5.0 produced 36 

training errors and 15 test errors. In the classic Monk’s Problems dataset, the certainty function 

produces less training errors and less test errors than C5.0 in the Monks-1 and Monks-2 

datasets. Add to that that it also generates less training and test errors in the Optical Recognition 

of Handwritten Digits and the Pen-Based Recognition of Handwritten Digits datasets. Also, I 

ran the Crime (San Francisco) dataset with the certainty function and C5.0 (no pruning), the 

certainty created a tree of 16,283 nodes, and generated 109 train errors and 316 test errors, while 

the C5.0 created a tree of 12,406 nodes, and generated 562 train errors and 392 test errors. In the 
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Breast Cancer Wisconsin (Diagnostic) dataset, the certainty function produced 0 train errors 

and 6 test errors, while C5.0 (no pruning) produced 3 train errors and 8 test errors. With pruning 

activated, C5.0 produced 7 train errors and 8 test errors. In the Arcene dataset, the certainty 

function produced 0 train errors and 25 test errors, while C5.0 produced 4 train errors and 39 test 

errors!


 


It can be seen that this is a trend for many datasets and not just a coincidence. The certainty 

function almost perfectly fits the training data while maintaining lower error on the test set than a 

state-of-the-art algorithm such as C5.0.
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Conclusion


I have introduced a new certainty function that can be used when building decision trees, instead 

of the more common impurity functions such as Entropy and Gini. The results are promising in 

several datasets, opening the door for more research based on this new certainty function.


I have also introduced the certainty-raising inequality, that helps when performing causal 

analysis on the data.
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