public class F2jLAPACK extends LAPACK
F2jImplGenerator
from org.netlib.lapack
in net.sourceforge.f2j:arpack_combined_all:jar:0.1
.Constructor and Description |
---|
F2jLAPACK() |
Modifier and Type | Method and Description |
---|---|
void |
dbdsdc(String uplo,
String compq,
int n,
double[] d,
double[] e,
double[] u,
int ldu,
double[] vt,
int ldvt,
double[] q,
int[] iq,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dbdsdc(String uplo,
String compq,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int ldvt,
double[] q,
int _q_offset,
int[] iq,
int _iq_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dbdsqr(String uplo,
int n,
int ncvt,
int nru,
int ncc,
double[] d,
double[] e,
double[] vt,
int ldvt,
double[] u,
int ldu,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dbdsqr(String uplo,
int n,
int ncvt,
int nru,
int ncc,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] vt,
int _vt_offset,
int ldvt,
double[] u,
int _u_offset,
int ldu,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
ddisna(String job,
int m,
int n,
double[] d,
double[] sep,
org.netlib.util.intW info)
.. |
void |
ddisna(String job,
int m,
int n,
double[] d,
int _d_offset,
double[] sep,
int _sep_offset,
org.netlib.util.intW info)
.. |
void |
dgbbrd(String vect,
int m,
int n,
int ncc,
int kl,
int ku,
double[] ab,
int ldab,
double[] d,
double[] e,
double[] q,
int ldq,
double[] pt,
int ldpt,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgbbrd(String vect,
int m,
int n,
int ncc,
int kl,
int ku,
double[] ab,
int _ab_offset,
int ldab,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] q,
int _q_offset,
int ldq,
double[] pt,
int _pt_offset,
int ldpt,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgbcon(String norm,
int n,
int kl,
int ku,
double[] ab,
int ldab,
int[] ipiv,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgbcon(String norm,
int n,
int kl,
int ku,
double[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgbequ(int m,
int n,
int kl,
int ku,
double[] ab,
int ldab,
double[] r,
double[] c,
org.netlib.util.doubleW rowcnd,
org.netlib.util.doubleW colcnd,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dgbequ(int m,
int n,
int kl,
int ku,
double[] ab,
int _ab_offset,
int ldab,
double[] r,
int _r_offset,
double[] c,
int _c_offset,
org.netlib.util.doubleW rowcnd,
org.netlib.util.doubleW colcnd,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dgbrfs(String trans,
int n,
int kl,
int ku,
int nrhs,
double[] ab,
int ldab,
double[] afb,
int ldafb,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgbrfs(String trans,
int n,
int kl,
int ku,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] afb,
int _afb_offset,
int ldafb,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgbsv(int n,
int kl,
int ku,
int nrhs,
double[] ab,
int ldab,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgbsv(int n,
int kl,
int ku,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgbsvx(String fact,
String trans,
int n,
int kl,
int ku,
int nrhs,
double[] ab,
int ldab,
double[] afb,
int ldafb,
int[] ipiv,
org.netlib.util.StringW equed,
double[] r,
double[] c,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgbsvx(String fact,
String trans,
int n,
int kl,
int ku,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] afb,
int _afb_offset,
int ldafb,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.StringW equed,
double[] r,
int _r_offset,
double[] c,
int _c_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgbtf2(int m,
int n,
int kl,
int ku,
double[] ab,
int ldab,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
dgbtf2(int m,
int n,
int kl,
int ku,
double[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
dgbtrf(int m,
int n,
int kl,
int ku,
double[] ab,
int ldab,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
dgbtrf(int m,
int n,
int kl,
int ku,
double[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
dgbtrs(String trans,
int n,
int kl,
int ku,
int nrhs,
double[] ab,
int ldab,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgbtrs(String trans,
int n,
int kl,
int ku,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgebak(String job,
String side,
int n,
int ilo,
int ihi,
double[] scale,
int m,
double[] v,
int ldv,
org.netlib.util.intW info)
.. |
void |
dgebak(String job,
String side,
int n,
int ilo,
int ihi,
double[] scale,
int _scale_offset,
int m,
double[] v,
int _v_offset,
int ldv,
org.netlib.util.intW info)
.. |
void |
dgebal(String job,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] scale,
int _scale_offset,
org.netlib.util.intW info)
.. |
void |
dgebal(String job,
int n,
double[] a,
int lda,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] scale,
org.netlib.util.intW info)
.. |
void |
dgebd2(int m,
int n,
double[] a,
int lda,
double[] d,
double[] e,
double[] tauq,
double[] taup,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgebd2(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] tauq,
int _tauq_offset,
double[] taup,
int _taup_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgebrd(int m,
int n,
double[] a,
int lda,
double[] d,
double[] e,
double[] tauq,
double[] taup,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgebrd(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] tauq,
int _tauq_offset,
double[] taup,
int _taup_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgecon(String norm,
int n,
double[] a,
int lda,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgecon(String norm,
int n,
double[] a,
int _a_offset,
int lda,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgeequ(int m,
int n,
double[] a,
int lda,
double[] r,
double[] c,
org.netlib.util.doubleW rowcnd,
org.netlib.util.doubleW colcnd,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dgeequ(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] r,
int _r_offset,
double[] c,
int _c_offset,
org.netlib.util.doubleW rowcnd,
org.netlib.util.doubleW colcnd,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dgees(String jobvs,
String sort,
Object select,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW sdim,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
double[] vs,
int _vs_offset,
int ldvs,
double[] work,
int _work_offset,
int lwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
dgees(String jobvs,
String sort,
Object select,
int n,
double[] a,
int lda,
org.netlib.util.intW sdim,
double[] wr,
double[] wi,
double[] vs,
int ldvs,
double[] work,
int lwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
dgeesx(String jobvs,
String sort,
Object select,
String sense,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW sdim,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
double[] vs,
int _vs_offset,
int ldvs,
org.netlib.util.doubleW rconde,
org.netlib.util.doubleW rcondv,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
dgeesx(String jobvs,
String sort,
Object select,
String sense,
int n,
double[] a,
int lda,
org.netlib.util.intW sdim,
double[] wr,
double[] wi,
double[] vs,
int ldvs,
org.netlib.util.doubleW rconde,
org.netlib.util.doubleW rcondv,
double[] work,
int lwork,
int[] iwork,
int liwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
dgeev(String jobvl,
String jobvr,
int n,
double[] a,
int lda,
double[] wr,
double[] wi,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeev(String jobvl,
String jobvr,
int n,
double[] a,
int _a_offset,
int lda,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
double[] a,
int lda,
double[] wr,
double[] wi,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] scale,
org.netlib.util.doubleW abnrm,
double[] rconde,
double[] rcondv,
double[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgeevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
double[] a,
int _a_offset,
int lda,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] scale,
int _scale_offset,
org.netlib.util.doubleW abnrm,
double[] rconde,
int _rconde_offset,
double[] rcondv,
int _rcondv_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgegs(String jobvsl,
String jobvsr,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] alphar,
double[] alphai,
double[] beta,
double[] vsl,
int ldvsl,
double[] vsr,
int ldvsr,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgegs(String jobvsl,
String jobvsr,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] vsl,
int _vsl_offset,
int ldvsl,
double[] vsr,
int _vsr_offset,
int ldvsr,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgegv(String jobvl,
String jobvr,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] alphar,
double[] alphai,
double[] beta,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgegv(String jobvl,
String jobvr,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgehd2(int n,
int ilo,
int ihi,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgehd2(int n,
int ilo,
int ihi,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgehrd(int n,
int ilo,
int ihi,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgehrd(int n,
int ilo,
int ihi,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgelq2(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgelq2(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgelqf(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgelqf(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgels(String trans,
int m,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgels(String trans,
int m,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgelsd(int m,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
double[] s,
double rcond,
org.netlib.util.intW rank,
double[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgelsd(int m,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] s,
int _s_offset,
double rcond,
org.netlib.util.intW rank,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgelss(int m,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
double[] s,
double rcond,
org.netlib.util.intW rank,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgelss(int m,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] s,
int _s_offset,
double rcond,
org.netlib.util.intW rank,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgelsx(int m,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
int[] jpvt,
double rcond,
org.netlib.util.intW rank,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgelsx(int m,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
int[] jpvt,
int _jpvt_offset,
double rcond,
org.netlib.util.intW rank,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgelsy(int m,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
int[] jpvt,
double rcond,
org.netlib.util.intW rank,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgelsy(int m,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
int[] jpvt,
int _jpvt_offset,
double rcond,
org.netlib.util.intW rank,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeql2(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgeql2(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgeqlf(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeqlf(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeqp3(int m,
int n,
double[] a,
int lda,
int[] jpvt,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeqp3(int m,
int n,
double[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeqpf(int m,
int n,
double[] a,
int lda,
int[] jpvt,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgeqpf(int m,
int n,
double[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgeqr2(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgeqr2(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgeqrf(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgeqrf(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgerfs(String trans,
int n,
int nrhs,
double[] a,
int lda,
double[] af,
int ldaf,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgerfs(String trans,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgerq2(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dgerq2(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgerqf(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgerqf(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgesc2(int n,
double[] a,
int lda,
double[] rhs,
int[] ipiv,
int[] jpiv,
org.netlib.util.doubleW scale)
.. |
void |
dgesc2(int n,
double[] a,
int _a_offset,
int lda,
double[] rhs,
int _rhs_offset,
int[] ipiv,
int _ipiv_offset,
int[] jpiv,
int _jpiv_offset,
org.netlib.util.doubleW scale)
.. |
void |
dgesdd(String jobz,
int m,
int n,
double[] a,
int lda,
double[] s,
double[] u,
int ldu,
double[] vt,
int ldvt,
double[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgesdd(String jobz,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] s,
int _s_offset,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int ldvt,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgesv(int n,
int nrhs,
double[] a,
int lda,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgesv(int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgesvd(String jobu,
String jobvt,
int m,
int n,
double[] a,
int lda,
double[] s,
double[] u,
int ldu,
double[] vt,
int ldvt,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgesvd(String jobu,
String jobvt,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] s,
int _s_offset,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int ldvt,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgesvx(String fact,
String trans,
int n,
int nrhs,
double[] a,
int lda,
double[] af,
int ldaf,
int[] ipiv,
org.netlib.util.StringW equed,
double[] r,
double[] c,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgesvx(String fact,
String trans,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.StringW equed,
double[] r,
int _r_offset,
double[] c,
int _c_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgetc2(int n,
double[] a,
int lda,
int[] ipiv,
int[] jpiv,
org.netlib.util.intW info)
.. |
void |
dgetc2(int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
int[] jpiv,
int _jpiv_offset,
org.netlib.util.intW info)
.. |
void |
dgetf2(int m,
int n,
double[] a,
int lda,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
dgetf2(int m,
int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
dgetrf(int m,
int n,
double[] a,
int lda,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
dgetrf(int m,
int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
dgetri(int n,
double[] a,
int lda,
int[] ipiv,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgetri(int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgetrs(String trans,
int n,
int nrhs,
double[] a,
int lda,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgetrs(String trans,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dggbak(String job,
String side,
int n,
int ilo,
int ihi,
double[] lscale,
double[] rscale,
int m,
double[] v,
int ldv,
org.netlib.util.intW info)
.. |
void |
dggbak(String job,
String side,
int n,
int ilo,
int ihi,
double[] lscale,
int _lscale_offset,
double[] rscale,
int _rscale_offset,
int m,
double[] v,
int _v_offset,
int ldv,
org.netlib.util.intW info)
.. |
void |
dggbal(String job,
int n,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] lscale,
double[] rscale,
double[] work,
org.netlib.util.intW info)
.. |
void |
dggbal(String job,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] lscale,
int _lscale_offset,
double[] rscale,
int _rscale_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgges(String jobvsl,
String jobvsr,
String sort,
Object selctg,
int n,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW sdim,
double[] alphar,
double[] alphai,
double[] beta,
double[] vsl,
int ldvsl,
double[] vsr,
int ldvsr,
double[] work,
int lwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
dgges(String jobvsl,
String jobvsr,
String sort,
Object selctg,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW sdim,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] vsl,
int _vsl_offset,
int ldvsl,
double[] vsr,
int _vsr_offset,
int ldvsr,
double[] work,
int _work_offset,
int lwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
dggesx(String jobvsl,
String jobvsr,
String sort,
Object selctg,
String sense,
int n,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW sdim,
double[] alphar,
double[] alphai,
double[] beta,
double[] vsl,
int ldvsl,
double[] vsr,
int ldvsr,
double[] rconde,
double[] rcondv,
double[] work,
int lwork,
int[] iwork,
int liwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
dggesx(String jobvsl,
String jobvsr,
String sort,
Object selctg,
String sense,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW sdim,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] vsl,
int _vsl_offset,
int ldvsl,
double[] vsr,
int _vsr_offset,
int ldvsr,
double[] rconde,
int _rconde_offset,
double[] rcondv,
int _rcondv_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
dggev(String jobvl,
String jobvr,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] alphar,
double[] alphai,
double[] beta,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggev(String jobvl,
String jobvr,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] alphar,
double[] alphai,
double[] beta,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] lscale,
double[] rscale,
org.netlib.util.doubleW abnrm,
org.netlib.util.doubleW bbnrm,
double[] rconde,
double[] rcondv,
double[] work,
int lwork,
int[] iwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
dggevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
double[] lscale,
int _lscale_offset,
double[] rscale,
int _rscale_offset,
org.netlib.util.doubleW abnrm,
org.netlib.util.doubleW bbnrm,
double[] rconde,
int _rconde_offset,
double[] rcondv,
int _rcondv_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
dggglm(int n,
int m,
int p,
double[] a,
int lda,
double[] b,
int ldb,
double[] d,
double[] x,
double[] y,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggglm(int n,
int m,
int p,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] d,
int _d_offset,
double[] x,
int _x_offset,
double[] y,
int _y_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgghrd(String compq,
String compz,
int n,
int ilo,
int ihi,
double[] a,
int lda,
double[] b,
int ldb,
double[] q,
int ldq,
double[] z,
int ldz,
org.netlib.util.intW info)
.. |
void |
dgghrd(String compq,
String compz,
int n,
int ilo,
int ihi,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] q,
int _q_offset,
int ldq,
double[] z,
int _z_offset,
int ldz,
org.netlib.util.intW info)
.. |
void |
dgglse(int m,
int n,
int p,
double[] a,
int lda,
double[] b,
int ldb,
double[] c,
double[] d,
double[] x,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dgglse(int m,
int n,
int p,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] c,
int _c_offset,
double[] d,
int _d_offset,
double[] x,
int _x_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggqrf(int n,
int m,
int p,
double[] a,
int lda,
double[] taua,
double[] b,
int ldb,
double[] taub,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggqrf(int n,
int m,
int p,
double[] a,
int _a_offset,
int lda,
double[] taua,
int _taua_offset,
double[] b,
int _b_offset,
int ldb,
double[] taub,
int _taub_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggrqf(int m,
int p,
int n,
double[] a,
int lda,
double[] taua,
double[] b,
int ldb,
double[] taub,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggrqf(int m,
int p,
int n,
double[] a,
int _a_offset,
int lda,
double[] taua,
int _taua_offset,
double[] b,
int _b_offset,
int ldb,
double[] taub,
int _taub_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dggsvd(String jobu,
String jobv,
String jobq,
int m,
int n,
int p,
org.netlib.util.intW k,
org.netlib.util.intW l,
double[] a,
int lda,
double[] b,
int ldb,
double[] alpha,
double[] beta,
double[] u,
int ldu,
double[] v,
int ldv,
double[] q,
int ldq,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dggsvd(String jobu,
String jobv,
String jobq,
int m,
int n,
int p,
org.netlib.util.intW k,
org.netlib.util.intW l,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] alpha,
int _alpha_offset,
double[] beta,
int _beta_offset,
double[] u,
int _u_offset,
int ldu,
double[] v,
int _v_offset,
int ldv,
double[] q,
int _q_offset,
int ldq,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dggsvp(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double tola,
double tolb,
org.netlib.util.intW k,
org.netlib.util.intW l,
double[] u,
int ldu,
double[] v,
int ldv,
double[] q,
int ldq,
int[] iwork,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dggsvp(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double tola,
double tolb,
org.netlib.util.intW k,
org.netlib.util.intW l,
double[] u,
int _u_offset,
int ldu,
double[] v,
int _v_offset,
int ldv,
double[] q,
int _q_offset,
int ldq,
int[] iwork,
int _iwork_offset,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dgtcon(String norm,
int n,
double[] dl,
double[] d,
double[] du,
double[] du2,
int[] ipiv,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgtcon(String norm,
int n,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgtrfs(String trans,
int n,
int nrhs,
double[] dl,
double[] d,
double[] du,
double[] dlf,
double[] df,
double[] duf,
double[] du2,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgtrfs(String trans,
int n,
int nrhs,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] dlf,
int _dlf_offset,
double[] df,
int _df_offset,
double[] duf,
int _duf_offset,
double[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgtsv(int n,
int nrhs,
double[] dl,
double[] d,
double[] du,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgtsv(int n,
int nrhs,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgtsvx(String fact,
String trans,
int n,
int nrhs,
double[] dl,
double[] d,
double[] du,
double[] dlf,
double[] df,
double[] duf,
double[] du2,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dgtsvx(String fact,
String trans,
int n,
int nrhs,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] dlf,
int _dlf_offset,
double[] df,
int _df_offset,
double[] duf,
int _duf_offset,
double[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dgttrf(int n,
double[] dl,
double[] d,
double[] du,
double[] du2,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
dgttrf(int n,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
dgttrs(String trans,
int n,
int nrhs,
double[] dl,
double[] d,
double[] du,
double[] du2,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgttrs(String trans,
int n,
int nrhs,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dgtts2(int itrans,
int n,
int nrhs,
double[] dl,
double[] d,
double[] du,
double[] du2,
int[] ipiv,
double[] b,
int ldb)
.. |
void |
dgtts2(int itrans,
int n,
int nrhs,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb)
.. |
void |
dhgeqz(String job,
String compq,
String compz,
int n,
int ilo,
int ihi,
double[] h,
int ldh,
double[] t,
int ldt,
double[] alphar,
double[] alphai,
double[] beta,
double[] q,
int ldq,
double[] z,
int ldz,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dhgeqz(String job,
String compq,
String compz,
int n,
int ilo,
int ihi,
double[] h,
int _h_offset,
int ldh,
double[] t,
int _t_offset,
int ldt,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] q,
int _q_offset,
int ldq,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dhsein(String side,
String eigsrc,
String initv,
boolean[] select,
int n,
double[] h,
int ldh,
double[] wr,
double[] wi,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
int mm,
org.netlib.util.intW m,
double[] work,
int[] ifaill,
int[] ifailr,
org.netlib.util.intW info)
.. |
void |
dhsein(String side,
String eigsrc,
String initv,
boolean[] select,
int _select_offset,
int n,
double[] h,
int _h_offset,
int ldh,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
int mm,
org.netlib.util.intW m,
double[] work,
int _work_offset,
int[] ifaill,
int _ifaill_offset,
int[] ifailr,
int _ifailr_offset,
org.netlib.util.intW info)
.. |
void |
dhseqr(String job,
String compz,
int n,
int ilo,
int ihi,
double[] h,
int ldh,
double[] wr,
double[] wi,
double[] z,
int ldz,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dhseqr(String job,
String compz,
int n,
int ilo,
int ihi,
double[] h,
int _h_offset,
int ldh,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
boolean |
disnan(double din)
.. |
void |
dlabad(org.netlib.util.doubleW small,
org.netlib.util.doubleW large)
.. |
void |
dlabrd(int m,
int n,
int nb,
double[] a,
int lda,
double[] d,
double[] e,
double[] tauq,
double[] taup,
double[] x,
int ldx,
double[] y,
int ldy)
.. |
void |
dlabrd(int m,
int n,
int nb,
double[] a,
int _a_offset,
int lda,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] tauq,
int _tauq_offset,
double[] taup,
int _taup_offset,
double[] x,
int _x_offset,
int ldx,
double[] y,
int _y_offset,
int ldy)
.. |
void |
dlacn2(int n,
double[] v,
double[] x,
int[] isgn,
org.netlib.util.doubleW est,
org.netlib.util.intW kase,
int[] isave)
.. |
void |
dlacn2(int n,
double[] v,
int _v_offset,
double[] x,
int _x_offset,
int[] isgn,
int _isgn_offset,
org.netlib.util.doubleW est,
org.netlib.util.intW kase,
int[] isave,
int _isave_offset)
.. |
void |
dlacon(int n,
double[] v,
double[] x,
int[] isgn,
org.netlib.util.doubleW est,
org.netlib.util.intW kase)
.. |
void |
dlacon(int n,
double[] v,
int _v_offset,
double[] x,
int _x_offset,
int[] isgn,
int _isgn_offset,
org.netlib.util.doubleW est,
org.netlib.util.intW kase)
.. |
void |
dlacpy(String uplo,
int m,
int n,
double[] a,
int lda,
double[] b,
int ldb)
.. |
void |
dlacpy(String uplo,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb)
.. |
void |
dladiv(double a,
double b,
double c,
double d,
org.netlib.util.doubleW p,
org.netlib.util.doubleW q)
.. |
void |
dlae2(double a,
double b,
double c,
org.netlib.util.doubleW rt1,
org.netlib.util.doubleW rt2)
.. |
void |
dlaebz(int ijob,
int nitmax,
int n,
int mmax,
int minp,
int nbmin,
double abstol,
double reltol,
double pivmin,
double[] d,
double[] e,
double[] e2,
int[] nval,
double[] ab,
double[] c,
org.netlib.util.intW mout,
int[] nab,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlaebz(int ijob,
int nitmax,
int n,
int mmax,
int minp,
int nbmin,
double abstol,
double reltol,
double pivmin,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] e2,
int _e2_offset,
int[] nval,
int _nval_offset,
double[] ab,
int _ab_offset,
double[] c,
int _c_offset,
org.netlib.util.intW mout,
int[] nab,
int _nab_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlaed0(int icompq,
int qsiz,
int n,
double[] d,
double[] e,
double[] q,
int ldq,
double[] qstore,
int ldqs,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlaed0(int icompq,
int qsiz,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] q,
int _q_offset,
int ldq,
double[] qstore,
int _qstore_offset,
int ldqs,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlaed1(int n,
double[] d,
double[] q,
int ldq,
int[] indxq,
org.netlib.util.doubleW rho,
int cutpnt,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlaed1(int n,
double[] d,
int _d_offset,
double[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.doubleW rho,
int cutpnt,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlaed2(org.netlib.util.intW k,
int n,
int n1,
double[] d,
double[] q,
int ldq,
int[] indxq,
org.netlib.util.doubleW rho,
double[] z,
double[] dlamda,
double[] w,
double[] q2,
int[] indx,
int[] indxc,
int[] indxp,
int[] coltyp,
org.netlib.util.intW info)
.. |
void |
dlaed2(org.netlib.util.intW k,
int n,
int n1,
double[] d,
int _d_offset,
double[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.doubleW rho,
double[] z,
int _z_offset,
double[] dlamda,
int _dlamda_offset,
double[] w,
int _w_offset,
double[] q2,
int _q2_offset,
int[] indx,
int _indx_offset,
int[] indxc,
int _indxc_offset,
int[] indxp,
int _indxp_offset,
int[] coltyp,
int _coltyp_offset,
org.netlib.util.intW info)
.. |
void |
dlaed3(int k,
int n,
int n1,
double[] d,
double[] q,
int ldq,
double rho,
double[] dlamda,
double[] q2,
int[] indx,
int[] ctot,
double[] w,
double[] s,
org.netlib.util.intW info)
.. |
void |
dlaed3(int k,
int n,
int n1,
double[] d,
int _d_offset,
double[] q,
int _q_offset,
int ldq,
double rho,
double[] dlamda,
int _dlamda_offset,
double[] q2,
int _q2_offset,
int[] indx,
int _indx_offset,
int[] ctot,
int _ctot_offset,
double[] w,
int _w_offset,
double[] s,
int _s_offset,
org.netlib.util.intW info)
.. |
void |
dlaed4(int n,
int i,
double[] d,
double[] z,
double[] delta,
double rho,
org.netlib.util.doubleW dlam,
org.netlib.util.intW info)
.. |
void |
dlaed4(int n,
int i,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double[] delta,
int _delta_offset,
double rho,
org.netlib.util.doubleW dlam,
org.netlib.util.intW info)
.. |
void |
dlaed5(int i,
double[] d,
double[] z,
double[] delta,
double rho,
org.netlib.util.doubleW dlam)
.. |
void |
dlaed5(int i,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double[] delta,
int _delta_offset,
double rho,
org.netlib.util.doubleW dlam)
.. |
void |
dlaed6(int kniter,
boolean orgati,
double rho,
double[] d,
double[] z,
double finit,
org.netlib.util.doubleW tau,
org.netlib.util.intW info)
.. |
void |
dlaed6(int kniter,
boolean orgati,
double rho,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double finit,
org.netlib.util.doubleW tau,
org.netlib.util.intW info)
.. |
void |
dlaed7(int icompq,
int n,
int qsiz,
int tlvls,
int curlvl,
int curpbm,
double[] d,
double[] q,
int ldq,
int[] indxq,
org.netlib.util.doubleW rho,
int cutpnt,
double[] qstore,
int[] qptr,
int[] prmptr,
int[] perm,
int[] givptr,
int[] givcol,
double[] givnum,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlaed7(int icompq,
int n,
int qsiz,
int tlvls,
int curlvl,
int curpbm,
double[] d,
int _d_offset,
double[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.doubleW rho,
int cutpnt,
double[] qstore,
int _qstore_offset,
int[] qptr,
int _qptr_offset,
int[] prmptr,
int _prmptr_offset,
int[] perm,
int _perm_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
double[] givnum,
int _givnum_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlaed8(int icompq,
org.netlib.util.intW k,
int n,
int qsiz,
double[] d,
double[] q,
int ldq,
int[] indxq,
org.netlib.util.doubleW rho,
int cutpnt,
double[] z,
double[] dlamda,
double[] q2,
int ldq2,
double[] w,
int[] perm,
org.netlib.util.intW givptr,
int[] givcol,
double[] givnum,
int[] indxp,
int[] indx,
org.netlib.util.intW info)
.. |
void |
dlaed8(int icompq,
org.netlib.util.intW k,
int n,
int qsiz,
double[] d,
int _d_offset,
double[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.doubleW rho,
int cutpnt,
double[] z,
int _z_offset,
double[] dlamda,
int _dlamda_offset,
double[] q2,
int _q2_offset,
int ldq2,
double[] w,
int _w_offset,
int[] perm,
int _perm_offset,
org.netlib.util.intW givptr,
int[] givcol,
int _givcol_offset,
double[] givnum,
int _givnum_offset,
int[] indxp,
int _indxp_offset,
int[] indx,
int _indx_offset,
org.netlib.util.intW info)
.. |
void |
dlaed9(int k,
int kstart,
int kstop,
int n,
double[] d,
double[] q,
int ldq,
double rho,
double[] dlamda,
double[] w,
double[] s,
int lds,
org.netlib.util.intW info)
.. |
void |
dlaed9(int k,
int kstart,
int kstop,
int n,
double[] d,
int _d_offset,
double[] q,
int _q_offset,
int ldq,
double rho,
double[] dlamda,
int _dlamda_offset,
double[] w,
int _w_offset,
double[] s,
int _s_offset,
int lds,
org.netlib.util.intW info)
.. |
void |
dlaeda(int n,
int tlvls,
int curlvl,
int curpbm,
int[] prmptr,
int[] perm,
int[] givptr,
int[] givcol,
double[] givnum,
double[] q,
int[] qptr,
double[] z,
double[] ztemp,
org.netlib.util.intW info)
.. |
void |
dlaeda(int n,
int tlvls,
int curlvl,
int curpbm,
int[] prmptr,
int _prmptr_offset,
int[] perm,
int _perm_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
double[] givnum,
int _givnum_offset,
double[] q,
int _q_offset,
int[] qptr,
int _qptr_offset,
double[] z,
int _z_offset,
double[] ztemp,
int _ztemp_offset,
org.netlib.util.intW info)
.. |
void |
dlaein(boolean rightv,
boolean noinit,
int n,
double[] h,
int ldh,
double wr,
double wi,
double[] vr,
double[] vi,
double[] b,
int ldb,
double[] work,
double eps3,
double smlnum,
double bignum,
org.netlib.util.intW info)
.. |
void |
dlaein(boolean rightv,
boolean noinit,
int n,
double[] h,
int _h_offset,
int ldh,
double wr,
double wi,
double[] vr,
int _vr_offset,
double[] vi,
int _vi_offset,
double[] b,
int _b_offset,
int ldb,
double[] work,
int _work_offset,
double eps3,
double smlnum,
double bignum,
org.netlib.util.intW info)
.. |
void |
dlaev2(double a,
double b,
double c,
org.netlib.util.doubleW rt1,
org.netlib.util.doubleW rt2,
org.netlib.util.doubleW cs1,
org.netlib.util.doubleW sn1)
.. |
void |
dlaexc(boolean wantq,
int n,
double[] t,
int ldt,
double[] q,
int ldq,
int j1,
int n1,
int n2,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlaexc(boolean wantq,
int n,
double[] t,
int _t_offset,
int ldt,
double[] q,
int _q_offset,
int ldq,
int j1,
int n1,
int n2,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlag2(double[] a,
int lda,
double[] b,
int ldb,
double safmin,
org.netlib.util.doubleW scale1,
org.netlib.util.doubleW scale2,
org.netlib.util.doubleW wr1,
org.netlib.util.doubleW wr2,
org.netlib.util.doubleW wi)
.. |
void |
dlag2(double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double safmin,
org.netlib.util.doubleW scale1,
org.netlib.util.doubleW scale2,
org.netlib.util.doubleW wr1,
org.netlib.util.doubleW wr2,
org.netlib.util.doubleW wi)
.. |
void |
dlag2s(int m,
int n,
double[] a,
int lda,
float[] sa,
int ldsa,
org.netlib.util.intW info)
.. |
void |
dlag2s(int m,
int n,
double[] a,
int _a_offset,
int lda,
float[] sa,
int _sa_offset,
int ldsa,
org.netlib.util.intW info)
.. |
void |
dlags2(boolean upper,
double a1,
double a2,
double a3,
double b1,
double b2,
double b3,
org.netlib.util.doubleW csu,
org.netlib.util.doubleW snu,
org.netlib.util.doubleW csv,
org.netlib.util.doubleW snv,
org.netlib.util.doubleW csq,
org.netlib.util.doubleW snq)
.. |
void |
dlagtf(int n,
double[] a,
double lambda,
double[] b,
double[] c,
double tol,
double[] d,
int[] in,
org.netlib.util.intW info)
.. |
void |
dlagtf(int n,
double[] a,
int _a_offset,
double lambda,
double[] b,
int _b_offset,
double[] c,
int _c_offset,
double tol,
double[] d,
int _d_offset,
int[] in,
int _in_offset,
org.netlib.util.intW info)
.. |
void |
dlagtm(String trans,
int n,
int nrhs,
double alpha,
double[] dl,
double[] d,
double[] du,
double[] x,
int ldx,
double beta,
double[] b,
int ldb)
.. |
void |
dlagtm(String trans,
int n,
int nrhs,
double alpha,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset,
double[] x,
int _x_offset,
int ldx,
double beta,
double[] b,
int _b_offset,
int ldb)
.. |
void |
dlagts(int job,
int n,
double[] a,
double[] b,
double[] c,
double[] d,
int[] in,
double[] y,
org.netlib.util.doubleW tol,
org.netlib.util.intW info)
.. |
void |
dlagts(int job,
int n,
double[] a,
int _a_offset,
double[] b,
int _b_offset,
double[] c,
int _c_offset,
double[] d,
int _d_offset,
int[] in,
int _in_offset,
double[] y,
int _y_offset,
org.netlib.util.doubleW tol,
org.netlib.util.intW info)
.. |
void |
dlagv2(double[] a,
int lda,
double[] b,
int ldb,
double[] alphar,
double[] alphai,
double[] beta,
org.netlib.util.doubleW csl,
org.netlib.util.doubleW snl,
org.netlib.util.doubleW csr,
org.netlib.util.doubleW snr)
.. |
void |
dlagv2(double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
org.netlib.util.doubleW csl,
org.netlib.util.doubleW snl,
org.netlib.util.doubleW csr,
org.netlib.util.doubleW snr)
.. |
void |
dlahqr(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
double[] h,
int ldh,
double[] wr,
double[] wi,
int iloz,
int ihiz,
double[] z,
int ldz,
org.netlib.util.intW info)
.. |
void |
dlahqr(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
double[] h,
int _h_offset,
int ldh,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
int iloz,
int ihiz,
double[] z,
int _z_offset,
int ldz,
org.netlib.util.intW info)
.. |
void |
dlahr2(int n,
int k,
int nb,
double[] a,
int lda,
double[] tau,
double[] t,
int ldt,
double[] y,
int ldy)
.. |
void |
dlahr2(int n,
int k,
int nb,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] t,
int _t_offset,
int ldt,
double[] y,
int _y_offset,
int ldy)
.. |
void |
dlahrd(int n,
int k,
int nb,
double[] a,
int lda,
double[] tau,
double[] t,
int ldt,
double[] y,
int ldy)
.. |
void |
dlahrd(int n,
int k,
int nb,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] t,
int _t_offset,
int ldt,
double[] y,
int _y_offset,
int ldy)
.. |
void |
dlaic1(int job,
int j,
double[] x,
double sest,
double[] w,
double gamma,
org.netlib.util.doubleW sestpr,
org.netlib.util.doubleW s,
org.netlib.util.doubleW c)
.. |
void |
dlaic1(int job,
int j,
double[] x,
int _x_offset,
double sest,
double[] w,
int _w_offset,
double gamma,
org.netlib.util.doubleW sestpr,
org.netlib.util.doubleW s,
org.netlib.util.doubleW c)
.. |
boolean |
dlaisnan(double din1,
double din2)
.. |
void |
dlaln2(boolean ltrans,
int na,
int nw,
double smin,
double ca,
double[] a,
int lda,
double d1,
double d2,
double[] b,
int ldb,
double wr,
double wi,
double[] x,
int ldx,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW xnorm,
org.netlib.util.intW info)
.. |
void |
dlaln2(boolean ltrans,
int na,
int nw,
double smin,
double ca,
double[] a,
int _a_offset,
int lda,
double d1,
double d2,
double[] b,
int _b_offset,
int ldb,
double wr,
double wi,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW xnorm,
org.netlib.util.intW info)
.. |
void |
dlals0(int icompq,
int nl,
int nr,
int sqre,
int nrhs,
double[] b,
int ldb,
double[] bx,
int ldbx,
int[] perm,
int givptr,
int[] givcol,
int ldgcol,
double[] givnum,
int ldgnum,
double[] poles,
double[] difl,
double[] difr,
double[] z,
int k,
double c,
double s,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlals0(int icompq,
int nl,
int nr,
int sqre,
int nrhs,
double[] b,
int _b_offset,
int ldb,
double[] bx,
int _bx_offset,
int ldbx,
int[] perm,
int _perm_offset,
int givptr,
int[] givcol,
int _givcol_offset,
int ldgcol,
double[] givnum,
int _givnum_offset,
int ldgnum,
double[] poles,
int _poles_offset,
double[] difl,
int _difl_offset,
double[] difr,
int _difr_offset,
double[] z,
int _z_offset,
int k,
double c,
double s,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlalsa(int icompq,
int smlsiz,
int n,
int nrhs,
double[] b,
int ldb,
double[] bx,
int ldbx,
double[] u,
int ldu,
double[] vt,
int[] k,
double[] difl,
double[] difr,
double[] z,
double[] poles,
int[] givptr,
int[] givcol,
int ldgcol,
int[] perm,
double[] givnum,
double[] c,
double[] s,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlalsa(int icompq,
int smlsiz,
int n,
int nrhs,
double[] b,
int _b_offset,
int ldb,
double[] bx,
int _bx_offset,
int ldbx,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int[] k,
int _k_offset,
double[] difl,
int _difl_offset,
double[] difr,
int _difr_offset,
double[] z,
int _z_offset,
double[] poles,
int _poles_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
int ldgcol,
int[] perm,
int _perm_offset,
double[] givnum,
int _givnum_offset,
double[] c,
int _c_offset,
double[] s,
int _s_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlalsd(String uplo,
int smlsiz,
int n,
int nrhs,
double[] d,
double[] e,
double[] b,
int ldb,
double rcond,
org.netlib.util.intW rank,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlalsd(String uplo,
int smlsiz,
int n,
int nrhs,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] b,
int _b_offset,
int ldb,
double rcond,
org.netlib.util.intW rank,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlamc1(org.netlib.util.intW beta,
org.netlib.util.intW t,
org.netlib.util.booleanW rnd,
org.netlib.util.booleanW ieee1)
.. |
void |
dlamc2(org.netlib.util.intW beta,
org.netlib.util.intW t,
org.netlib.util.booleanW rnd,
org.netlib.util.doubleW eps,
org.netlib.util.intW emin,
org.netlib.util.doubleW rmin,
org.netlib.util.intW emax,
org.netlib.util.doubleW rmax)
.. |
double |
dlamc3(double a,
double b)
.. |
void |
dlamc4(org.netlib.util.intW emin,
double start,
int base)
.. |
void |
dlamc5(int beta,
int p,
int emin,
boolean ieee,
org.netlib.util.intW emax,
org.netlib.util.doubleW rmax)
.. |
double |
dlamch(String cmach)
.. |
void |
dlamrg(int n1,
int n2,
double[] a,
int dtrd1,
int dtrd2,
int[] index)
.. |
void |
dlamrg(int n1,
int n2,
double[] a,
int _a_offset,
int dtrd1,
int dtrd2,
int[] index,
int _index_offset)
.. |
int |
dlaneg(int n,
double[] d,
double[] lld,
double sigma,
double pivmin,
int r)
.. |
int |
dlaneg(int n,
double[] d,
int _d_offset,
double[] lld,
int _lld_offset,
double sigma,
double pivmin,
int r)
.. |
double |
dlangb(String norm,
int n,
int kl,
int ku,
double[] ab,
int ldab,
double[] work)
.. |
double |
dlangb(String norm,
int n,
int kl,
int ku,
double[] ab,
int _ab_offset,
int ldab,
double[] work,
int _work_offset)
.. |
double |
dlange(String norm,
int m,
int n,
double[] a,
int lda,
double[] work)
.. |
double |
dlange(String norm,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] work,
int _work_offset)
.. |
double |
dlangt(String norm,
int n,
double[] dl,
double[] d,
double[] du)
.. |
double |
dlangt(String norm,
int n,
double[] dl,
int _dl_offset,
double[] d,
int _d_offset,
double[] du,
int _du_offset)
.. |
double |
dlanhs(String norm,
int n,
double[] a,
int lda,
double[] work)
.. |
double |
dlanhs(String norm,
int n,
double[] a,
int _a_offset,
int lda,
double[] work,
int _work_offset)
.. |
double |
dlansb(String norm,
String uplo,
int n,
int k,
double[] ab,
int ldab,
double[] work)
.. |
double |
dlansb(String norm,
String uplo,
int n,
int k,
double[] ab,
int _ab_offset,
int ldab,
double[] work,
int _work_offset)
.. |
double |
dlansp(String norm,
String uplo,
int n,
double[] ap,
double[] work)
.. |
double |
dlansp(String norm,
String uplo,
int n,
double[] ap,
int _ap_offset,
double[] work,
int _work_offset)
.. |
double |
dlanst(String norm,
int n,
double[] d,
double[] e)
.. |
double |
dlanst(String norm,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset)
.. |
double |
dlansy(String norm,
String uplo,
int n,
double[] a,
int lda,
double[] work)
.. |
double |
dlansy(String norm,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] work,
int _work_offset)
.. |
double |
dlantb(String norm,
String uplo,
String diag,
int n,
int k,
double[] ab,
int ldab,
double[] work)
.. |
double |
dlantb(String norm,
String uplo,
String diag,
int n,
int k,
double[] ab,
int _ab_offset,
int ldab,
double[] work,
int _work_offset)
.. |
double |
dlantp(String norm,
String uplo,
String diag,
int n,
double[] ap,
double[] work)
.. |
double |
dlantp(String norm,
String uplo,
String diag,
int n,
double[] ap,
int _ap_offset,
double[] work,
int _work_offset)
.. |
double |
dlantr(String norm,
String uplo,
String diag,
int m,
int n,
double[] a,
int lda,
double[] work)
.. |
double |
dlantr(String norm,
String uplo,
String diag,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] work,
int _work_offset)
.. |
void |
dlanv2(org.netlib.util.doubleW a,
org.netlib.util.doubleW b,
org.netlib.util.doubleW c,
org.netlib.util.doubleW d,
org.netlib.util.doubleW rt1r,
org.netlib.util.doubleW rt1i,
org.netlib.util.doubleW rt2r,
org.netlib.util.doubleW rt2i,
org.netlib.util.doubleW cs,
org.netlib.util.doubleW sn)
.. |
void |
dlapll(int n,
double[] x,
int incx,
double[] y,
int incy,
org.netlib.util.doubleW ssmin)
.. |
void |
dlapll(int n,
double[] x,
int _x_offset,
int incx,
double[] y,
int _y_offset,
int incy,
org.netlib.util.doubleW ssmin)
.. |
void |
dlapmt(boolean forwrd,
int m,
int n,
double[] x,
int ldx,
int[] k)
.. |
void |
dlapmt(boolean forwrd,
int m,
int n,
double[] x,
int _x_offset,
int ldx,
int[] k,
int _k_offset)
.. |
double |
dlapy2(double x,
double y)
.. |
double |
dlapy3(double x,
double y,
double z)
.. |
void |
dlaqgb(int m,
int n,
int kl,
int ku,
double[] ab,
int ldab,
double[] r,
double[] c,
double rowcnd,
double colcnd,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqgb(int m,
int n,
int kl,
int ku,
double[] ab,
int _ab_offset,
int ldab,
double[] r,
int _r_offset,
double[] c,
int _c_offset,
double rowcnd,
double colcnd,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqge(int m,
int n,
double[] a,
int lda,
double[] r,
double[] c,
double rowcnd,
double colcnd,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqge(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] r,
int _r_offset,
double[] c,
int _c_offset,
double rowcnd,
double colcnd,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqp2(int m,
int n,
int offset,
double[] a,
int lda,
int[] jpvt,
double[] tau,
double[] vn1,
double[] vn2,
double[] work)
.. |
void |
dlaqp2(int m,
int n,
int offset,
double[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
double[] tau,
int _tau_offset,
double[] vn1,
int _vn1_offset,
double[] vn2,
int _vn2_offset,
double[] work,
int _work_offset)
.. |
void |
dlaqps(int m,
int n,
int offset,
int nb,
org.netlib.util.intW kb,
double[] a,
int lda,
int[] jpvt,
double[] tau,
double[] vn1,
double[] vn2,
double[] auxv,
double[] f,
int ldf)
.. |
void |
dlaqps(int m,
int n,
int offset,
int nb,
org.netlib.util.intW kb,
double[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
double[] tau,
int _tau_offset,
double[] vn1,
int _vn1_offset,
double[] vn2,
int _vn2_offset,
double[] auxv,
int _auxv_offset,
double[] f,
int _f_offset,
int ldf)
.. |
void |
dlaqr0(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
double[] h,
int ldh,
double[] wr,
double[] wi,
int iloz,
int ihiz,
double[] z,
int ldz,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dlaqr0(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
double[] h,
int _h_offset,
int ldh,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
int iloz,
int ihiz,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dlaqr1(int n,
double[] h,
int ldh,
double sr1,
double si1,
double sr2,
double si2,
double[] v)
.. |
void |
dlaqr1(int n,
double[] h,
int _h_offset,
int ldh,
double sr1,
double si1,
double sr2,
double si2,
double[] v,
int _v_offset)
.. |
void |
dlaqr2(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
double[] h,
int ldh,
int iloz,
int ihiz,
double[] z,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
double[] sr,
double[] si,
double[] v,
int ldv,
int nh,
double[] t,
int ldt,
int nv,
double[] wv,
int ldwv,
double[] work,
int lwork)
.. |
void |
dlaqr2(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
double[] h,
int _h_offset,
int ldh,
int iloz,
int ihiz,
double[] z,
int _z_offset,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
double[] sr,
int _sr_offset,
double[] si,
int _si_offset,
double[] v,
int _v_offset,
int ldv,
int nh,
double[] t,
int _t_offset,
int ldt,
int nv,
double[] wv,
int _wv_offset,
int ldwv,
double[] work,
int _work_offset,
int lwork)
.. |
void |
dlaqr3(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
double[] h,
int ldh,
int iloz,
int ihiz,
double[] z,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
double[] sr,
double[] si,
double[] v,
int ldv,
int nh,
double[] t,
int ldt,
int nv,
double[] wv,
int ldwv,
double[] work,
int lwork)
.. |
void |
dlaqr3(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
double[] h,
int _h_offset,
int ldh,
int iloz,
int ihiz,
double[] z,
int _z_offset,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
double[] sr,
int _sr_offset,
double[] si,
int _si_offset,
double[] v,
int _v_offset,
int ldv,
int nh,
double[] t,
int _t_offset,
int ldt,
int nv,
double[] wv,
int _wv_offset,
int ldwv,
double[] work,
int _work_offset,
int lwork)
.. |
void |
dlaqr4(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
double[] h,
int ldh,
double[] wr,
double[] wi,
int iloz,
int ihiz,
double[] z,
int ldz,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dlaqr4(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
double[] h,
int _h_offset,
int ldh,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
int iloz,
int ihiz,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dlaqr5(boolean wantt,
boolean wantz,
int kacc22,
int n,
int ktop,
int kbot,
int nshfts,
double[] sr,
double[] si,
double[] h,
int ldh,
int iloz,
int ihiz,
double[] z,
int ldz,
double[] v,
int ldv,
double[] u,
int ldu,
int nv,
double[] wv,
int ldwv,
int nh,
double[] wh,
int ldwh)
.. |
void |
dlaqr5(boolean wantt,
boolean wantz,
int kacc22,
int n,
int ktop,
int kbot,
int nshfts,
double[] sr,
int _sr_offset,
double[] si,
int _si_offset,
double[] h,
int _h_offset,
int ldh,
int iloz,
int ihiz,
double[] z,
int _z_offset,
int ldz,
double[] v,
int _v_offset,
int ldv,
double[] u,
int _u_offset,
int ldu,
int nv,
double[] wv,
int _wv_offset,
int ldwv,
int nh,
double[] wh,
int _wh_offset,
int ldwh)
.. |
void |
dlaqsb(String uplo,
int n,
int kd,
double[] ab,
int ldab,
double[] s,
double scond,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqsb(String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double[] s,
int _s_offset,
double scond,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqsp(String uplo,
int n,
double[] ap,
double[] s,
double scond,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqsp(String uplo,
int n,
double[] ap,
int _ap_offset,
double[] s,
int _s_offset,
double scond,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqsy(String uplo,
int n,
double[] a,
int lda,
double[] s,
double scond,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqsy(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] s,
int _s_offset,
double scond,
double amax,
org.netlib.util.StringW equed)
.. |
void |
dlaqtr(boolean ltran,
boolean lreal,
int n,
double[] t,
int ldt,
double[] b,
double w,
org.netlib.util.doubleW scale,
double[] x,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlaqtr(boolean ltran,
boolean lreal,
int n,
double[] t,
int _t_offset,
int ldt,
double[] b,
int _b_offset,
double w,
org.netlib.util.doubleW scale,
double[] x,
int _x_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlar1v(int n,
int b1,
int bn,
double lambda,
double[] d,
double[] l,
double[] ld,
double[] lld,
double pivmin,
double gaptol,
double[] z,
boolean wantnc,
org.netlib.util.intW negcnt,
org.netlib.util.doubleW ztz,
org.netlib.util.doubleW mingma,
org.netlib.util.intW r,
int[] isuppz,
org.netlib.util.doubleW nrminv,
org.netlib.util.doubleW resid,
org.netlib.util.doubleW rqcorr,
double[] work)
.. |
void |
dlar1v(int n,
int b1,
int bn,
double lambda,
double[] d,
int _d_offset,
double[] l,
int _l_offset,
double[] ld,
int _ld_offset,
double[] lld,
int _lld_offset,
double pivmin,
double gaptol,
double[] z,
int _z_offset,
boolean wantnc,
org.netlib.util.intW negcnt,
org.netlib.util.doubleW ztz,
org.netlib.util.doubleW mingma,
org.netlib.util.intW r,
int[] isuppz,
int _isuppz_offset,
org.netlib.util.doubleW nrminv,
org.netlib.util.doubleW resid,
org.netlib.util.doubleW rqcorr,
double[] work,
int _work_offset)
.. |
void |
dlar2v(int n,
double[] x,
double[] y,
double[] z,
int incx,
double[] c,
double[] s,
int incc)
.. |
void |
dlar2v(int n,
double[] x,
int _x_offset,
double[] y,
int _y_offset,
double[] z,
int _z_offset,
int incx,
double[] c,
int _c_offset,
double[] s,
int _s_offset,
int incc)
.. |
void |
dlarf(String side,
int m,
int n,
double[] v,
int incv,
double tau,
double[] c,
int Ldc,
double[] work)
.. |
void |
dlarf(String side,
int m,
int n,
double[] v,
int _v_offset,
int incv,
double tau,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset)
.. |
void |
dlarfb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
double[] v,
int ldv,
double[] t,
int ldt,
double[] c,
int Ldc,
double[] work,
int ldwork)
.. |
void |
dlarfb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
double[] v,
int _v_offset,
int ldv,
double[] t,
int _t_offset,
int ldt,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int ldwork)
.. |
void |
dlarfg(int n,
org.netlib.util.doubleW alpha,
double[] x,
int incx,
org.netlib.util.doubleW tau)
.. |
void |
dlarfg(int n,
org.netlib.util.doubleW alpha,
double[] x,
int _x_offset,
int incx,
org.netlib.util.doubleW tau)
.. |
void |
dlarft(String direct,
String storev,
int n,
int k,
double[] v,
int ldv,
double[] tau,
double[] t,
int ldt)
.. |
void |
dlarft(String direct,
String storev,
int n,
int k,
double[] v,
int _v_offset,
int ldv,
double[] tau,
int _tau_offset,
double[] t,
int _t_offset,
int ldt)
.. |
void |
dlarfx(String side,
int m,
int n,
double[] v,
double tau,
double[] c,
int Ldc,
double[] work)
.. |
void |
dlarfx(String side,
int m,
int n,
double[] v,
int _v_offset,
double tau,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset)
.. |
void |
dlargv(int n,
double[] x,
int incx,
double[] y,
int incy,
double[] c,
int incc)
.. |
void |
dlargv(int n,
double[] x,
int _x_offset,
int incx,
double[] y,
int _y_offset,
int incy,
double[] c,
int _c_offset,
int incc)
.. |
void |
dlarnv(int idist,
int[] iseed,
int n,
double[] x)
.. |
void |
dlarnv(int idist,
int[] iseed,
int _iseed_offset,
int n,
double[] x,
int _x_offset)
.. |
void |
dlarra(int n,
double[] d,
double[] e,
double[] e2,
double spltol,
double tnrm,
org.netlib.util.intW nsplit,
int[] isplit,
org.netlib.util.intW info)
.. |
void |
dlarra(int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] e2,
int _e2_offset,
double spltol,
double tnrm,
org.netlib.util.intW nsplit,
int[] isplit,
int _isplit_offset,
org.netlib.util.intW info)
.. |
void |
dlarrb(int n,
double[] d,
double[] lld,
int ifirst,
int ilast,
double rtol1,
double rtol2,
int offset,
double[] w,
double[] wgap,
double[] werr,
double[] work,
int[] iwork,
double pivmin,
double spdiam,
int twist,
org.netlib.util.intW info)
.. |
void |
dlarrb(int n,
double[] d,
int _d_offset,
double[] lld,
int _lld_offset,
int ifirst,
int ilast,
double rtol1,
double rtol2,
int offset,
double[] w,
int _w_offset,
double[] wgap,
int _wgap_offset,
double[] werr,
int _werr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
double pivmin,
double spdiam,
int twist,
org.netlib.util.intW info)
.. |
void |
dlarrc(String jobt,
int n,
double vl,
double vu,
double[] d,
double[] e,
double pivmin,
org.netlib.util.intW eigcnt,
org.netlib.util.intW lcnt,
org.netlib.util.intW rcnt,
org.netlib.util.intW info)
.. |
void |
dlarrc(String jobt,
int n,
double vl,
double vu,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double pivmin,
org.netlib.util.intW eigcnt,
org.netlib.util.intW lcnt,
org.netlib.util.intW rcnt,
org.netlib.util.intW info)
.. |
void |
dlarrd(String range,
String order,
int n,
double vl,
double vu,
int il,
int iu,
double[] gers,
double reltol,
double[] d,
double[] e,
double[] e2,
double pivmin,
int nsplit,
int[] isplit,
org.netlib.util.intW m,
double[] w,
double[] werr,
org.netlib.util.doubleW wl,
org.netlib.util.doubleW wu,
int[] iblock,
int[] indexw,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlarrd(String range,
String order,
int n,
double vl,
double vu,
int il,
int iu,
double[] gers,
int _gers_offset,
double reltol,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] e2,
int _e2_offset,
double pivmin,
int nsplit,
int[] isplit,
int _isplit_offset,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] werr,
int _werr_offset,
org.netlib.util.doubleW wl,
org.netlib.util.doubleW wu,
int[] iblock,
int _iblock_offset,
int[] indexw,
int _indexw_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlarre(String range,
int n,
org.netlib.util.doubleW vl,
org.netlib.util.doubleW vu,
int il,
int iu,
double[] d,
double[] e,
double[] e2,
double rtol1,
double rtol2,
double spltol,
org.netlib.util.intW nsplit,
int[] isplit,
org.netlib.util.intW m,
double[] w,
double[] werr,
double[] wgap,
int[] iblock,
int[] indexw,
double[] gers,
org.netlib.util.doubleW pivmin,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlarre(String range,
int n,
org.netlib.util.doubleW vl,
org.netlib.util.doubleW vu,
int il,
int iu,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] e2,
int _e2_offset,
double rtol1,
double rtol2,
double spltol,
org.netlib.util.intW nsplit,
int[] isplit,
int _isplit_offset,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] werr,
int _werr_offset,
double[] wgap,
int _wgap_offset,
int[] iblock,
int _iblock_offset,
int[] indexw,
int _indexw_offset,
double[] gers,
int _gers_offset,
org.netlib.util.doubleW pivmin,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlarrf(int n,
double[] d,
double[] l,
double[] ld,
int clstrt,
int clend,
double[] w,
double[] wgap,
double[] werr,
double spdiam,
double clgapl,
double clgapr,
double pivmin,
org.netlib.util.doubleW sigma,
double[] dplus,
double[] lplus,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlarrf(int n,
double[] d,
int _d_offset,
double[] l,
int _l_offset,
double[] ld,
int _ld_offset,
int clstrt,
int clend,
double[] w,
int _w_offset,
double[] wgap,
int _wgap_offset,
double[] werr,
int _werr_offset,
double spdiam,
double clgapl,
double clgapr,
double pivmin,
org.netlib.util.doubleW sigma,
double[] dplus,
int _dplus_offset,
double[] lplus,
int _lplus_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlarrj(int n,
double[] d,
double[] e2,
int ifirst,
int ilast,
double rtol,
int offset,
double[] w,
double[] werr,
double[] work,
int[] iwork,
double pivmin,
double spdiam,
org.netlib.util.intW info)
.. |
void |
dlarrj(int n,
double[] d,
int _d_offset,
double[] e2,
int _e2_offset,
int ifirst,
int ilast,
double rtol,
int offset,
double[] w,
int _w_offset,
double[] werr,
int _werr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
double pivmin,
double spdiam,
org.netlib.util.intW info)
.. |
void |
dlarrk(int n,
int iw,
double gl,
double gu,
double[] d,
double[] e2,
double pivmin,
double reltol,
org.netlib.util.doubleW w,
org.netlib.util.doubleW werr,
org.netlib.util.intW info)
.. |
void |
dlarrk(int n,
int iw,
double gl,
double gu,
double[] d,
int _d_offset,
double[] e2,
int _e2_offset,
double pivmin,
double reltol,
org.netlib.util.doubleW w,
org.netlib.util.doubleW werr,
org.netlib.util.intW info)
.. |
void |
dlarrr(int n,
double[] d,
double[] e,
org.netlib.util.intW info)
.. |
void |
dlarrr(int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
org.netlib.util.intW info)
.. |
void |
dlarrv(int n,
double vl,
double vu,
double[] d,
double[] l,
double pivmin,
int[] isplit,
int m,
int dol,
int dou,
double minrgp,
org.netlib.util.doubleW rtol1,
org.netlib.util.doubleW rtol2,
double[] w,
double[] werr,
double[] wgap,
int[] iblock,
int[] indexw,
double[] gers,
double[] z,
int ldz,
int[] isuppz,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlarrv(int n,
double vl,
double vu,
double[] d,
int _d_offset,
double[] l,
int _l_offset,
double pivmin,
int[] isplit,
int _isplit_offset,
int m,
int dol,
int dou,
double minrgp,
org.netlib.util.doubleW rtol1,
org.netlib.util.doubleW rtol2,
double[] w,
int _w_offset,
double[] werr,
int _werr_offset,
double[] wgap,
int _wgap_offset,
int[] iblock,
int _iblock_offset,
int[] indexw,
int _indexw_offset,
double[] gers,
int _gers_offset,
double[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlartg(double f,
double g,
org.netlib.util.doubleW cs,
org.netlib.util.doubleW sn,
org.netlib.util.doubleW r)
.. |
void |
dlartv(int n,
double[] x,
int incx,
double[] y,
int incy,
double[] c,
double[] s,
int incc)
.. |
void |
dlartv(int n,
double[] x,
int _x_offset,
int incx,
double[] y,
int _y_offset,
int incy,
double[] c,
int _c_offset,
double[] s,
int _s_offset,
int incc)
.. |
void |
dlaruv(int[] iseed,
int n,
double[] x)
.. |
void |
dlaruv(int[] iseed,
int _iseed_offset,
int n,
double[] x,
int _x_offset)
.. |
void |
dlarz(String side,
int m,
int n,
int l,
double[] v,
int incv,
double tau,
double[] c,
int Ldc,
double[] work)
.. |
void |
dlarz(String side,
int m,
int n,
int l,
double[] v,
int _v_offset,
int incv,
double tau,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset)
.. |
void |
dlarzb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
int l,
double[] v,
int ldv,
double[] t,
int ldt,
double[] c,
int Ldc,
double[] work,
int ldwork)
.. |
void |
dlarzb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
int l,
double[] v,
int _v_offset,
int ldv,
double[] t,
int _t_offset,
int ldt,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int ldwork)
.. |
void |
dlarzt(String direct,
String storev,
int n,
int k,
double[] v,
int ldv,
double[] tau,
double[] t,
int ldt)
.. |
void |
dlarzt(String direct,
String storev,
int n,
int k,
double[] v,
int _v_offset,
int ldv,
double[] tau,
int _tau_offset,
double[] t,
int _t_offset,
int ldt)
.. |
void |
dlas2(double f,
double g,
double h,
org.netlib.util.doubleW ssmin,
org.netlib.util.doubleW ssmax)
.. |
void |
dlascl(String type,
int kl,
int ku,
double cfrom,
double cto,
int m,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dlascl(String type,
int kl,
int ku,
double cfrom,
double cto,
int m,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dlasd0(int n,
int sqre,
double[] d,
double[] e,
double[] u,
int ldu,
double[] vt,
int ldvt,
int smlsiz,
int[] iwork,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlasd0(int n,
int sqre,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int ldvt,
int smlsiz,
int[] iwork,
int _iwork_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlasd1(int nl,
int nr,
int sqre,
double[] d,
org.netlib.util.doubleW alpha,
org.netlib.util.doubleW beta,
double[] u,
int ldu,
double[] vt,
int ldvt,
int[] idxq,
int[] iwork,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlasd1(int nl,
int nr,
int sqre,
double[] d,
int _d_offset,
org.netlib.util.doubleW alpha,
org.netlib.util.doubleW beta,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int ldvt,
int[] idxq,
int _idxq_offset,
int[] iwork,
int _iwork_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlasd2(int nl,
int nr,
int sqre,
org.netlib.util.intW k,
double[] d,
double[] z,
double alpha,
double beta,
double[] u,
int ldu,
double[] vt,
int ldvt,
double[] dsigma,
double[] u2,
int ldu2,
double[] vt2,
int ldvt2,
int[] idxp,
int[] idx,
int[] idxc,
int[] idxq,
int[] coltyp,
org.netlib.util.intW info)
.. |
void |
dlasd2(int nl,
int nr,
int sqre,
org.netlib.util.intW k,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double alpha,
double beta,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int ldvt,
double[] dsigma,
int _dsigma_offset,
double[] u2,
int _u2_offset,
int ldu2,
double[] vt2,
int _vt2_offset,
int ldvt2,
int[] idxp,
int _idxp_offset,
int[] idx,
int _idx_offset,
int[] idxc,
int _idxc_offset,
int[] idxq,
int _idxq_offset,
int[] coltyp,
int _coltyp_offset,
org.netlib.util.intW info)
.. |
void |
dlasd3(int nl,
int nr,
int sqre,
int k,
double[] d,
double[] q,
int ldq,
double[] dsigma,
double[] u,
int ldu,
double[] u2,
int ldu2,
double[] vt,
int ldvt,
double[] vt2,
int ldvt2,
int[] idxc,
int[] ctot,
double[] z,
org.netlib.util.intW info)
.. |
void |
dlasd3(int nl,
int nr,
int sqre,
int k,
double[] d,
int _d_offset,
double[] q,
int _q_offset,
int ldq,
double[] dsigma,
int _dsigma_offset,
double[] u,
int _u_offset,
int ldu,
double[] u2,
int _u2_offset,
int ldu2,
double[] vt,
int _vt_offset,
int ldvt,
double[] vt2,
int _vt2_offset,
int ldvt2,
int[] idxc,
int _idxc_offset,
int[] ctot,
int _ctot_offset,
double[] z,
int _z_offset,
org.netlib.util.intW info)
.. |
void |
dlasd4(int n,
int i,
double[] d,
double[] z,
double[] delta,
double rho,
org.netlib.util.doubleW sigma,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlasd4(int n,
int i,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double[] delta,
int _delta_offset,
double rho,
org.netlib.util.doubleW sigma,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlasd5(int i,
double[] d,
double[] z,
double[] delta,
double rho,
org.netlib.util.doubleW dsigma,
double[] work)
.. |
void |
dlasd5(int i,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double[] delta,
int _delta_offset,
double rho,
org.netlib.util.doubleW dsigma,
double[] work,
int _work_offset)
.. |
void |
dlasd6(int icompq,
int nl,
int nr,
int sqre,
double[] d,
double[] vf,
double[] vl,
org.netlib.util.doubleW alpha,
org.netlib.util.doubleW beta,
int[] idxq,
int[] perm,
org.netlib.util.intW givptr,
int[] givcol,
int ldgcol,
double[] givnum,
int ldgnum,
double[] poles,
double[] difl,
double[] difr,
double[] z,
org.netlib.util.intW k,
org.netlib.util.doubleW c,
org.netlib.util.doubleW s,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlasd6(int icompq,
int nl,
int nr,
int sqre,
double[] d,
int _d_offset,
double[] vf,
int _vf_offset,
double[] vl,
int _vl_offset,
org.netlib.util.doubleW alpha,
org.netlib.util.doubleW beta,
int[] idxq,
int _idxq_offset,
int[] perm,
int _perm_offset,
org.netlib.util.intW givptr,
int[] givcol,
int _givcol_offset,
int ldgcol,
double[] givnum,
int _givnum_offset,
int ldgnum,
double[] poles,
int _poles_offset,
double[] difl,
int _difl_offset,
double[] difr,
int _difr_offset,
double[] z,
int _z_offset,
org.netlib.util.intW k,
org.netlib.util.doubleW c,
org.netlib.util.doubleW s,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlasd7(int icompq,
int nl,
int nr,
int sqre,
org.netlib.util.intW k,
double[] d,
double[] z,
double[] zw,
double[] vf,
double[] vfw,
double[] vl,
double[] vlw,
double alpha,
double beta,
double[] dsigma,
int[] idx,
int[] idxp,
int[] idxq,
int[] perm,
org.netlib.util.intW givptr,
int[] givcol,
int ldgcol,
double[] givnum,
int ldgnum,
org.netlib.util.doubleW c,
org.netlib.util.doubleW s,
org.netlib.util.intW info)
.. |
void |
dlasd7(int icompq,
int nl,
int nr,
int sqre,
org.netlib.util.intW k,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double[] zw,
int _zw_offset,
double[] vf,
int _vf_offset,
double[] vfw,
int _vfw_offset,
double[] vl,
int _vl_offset,
double[] vlw,
int _vlw_offset,
double alpha,
double beta,
double[] dsigma,
int _dsigma_offset,
int[] idx,
int _idx_offset,
int[] idxp,
int _idxp_offset,
int[] idxq,
int _idxq_offset,
int[] perm,
int _perm_offset,
org.netlib.util.intW givptr,
int[] givcol,
int _givcol_offset,
int ldgcol,
double[] givnum,
int _givnum_offset,
int ldgnum,
org.netlib.util.doubleW c,
org.netlib.util.doubleW s,
org.netlib.util.intW info)
.. |
void |
dlasd8(int icompq,
int k,
double[] d,
double[] z,
double[] vf,
double[] vl,
double[] difl,
double[] difr,
int lddifr,
double[] dsigma,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlasd8(int icompq,
int k,
double[] d,
int _d_offset,
double[] z,
int _z_offset,
double[] vf,
int _vf_offset,
double[] vl,
int _vl_offset,
double[] difl,
int _difl_offset,
double[] difr,
int _difr_offset,
int lddifr,
double[] dsigma,
int _dsigma_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlasda(int icompq,
int smlsiz,
int n,
int sqre,
double[] d,
double[] e,
double[] u,
int ldu,
double[] vt,
int[] k,
double[] difl,
double[] difr,
double[] z,
double[] poles,
int[] givptr,
int[] givcol,
int ldgcol,
int[] perm,
double[] givnum,
double[] c,
double[] s,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dlasda(int icompq,
int smlsiz,
int n,
int sqre,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] u,
int _u_offset,
int ldu,
double[] vt,
int _vt_offset,
int[] k,
int _k_offset,
double[] difl,
int _difl_offset,
double[] difr,
int _difr_offset,
double[] z,
int _z_offset,
double[] poles,
int _poles_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
int ldgcol,
int[] perm,
int _perm_offset,
double[] givnum,
int _givnum_offset,
double[] c,
int _c_offset,
double[] s,
int _s_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dlasdq(String uplo,
int sqre,
int n,
int ncvt,
int nru,
int ncc,
double[] d,
double[] e,
double[] vt,
int ldvt,
double[] u,
int ldu,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlasdq(String uplo,
int sqre,
int n,
int ncvt,
int nru,
int ncc,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] vt,
int _vt_offset,
int ldvt,
double[] u,
int _u_offset,
int ldu,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlasdt(int n,
org.netlib.util.intW lvl,
org.netlib.util.intW nd,
int[] inode,
int[] ndiml,
int[] ndimr,
int msub)
.. |
void |
dlasdt(int n,
org.netlib.util.intW lvl,
org.netlib.util.intW nd,
int[] inode,
int _inode_offset,
int[] ndiml,
int _ndiml_offset,
int[] ndimr,
int _ndimr_offset,
int msub)
.. |
void |
dlaset(String uplo,
int m,
int n,
double alpha,
double beta,
double[] a,
int lda)
.. |
void |
dlaset(String uplo,
int m,
int n,
double alpha,
double beta,
double[] a,
int _a_offset,
int lda)
.. |
void |
dlasq1(int n,
double[] d,
double[] e,
double[] work,
org.netlib.util.intW info)
.. |
void |
dlasq1(int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dlasq2(int n,
double[] z,
int _z_offset,
org.netlib.util.intW info)
.. |
void |
dlasq2(int n,
double[] z,
org.netlib.util.intW info)
.. |
void |
dlasq3(int i0,
org.netlib.util.intW n0,
double[] z,
int pp,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW sigma,
org.netlib.util.doubleW desig,
org.netlib.util.doubleW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee)
.. |
void |
dlasq3(int i0,
org.netlib.util.intW n0,
double[] z,
int _z_offset,
int pp,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW sigma,
org.netlib.util.doubleW desig,
org.netlib.util.doubleW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee)
.. |
void |
dlasq4(int i0,
int n0,
double[] z,
int pp,
int n0in,
double dmin,
double dmin1,
double dmin2,
double dn,
double dn1,
double dn2,
org.netlib.util.doubleW tau,
org.netlib.util.intW ttype)
.. |
void |
dlasq4(int i0,
int n0,
double[] z,
int _z_offset,
int pp,
int n0in,
double dmin,
double dmin1,
double dmin2,
double dn,
double dn1,
double dn2,
org.netlib.util.doubleW tau,
org.netlib.util.intW ttype)
.. |
void |
dlasq5(int i0,
int n0,
double[] z,
int pp,
double tau,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW dmin1,
org.netlib.util.doubleW dmin2,
org.netlib.util.doubleW dn,
org.netlib.util.doubleW dnm1,
org.netlib.util.doubleW dnm2,
boolean ieee)
.. |
void |
dlasq5(int i0,
int n0,
double[] z,
int _z_offset,
int pp,
double tau,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW dmin1,
org.netlib.util.doubleW dmin2,
org.netlib.util.doubleW dn,
org.netlib.util.doubleW dnm1,
org.netlib.util.doubleW dnm2,
boolean ieee)
.. |
void |
dlasq6(int i0,
int n0,
double[] z,
int pp,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW dmin1,
org.netlib.util.doubleW dmin2,
org.netlib.util.doubleW dn,
org.netlib.util.doubleW dnm1,
org.netlib.util.doubleW dnm2)
.. |
void |
dlasq6(int i0,
int n0,
double[] z,
int _z_offset,
int pp,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW dmin1,
org.netlib.util.doubleW dmin2,
org.netlib.util.doubleW dn,
org.netlib.util.doubleW dnm1,
org.netlib.util.doubleW dnm2)
.. |
void |
dlasr(String side,
String pivot,
String direct,
int m,
int n,
double[] c,
double[] s,
double[] a,
int lda)
.. |
void |
dlasr(String side,
String pivot,
String direct,
int m,
int n,
double[] c,
int _c_offset,
double[] s,
int _s_offset,
double[] a,
int _a_offset,
int lda)
.. |
void |
dlasrt(String id,
int n,
double[] d,
int _d_offset,
org.netlib.util.intW info)
.. |
void |
dlasrt(String id,
int n,
double[] d,
org.netlib.util.intW info)
.. |
void |
dlassq(int n,
double[] x,
int incx,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW sumsq)
.. |
void |
dlassq(int n,
double[] x,
int _x_offset,
int incx,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW sumsq)
.. |
void |
dlasv2(double f,
double g,
double h,
org.netlib.util.doubleW ssmin,
org.netlib.util.doubleW ssmax,
org.netlib.util.doubleW snr,
org.netlib.util.doubleW csr,
org.netlib.util.doubleW snl,
org.netlib.util.doubleW csl)
.. |
void |
dlaswp(int n,
double[] a,
int lda,
int k1,
int k2,
int[] ipiv,
int incx)
.. |
void |
dlaswp(int n,
double[] a,
int _a_offset,
int lda,
int k1,
int k2,
int[] ipiv,
int _ipiv_offset,
int incx)
.. |
void |
dlasy2(boolean ltranl,
boolean ltranr,
int isgn,
int n1,
int n2,
double[] tl,
int ldtl,
double[] tr,
int ldtr,
double[] b,
int ldb,
org.netlib.util.doubleW scale,
double[] x,
int ldx,
org.netlib.util.doubleW xnorm,
org.netlib.util.intW info)
.. |
void |
dlasy2(boolean ltranl,
boolean ltranr,
int isgn,
int n1,
int n2,
double[] tl,
int _tl_offset,
int ldtl,
double[] tr,
int _tr_offset,
int ldtr,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.doubleW scale,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW xnorm,
org.netlib.util.intW info)
.. |
void |
dlasyf(String uplo,
int n,
int nb,
org.netlib.util.intW kb,
double[] a,
int lda,
int[] ipiv,
double[] w,
int ldw,
org.netlib.util.intW info)
.. |
void |
dlasyf(String uplo,
int n,
int nb,
org.netlib.util.intW kb,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] w,
int _w_offset,
int ldw,
org.netlib.util.intW info)
.. |
void |
dlatbs(String uplo,
String trans,
String diag,
String normin,
int n,
int kd,
double[] ab,
int ldab,
double[] x,
org.netlib.util.doubleW scale,
double[] cnorm,
org.netlib.util.intW info)
.. |
void |
dlatbs(String uplo,
String trans,
String diag,
String normin,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double[] x,
int _x_offset,
org.netlib.util.doubleW scale,
double[] cnorm,
int _cnorm_offset,
org.netlib.util.intW info)
.. |
void |
dlatdf(int ijob,
int n,
double[] z,
int ldz,
double[] rhs,
org.netlib.util.doubleW rdsum,
org.netlib.util.doubleW rdscal,
int[] ipiv,
int[] jpiv)
.. |
void |
dlatdf(int ijob,
int n,
double[] z,
int _z_offset,
int ldz,
double[] rhs,
int _rhs_offset,
org.netlib.util.doubleW rdsum,
org.netlib.util.doubleW rdscal,
int[] ipiv,
int _ipiv_offset,
int[] jpiv,
int _jpiv_offset)
.. |
void |
dlatps(String uplo,
String trans,
String diag,
String normin,
int n,
double[] ap,
double[] x,
org.netlib.util.doubleW scale,
double[] cnorm,
org.netlib.util.intW info)
.. |
void |
dlatps(String uplo,
String trans,
String diag,
String normin,
int n,
double[] ap,
int _ap_offset,
double[] x,
int _x_offset,
org.netlib.util.doubleW scale,
double[] cnorm,
int _cnorm_offset,
org.netlib.util.intW info)
.. |
void |
dlatrd(String uplo,
int n,
int nb,
double[] a,
int lda,
double[] e,
double[] tau,
double[] w,
int ldw)
.. |
void |
dlatrd(String uplo,
int n,
int nb,
double[] a,
int _a_offset,
int lda,
double[] e,
int _e_offset,
double[] tau,
int _tau_offset,
double[] w,
int _w_offset,
int ldw)
.. |
void |
dlatrs(String uplo,
String trans,
String diag,
String normin,
int n,
double[] a,
int lda,
double[] x,
org.netlib.util.doubleW scale,
double[] cnorm,
org.netlib.util.intW info)
.. |
void |
dlatrs(String uplo,
String trans,
String diag,
String normin,
int n,
double[] a,
int _a_offset,
int lda,
double[] x,
int _x_offset,
org.netlib.util.doubleW scale,
double[] cnorm,
int _cnorm_offset,
org.netlib.util.intW info)
.. |
void |
dlatrz(int m,
int n,
int l,
double[] a,
int lda,
double[] tau,
double[] work)
.. |
void |
dlatrz(int m,
int n,
int l,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset)
.. |
void |
dlatzm(String side,
int m,
int n,
double[] v,
int incv,
double tau,
double[] c1,
double[] c2,
int Ldc,
double[] work)
.. |
void |
dlatzm(String side,
int m,
int n,
double[] v,
int _v_offset,
int incv,
double tau,
double[] c1,
int _c1_offset,
double[] c2,
int _c2_offset,
int Ldc,
double[] work,
int _work_offset)
.. |
void |
dlauu2(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dlauu2(String uplo,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dlauum(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dlauum(String uplo,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dlazq3(int i0,
org.netlib.util.intW n0,
double[] z,
int pp,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW sigma,
org.netlib.util.doubleW desig,
org.netlib.util.doubleW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee,
org.netlib.util.intW ttype,
org.netlib.util.doubleW dmin1,
org.netlib.util.doubleW dmin2,
org.netlib.util.doubleW dn,
org.netlib.util.doubleW dn1,
org.netlib.util.doubleW dn2,
org.netlib.util.doubleW tau)
.. |
void |
dlazq3(int i0,
org.netlib.util.intW n0,
double[] z,
int _z_offset,
int pp,
org.netlib.util.doubleW dmin,
org.netlib.util.doubleW sigma,
org.netlib.util.doubleW desig,
org.netlib.util.doubleW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee,
org.netlib.util.intW ttype,
org.netlib.util.doubleW dmin1,
org.netlib.util.doubleW dmin2,
org.netlib.util.doubleW dn,
org.netlib.util.doubleW dn1,
org.netlib.util.doubleW dn2,
org.netlib.util.doubleW tau)
.. |
void |
dlazq4(int i0,
int n0,
double[] z,
int pp,
int n0in,
double dmin,
double dmin1,
double dmin2,
double dn,
double dn1,
double dn2,
org.netlib.util.doubleW tau,
org.netlib.util.intW ttype,
org.netlib.util.doubleW g)
.. |
void |
dlazq4(int i0,
int n0,
double[] z,
int _z_offset,
int pp,
int n0in,
double dmin,
double dmin1,
double dmin2,
double dn,
double dn1,
double dn2,
org.netlib.util.doubleW tau,
org.netlib.util.intW ttype,
org.netlib.util.doubleW g)
.. |
void |
dopgtr(String uplo,
int n,
double[] ap,
double[] tau,
double[] q,
int ldq,
double[] work,
org.netlib.util.intW info)
.. |
void |
dopgtr(String uplo,
int n,
double[] ap,
int _ap_offset,
double[] tau,
int _tau_offset,
double[] q,
int _q_offset,
int ldq,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dopmtr(String side,
String uplo,
String trans,
int m,
int n,
double[] ap,
double[] tau,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dopmtr(String side,
String uplo,
String trans,
int m,
int n,
double[] ap,
int _ap_offset,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dorg2l(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dorg2l(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dorg2r(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dorg2r(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dorgbr(String vect,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgbr(String vect,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorghr(int n,
int ilo,
int ihi,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorghr(int n,
int ilo,
int ihi,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgl2(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dorgl2(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dorglq(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorglq(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgql(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgql(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgqr(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgqr(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgr2(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
org.netlib.util.intW info)
.. |
void |
dorgr2(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dorgrq(int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgrq(int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgtr(String uplo,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorgtr(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorm2l(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dorm2l(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dorm2r(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dorm2r(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dormbr(String vect,
String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormbr(String vect,
String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormhr(String side,
String trans,
int m,
int n,
int ilo,
int ihi,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormhr(String side,
String trans,
int m,
int n,
int ilo,
int ihi,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dorml2(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dorml2(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dormlq(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormlq(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormql(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormql(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormqr(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormqr(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormr2(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dormr2(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dormr3(String side,
String trans,
int m,
int n,
int k,
int l,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
org.netlib.util.intW info)
.. |
void |
dormr3(String side,
String trans,
int m,
int n,
int k,
int l,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dormrq(String side,
String trans,
int m,
int n,
int k,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormrq(String side,
String trans,
int m,
int n,
int k,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormrz(String side,
String trans,
int m,
int n,
int k,
int l,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormrz(String side,
String trans,
int m,
int n,
int k,
int l,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormtr(String side,
String uplo,
String trans,
int m,
int n,
double[] a,
int lda,
double[] tau,
double[] c,
int Ldc,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dormtr(String side,
String uplo,
String trans,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] c,
int _c_offset,
int Ldc,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dpbcon(String uplo,
int n,
int kd,
double[] ab,
int ldab,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dpbcon(String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dpbequ(String uplo,
int n,
int kd,
double[] ab,
int ldab,
double[] s,
org.netlib.util.doubleW scond,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dpbequ(String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double[] s,
int _s_offset,
org.netlib.util.doubleW scond,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dpbrfs(String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int ldab,
double[] afb,
int ldafb,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dpbrfs(String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] afb,
int _afb_offset,
int ldafb,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dpbstf(String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
org.netlib.util.intW info)
.. |
void |
dpbstf(String uplo,
int n,
int kd,
double[] ab,
int ldab,
org.netlib.util.intW info)
.. |
void |
dpbsv(String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int ldab,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dpbsv(String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dpbsvx(String fact,
String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int ldab,
double[] afb,
int ldafb,
org.netlib.util.StringW equed,
double[] s,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dpbsvx(String fact,
String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] afb,
int _afb_offset,
int ldafb,
org.netlib.util.StringW equed,
double[] s,
int _s_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dpbtf2(String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
org.netlib.util.intW info)
.. |
void |
dpbtf2(String uplo,
int n,
int kd,
double[] ab,
int ldab,
org.netlib.util.intW info)
.. |
void |
dpbtrf(String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
org.netlib.util.intW info)
.. |
void |
dpbtrf(String uplo,
int n,
int kd,
double[] ab,
int ldab,
org.netlib.util.intW info)
.. |
void |
dpbtrs(String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int ldab,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dpbtrs(String uplo,
int n,
int kd,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dpocon(String uplo,
int n,
double[] a,
int lda,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dpocon(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dpoequ(int n,
double[] a,
int lda,
double[] s,
org.netlib.util.doubleW scond,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dpoequ(int n,
double[] a,
int _a_offset,
int lda,
double[] s,
int _s_offset,
org.netlib.util.doubleW scond,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dporfs(String uplo,
int n,
int nrhs,
double[] a,
int lda,
double[] af,
int ldaf,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dporfs(String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] af,
int _af_offset,
int ldaf,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dposv(String uplo,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dposv(String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dposvx(String fact,
String uplo,
int n,
int nrhs,
double[] a,
int lda,
double[] af,
int ldaf,
org.netlib.util.StringW equed,
double[] s,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dposvx(String fact,
String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] af,
int _af_offset,
int ldaf,
org.netlib.util.StringW equed,
double[] s,
int _s_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dpotf2(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dpotf2(String uplo,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dpotrf(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dpotrf(String uplo,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dpotri(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dpotri(String uplo,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dpotrs(String uplo,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dpotrs(String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dppcon(String uplo,
int n,
double[] ap,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dppcon(String uplo,
int n,
double[] ap,
int _ap_offset,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dppequ(String uplo,
int n,
double[] ap,
double[] s,
org.netlib.util.doubleW scond,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dppequ(String uplo,
int n,
double[] ap,
int _ap_offset,
double[] s,
int _s_offset,
org.netlib.util.doubleW scond,
org.netlib.util.doubleW amax,
org.netlib.util.intW info)
.. |
void |
dpprfs(String uplo,
int n,
int nrhs,
double[] ap,
double[] afp,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dpprfs(String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] afp,
int _afp_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dppsv(String uplo,
int n,
int nrhs,
double[] ap,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dppsv(String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dppsvx(String fact,
String uplo,
int n,
int nrhs,
double[] ap,
double[] afp,
org.netlib.util.StringW equed,
double[] s,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dppsvx(String fact,
String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] afp,
int _afp_offset,
org.netlib.util.StringW equed,
double[] s,
int _s_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dpptrf(String uplo,
int n,
double[] ap,
int _ap_offset,
org.netlib.util.intW info)
.. |
void |
dpptrf(String uplo,
int n,
double[] ap,
org.netlib.util.intW info)
.. |
void |
dpptri(String uplo,
int n,
double[] ap,
int _ap_offset,
org.netlib.util.intW info)
.. |
void |
dpptri(String uplo,
int n,
double[] ap,
org.netlib.util.intW info)
.. |
void |
dpptrs(String uplo,
int n,
int nrhs,
double[] ap,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dpptrs(String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dptcon(int n,
double[] d,
double[] e,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
org.netlib.util.intW info)
.. |
void |
dptcon(int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dpteqr(String compz,
int n,
double[] d,
double[] e,
double[] z,
int ldz,
double[] work,
org.netlib.util.intW info)
.. |
void |
dpteqr(String compz,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dptrfs(int n,
int nrhs,
double[] d,
double[] e,
double[] df,
double[] ef,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
org.netlib.util.intW info)
.. |
void |
dptrfs(int n,
int nrhs,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] df,
int _df_offset,
double[] ef,
int _ef_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dptsv(int n,
int nrhs,
double[] d,
double[] e,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dptsv(int n,
int nrhs,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dptsvx(String fact,
int n,
int nrhs,
double[] d,
double[] e,
double[] df,
double[] ef,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
org.netlib.util.intW info)
.. |
void |
dptsvx(String fact,
int n,
int nrhs,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] df,
int _df_offset,
double[] ef,
int _ef_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dpttrf(int n,
double[] d,
double[] e,
org.netlib.util.intW info)
.. |
void |
dpttrf(int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
org.netlib.util.intW info)
.. |
void |
dpttrs(int n,
int nrhs,
double[] d,
double[] e,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dpttrs(int n,
int nrhs,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dptts2(int n,
int nrhs,
double[] d,
double[] e,
double[] b,
int ldb)
.. |
void |
dptts2(int n,
int nrhs,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] b,
int _b_offset,
int ldb)
.. |
void |
drscl(int n,
double sa,
double[] sx,
int incx)
.. |
void |
drscl(int n,
double sa,
double[] sx,
int _sx_offset,
int incx)
.. |
void |
dsbev(String jobz,
String uplo,
int n,
int kd,
double[] ab,
int ldab,
double[] w,
double[] z,
int ldz,
double[] work,
org.netlib.util.intW info)
.. |
void |
dsbev(String jobz,
String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dsbevd(String jobz,
String uplo,
int n,
int kd,
double[] ab,
int ldab,
double[] w,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsbevd(String jobz,
String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsbevx(String jobz,
String range,
String uplo,
int n,
int kd,
double[] ab,
int ldab,
double[] q,
int ldq,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
double[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dsbevx(String jobz,
String range,
String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double[] q,
int _q_offset,
int ldq,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dsbgst(String vect,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int ldab,
double[] bb,
int ldbb,
double[] x,
int ldx,
double[] work,
org.netlib.util.intW info)
.. |
void |
dsbgst(String vect,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int _ab_offset,
int ldab,
double[] bb,
int _bb_offset,
int ldbb,
double[] x,
int _x_offset,
int ldx,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dsbgv(String jobz,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int ldab,
double[] bb,
int ldbb,
double[] w,
double[] z,
int ldz,
double[] work,
org.netlib.util.intW info)
.. |
void |
dsbgv(String jobz,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int _ab_offset,
int ldab,
double[] bb,
int _bb_offset,
int ldbb,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dsbgvd(String jobz,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int ldab,
double[] bb,
int ldbb,
double[] w,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsbgvd(String jobz,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int _ab_offset,
int ldab,
double[] bb,
int _bb_offset,
int ldbb,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsbgvx(String jobz,
String range,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int ldab,
double[] bb,
int ldbb,
double[] q,
int ldq,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
double[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dsbgvx(String jobz,
String range,
String uplo,
int n,
int ka,
int kb,
double[] ab,
int _ab_offset,
int ldab,
double[] bb,
int _bb_offset,
int ldbb,
double[] q,
int _q_offset,
int ldq,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dsbtrd(String vect,
String uplo,
int n,
int kd,
double[] ab,
int ldab,
double[] d,
double[] e,
double[] q,
int ldq,
double[] work,
org.netlib.util.intW info)
.. |
void |
dsbtrd(String vect,
String uplo,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] q,
int _q_offset,
int ldq,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
double |
dsecnd()
-- LAPACK auxiliary routine (version 3.1.1) --
Univ. |
void |
dsgesv(int n,
int nrhs,
double[] a,
int lda,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
double[] work,
float[] swork,
org.netlib.util.intW iter,
org.netlib.util.intW info)
.. |
void |
dsgesv(int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] work,
int _work_offset,
float[] swork,
int _swork_offset,
org.netlib.util.intW iter,
org.netlib.util.intW info)
.. |
void |
dspcon(String uplo,
int n,
double[] ap,
int[] ipiv,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dspcon(String uplo,
int n,
double[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dspev(String jobz,
String uplo,
int n,
double[] ap,
double[] w,
double[] z,
int ldz,
double[] work,
org.netlib.util.intW info)
.. |
void |
dspev(String jobz,
String uplo,
int n,
double[] ap,
int _ap_offset,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dspevd(String jobz,
String uplo,
int n,
double[] ap,
double[] w,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dspevd(String jobz,
String uplo,
int n,
double[] ap,
int _ap_offset,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dspevx(String jobz,
String range,
String uplo,
int n,
double[] ap,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
double[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dspevx(String jobz,
String range,
String uplo,
int n,
double[] ap,
int _ap_offset,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dspgst(int itype,
String uplo,
int n,
double[] ap,
double[] bp,
org.netlib.util.intW info)
.. |
void |
dspgst(int itype,
String uplo,
int n,
double[] ap,
int _ap_offset,
double[] bp,
int _bp_offset,
org.netlib.util.intW info)
.. |
void |
dspgv(int itype,
String jobz,
String uplo,
int n,
double[] ap,
double[] bp,
double[] w,
double[] z,
int ldz,
double[] work,
org.netlib.util.intW info)
.. |
void |
dspgv(int itype,
String jobz,
String uplo,
int n,
double[] ap,
int _ap_offset,
double[] bp,
int _bp_offset,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dspgvd(int itype,
String jobz,
String uplo,
int n,
double[] ap,
double[] bp,
double[] w,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dspgvd(int itype,
String jobz,
String uplo,
int n,
double[] ap,
int _ap_offset,
double[] bp,
int _bp_offset,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dspgvx(int itype,
String jobz,
String range,
String uplo,
int n,
double[] ap,
double[] bp,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
double[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dspgvx(int itype,
String jobz,
String range,
String uplo,
int n,
double[] ap,
int _ap_offset,
double[] bp,
int _bp_offset,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dsprfs(String uplo,
int n,
int nrhs,
double[] ap,
double[] afp,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dsprfs(String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] afp,
int _afp_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dspsv(String uplo,
int n,
int nrhs,
double[] ap,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dspsv(String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dspsvx(String fact,
String uplo,
int n,
int nrhs,
double[] ap,
double[] afp,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dspsvx(String fact,
String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] afp,
int _afp_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dsptrd(String uplo,
int n,
double[] ap,
double[] d,
double[] e,
double[] tau,
org.netlib.util.intW info)
.. |
void |
dsptrd(String uplo,
int n,
double[] ap,
int _ap_offset,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] tau,
int _tau_offset,
org.netlib.util.intW info)
.. |
void |
dsptrf(String uplo,
int n,
double[] ap,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
dsptrf(String uplo,
int n,
double[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
dsptri(String uplo,
int n,
double[] ap,
int[] ipiv,
double[] work,
org.netlib.util.intW info)
.. |
void |
dsptri(String uplo,
int n,
double[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dsptrs(String uplo,
int n,
int nrhs,
double[] ap,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dsptrs(String uplo,
int n,
int nrhs,
double[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dstebz(String range,
String order,
int n,
double vl,
double vu,
int il,
int iu,
double abstol,
double[] d,
double[] e,
org.netlib.util.intW m,
org.netlib.util.intW nsplit,
double[] w,
int[] iblock,
int[] isplit,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dstebz(String range,
String order,
int n,
double vl,
double vu,
int il,
int iu,
double abstol,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
org.netlib.util.intW m,
org.netlib.util.intW nsplit,
double[] w,
int _w_offset,
int[] iblock,
int _iblock_offset,
int[] isplit,
int _isplit_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dstedc(String compz,
int n,
double[] d,
double[] e,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstedc(String compz,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstegr(String jobz,
String range,
int n,
double[] d,
double[] e,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
int[] isuppz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstegr(String jobz,
String range,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstein(int n,
double[] d,
double[] e,
int m,
double[] w,
int[] iblock,
int[] isplit,
double[] z,
int ldz,
double[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dstein(int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
int m,
double[] w,
int _w_offset,
int[] iblock,
int _iblock_offset,
int[] isplit,
int _isplit_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dstemr(String jobz,
String range,
int n,
double[] d,
double[] e,
double vl,
double vu,
int il,
int iu,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
int nzc,
int[] isuppz,
org.netlib.util.booleanW tryrac,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstemr(String jobz,
String range,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double vl,
double vu,
int il,
int iu,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
int nzc,
int[] isuppz,
int _isuppz_offset,
org.netlib.util.booleanW tryrac,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsteqr(String compz,
int n,
double[] d,
double[] e,
double[] z,
int ldz,
double[] work,
org.netlib.util.intW info)
.. |
void |
dsteqr(String compz,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dsterf(int n,
double[] d,
double[] e,
org.netlib.util.intW info)
.. |
void |
dsterf(int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
org.netlib.util.intW info)
.. |
void |
dstev(String jobz,
int n,
double[] d,
double[] e,
double[] z,
int ldz,
double[] work,
org.netlib.util.intW info)
.. |
void |
dstev(String jobz,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dstevd(String jobz,
int n,
double[] d,
double[] e,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstevd(String jobz,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstevr(String jobz,
String range,
int n,
double[] d,
double[] e,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
int[] isuppz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstevr(String jobz,
String range,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dstevx(String jobz,
String range,
int n,
double[] d,
double[] e,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
double[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dstevx(String jobz,
String range,
int n,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dsycon(String uplo,
int n,
double[] a,
int lda,
int[] ipiv,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dsycon(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double anorm,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dsyev(String jobz,
String uplo,
int n,
double[] a,
int lda,
double[] w,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsyev(String jobz,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] w,
int _w_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsyevd(String jobz,
String uplo,
int n,
double[] a,
int lda,
double[] w,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsyevd(String jobz,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] w,
int _w_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsyevr(String jobz,
String range,
String uplo,
int n,
double[] a,
int lda,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
int[] isuppz,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsyevr(String jobz,
String range,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsyevx(String jobz,
String range,
String uplo,
int n,
double[] a,
int lda,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dsyevx(String jobz,
String range,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dsygs2(int itype,
String uplo,
int n,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dsygs2(int itype,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dsygst(int itype,
String uplo,
int n,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dsygst(int itype,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dsygv(int itype,
String jobz,
String uplo,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] w,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsygv(int itype,
String jobz,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] w,
int _w_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsygvd(int itype,
String jobz,
String uplo,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] w,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsygvd(int itype,
String jobz,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] w,
int _w_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dsygvx(int itype,
String jobz,
String range,
String uplo,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
double[] z,
int ldz,
double[] work,
int lwork,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
dsygvx(int itype,
String jobz,
String range,
String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double vl,
double vu,
int il,
int iu,
double abstol,
org.netlib.util.intW m,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
dsyrfs(String uplo,
int n,
int nrhs,
double[] a,
int lda,
double[] af,
int ldaf,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dsyrfs(String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dsysv(String uplo,
int n,
int nrhs,
double[] a,
int lda,
int[] ipiv,
double[] b,
int ldb,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsysv(String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsysvx(String fact,
String uplo,
int n,
int nrhs,
double[] a,
int lda,
double[] af,
int ldaf,
int[] ipiv,
double[] b,
int ldb,
double[] x,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
double[] berr,
double[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dsysvx(String fact,
String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
org.netlib.util.doubleW rcond,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dsytd2(String uplo,
int n,
double[] a,
int lda,
double[] d,
double[] e,
double[] tau,
org.netlib.util.intW info)
.. |
void |
dsytd2(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] tau,
int _tau_offset,
org.netlib.util.intW info)
.. |
void |
dsytf2(String uplo,
int n,
double[] a,
int lda,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
dsytf2(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
dsytrd(String uplo,
int n,
double[] a,
int lda,
double[] d,
double[] e,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsytrd(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
double[] d,
int _d_offset,
double[] e,
int _e_offset,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsytrf(String uplo,
int n,
double[] a,
int lda,
int[] ipiv,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsytrf(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dsytri(String uplo,
int n,
double[] a,
int lda,
int[] ipiv,
double[] work,
org.netlib.util.intW info)
.. |
void |
dsytri(String uplo,
int n,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dsytrs(String uplo,
int n,
int nrhs,
double[] a,
int lda,
int[] ipiv,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dsytrs(String uplo,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dtbcon(String norm,
String uplo,
String diag,
int n,
int kd,
double[] ab,
int ldab,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtbcon(String norm,
String uplo,
String diag,
int n,
int kd,
double[] ab,
int _ab_offset,
int ldab,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtbrfs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
double[] ab,
int ldab,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtbrfs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtbtrs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
double[] ab,
int ldab,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dtbtrs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
double[] ab,
int _ab_offset,
int ldab,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dtgevc(String side,
String howmny,
boolean[] select,
int n,
double[] s,
int lds,
double[] p,
int ldp,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
int mm,
org.netlib.util.intW m,
double[] work,
org.netlib.util.intW info)
.. |
void |
dtgevc(String side,
String howmny,
boolean[] select,
int _select_offset,
int n,
double[] s,
int _s_offset,
int lds,
double[] p,
int _p_offset,
int ldp,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
int mm,
org.netlib.util.intW m,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dtgex2(boolean wantq,
boolean wantz,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] q,
int ldq,
double[] z,
int ldz,
int j1,
int n1,
int n2,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dtgex2(boolean wantq,
boolean wantz,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] q,
int _q_offset,
int ldq,
double[] z,
int _z_offset,
int ldz,
int j1,
int n1,
int n2,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dtgexc(boolean wantq,
boolean wantz,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] q,
int ldq,
double[] z,
int ldz,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dtgexc(boolean wantq,
boolean wantz,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] q,
int _q_offset,
int ldq,
double[] z,
int _z_offset,
int ldz,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
dtgsen(int ijob,
boolean wantq,
boolean wantz,
boolean[] select,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] alphar,
double[] alphai,
double[] beta,
double[] q,
int ldq,
double[] z,
int ldz,
org.netlib.util.intW m,
org.netlib.util.doubleW pl,
org.netlib.util.doubleW pr,
double[] dif,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dtgsen(int ijob,
boolean wantq,
boolean wantz,
boolean[] select,
int _select_offset,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] alphar,
int _alphar_offset,
double[] alphai,
int _alphai_offset,
double[] beta,
int _beta_offset,
double[] q,
int _q_offset,
int ldq,
double[] z,
int _z_offset,
int ldz,
org.netlib.util.intW m,
org.netlib.util.doubleW pl,
org.netlib.util.doubleW pr,
double[] dif,
int _dif_offset,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dtgsja(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
int k,
int l,
double[] a,
int lda,
double[] b,
int ldb,
double tola,
double tolb,
double[] alpha,
double[] beta,
double[] u,
int ldu,
double[] v,
int ldv,
double[] q,
int ldq,
double[] work,
org.netlib.util.intW ncycle,
org.netlib.util.intW info)
.. |
void |
dtgsja(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
int k,
int l,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double tola,
double tolb,
double[] alpha,
int _alpha_offset,
double[] beta,
int _beta_offset,
double[] u,
int _u_offset,
int ldu,
double[] v,
int _v_offset,
int ldv,
double[] q,
int _q_offset,
int ldq,
double[] work,
int _work_offset,
org.netlib.util.intW ncycle,
org.netlib.util.intW info)
.. |
void |
dtgsna(String job,
String howmny,
boolean[] select,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
double[] s,
double[] dif,
int mm,
org.netlib.util.intW m,
double[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtgsna(String job,
String howmny,
boolean[] select,
int _select_offset,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
double[] s,
int _s_offset,
double[] dif,
int _dif_offset,
int mm,
org.netlib.util.intW m,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtgsy2(String trans,
int ijob,
int m,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] c,
int Ldc,
double[] d,
int ldd,
double[] e,
int lde,
double[] f,
int ldf,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW rdsum,
org.netlib.util.doubleW rdscal,
int[] iwork,
org.netlib.util.intW pq,
org.netlib.util.intW info)
.. |
void |
dtgsy2(String trans,
int ijob,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] c,
int _c_offset,
int Ldc,
double[] d,
int _d_offset,
int ldd,
double[] e,
int _e_offset,
int lde,
double[] f,
int _f_offset,
int ldf,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW rdsum,
org.netlib.util.doubleW rdscal,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW pq,
org.netlib.util.intW info)
.. |
void |
dtgsyl(String trans,
int ijob,
int m,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] c,
int Ldc,
double[] d,
int ldd,
double[] e,
int lde,
double[] f,
int ldf,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW dif,
double[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtgsyl(String trans,
int ijob,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] c,
int _c_offset,
int Ldc,
double[] d,
int _d_offset,
int ldd,
double[] e,
int _e_offset,
int lde,
double[] f,
int _f_offset,
int ldf,
org.netlib.util.doubleW scale,
org.netlib.util.doubleW dif,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtpcon(String norm,
String uplo,
String diag,
int n,
double[] ap,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtpcon(String norm,
String uplo,
String diag,
int n,
double[] ap,
int _ap_offset,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtprfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] ap,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtprfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtptri(String uplo,
String diag,
int n,
double[] ap,
int _ap_offset,
org.netlib.util.intW info)
.. |
void |
dtptri(String uplo,
String diag,
int n,
double[] ap,
org.netlib.util.intW info)
.. |
void |
dtptrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] ap,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dtptrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] ap,
int _ap_offset,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dtrcon(String norm,
String uplo,
String diag,
int n,
double[] a,
int lda,
org.netlib.util.doubleW rcond,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtrcon(String norm,
String uplo,
String diag,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.doubleW rcond,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtrevc(String side,
String howmny,
boolean[] select,
int n,
double[] t,
int ldt,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
int mm,
org.netlib.util.intW m,
double[] work,
org.netlib.util.intW info)
.. |
void |
dtrevc(String side,
String howmny,
boolean[] select,
int _select_offset,
int n,
double[] t,
int _t_offset,
int ldt,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
int mm,
org.netlib.util.intW m,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dtrexc(String compq,
int n,
double[] t,
int ldt,
double[] q,
int ldq,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
double[] work,
org.netlib.util.intW info)
.. |
void |
dtrexc(String compq,
int n,
double[] t,
int _t_offset,
int ldt,
double[] q,
int _q_offset,
int ldq,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
double[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
dtrrfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
double[] x,
int ldx,
double[] ferr,
double[] berr,
double[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtrrfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] x,
int _x_offset,
int ldx,
double[] ferr,
int _ferr_offset,
double[] berr,
int _berr_offset,
double[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtrsen(String job,
String compq,
boolean[] select,
int n,
double[] t,
int ldt,
double[] q,
int ldq,
double[] wr,
double[] wi,
org.netlib.util.intW m,
org.netlib.util.doubleW s,
org.netlib.util.doubleW sep,
double[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
dtrsen(String job,
String compq,
boolean[] select,
int _select_offset,
int n,
double[] t,
int _t_offset,
int ldt,
double[] q,
int _q_offset,
int ldq,
double[] wr,
int _wr_offset,
double[] wi,
int _wi_offset,
org.netlib.util.intW m,
org.netlib.util.doubleW s,
org.netlib.util.doubleW sep,
double[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
dtrsna(String job,
String howmny,
boolean[] select,
int n,
double[] t,
int ldt,
double[] vl,
int ldvl,
double[] vr,
int ldvr,
double[] s,
double[] sep,
int mm,
org.netlib.util.intW m,
double[] work,
int ldwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
dtrsna(String job,
String howmny,
boolean[] select,
int _select_offset,
int n,
double[] t,
int _t_offset,
int ldt,
double[] vl,
int _vl_offset,
int ldvl,
double[] vr,
int _vr_offset,
int ldvr,
double[] s,
int _s_offset,
double[] sep,
int _sep_offset,
int mm,
org.netlib.util.intW m,
double[] work,
int _work_offset,
int ldwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
dtrsyl(String trana,
String tranb,
int isgn,
int m,
int n,
double[] a,
int lda,
double[] b,
int ldb,
double[] c,
int Ldc,
org.netlib.util.doubleW scale,
org.netlib.util.intW info)
.. |
void |
dtrsyl(String trana,
String tranb,
int isgn,
int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
double[] c,
int _c_offset,
int Ldc,
org.netlib.util.doubleW scale,
org.netlib.util.intW info)
.. |
void |
dtrti2(String uplo,
String diag,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dtrti2(String uplo,
String diag,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dtrtri(String uplo,
String diag,
int n,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
dtrtri(String uplo,
String diag,
int n,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
dtrtrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] a,
int lda,
double[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
dtrtrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
double[] a,
int _a_offset,
int lda,
double[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
dtzrqf(int m,
int n,
double[] a,
int lda,
double[] tau,
org.netlib.util.intW info)
.. |
void |
dtzrqf(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
org.netlib.util.intW info)
.. |
void |
dtzrzf(int m,
int n,
double[] a,
int lda,
double[] tau,
double[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
dtzrzf(int m,
int n,
double[] a,
int _a_offset,
int lda,
double[] tau,
int _tau_offset,
double[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
int |
ieeeck(int ispec,
float zero,
float one)
.. |
int |
ilaenv(int ispec,
String name,
String opts,
int n1,
int n2,
int n3,
int n4)
.. |
void |
ilaver(org.netlib.util.intW vers_major,
org.netlib.util.intW vers_minor,
org.netlib.util.intW vers_patch)
-- LAPACK routine (version 3.1.1) --
Univ. |
int |
iparmq(int ispec,
String name,
String opts,
int n,
int ilo,
int ihi,
int lwork)
Purpose
=======
This program sets problem and machine dependent parameters
useful for xHSEQR and its subroutines. |
boolean |
lsame(String ca,
String cb)
.. |
boolean |
lsamen(int n,
String ca,
String cb)
.. |
void |
sbdsdc(String uplo,
String compq,
int n,
float[] d,
float[] e,
float[] u,
int ldu,
float[] vt,
int ldvt,
float[] q,
int[] iq,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sbdsdc(String uplo,
String compq,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int ldvt,
float[] q,
int _q_offset,
int[] iq,
int _iq_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sbdsqr(String uplo,
int n,
int ncvt,
int nru,
int ncc,
float[] d,
float[] e,
float[] vt,
int ldvt,
float[] u,
int ldu,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sbdsqr(String uplo,
int n,
int ncvt,
int nru,
int ncc,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] vt,
int _vt_offset,
int ldvt,
float[] u,
int _u_offset,
int ldu,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sdisna(String job,
int m,
int n,
float[] d,
float[] sep,
org.netlib.util.intW info)
.. |
void |
sdisna(String job,
int m,
int n,
float[] d,
int _d_offset,
float[] sep,
int _sep_offset,
org.netlib.util.intW info)
.. |
float |
second()
-- LAPACK auxiliary routine (version 3.1.1) --
Univ. |
void |
sgbbrd(String vect,
int m,
int n,
int ncc,
int kl,
int ku,
float[] ab,
int ldab,
float[] d,
float[] e,
float[] q,
int ldq,
float[] pt,
int ldpt,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgbbrd(String vect,
int m,
int n,
int ncc,
int kl,
int ku,
float[] ab,
int _ab_offset,
int ldab,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] q,
int _q_offset,
int ldq,
float[] pt,
int _pt_offset,
int ldpt,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgbcon(String norm,
int n,
int kl,
int ku,
float[] ab,
int ldab,
int[] ipiv,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgbcon(String norm,
int n,
int kl,
int ku,
float[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgbequ(int m,
int n,
int kl,
int ku,
float[] ab,
int ldab,
float[] r,
float[] c,
org.netlib.util.floatW rowcnd,
org.netlib.util.floatW colcnd,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
sgbequ(int m,
int n,
int kl,
int ku,
float[] ab,
int _ab_offset,
int ldab,
float[] r,
int _r_offset,
float[] c,
int _c_offset,
org.netlib.util.floatW rowcnd,
org.netlib.util.floatW colcnd,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
sgbrfs(String trans,
int n,
int kl,
int ku,
int nrhs,
float[] ab,
int ldab,
float[] afb,
int ldafb,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgbrfs(String trans,
int n,
int kl,
int ku,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] afb,
int _afb_offset,
int ldafb,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgbsv(int n,
int kl,
int ku,
int nrhs,
float[] ab,
int ldab,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgbsv(int n,
int kl,
int ku,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgbsvx(String fact,
String trans,
int n,
int kl,
int ku,
int nrhs,
float[] ab,
int ldab,
float[] afb,
int ldafb,
int[] ipiv,
org.netlib.util.StringW equed,
float[] r,
float[] c,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgbsvx(String fact,
String trans,
int n,
int kl,
int ku,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] afb,
int _afb_offset,
int ldafb,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.StringW equed,
float[] r,
int _r_offset,
float[] c,
int _c_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgbtf2(int m,
int n,
int kl,
int ku,
float[] ab,
int ldab,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
sgbtf2(int m,
int n,
int kl,
int ku,
float[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
sgbtrf(int m,
int n,
int kl,
int ku,
float[] ab,
int ldab,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
sgbtrf(int m,
int n,
int kl,
int ku,
float[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
sgbtrs(String trans,
int n,
int kl,
int ku,
int nrhs,
float[] ab,
int ldab,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgbtrs(String trans,
int n,
int kl,
int ku,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgebak(String job,
String side,
int n,
int ilo,
int ihi,
float[] scale,
int m,
float[] v,
int ldv,
org.netlib.util.intW info)
.. |
void |
sgebak(String job,
String side,
int n,
int ilo,
int ihi,
float[] scale,
int _scale_offset,
int m,
float[] v,
int _v_offset,
int ldv,
org.netlib.util.intW info)
.. |
void |
sgebal(String job,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] scale,
int _scale_offset,
org.netlib.util.intW info)
.. |
void |
sgebal(String job,
int n,
float[] a,
int lda,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] scale,
org.netlib.util.intW info)
.. |
void |
sgebd2(int m,
int n,
float[] a,
int lda,
float[] d,
float[] e,
float[] tauq,
float[] taup,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgebd2(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] tauq,
int _tauq_offset,
float[] taup,
int _taup_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgebrd(int m,
int n,
float[] a,
int lda,
float[] d,
float[] e,
float[] tauq,
float[] taup,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgebrd(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] tauq,
int _tauq_offset,
float[] taup,
int _taup_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgecon(String norm,
int n,
float[] a,
int lda,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgecon(String norm,
int n,
float[] a,
int _a_offset,
int lda,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgeequ(int m,
int n,
float[] a,
int lda,
float[] r,
float[] c,
org.netlib.util.floatW rowcnd,
org.netlib.util.floatW colcnd,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
sgeequ(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] r,
int _r_offset,
float[] c,
int _c_offset,
org.netlib.util.floatW rowcnd,
org.netlib.util.floatW colcnd,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
sgees(String jobvs,
String sort,
Object select,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW sdim,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
float[] vs,
int _vs_offset,
int ldvs,
float[] work,
int _work_offset,
int lwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
sgees(String jobvs,
String sort,
Object select,
int n,
float[] a,
int lda,
org.netlib.util.intW sdim,
float[] wr,
float[] wi,
float[] vs,
int ldvs,
float[] work,
int lwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
sgeesx(String jobvs,
String sort,
Object select,
String sense,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW sdim,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
float[] vs,
int _vs_offset,
int ldvs,
org.netlib.util.floatW rconde,
org.netlib.util.floatW rcondv,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
sgeesx(String jobvs,
String sort,
Object select,
String sense,
int n,
float[] a,
int lda,
org.netlib.util.intW sdim,
float[] wr,
float[] wi,
float[] vs,
int ldvs,
org.netlib.util.floatW rconde,
org.netlib.util.floatW rcondv,
float[] work,
int lwork,
int[] iwork,
int liwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
sgeev(String jobvl,
String jobvr,
int n,
float[] a,
int lda,
float[] wr,
float[] wi,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeev(String jobvl,
String jobvr,
int n,
float[] a,
int _a_offset,
int lda,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
float[] a,
int lda,
float[] wr,
float[] wi,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] scale,
org.netlib.util.floatW abnrm,
float[] rconde,
float[] rcondv,
float[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgeevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
float[] a,
int _a_offset,
int lda,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] scale,
int _scale_offset,
org.netlib.util.floatW abnrm,
float[] rconde,
int _rconde_offset,
float[] rcondv,
int _rcondv_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgegs(String jobvsl,
String jobvsr,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] alphar,
float[] alphai,
float[] beta,
float[] vsl,
int ldvsl,
float[] vsr,
int ldvsr,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgegs(String jobvsl,
String jobvsr,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] vsl,
int _vsl_offset,
int ldvsl,
float[] vsr,
int _vsr_offset,
int ldvsr,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgegv(String jobvl,
String jobvr,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] alphar,
float[] alphai,
float[] beta,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgegv(String jobvl,
String jobvr,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgehd2(int n,
int ilo,
int ihi,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgehd2(int n,
int ilo,
int ihi,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgehrd(int n,
int ilo,
int ihi,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgehrd(int n,
int ilo,
int ihi,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgelq2(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgelq2(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgelqf(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgelqf(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgels(String trans,
int m,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgels(String trans,
int m,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgelsd(int m,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
float[] s,
float rcond,
org.netlib.util.intW rank,
float[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgelsd(int m,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] s,
int _s_offset,
float rcond,
org.netlib.util.intW rank,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgelss(int m,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
float[] s,
float rcond,
org.netlib.util.intW rank,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgelss(int m,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] s,
int _s_offset,
float rcond,
org.netlib.util.intW rank,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgelsx(int m,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
int[] jpvt,
float rcond,
org.netlib.util.intW rank,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgelsx(int m,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
int[] jpvt,
int _jpvt_offset,
float rcond,
org.netlib.util.intW rank,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgelsy(int m,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
int[] jpvt,
float rcond,
org.netlib.util.intW rank,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgelsy(int m,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
int[] jpvt,
int _jpvt_offset,
float rcond,
org.netlib.util.intW rank,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeql2(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgeql2(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgeqlf(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeqlf(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeqp3(int m,
int n,
float[] a,
int lda,
int[] jpvt,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeqp3(int m,
int n,
float[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeqpf(int m,
int n,
float[] a,
int lda,
int[] jpvt,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgeqpf(int m,
int n,
float[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgeqr2(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgeqr2(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgeqrf(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgeqrf(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgerfs(String trans,
int n,
int nrhs,
float[] a,
int lda,
float[] af,
int ldaf,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgerfs(String trans,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgerq2(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sgerq2(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgerqf(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgerqf(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgesc2(int n,
float[] a,
int lda,
float[] rhs,
int[] ipiv,
int[] jpiv,
org.netlib.util.floatW scale)
.. |
void |
sgesc2(int n,
float[] a,
int _a_offset,
int lda,
float[] rhs,
int _rhs_offset,
int[] ipiv,
int _ipiv_offset,
int[] jpiv,
int _jpiv_offset,
org.netlib.util.floatW scale)
.. |
void |
sgesdd(String jobz,
int m,
int n,
float[] a,
int lda,
float[] s,
float[] u,
int ldu,
float[] vt,
int ldvt,
float[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgesdd(String jobz,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] s,
int _s_offset,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int ldvt,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgesv(int n,
int nrhs,
float[] a,
int lda,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgesv(int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgesvd(String jobu,
String jobvt,
int m,
int n,
float[] a,
int lda,
float[] s,
float[] u,
int ldu,
float[] vt,
int ldvt,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgesvd(String jobu,
String jobvt,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] s,
int _s_offset,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int ldvt,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgesvx(String fact,
String trans,
int n,
int nrhs,
float[] a,
int lda,
float[] af,
int ldaf,
int[] ipiv,
org.netlib.util.StringW equed,
float[] r,
float[] c,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgesvx(String fact,
String trans,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.StringW equed,
float[] r,
int _r_offset,
float[] c,
int _c_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgetc2(int n,
float[] a,
int lda,
int[] ipiv,
int[] jpiv,
org.netlib.util.intW info)
.. |
void |
sgetc2(int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
int[] jpiv,
int _jpiv_offset,
org.netlib.util.intW info)
.. |
void |
sgetf2(int m,
int n,
float[] a,
int lda,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
sgetf2(int m,
int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
sgetrf(int m,
int n,
float[] a,
int lda,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
sgetrf(int m,
int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
sgetri(int n,
float[] a,
int lda,
int[] ipiv,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgetri(int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgetrs(String trans,
int n,
int nrhs,
float[] a,
int lda,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgetrs(String trans,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sggbak(String job,
String side,
int n,
int ilo,
int ihi,
float[] lscale,
float[] rscale,
int m,
float[] v,
int ldv,
org.netlib.util.intW info)
.. |
void |
sggbak(String job,
String side,
int n,
int ilo,
int ihi,
float[] lscale,
int _lscale_offset,
float[] rscale,
int _rscale_offset,
int m,
float[] v,
int _v_offset,
int ldv,
org.netlib.util.intW info)
.. |
void |
sggbal(String job,
int n,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] lscale,
float[] rscale,
float[] work,
org.netlib.util.intW info)
.. |
void |
sggbal(String job,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] lscale,
int _lscale_offset,
float[] rscale,
int _rscale_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgges(String jobvsl,
String jobvsr,
String sort,
Object selctg,
int n,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW sdim,
float[] alphar,
float[] alphai,
float[] beta,
float[] vsl,
int ldvsl,
float[] vsr,
int ldvsr,
float[] work,
int lwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
sgges(String jobvsl,
String jobvsr,
String sort,
Object selctg,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW sdim,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] vsl,
int _vsl_offset,
int ldvsl,
float[] vsr,
int _vsr_offset,
int ldvsr,
float[] work,
int _work_offset,
int lwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
sggesx(String jobvsl,
String jobvsr,
String sort,
Object selctg,
String sense,
int n,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW sdim,
float[] alphar,
float[] alphai,
float[] beta,
float[] vsl,
int ldvsl,
float[] vsr,
int ldvsr,
float[] rconde,
float[] rcondv,
float[] work,
int lwork,
int[] iwork,
int liwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
sggesx(String jobvsl,
String jobvsr,
String sort,
Object selctg,
String sense,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW sdim,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] vsl,
int _vsl_offset,
int ldvsl,
float[] vsr,
int _vsr_offset,
int ldvsr,
float[] rconde,
int _rconde_offset,
float[] rcondv,
int _rcondv_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
sggev(String jobvl,
String jobvr,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] alphar,
float[] alphai,
float[] beta,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggev(String jobvl,
String jobvr,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] alphar,
float[] alphai,
float[] beta,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] lscale,
float[] rscale,
org.netlib.util.floatW abnrm,
org.netlib.util.floatW bbnrm,
float[] rconde,
float[] rcondv,
float[] work,
int lwork,
int[] iwork,
boolean[] bwork,
org.netlib.util.intW info)
.. |
void |
sggevx(String balanc,
String jobvl,
String jobvr,
String sense,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
org.netlib.util.intW ilo,
org.netlib.util.intW ihi,
float[] lscale,
int _lscale_offset,
float[] rscale,
int _rscale_offset,
org.netlib.util.floatW abnrm,
org.netlib.util.floatW bbnrm,
float[] rconde,
int _rconde_offset,
float[] rcondv,
int _rcondv_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
boolean[] bwork,
int _bwork_offset,
org.netlib.util.intW info)
.. |
void |
sggglm(int n,
int m,
int p,
float[] a,
int lda,
float[] b,
int ldb,
float[] d,
float[] x,
float[] y,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggglm(int n,
int m,
int p,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] d,
int _d_offset,
float[] x,
int _x_offset,
float[] y,
int _y_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgghrd(String compq,
String compz,
int n,
int ilo,
int ihi,
float[] a,
int lda,
float[] b,
int ldb,
float[] q,
int ldq,
float[] z,
int ldz,
org.netlib.util.intW info)
.. |
void |
sgghrd(String compq,
String compz,
int n,
int ilo,
int ihi,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] q,
int _q_offset,
int ldq,
float[] z,
int _z_offset,
int ldz,
org.netlib.util.intW info)
.. |
void |
sgglse(int m,
int n,
int p,
float[] a,
int lda,
float[] b,
int ldb,
float[] c,
float[] d,
float[] x,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sgglse(int m,
int n,
int p,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] c,
int _c_offset,
float[] d,
int _d_offset,
float[] x,
int _x_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggqrf(int n,
int m,
int p,
float[] a,
int lda,
float[] taua,
float[] b,
int ldb,
float[] taub,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggqrf(int n,
int m,
int p,
float[] a,
int _a_offset,
int lda,
float[] taua,
int _taua_offset,
float[] b,
int _b_offset,
int ldb,
float[] taub,
int _taub_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggrqf(int m,
int p,
int n,
float[] a,
int lda,
float[] taua,
float[] b,
int ldb,
float[] taub,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggrqf(int m,
int p,
int n,
float[] a,
int _a_offset,
int lda,
float[] taua,
int _taua_offset,
float[] b,
int _b_offset,
int ldb,
float[] taub,
int _taub_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sggsvd(String jobu,
String jobv,
String jobq,
int m,
int n,
int p,
org.netlib.util.intW k,
org.netlib.util.intW l,
float[] a,
int lda,
float[] b,
int ldb,
float[] alpha,
float[] beta,
float[] u,
int ldu,
float[] v,
int ldv,
float[] q,
int ldq,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sggsvd(String jobu,
String jobv,
String jobq,
int m,
int n,
int p,
org.netlib.util.intW k,
org.netlib.util.intW l,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] alpha,
int _alpha_offset,
float[] beta,
int _beta_offset,
float[] u,
int _u_offset,
int ldu,
float[] v,
int _v_offset,
int ldv,
float[] q,
int _q_offset,
int ldq,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sggsvp(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float tola,
float tolb,
org.netlib.util.intW k,
org.netlib.util.intW l,
float[] u,
int ldu,
float[] v,
int ldv,
float[] q,
int ldq,
int[] iwork,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sggsvp(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float tola,
float tolb,
org.netlib.util.intW k,
org.netlib.util.intW l,
float[] u,
int _u_offset,
int ldu,
float[] v,
int _v_offset,
int ldv,
float[] q,
int _q_offset,
int ldq,
int[] iwork,
int _iwork_offset,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sgtcon(String norm,
int n,
float[] dl,
float[] d,
float[] du,
float[] du2,
int[] ipiv,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgtcon(String norm,
int n,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgtrfs(String trans,
int n,
int nrhs,
float[] dl,
float[] d,
float[] du,
float[] dlf,
float[] df,
float[] duf,
float[] du2,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgtrfs(String trans,
int n,
int nrhs,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] dlf,
int _dlf_offset,
float[] df,
int _df_offset,
float[] duf,
int _duf_offset,
float[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgtsv(int n,
int nrhs,
float[] dl,
float[] d,
float[] du,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgtsv(int n,
int nrhs,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgtsvx(String fact,
String trans,
int n,
int nrhs,
float[] dl,
float[] d,
float[] du,
float[] dlf,
float[] df,
float[] duf,
float[] du2,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sgtsvx(String fact,
String trans,
int n,
int nrhs,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] dlf,
int _dlf_offset,
float[] df,
int _df_offset,
float[] duf,
int _duf_offset,
float[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sgttrf(int n,
float[] dl,
float[] d,
float[] du,
float[] du2,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
sgttrf(int n,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
sgttrs(String trans,
int n,
int nrhs,
float[] dl,
float[] d,
float[] du,
float[] du2,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgttrs(String trans,
int n,
int nrhs,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sgtts2(int itrans,
int n,
int nrhs,
float[] dl,
float[] d,
float[] du,
float[] du2,
int[] ipiv,
float[] b,
int ldb)
.. |
void |
sgtts2(int itrans,
int n,
int nrhs,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] du2,
int _du2_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb)
.. |
void |
shgeqz(String job,
String compq,
String compz,
int n,
int ilo,
int ihi,
float[] h,
int ldh,
float[] t,
int ldt,
float[] alphar,
float[] alphai,
float[] beta,
float[] q,
int ldq,
float[] z,
int ldz,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
shgeqz(String job,
String compq,
String compz,
int n,
int ilo,
int ihi,
float[] h,
int _h_offset,
int ldh,
float[] t,
int _t_offset,
int ldt,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] q,
int _q_offset,
int ldq,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
shsein(String side,
String eigsrc,
String initv,
boolean[] select,
int n,
float[] h,
int ldh,
float[] wr,
float[] wi,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
int mm,
org.netlib.util.intW m,
float[] work,
int[] ifaill,
int[] ifailr,
org.netlib.util.intW info)
.. |
void |
shsein(String side,
String eigsrc,
String initv,
boolean[] select,
int _select_offset,
int n,
float[] h,
int _h_offset,
int ldh,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
int mm,
org.netlib.util.intW m,
float[] work,
int _work_offset,
int[] ifaill,
int _ifaill_offset,
int[] ifailr,
int _ifailr_offset,
org.netlib.util.intW info)
.. |
void |
shseqr(String job,
String compz,
int n,
int ilo,
int ihi,
float[] h,
int ldh,
float[] wr,
float[] wi,
float[] z,
int ldz,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
shseqr(String job,
String compz,
int n,
int ilo,
int ihi,
float[] h,
int _h_offset,
int ldh,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
boolean |
sisnan(float sin)
.. |
void |
slabad(org.netlib.util.floatW small,
org.netlib.util.floatW large)
.. |
void |
slabrd(int m,
int n,
int nb,
float[] a,
int lda,
float[] d,
float[] e,
float[] tauq,
float[] taup,
float[] x,
int ldx,
float[] y,
int ldy)
.. |
void |
slabrd(int m,
int n,
int nb,
float[] a,
int _a_offset,
int lda,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] tauq,
int _tauq_offset,
float[] taup,
int _taup_offset,
float[] x,
int _x_offset,
int ldx,
float[] y,
int _y_offset,
int ldy)
.. |
void |
slacn2(int n,
float[] v,
float[] x,
int[] isgn,
org.netlib.util.floatW est,
org.netlib.util.intW kase,
int[] isave)
.. |
void |
slacn2(int n,
float[] v,
int _v_offset,
float[] x,
int _x_offset,
int[] isgn,
int _isgn_offset,
org.netlib.util.floatW est,
org.netlib.util.intW kase,
int[] isave,
int _isave_offset)
.. |
void |
slacon(int n,
float[] v,
float[] x,
int[] isgn,
org.netlib.util.floatW est,
org.netlib.util.intW kase)
.. |
void |
slacon(int n,
float[] v,
int _v_offset,
float[] x,
int _x_offset,
int[] isgn,
int _isgn_offset,
org.netlib.util.floatW est,
org.netlib.util.intW kase)
.. |
void |
slacpy(String uplo,
int m,
int n,
float[] a,
int lda,
float[] b,
int ldb)
.. |
void |
slacpy(String uplo,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb)
.. |
void |
sladiv(float a,
float b,
float c,
float d,
org.netlib.util.floatW p,
org.netlib.util.floatW q)
.. |
void |
slae2(float a,
float b,
float c,
org.netlib.util.floatW rt1,
org.netlib.util.floatW rt2)
.. |
void |
slaebz(int ijob,
int nitmax,
int n,
int mmax,
int minp,
int nbmin,
float abstol,
float reltol,
float pivmin,
float[] d,
float[] e,
float[] e2,
int[] nval,
float[] ab,
float[] c,
org.netlib.util.intW mout,
int[] nab,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slaebz(int ijob,
int nitmax,
int n,
int mmax,
int minp,
int nbmin,
float abstol,
float reltol,
float pivmin,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] e2,
int _e2_offset,
int[] nval,
int _nval_offset,
float[] ab,
int _ab_offset,
float[] c,
int _c_offset,
org.netlib.util.intW mout,
int[] nab,
int _nab_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slaed0(int icompq,
int qsiz,
int n,
float[] d,
float[] e,
float[] q,
int ldq,
float[] qstore,
int ldqs,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slaed0(int icompq,
int qsiz,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] q,
int _q_offset,
int ldq,
float[] qstore,
int _qstore_offset,
int ldqs,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slaed1(int n,
float[] d,
float[] q,
int ldq,
int[] indxq,
org.netlib.util.floatW rho,
int cutpnt,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slaed1(int n,
float[] d,
int _d_offset,
float[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.floatW rho,
int cutpnt,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slaed2(org.netlib.util.intW k,
int n,
int n1,
float[] d,
float[] q,
int ldq,
int[] indxq,
org.netlib.util.floatW rho,
float[] z,
float[] dlamda,
float[] w,
float[] q2,
int[] indx,
int[] indxc,
int[] indxp,
int[] coltyp,
org.netlib.util.intW info)
.. |
void |
slaed2(org.netlib.util.intW k,
int n,
int n1,
float[] d,
int _d_offset,
float[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.floatW rho,
float[] z,
int _z_offset,
float[] dlamda,
int _dlamda_offset,
float[] w,
int _w_offset,
float[] q2,
int _q2_offset,
int[] indx,
int _indx_offset,
int[] indxc,
int _indxc_offset,
int[] indxp,
int _indxp_offset,
int[] coltyp,
int _coltyp_offset,
org.netlib.util.intW info)
.. |
void |
slaed3(int k,
int n,
int n1,
float[] d,
float[] q,
int ldq,
float rho,
float[] dlamda,
float[] q2,
int[] indx,
int[] ctot,
float[] w,
float[] s,
org.netlib.util.intW info)
.. |
void |
slaed3(int k,
int n,
int n1,
float[] d,
int _d_offset,
float[] q,
int _q_offset,
int ldq,
float rho,
float[] dlamda,
int _dlamda_offset,
float[] q2,
int _q2_offset,
int[] indx,
int _indx_offset,
int[] ctot,
int _ctot_offset,
float[] w,
int _w_offset,
float[] s,
int _s_offset,
org.netlib.util.intW info)
.. |
void |
slaed4(int n,
int i,
float[] d,
float[] z,
float[] delta,
float rho,
org.netlib.util.floatW dlam,
org.netlib.util.intW info)
.. |
void |
slaed4(int n,
int i,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float[] delta,
int _delta_offset,
float rho,
org.netlib.util.floatW dlam,
org.netlib.util.intW info)
.. |
void |
slaed5(int i,
float[] d,
float[] z,
float[] delta,
float rho,
org.netlib.util.floatW dlam)
.. |
void |
slaed5(int i,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float[] delta,
int _delta_offset,
float rho,
org.netlib.util.floatW dlam)
.. |
void |
slaed6(int kniter,
boolean orgati,
float rho,
float[] d,
float[] z,
float finit,
org.netlib.util.floatW tau,
org.netlib.util.intW info)
.. |
void |
slaed6(int kniter,
boolean orgati,
float rho,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float finit,
org.netlib.util.floatW tau,
org.netlib.util.intW info)
.. |
void |
slaed7(int icompq,
int n,
int qsiz,
int tlvls,
int curlvl,
int curpbm,
float[] d,
float[] q,
int ldq,
int[] indxq,
org.netlib.util.floatW rho,
int cutpnt,
float[] qstore,
int[] qptr,
int[] prmptr,
int[] perm,
int[] givptr,
int[] givcol,
float[] givnum,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slaed7(int icompq,
int n,
int qsiz,
int tlvls,
int curlvl,
int curpbm,
float[] d,
int _d_offset,
float[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.floatW rho,
int cutpnt,
float[] qstore,
int _qstore_offset,
int[] qptr,
int _qptr_offset,
int[] prmptr,
int _prmptr_offset,
int[] perm,
int _perm_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
float[] givnum,
int _givnum_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slaed8(int icompq,
org.netlib.util.intW k,
int n,
int qsiz,
float[] d,
float[] q,
int ldq,
int[] indxq,
org.netlib.util.floatW rho,
int cutpnt,
float[] z,
float[] dlamda,
float[] q2,
int ldq2,
float[] w,
int[] perm,
org.netlib.util.intW givptr,
int[] givcol,
float[] givnum,
int[] indxp,
int[] indx,
org.netlib.util.intW info)
.. |
void |
slaed8(int icompq,
org.netlib.util.intW k,
int n,
int qsiz,
float[] d,
int _d_offset,
float[] q,
int _q_offset,
int ldq,
int[] indxq,
int _indxq_offset,
org.netlib.util.floatW rho,
int cutpnt,
float[] z,
int _z_offset,
float[] dlamda,
int _dlamda_offset,
float[] q2,
int _q2_offset,
int ldq2,
float[] w,
int _w_offset,
int[] perm,
int _perm_offset,
org.netlib.util.intW givptr,
int[] givcol,
int _givcol_offset,
float[] givnum,
int _givnum_offset,
int[] indxp,
int _indxp_offset,
int[] indx,
int _indx_offset,
org.netlib.util.intW info)
.. |
void |
slaed9(int k,
int kstart,
int kstop,
int n,
float[] d,
float[] q,
int ldq,
float rho,
float[] dlamda,
float[] w,
float[] s,
int lds,
org.netlib.util.intW info)
.. |
void |
slaed9(int k,
int kstart,
int kstop,
int n,
float[] d,
int _d_offset,
float[] q,
int _q_offset,
int ldq,
float rho,
float[] dlamda,
int _dlamda_offset,
float[] w,
int _w_offset,
float[] s,
int _s_offset,
int lds,
org.netlib.util.intW info)
.. |
void |
slaeda(int n,
int tlvls,
int curlvl,
int curpbm,
int[] prmptr,
int[] perm,
int[] givptr,
int[] givcol,
float[] givnum,
float[] q,
int[] qptr,
float[] z,
float[] ztemp,
org.netlib.util.intW info)
.. |
void |
slaeda(int n,
int tlvls,
int curlvl,
int curpbm,
int[] prmptr,
int _prmptr_offset,
int[] perm,
int _perm_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
float[] givnum,
int _givnum_offset,
float[] q,
int _q_offset,
int[] qptr,
int _qptr_offset,
float[] z,
int _z_offset,
float[] ztemp,
int _ztemp_offset,
org.netlib.util.intW info)
.. |
void |
slaein(boolean rightv,
boolean noinit,
int n,
float[] h,
int ldh,
float wr,
float wi,
float[] vr,
float[] vi,
float[] b,
int ldb,
float[] work,
float eps3,
float smlnum,
float bignum,
org.netlib.util.intW info)
.. |
void |
slaein(boolean rightv,
boolean noinit,
int n,
float[] h,
int _h_offset,
int ldh,
float wr,
float wi,
float[] vr,
int _vr_offset,
float[] vi,
int _vi_offset,
float[] b,
int _b_offset,
int ldb,
float[] work,
int _work_offset,
float eps3,
float smlnum,
float bignum,
org.netlib.util.intW info)
.. |
void |
slaev2(float a,
float b,
float c,
org.netlib.util.floatW rt1,
org.netlib.util.floatW rt2,
org.netlib.util.floatW cs1,
org.netlib.util.floatW sn1)
.. |
void |
slaexc(boolean wantq,
int n,
float[] t,
int ldt,
float[] q,
int ldq,
int j1,
int n1,
int n2,
float[] work,
org.netlib.util.intW info)
.. |
void |
slaexc(boolean wantq,
int n,
float[] t,
int _t_offset,
int ldt,
float[] q,
int _q_offset,
int ldq,
int j1,
int n1,
int n2,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slag2(float[] a,
int lda,
float[] b,
int ldb,
float safmin,
org.netlib.util.floatW scale1,
org.netlib.util.floatW scale2,
org.netlib.util.floatW wr1,
org.netlib.util.floatW wr2,
org.netlib.util.floatW wi)
.. |
void |
slag2(float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float safmin,
org.netlib.util.floatW scale1,
org.netlib.util.floatW scale2,
org.netlib.util.floatW wr1,
org.netlib.util.floatW wr2,
org.netlib.util.floatW wi)
.. |
void |
slag2d(int m,
int n,
float[] sa,
int ldsa,
double[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
slag2d(int m,
int n,
float[] sa,
int _sa_offset,
int ldsa,
double[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
slags2(boolean upper,
float a1,
float a2,
float a3,
float b1,
float b2,
float b3,
org.netlib.util.floatW csu,
org.netlib.util.floatW snu,
org.netlib.util.floatW csv,
org.netlib.util.floatW snv,
org.netlib.util.floatW csq,
org.netlib.util.floatW snq)
.. |
void |
slagtf(int n,
float[] a,
float lambda,
float[] b,
float[] c,
float tol,
float[] d,
int[] in,
org.netlib.util.intW info)
.. |
void |
slagtf(int n,
float[] a,
int _a_offset,
float lambda,
float[] b,
int _b_offset,
float[] c,
int _c_offset,
float tol,
float[] d,
int _d_offset,
int[] in,
int _in_offset,
org.netlib.util.intW info)
.. |
void |
slagtm(String trans,
int n,
int nrhs,
float alpha,
float[] dl,
float[] d,
float[] du,
float[] x,
int ldx,
float beta,
float[] b,
int ldb)
.. |
void |
slagtm(String trans,
int n,
int nrhs,
float alpha,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset,
float[] x,
int _x_offset,
int ldx,
float beta,
float[] b,
int _b_offset,
int ldb)
.. |
void |
slagts(int job,
int n,
float[] a,
float[] b,
float[] c,
float[] d,
int[] in,
float[] y,
org.netlib.util.floatW tol,
org.netlib.util.intW info)
.. |
void |
slagts(int job,
int n,
float[] a,
int _a_offset,
float[] b,
int _b_offset,
float[] c,
int _c_offset,
float[] d,
int _d_offset,
int[] in,
int _in_offset,
float[] y,
int _y_offset,
org.netlib.util.floatW tol,
org.netlib.util.intW info)
.. |
void |
slagv2(float[] a,
int lda,
float[] b,
int ldb,
float[] alphar,
float[] alphai,
float[] beta,
org.netlib.util.floatW csl,
org.netlib.util.floatW snl,
org.netlib.util.floatW csr,
org.netlib.util.floatW snr)
.. |
void |
slagv2(float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
org.netlib.util.floatW csl,
org.netlib.util.floatW snl,
org.netlib.util.floatW csr,
org.netlib.util.floatW snr)
.. |
void |
slahqr(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[] h,
int ldh,
float[] wr,
float[] wi,
int iloz,
int ihiz,
float[] z,
int ldz,
org.netlib.util.intW info)
.. |
void |
slahqr(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[] h,
int _h_offset,
int ldh,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
int iloz,
int ihiz,
float[] z,
int _z_offset,
int ldz,
org.netlib.util.intW info)
.. |
void |
slahr2(int n,
int k,
int nb,
float[] a,
int lda,
float[] tau,
float[] t,
int ldt,
float[] y,
int ldy)
.. |
void |
slahr2(int n,
int k,
int nb,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] t,
int _t_offset,
int ldt,
float[] y,
int _y_offset,
int ldy)
.. |
void |
slahrd(int n,
int k,
int nb,
float[] a,
int lda,
float[] tau,
float[] t,
int ldt,
float[] y,
int ldy)
.. |
void |
slahrd(int n,
int k,
int nb,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] t,
int _t_offset,
int ldt,
float[] y,
int _y_offset,
int ldy)
.. |
void |
slaic1(int job,
int j,
float[] x,
float sest,
float[] w,
float gamma,
org.netlib.util.floatW sestpr,
org.netlib.util.floatW s,
org.netlib.util.floatW c)
.. |
void |
slaic1(int job,
int j,
float[] x,
int _x_offset,
float sest,
float[] w,
int _w_offset,
float gamma,
org.netlib.util.floatW sestpr,
org.netlib.util.floatW s,
org.netlib.util.floatW c)
.. |
boolean |
slaisnan(float sin1,
float sin2)
.. |
void |
slaln2(boolean ltrans,
int na,
int nw,
float smin,
float ca,
float[] a,
int lda,
float d1,
float d2,
float[] b,
int ldb,
float wr,
float wi,
float[] x,
int ldx,
org.netlib.util.floatW scale,
org.netlib.util.floatW xnorm,
org.netlib.util.intW info)
.. |
void |
slaln2(boolean ltrans,
int na,
int nw,
float smin,
float ca,
float[] a,
int _a_offset,
int lda,
float d1,
float d2,
float[] b,
int _b_offset,
int ldb,
float wr,
float wi,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW scale,
org.netlib.util.floatW xnorm,
org.netlib.util.intW info)
.. |
void |
slals0(int icompq,
int nl,
int nr,
int sqre,
int nrhs,
float[] b,
int ldb,
float[] bx,
int ldbx,
int[] perm,
int givptr,
int[] givcol,
int ldgcol,
float[] givnum,
int ldgnum,
float[] poles,
float[] difl,
float[] difr,
float[] z,
int k,
float c,
float s,
float[] work,
org.netlib.util.intW info)
.. |
void |
slals0(int icompq,
int nl,
int nr,
int sqre,
int nrhs,
float[] b,
int _b_offset,
int ldb,
float[] bx,
int _bx_offset,
int ldbx,
int[] perm,
int _perm_offset,
int givptr,
int[] givcol,
int _givcol_offset,
int ldgcol,
float[] givnum,
int _givnum_offset,
int ldgnum,
float[] poles,
int _poles_offset,
float[] difl,
int _difl_offset,
float[] difr,
int _difr_offset,
float[] z,
int _z_offset,
int k,
float c,
float s,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slalsa(int icompq,
int smlsiz,
int n,
int nrhs,
float[] b,
int ldb,
float[] bx,
int ldbx,
float[] u,
int ldu,
float[] vt,
int[] k,
float[] difl,
float[] difr,
float[] z,
float[] poles,
int[] givptr,
int[] givcol,
int ldgcol,
int[] perm,
float[] givnum,
float[] c,
float[] s,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slalsa(int icompq,
int smlsiz,
int n,
int nrhs,
float[] b,
int _b_offset,
int ldb,
float[] bx,
int _bx_offset,
int ldbx,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int[] k,
int _k_offset,
float[] difl,
int _difl_offset,
float[] difr,
int _difr_offset,
float[] z,
int _z_offset,
float[] poles,
int _poles_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
int ldgcol,
int[] perm,
int _perm_offset,
float[] givnum,
int _givnum_offset,
float[] c,
int _c_offset,
float[] s,
int _s_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slalsd(String uplo,
int smlsiz,
int n,
int nrhs,
float[] d,
float[] e,
float[] b,
int ldb,
float rcond,
org.netlib.util.intW rank,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slalsd(String uplo,
int smlsiz,
int n,
int nrhs,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] b,
int _b_offset,
int ldb,
float rcond,
org.netlib.util.intW rank,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slamc1(org.netlib.util.intW beta,
org.netlib.util.intW t,
org.netlib.util.booleanW rnd,
org.netlib.util.booleanW ieee1)
.. |
void |
slamc2(org.netlib.util.intW beta,
org.netlib.util.intW t,
org.netlib.util.booleanW rnd,
org.netlib.util.floatW eps,
org.netlib.util.intW emin,
org.netlib.util.floatW rmin,
org.netlib.util.intW emax,
org.netlib.util.floatW rmax)
.. |
float |
slamc3(float a,
float b)
.. |
void |
slamc4(org.netlib.util.intW emin,
float start,
int base)
.. |
void |
slamc5(int beta,
int p,
int emin,
boolean ieee,
org.netlib.util.intW emax,
org.netlib.util.floatW rmax)
.. |
float |
slamch(String cmach)
.. |
void |
slamrg(int n1,
int n2,
float[] a,
int strd1,
int strd2,
int[] index)
.. |
void |
slamrg(int n1,
int n2,
float[] a,
int _a_offset,
int strd1,
int strd2,
int[] index,
int _index_offset)
.. |
int |
slaneg(int n,
float[] d,
float[] lld,
float sigma,
float pivmin,
int r)
.. |
int |
slaneg(int n,
float[] d,
int _d_offset,
float[] lld,
int _lld_offset,
float sigma,
float pivmin,
int r)
.. |
float |
slangb(String norm,
int n,
int kl,
int ku,
float[] ab,
int ldab,
float[] work)
.. |
float |
slangb(String norm,
int n,
int kl,
int ku,
float[] ab,
int _ab_offset,
int ldab,
float[] work,
int _work_offset)
.. |
float |
slange(String norm,
int m,
int n,
float[] a,
int lda,
float[] work)
.. |
float |
slange(String norm,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] work,
int _work_offset)
.. |
float |
slangt(String norm,
int n,
float[] dl,
float[] d,
float[] du)
.. |
float |
slangt(String norm,
int n,
float[] dl,
int _dl_offset,
float[] d,
int _d_offset,
float[] du,
int _du_offset)
.. |
float |
slanhs(String norm,
int n,
float[] a,
int lda,
float[] work)
.. |
float |
slanhs(String norm,
int n,
float[] a,
int _a_offset,
int lda,
float[] work,
int _work_offset)
.. |
float |
slansb(String norm,
String uplo,
int n,
int k,
float[] ab,
int ldab,
float[] work)
.. |
float |
slansb(String norm,
String uplo,
int n,
int k,
float[] ab,
int _ab_offset,
int ldab,
float[] work,
int _work_offset)
.. |
float |
slansp(String norm,
String uplo,
int n,
float[] ap,
float[] work)
.. |
float |
slansp(String norm,
String uplo,
int n,
float[] ap,
int _ap_offset,
float[] work,
int _work_offset)
.. |
float |
slanst(String norm,
int n,
float[] d,
float[] e)
.. |
float |
slanst(String norm,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset)
.. |
float |
slansy(String norm,
String uplo,
int n,
float[] a,
int lda,
float[] work)
.. |
float |
slansy(String norm,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] work,
int _work_offset)
.. |
float |
slantb(String norm,
String uplo,
String diag,
int n,
int k,
float[] ab,
int ldab,
float[] work)
.. |
float |
slantb(String norm,
String uplo,
String diag,
int n,
int k,
float[] ab,
int _ab_offset,
int ldab,
float[] work,
int _work_offset)
.. |
float |
slantp(String norm,
String uplo,
String diag,
int n,
float[] ap,
float[] work)
.. |
float |
slantp(String norm,
String uplo,
String diag,
int n,
float[] ap,
int _ap_offset,
float[] work,
int _work_offset)
.. |
float |
slantr(String norm,
String uplo,
String diag,
int m,
int n,
float[] a,
int lda,
float[] work)
.. |
float |
slantr(String norm,
String uplo,
String diag,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] work,
int _work_offset)
.. |
void |
slanv2(org.netlib.util.floatW a,
org.netlib.util.floatW b,
org.netlib.util.floatW c,
org.netlib.util.floatW d,
org.netlib.util.floatW rt1r,
org.netlib.util.floatW rt1i,
org.netlib.util.floatW rt2r,
org.netlib.util.floatW rt2i,
org.netlib.util.floatW cs,
org.netlib.util.floatW sn)
.. |
void |
slapll(int n,
float[] x,
int incx,
float[] y,
int incy,
org.netlib.util.floatW ssmin)
.. |
void |
slapll(int n,
float[] x,
int _x_offset,
int incx,
float[] y,
int _y_offset,
int incy,
org.netlib.util.floatW ssmin)
.. |
void |
slapmt(boolean forwrd,
int m,
int n,
float[] x,
int ldx,
int[] k)
.. |
void |
slapmt(boolean forwrd,
int m,
int n,
float[] x,
int _x_offset,
int ldx,
int[] k,
int _k_offset)
.. |
float |
slapy2(float x,
float y)
.. |
float |
slapy3(float x,
float y,
float z)
.. |
void |
slaqgb(int m,
int n,
int kl,
int ku,
float[] ab,
int ldab,
float[] r,
float[] c,
float rowcnd,
float colcnd,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqgb(int m,
int n,
int kl,
int ku,
float[] ab,
int _ab_offset,
int ldab,
float[] r,
int _r_offset,
float[] c,
int _c_offset,
float rowcnd,
float colcnd,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqge(int m,
int n,
float[] a,
int lda,
float[] r,
float[] c,
float rowcnd,
float colcnd,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqge(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] r,
int _r_offset,
float[] c,
int _c_offset,
float rowcnd,
float colcnd,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqp2(int m,
int n,
int offset,
float[] a,
int lda,
int[] jpvt,
float[] tau,
float[] vn1,
float[] vn2,
float[] work)
.. |
void |
slaqp2(int m,
int n,
int offset,
float[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
float[] tau,
int _tau_offset,
float[] vn1,
int _vn1_offset,
float[] vn2,
int _vn2_offset,
float[] work,
int _work_offset)
.. |
void |
slaqps(int m,
int n,
int offset,
int nb,
org.netlib.util.intW kb,
float[] a,
int lda,
int[] jpvt,
float[] tau,
float[] vn1,
float[] vn2,
float[] auxv,
float[] f,
int ldf)
.. |
void |
slaqps(int m,
int n,
int offset,
int nb,
org.netlib.util.intW kb,
float[] a,
int _a_offset,
int lda,
int[] jpvt,
int _jpvt_offset,
float[] tau,
int _tau_offset,
float[] vn1,
int _vn1_offset,
float[] vn2,
int _vn2_offset,
float[] auxv,
int _auxv_offset,
float[] f,
int _f_offset,
int ldf)
.. |
void |
slaqr0(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[] h,
int ldh,
float[] wr,
float[] wi,
int iloz,
int ihiz,
float[] z,
int ldz,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
slaqr0(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[] h,
int _h_offset,
int ldh,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
int iloz,
int ihiz,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
slaqr1(int n,
float[] h,
int ldh,
float sr1,
float si1,
float sr2,
float si2,
float[] v)
.. |
void |
slaqr1(int n,
float[] h,
int _h_offset,
int ldh,
float sr1,
float si1,
float sr2,
float si2,
float[] v,
int _v_offset)
.. |
void |
slaqr2(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
float[] h,
int ldh,
int iloz,
int ihiz,
float[] z,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
float[] sr,
float[] si,
float[] v,
int ldv,
int nh,
float[] t,
int ldt,
int nv,
float[] wv,
int ldwv,
float[] work,
int lwork)
.. |
void |
slaqr2(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
float[] h,
int _h_offset,
int ldh,
int iloz,
int ihiz,
float[] z,
int _z_offset,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
float[] sr,
int _sr_offset,
float[] si,
int _si_offset,
float[] v,
int _v_offset,
int ldv,
int nh,
float[] t,
int _t_offset,
int ldt,
int nv,
float[] wv,
int _wv_offset,
int ldwv,
float[] work,
int _work_offset,
int lwork)
.. |
void |
slaqr3(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
float[] h,
int ldh,
int iloz,
int ihiz,
float[] z,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
float[] sr,
float[] si,
float[] v,
int ldv,
int nh,
float[] t,
int ldt,
int nv,
float[] wv,
int ldwv,
float[] work,
int lwork)
.. |
void |
slaqr3(boolean wantt,
boolean wantz,
int n,
int ktop,
int kbot,
int nw,
float[] h,
int _h_offset,
int ldh,
int iloz,
int ihiz,
float[] z,
int _z_offset,
int ldz,
org.netlib.util.intW ns,
org.netlib.util.intW nd,
float[] sr,
int _sr_offset,
float[] si,
int _si_offset,
float[] v,
int _v_offset,
int ldv,
int nh,
float[] t,
int _t_offset,
int ldt,
int nv,
float[] wv,
int _wv_offset,
int ldwv,
float[] work,
int _work_offset,
int lwork)
.. |
void |
slaqr4(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[] h,
int ldh,
float[] wr,
float[] wi,
int iloz,
int ihiz,
float[] z,
int ldz,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
slaqr4(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[] h,
int _h_offset,
int ldh,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
int iloz,
int ihiz,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
slaqr5(boolean wantt,
boolean wantz,
int kacc22,
int n,
int ktop,
int kbot,
int nshfts,
float[] sr,
float[] si,
float[] h,
int ldh,
int iloz,
int ihiz,
float[] z,
int ldz,
float[] v,
int ldv,
float[] u,
int ldu,
int nv,
float[] wv,
int ldwv,
int nh,
float[] wh,
int ldwh)
.. |
void |
slaqr5(boolean wantt,
boolean wantz,
int kacc22,
int n,
int ktop,
int kbot,
int nshfts,
float[] sr,
int _sr_offset,
float[] si,
int _si_offset,
float[] h,
int _h_offset,
int ldh,
int iloz,
int ihiz,
float[] z,
int _z_offset,
int ldz,
float[] v,
int _v_offset,
int ldv,
float[] u,
int _u_offset,
int ldu,
int nv,
float[] wv,
int _wv_offset,
int ldwv,
int nh,
float[] wh,
int _wh_offset,
int ldwh)
.. |
void |
slaqsb(String uplo,
int n,
int kd,
float[] ab,
int ldab,
float[] s,
float scond,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqsb(String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float[] s,
int _s_offset,
float scond,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqsp(String uplo,
int n,
float[] ap,
float[] s,
float scond,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqsp(String uplo,
int n,
float[] ap,
int _ap_offset,
float[] s,
int _s_offset,
float scond,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqsy(String uplo,
int n,
float[] a,
int lda,
float[] s,
float scond,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqsy(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] s,
int _s_offset,
float scond,
float amax,
org.netlib.util.StringW equed)
.. |
void |
slaqtr(boolean ltran,
boolean lreal,
int n,
float[] t,
int ldt,
float[] b,
float w,
org.netlib.util.floatW scale,
float[] x,
float[] work,
org.netlib.util.intW info)
.. |
void |
slaqtr(boolean ltran,
boolean lreal,
int n,
float[] t,
int _t_offset,
int ldt,
float[] b,
int _b_offset,
float w,
org.netlib.util.floatW scale,
float[] x,
int _x_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slar1v(int n,
int b1,
int bn,
float lambda,
float[] d,
float[] l,
float[] ld,
float[] lld,
float pivmin,
float gaptol,
float[] z,
boolean wantnc,
org.netlib.util.intW negcnt,
org.netlib.util.floatW ztz,
org.netlib.util.floatW mingma,
org.netlib.util.intW r,
int[] isuppz,
org.netlib.util.floatW nrminv,
org.netlib.util.floatW resid,
org.netlib.util.floatW rqcorr,
float[] work)
.. |
void |
slar1v(int n,
int b1,
int bn,
float lambda,
float[] d,
int _d_offset,
float[] l,
int _l_offset,
float[] ld,
int _ld_offset,
float[] lld,
int _lld_offset,
float pivmin,
float gaptol,
float[] z,
int _z_offset,
boolean wantnc,
org.netlib.util.intW negcnt,
org.netlib.util.floatW ztz,
org.netlib.util.floatW mingma,
org.netlib.util.intW r,
int[] isuppz,
int _isuppz_offset,
org.netlib.util.floatW nrminv,
org.netlib.util.floatW resid,
org.netlib.util.floatW rqcorr,
float[] work,
int _work_offset)
.. |
void |
slar2v(int n,
float[] x,
float[] y,
float[] z,
int incx,
float[] c,
float[] s,
int incc)
.. |
void |
slar2v(int n,
float[] x,
int _x_offset,
float[] y,
int _y_offset,
float[] z,
int _z_offset,
int incx,
float[] c,
int _c_offset,
float[] s,
int _s_offset,
int incc)
.. |
void |
slarf(String side,
int m,
int n,
float[] v,
int incv,
float tau,
float[] c,
int Ldc,
float[] work)
.. |
void |
slarf(String side,
int m,
int n,
float[] v,
int _v_offset,
int incv,
float tau,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset)
.. |
void |
slarfb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
float[] v,
int ldv,
float[] t,
int ldt,
float[] c,
int Ldc,
float[] work,
int ldwork)
.. |
void |
slarfb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
float[] v,
int _v_offset,
int ldv,
float[] t,
int _t_offset,
int ldt,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int ldwork)
.. |
void |
slarfg(int n,
org.netlib.util.floatW alpha,
float[] x,
int incx,
org.netlib.util.floatW tau)
.. |
void |
slarfg(int n,
org.netlib.util.floatW alpha,
float[] x,
int _x_offset,
int incx,
org.netlib.util.floatW tau)
.. |
void |
slarft(String direct,
String storev,
int n,
int k,
float[] v,
int ldv,
float[] tau,
float[] t,
int ldt)
.. |
void |
slarft(String direct,
String storev,
int n,
int k,
float[] v,
int _v_offset,
int ldv,
float[] tau,
int _tau_offset,
float[] t,
int _t_offset,
int ldt)
.. |
void |
slarfx(String side,
int m,
int n,
float[] v,
float tau,
float[] c,
int Ldc,
float[] work)
.. |
void |
slarfx(String side,
int m,
int n,
float[] v,
int _v_offset,
float tau,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset)
.. |
void |
slargv(int n,
float[] x,
int incx,
float[] y,
int incy,
float[] c,
int incc)
.. |
void |
slargv(int n,
float[] x,
int _x_offset,
int incx,
float[] y,
int _y_offset,
int incy,
float[] c,
int _c_offset,
int incc)
.. |
void |
slarnv(int idist,
int[] iseed,
int n,
float[] x)
.. |
void |
slarnv(int idist,
int[] iseed,
int _iseed_offset,
int n,
float[] x,
int _x_offset)
.. |
void |
slarra(int n,
float[] d,
float[] e,
float[] e2,
float spltol,
float tnrm,
org.netlib.util.intW nsplit,
int[] isplit,
org.netlib.util.intW info)
.. |
void |
slarra(int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] e2,
int _e2_offset,
float spltol,
float tnrm,
org.netlib.util.intW nsplit,
int[] isplit,
int _isplit_offset,
org.netlib.util.intW info)
.. |
void |
slarrb(int n,
float[] d,
float[] lld,
int ifirst,
int ilast,
float rtol1,
float rtol2,
int offset,
float[] w,
float[] wgap,
float[] werr,
float[] work,
int[] iwork,
float pivmin,
float spdiam,
int twist,
org.netlib.util.intW info)
.. |
void |
slarrb(int n,
float[] d,
int _d_offset,
float[] lld,
int _lld_offset,
int ifirst,
int ilast,
float rtol1,
float rtol2,
int offset,
float[] w,
int _w_offset,
float[] wgap,
int _wgap_offset,
float[] werr,
int _werr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
float pivmin,
float spdiam,
int twist,
org.netlib.util.intW info)
.. |
void |
slarrc(String jobt,
int n,
float vl,
float vu,
float[] d,
float[] e,
float pivmin,
org.netlib.util.intW eigcnt,
org.netlib.util.intW lcnt,
org.netlib.util.intW rcnt,
org.netlib.util.intW info)
.. |
void |
slarrc(String jobt,
int n,
float vl,
float vu,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float pivmin,
org.netlib.util.intW eigcnt,
org.netlib.util.intW lcnt,
org.netlib.util.intW rcnt,
org.netlib.util.intW info)
.. |
void |
slarrd(String range,
String order,
int n,
float vl,
float vu,
int il,
int iu,
float[] gers,
float reltol,
float[] d,
float[] e,
float[] e2,
float pivmin,
int nsplit,
int[] isplit,
org.netlib.util.intW m,
float[] w,
float[] werr,
org.netlib.util.floatW wl,
org.netlib.util.floatW wu,
int[] iblock,
int[] indexw,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slarrd(String range,
String order,
int n,
float vl,
float vu,
int il,
int iu,
float[] gers,
int _gers_offset,
float reltol,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] e2,
int _e2_offset,
float pivmin,
int nsplit,
int[] isplit,
int _isplit_offset,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] werr,
int _werr_offset,
org.netlib.util.floatW wl,
org.netlib.util.floatW wu,
int[] iblock,
int _iblock_offset,
int[] indexw,
int _indexw_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slarre(String range,
int n,
org.netlib.util.floatW vl,
org.netlib.util.floatW vu,
int il,
int iu,
float[] d,
float[] e,
float[] e2,
float rtol1,
float rtol2,
float spltol,
org.netlib.util.intW nsplit,
int[] isplit,
org.netlib.util.intW m,
float[] w,
float[] werr,
float[] wgap,
int[] iblock,
int[] indexw,
float[] gers,
org.netlib.util.floatW pivmin,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slarre(String range,
int n,
org.netlib.util.floatW vl,
org.netlib.util.floatW vu,
int il,
int iu,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] e2,
int _e2_offset,
float rtol1,
float rtol2,
float spltol,
org.netlib.util.intW nsplit,
int[] isplit,
int _isplit_offset,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] werr,
int _werr_offset,
float[] wgap,
int _wgap_offset,
int[] iblock,
int _iblock_offset,
int[] indexw,
int _indexw_offset,
float[] gers,
int _gers_offset,
org.netlib.util.floatW pivmin,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slarrf(int n,
float[] d,
float[] l,
float[] ld,
int clstrt,
int clend,
float[] w,
float[] wgap,
float[] werr,
float spdiam,
float clgapl,
float clgapr,
float pivmin,
org.netlib.util.floatW sigma,
float[] dplus,
float[] lplus,
float[] work,
org.netlib.util.intW info)
.. |
void |
slarrf(int n,
float[] d,
int _d_offset,
float[] l,
int _l_offset,
float[] ld,
int _ld_offset,
int clstrt,
int clend,
float[] w,
int _w_offset,
float[] wgap,
int _wgap_offset,
float[] werr,
int _werr_offset,
float spdiam,
float clgapl,
float clgapr,
float pivmin,
org.netlib.util.floatW sigma,
float[] dplus,
int _dplus_offset,
float[] lplus,
int _lplus_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slarrj(int n,
float[] d,
float[] e2,
int ifirst,
int ilast,
float rtol,
int offset,
float[] w,
float[] werr,
float[] work,
int[] iwork,
float pivmin,
float spdiam,
org.netlib.util.intW info)
.. |
void |
slarrj(int n,
float[] d,
int _d_offset,
float[] e2,
int _e2_offset,
int ifirst,
int ilast,
float rtol,
int offset,
float[] w,
int _w_offset,
float[] werr,
int _werr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
float pivmin,
float spdiam,
org.netlib.util.intW info)
.. |
void |
slarrk(int n,
int iw,
float gl,
float gu,
float[] d,
float[] e2,
float pivmin,
float reltol,
org.netlib.util.floatW w,
org.netlib.util.floatW werr,
org.netlib.util.intW info)
.. |
void |
slarrk(int n,
int iw,
float gl,
float gu,
float[] d,
int _d_offset,
float[] e2,
int _e2_offset,
float pivmin,
float reltol,
org.netlib.util.floatW w,
org.netlib.util.floatW werr,
org.netlib.util.intW info)
.. |
void |
slarrr(int n,
float[] d,
float[] e,
org.netlib.util.intW info)
.. |
void |
slarrr(int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
org.netlib.util.intW info)
.. |
void |
slarrv(int n,
float vl,
float vu,
float[] d,
float[] l,
float pivmin,
int[] isplit,
int m,
int dol,
int dou,
float minrgp,
org.netlib.util.floatW rtol1,
org.netlib.util.floatW rtol2,
float[] w,
float[] werr,
float[] wgap,
int[] iblock,
int[] indexw,
float[] gers,
float[] z,
int ldz,
int[] isuppz,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slarrv(int n,
float vl,
float vu,
float[] d,
int _d_offset,
float[] l,
int _l_offset,
float pivmin,
int[] isplit,
int _isplit_offset,
int m,
int dol,
int dou,
float minrgp,
org.netlib.util.floatW rtol1,
org.netlib.util.floatW rtol2,
float[] w,
int _w_offset,
float[] werr,
int _werr_offset,
float[] wgap,
int _wgap_offset,
int[] iblock,
int _iblock_offset,
int[] indexw,
int _indexw_offset,
float[] gers,
int _gers_offset,
float[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slartg(float f,
float g,
org.netlib.util.floatW cs,
org.netlib.util.floatW sn,
org.netlib.util.floatW r)
.. |
void |
slartv(int n,
float[] x,
int incx,
float[] y,
int incy,
float[] c,
float[] s,
int incc)
.. |
void |
slartv(int n,
float[] x,
int _x_offset,
int incx,
float[] y,
int _y_offset,
int incy,
float[] c,
int _c_offset,
float[] s,
int _s_offset,
int incc)
.. |
void |
slaruv(int[] iseed,
int n,
float[] x)
.. |
void |
slaruv(int[] iseed,
int _iseed_offset,
int n,
float[] x,
int _x_offset)
.. |
void |
slarz(String side,
int m,
int n,
int l,
float[] v,
int incv,
float tau,
float[] c,
int Ldc,
float[] work)
.. |
void |
slarz(String side,
int m,
int n,
int l,
float[] v,
int _v_offset,
int incv,
float tau,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset)
.. |
void |
slarzb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
int l,
float[] v,
int ldv,
float[] t,
int ldt,
float[] c,
int Ldc,
float[] work,
int ldwork)
.. |
void |
slarzb(String side,
String trans,
String direct,
String storev,
int m,
int n,
int k,
int l,
float[] v,
int _v_offset,
int ldv,
float[] t,
int _t_offset,
int ldt,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int ldwork)
.. |
void |
slarzt(String direct,
String storev,
int n,
int k,
float[] v,
int ldv,
float[] tau,
float[] t,
int ldt)
.. |
void |
slarzt(String direct,
String storev,
int n,
int k,
float[] v,
int _v_offset,
int ldv,
float[] tau,
int _tau_offset,
float[] t,
int _t_offset,
int ldt)
.. |
void |
slas2(float f,
float g,
float h,
org.netlib.util.floatW ssmin,
org.netlib.util.floatW ssmax)
.. |
void |
slascl(String type,
int kl,
int ku,
float cfrom,
float cto,
int m,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
slascl(String type,
int kl,
int ku,
float cfrom,
float cto,
int m,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
slasd0(int n,
int sqre,
float[] d,
float[] e,
float[] u,
int ldu,
float[] vt,
int ldvt,
int smlsiz,
int[] iwork,
float[] work,
org.netlib.util.intW info)
.. |
void |
slasd0(int n,
int sqre,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int ldvt,
int smlsiz,
int[] iwork,
int _iwork_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slasd1(int nl,
int nr,
int sqre,
float[] d,
org.netlib.util.floatW alpha,
org.netlib.util.floatW beta,
float[] u,
int ldu,
float[] vt,
int ldvt,
int[] idxq,
int[] iwork,
float[] work,
org.netlib.util.intW info)
.. |
void |
slasd1(int nl,
int nr,
int sqre,
float[] d,
int _d_offset,
org.netlib.util.floatW alpha,
org.netlib.util.floatW beta,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int ldvt,
int[] idxq,
int _idxq_offset,
int[] iwork,
int _iwork_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slasd2(int nl,
int nr,
int sqre,
org.netlib.util.intW k,
float[] d,
float[] z,
float alpha,
float beta,
float[] u,
int ldu,
float[] vt,
int ldvt,
float[] dsigma,
float[] u2,
int ldu2,
float[] vt2,
int ldvt2,
int[] idxp,
int[] idx,
int[] idxc,
int[] idxq,
int[] coltyp,
org.netlib.util.intW info)
.. |
void |
slasd2(int nl,
int nr,
int sqre,
org.netlib.util.intW k,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float alpha,
float beta,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int ldvt,
float[] dsigma,
int _dsigma_offset,
float[] u2,
int _u2_offset,
int ldu2,
float[] vt2,
int _vt2_offset,
int ldvt2,
int[] idxp,
int _idxp_offset,
int[] idx,
int _idx_offset,
int[] idxc,
int _idxc_offset,
int[] idxq,
int _idxq_offset,
int[] coltyp,
int _coltyp_offset,
org.netlib.util.intW info)
.. |
void |
slasd3(int nl,
int nr,
int sqre,
int k,
float[] d,
float[] q,
int ldq,
float[] dsigma,
float[] u,
int ldu,
float[] u2,
int ldu2,
float[] vt,
int ldvt,
float[] vt2,
int ldvt2,
int[] idxc,
int[] ctot,
float[] z,
org.netlib.util.intW info)
.. |
void |
slasd3(int nl,
int nr,
int sqre,
int k,
float[] d,
int _d_offset,
float[] q,
int _q_offset,
int ldq,
float[] dsigma,
int _dsigma_offset,
float[] u,
int _u_offset,
int ldu,
float[] u2,
int _u2_offset,
int ldu2,
float[] vt,
int _vt_offset,
int ldvt,
float[] vt2,
int _vt2_offset,
int ldvt2,
int[] idxc,
int _idxc_offset,
int[] ctot,
int _ctot_offset,
float[] z,
int _z_offset,
org.netlib.util.intW info)
.. |
void |
slasd4(int n,
int i,
float[] d,
float[] z,
float[] delta,
float rho,
org.netlib.util.floatW sigma,
float[] work,
org.netlib.util.intW info)
.. |
void |
slasd4(int n,
int i,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float[] delta,
int _delta_offset,
float rho,
org.netlib.util.floatW sigma,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slasd5(int i,
float[] d,
float[] z,
float[] delta,
float rho,
org.netlib.util.floatW dsigma,
float[] work)
.. |
void |
slasd5(int i,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float[] delta,
int _delta_offset,
float rho,
org.netlib.util.floatW dsigma,
float[] work,
int _work_offset)
.. |
void |
slasd6(int icompq,
int nl,
int nr,
int sqre,
float[] d,
float[] vf,
float[] vl,
org.netlib.util.floatW alpha,
org.netlib.util.floatW beta,
int[] idxq,
int[] perm,
org.netlib.util.intW givptr,
int[] givcol,
int ldgcol,
float[] givnum,
int ldgnum,
float[] poles,
float[] difl,
float[] difr,
float[] z,
org.netlib.util.intW k,
org.netlib.util.floatW c,
org.netlib.util.floatW s,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slasd6(int icompq,
int nl,
int nr,
int sqre,
float[] d,
int _d_offset,
float[] vf,
int _vf_offset,
float[] vl,
int _vl_offset,
org.netlib.util.floatW alpha,
org.netlib.util.floatW beta,
int[] idxq,
int _idxq_offset,
int[] perm,
int _perm_offset,
org.netlib.util.intW givptr,
int[] givcol,
int _givcol_offset,
int ldgcol,
float[] givnum,
int _givnum_offset,
int ldgnum,
float[] poles,
int _poles_offset,
float[] difl,
int _difl_offset,
float[] difr,
int _difr_offset,
float[] z,
int _z_offset,
org.netlib.util.intW k,
org.netlib.util.floatW c,
org.netlib.util.floatW s,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slasd7(int icompq,
int nl,
int nr,
int sqre,
org.netlib.util.intW k,
float[] d,
float[] z,
float[] zw,
float[] vf,
float[] vfw,
float[] vl,
float[] vlw,
float alpha,
float beta,
float[] dsigma,
int[] idx,
int[] idxp,
int[] idxq,
int[] perm,
org.netlib.util.intW givptr,
int[] givcol,
int ldgcol,
float[] givnum,
int ldgnum,
org.netlib.util.floatW c,
org.netlib.util.floatW s,
org.netlib.util.intW info)
.. |
void |
slasd7(int icompq,
int nl,
int nr,
int sqre,
org.netlib.util.intW k,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float[] zw,
int _zw_offset,
float[] vf,
int _vf_offset,
float[] vfw,
int _vfw_offset,
float[] vl,
int _vl_offset,
float[] vlw,
int _vlw_offset,
float alpha,
float beta,
float[] dsigma,
int _dsigma_offset,
int[] idx,
int _idx_offset,
int[] idxp,
int _idxp_offset,
int[] idxq,
int _idxq_offset,
int[] perm,
int _perm_offset,
org.netlib.util.intW givptr,
int[] givcol,
int _givcol_offset,
int ldgcol,
float[] givnum,
int _givnum_offset,
int ldgnum,
org.netlib.util.floatW c,
org.netlib.util.floatW s,
org.netlib.util.intW info)
.. |
void |
slasd8(int icompq,
int k,
float[] d,
float[] z,
float[] vf,
float[] vl,
float[] difl,
float[] difr,
int lddifr,
float[] dsigma,
float[] work,
org.netlib.util.intW info)
.. |
void |
slasd8(int icompq,
int k,
float[] d,
int _d_offset,
float[] z,
int _z_offset,
float[] vf,
int _vf_offset,
float[] vl,
int _vl_offset,
float[] difl,
int _difl_offset,
float[] difr,
int _difr_offset,
int lddifr,
float[] dsigma,
int _dsigma_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slasda(int icompq,
int smlsiz,
int n,
int sqre,
float[] d,
float[] e,
float[] u,
int ldu,
float[] vt,
int[] k,
float[] difl,
float[] difr,
float[] z,
float[] poles,
int[] givptr,
int[] givcol,
int ldgcol,
int[] perm,
float[] givnum,
float[] c,
float[] s,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
slasda(int icompq,
int smlsiz,
int n,
int sqre,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] u,
int _u_offset,
int ldu,
float[] vt,
int _vt_offset,
int[] k,
int _k_offset,
float[] difl,
int _difl_offset,
float[] difr,
int _difr_offset,
float[] z,
int _z_offset,
float[] poles,
int _poles_offset,
int[] givptr,
int _givptr_offset,
int[] givcol,
int _givcol_offset,
int ldgcol,
int[] perm,
int _perm_offset,
float[] givnum,
int _givnum_offset,
float[] c,
int _c_offset,
float[] s,
int _s_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
slasdq(String uplo,
int sqre,
int n,
int ncvt,
int nru,
int ncc,
float[] d,
float[] e,
float[] vt,
int ldvt,
float[] u,
int ldu,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
slasdq(String uplo,
int sqre,
int n,
int ncvt,
int nru,
int ncc,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] vt,
int _vt_offset,
int ldvt,
float[] u,
int _u_offset,
int ldu,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slasdt(int n,
org.netlib.util.intW lvl,
org.netlib.util.intW nd,
int[] inode,
int[] ndiml,
int[] ndimr,
int msub)
.. |
void |
slasdt(int n,
org.netlib.util.intW lvl,
org.netlib.util.intW nd,
int[] inode,
int _inode_offset,
int[] ndiml,
int _ndiml_offset,
int[] ndimr,
int _ndimr_offset,
int msub)
.. |
void |
slaset(String uplo,
int m,
int n,
float alpha,
float beta,
float[] a,
int lda)
.. |
void |
slaset(String uplo,
int m,
int n,
float alpha,
float beta,
float[] a,
int _a_offset,
int lda)
.. |
void |
slasq1(int n,
float[] d,
float[] e,
float[] work,
org.netlib.util.intW info)
.. |
void |
slasq1(int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
slasq2(int n,
float[] z,
int _z_offset,
org.netlib.util.intW info)
.. |
void |
slasq2(int n,
float[] z,
org.netlib.util.intW info)
.. |
void |
slasq3(int i0,
org.netlib.util.intW n0,
float[] z,
int pp,
org.netlib.util.floatW dmin,
org.netlib.util.floatW sigma,
org.netlib.util.floatW desig,
org.netlib.util.floatW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee)
.. |
void |
slasq3(int i0,
org.netlib.util.intW n0,
float[] z,
int _z_offset,
int pp,
org.netlib.util.floatW dmin,
org.netlib.util.floatW sigma,
org.netlib.util.floatW desig,
org.netlib.util.floatW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee)
.. |
void |
slasq4(int i0,
int n0,
float[] z,
int pp,
int n0in,
float dmin,
float dmin1,
float dmin2,
float dn,
float dn1,
float dn2,
org.netlib.util.floatW tau,
org.netlib.util.intW ttype)
.. |
void |
slasq4(int i0,
int n0,
float[] z,
int _z_offset,
int pp,
int n0in,
float dmin,
float dmin1,
float dmin2,
float dn,
float dn1,
float dn2,
org.netlib.util.floatW tau,
org.netlib.util.intW ttype)
.. |
void |
slasq5(int i0,
int n0,
float[] z,
int pp,
float tau,
org.netlib.util.floatW dmin,
org.netlib.util.floatW dmin1,
org.netlib.util.floatW dmin2,
org.netlib.util.floatW dn,
org.netlib.util.floatW dnm1,
org.netlib.util.floatW dnm2,
boolean ieee)
.. |
void |
slasq5(int i0,
int n0,
float[] z,
int _z_offset,
int pp,
float tau,
org.netlib.util.floatW dmin,
org.netlib.util.floatW dmin1,
org.netlib.util.floatW dmin2,
org.netlib.util.floatW dn,
org.netlib.util.floatW dnm1,
org.netlib.util.floatW dnm2,
boolean ieee)
.. |
void |
slasq6(int i0,
int n0,
float[] z,
int pp,
org.netlib.util.floatW dmin,
org.netlib.util.floatW dmin1,
org.netlib.util.floatW dmin2,
org.netlib.util.floatW dn,
org.netlib.util.floatW dnm1,
org.netlib.util.floatW dnm2)
.. |
void |
slasq6(int i0,
int n0,
float[] z,
int _z_offset,
int pp,
org.netlib.util.floatW dmin,
org.netlib.util.floatW dmin1,
org.netlib.util.floatW dmin2,
org.netlib.util.floatW dn,
org.netlib.util.floatW dnm1,
org.netlib.util.floatW dnm2)
.. |
void |
slasr(String side,
String pivot,
String direct,
int m,
int n,
float[] c,
float[] s,
float[] a,
int lda)
.. |
void |
slasr(String side,
String pivot,
String direct,
int m,
int n,
float[] c,
int _c_offset,
float[] s,
int _s_offset,
float[] a,
int _a_offset,
int lda)
.. |
void |
slasrt(String id,
int n,
float[] d,
int _d_offset,
org.netlib.util.intW info)
.. |
void |
slasrt(String id,
int n,
float[] d,
org.netlib.util.intW info)
.. |
void |
slassq(int n,
float[] x,
int incx,
org.netlib.util.floatW scale,
org.netlib.util.floatW sumsq)
.. |
void |
slassq(int n,
float[] x,
int _x_offset,
int incx,
org.netlib.util.floatW scale,
org.netlib.util.floatW sumsq)
.. |
void |
slasv2(float f,
float g,
float h,
org.netlib.util.floatW ssmin,
org.netlib.util.floatW ssmax,
org.netlib.util.floatW snr,
org.netlib.util.floatW csr,
org.netlib.util.floatW snl,
org.netlib.util.floatW csl)
.. |
void |
slaswp(int n,
float[] a,
int lda,
int k1,
int k2,
int[] ipiv,
int incx)
.. |
void |
slaswp(int n,
float[] a,
int _a_offset,
int lda,
int k1,
int k2,
int[] ipiv,
int _ipiv_offset,
int incx)
.. |
void |
slasy2(boolean ltranl,
boolean ltranr,
int isgn,
int n1,
int n2,
float[] tl,
int ldtl,
float[] tr,
int ldtr,
float[] b,
int ldb,
org.netlib.util.floatW scale,
float[] x,
int ldx,
org.netlib.util.floatW xnorm,
org.netlib.util.intW info)
.. |
void |
slasy2(boolean ltranl,
boolean ltranr,
int isgn,
int n1,
int n2,
float[] tl,
int _tl_offset,
int ldtl,
float[] tr,
int _tr_offset,
int ldtr,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.floatW scale,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW xnorm,
org.netlib.util.intW info)
.. |
void |
slasyf(String uplo,
int n,
int nb,
org.netlib.util.intW kb,
float[] a,
int lda,
int[] ipiv,
float[] w,
int ldw,
org.netlib.util.intW info)
.. |
void |
slasyf(String uplo,
int n,
int nb,
org.netlib.util.intW kb,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] w,
int _w_offset,
int ldw,
org.netlib.util.intW info)
.. |
void |
slatbs(String uplo,
String trans,
String diag,
String normin,
int n,
int kd,
float[] ab,
int ldab,
float[] x,
org.netlib.util.floatW scale,
float[] cnorm,
org.netlib.util.intW info)
.. |
void |
slatbs(String uplo,
String trans,
String diag,
String normin,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float[] x,
int _x_offset,
org.netlib.util.floatW scale,
float[] cnorm,
int _cnorm_offset,
org.netlib.util.intW info)
.. |
void |
slatdf(int ijob,
int n,
float[] z,
int ldz,
float[] rhs,
org.netlib.util.floatW rdsum,
org.netlib.util.floatW rdscal,
int[] ipiv,
int[] jpiv)
.. |
void |
slatdf(int ijob,
int n,
float[] z,
int _z_offset,
int ldz,
float[] rhs,
int _rhs_offset,
org.netlib.util.floatW rdsum,
org.netlib.util.floatW rdscal,
int[] ipiv,
int _ipiv_offset,
int[] jpiv,
int _jpiv_offset)
.. |
void |
slatps(String uplo,
String trans,
String diag,
String normin,
int n,
float[] ap,
float[] x,
org.netlib.util.floatW scale,
float[] cnorm,
org.netlib.util.intW info)
.. |
void |
slatps(String uplo,
String trans,
String diag,
String normin,
int n,
float[] ap,
int _ap_offset,
float[] x,
int _x_offset,
org.netlib.util.floatW scale,
float[] cnorm,
int _cnorm_offset,
org.netlib.util.intW info)
.. |
void |
slatrd(String uplo,
int n,
int nb,
float[] a,
int lda,
float[] e,
float[] tau,
float[] w,
int ldw)
.. |
void |
slatrd(String uplo,
int n,
int nb,
float[] a,
int _a_offset,
int lda,
float[] e,
int _e_offset,
float[] tau,
int _tau_offset,
float[] w,
int _w_offset,
int ldw)
.. |
void |
slatrs(String uplo,
String trans,
String diag,
String normin,
int n,
float[] a,
int lda,
float[] x,
org.netlib.util.floatW scale,
float[] cnorm,
org.netlib.util.intW info)
.. |
void |
slatrs(String uplo,
String trans,
String diag,
String normin,
int n,
float[] a,
int _a_offset,
int lda,
float[] x,
int _x_offset,
org.netlib.util.floatW scale,
float[] cnorm,
int _cnorm_offset,
org.netlib.util.intW info)
.. |
void |
slatrz(int m,
int n,
int l,
float[] a,
int lda,
float[] tau,
float[] work)
.. |
void |
slatrz(int m,
int n,
int l,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset)
.. |
void |
slatzm(String side,
int m,
int n,
float[] v,
int incv,
float tau,
float[] c1,
float[] c2,
int Ldc,
float[] work)
.. |
void |
slatzm(String side,
int m,
int n,
float[] v,
int _v_offset,
int incv,
float tau,
float[] c1,
int _c1_offset,
float[] c2,
int _c2_offset,
int Ldc,
float[] work,
int _work_offset)
.. |
void |
slauu2(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
slauu2(String uplo,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
slauum(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
slauum(String uplo,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
slazq3(int i0,
org.netlib.util.intW n0,
float[] z,
int pp,
org.netlib.util.floatW dmin,
org.netlib.util.floatW sigma,
org.netlib.util.floatW desig,
org.netlib.util.floatW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee,
org.netlib.util.intW ttype,
org.netlib.util.floatW dmin1,
org.netlib.util.floatW dmin2,
org.netlib.util.floatW dn,
org.netlib.util.floatW dn1,
org.netlib.util.floatW dn2,
org.netlib.util.floatW tau)
.. |
void |
slazq3(int i0,
org.netlib.util.intW n0,
float[] z,
int _z_offset,
int pp,
org.netlib.util.floatW dmin,
org.netlib.util.floatW sigma,
org.netlib.util.floatW desig,
org.netlib.util.floatW qmax,
org.netlib.util.intW nfail,
org.netlib.util.intW iter,
org.netlib.util.intW ndiv,
boolean ieee,
org.netlib.util.intW ttype,
org.netlib.util.floatW dmin1,
org.netlib.util.floatW dmin2,
org.netlib.util.floatW dn,
org.netlib.util.floatW dn1,
org.netlib.util.floatW dn2,
org.netlib.util.floatW tau)
.. |
void |
slazq4(int i0,
int n0,
float[] z,
int pp,
int n0in,
float dmin,
float dmin1,
float dmin2,
float dn,
float dn1,
float dn2,
org.netlib.util.floatW tau,
org.netlib.util.intW ttype,
org.netlib.util.floatW g)
.. |
void |
slazq4(int i0,
int n0,
float[] z,
int _z_offset,
int pp,
int n0in,
float dmin,
float dmin1,
float dmin2,
float dn,
float dn1,
float dn2,
org.netlib.util.floatW tau,
org.netlib.util.intW ttype,
org.netlib.util.floatW g)
.. |
void |
sopgtr(String uplo,
int n,
float[] ap,
float[] tau,
float[] q,
int ldq,
float[] work,
org.netlib.util.intW info)
.. |
void |
sopgtr(String uplo,
int n,
float[] ap,
int _ap_offset,
float[] tau,
int _tau_offset,
float[] q,
int _q_offset,
int ldq,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sopmtr(String side,
String uplo,
String trans,
int m,
int n,
float[] ap,
float[] tau,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sopmtr(String side,
String uplo,
String trans,
int m,
int n,
float[] ap,
int _ap_offset,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sorg2l(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sorg2l(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sorg2r(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sorg2r(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sorgbr(String vect,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgbr(String vect,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorghr(int n,
int ilo,
int ihi,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorghr(int n,
int ilo,
int ihi,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgl2(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sorgl2(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sorglq(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorglq(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgql(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgql(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgqr(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgqr(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgr2(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
org.netlib.util.intW info)
.. |
void |
sorgr2(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sorgrq(int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgrq(int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgtr(String uplo,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorgtr(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorm2l(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sorm2l(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sorm2r(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sorm2r(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sormbr(String vect,
String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormbr(String vect,
String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormhr(String side,
String trans,
int m,
int n,
int ilo,
int ihi,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormhr(String side,
String trans,
int m,
int n,
int ilo,
int ihi,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sorml2(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sorml2(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sormlq(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormlq(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormql(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormql(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormqr(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormqr(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormr2(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sormr2(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sormr3(String side,
String trans,
int m,
int n,
int k,
int l,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
org.netlib.util.intW info)
.. |
void |
sormr3(String side,
String trans,
int m,
int n,
int k,
int l,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sormrq(String side,
String trans,
int m,
int n,
int k,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormrq(String side,
String trans,
int m,
int n,
int k,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormrz(String side,
String trans,
int m,
int n,
int k,
int l,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormrz(String side,
String trans,
int m,
int n,
int k,
int l,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormtr(String side,
String uplo,
String trans,
int m,
int n,
float[] a,
int lda,
float[] tau,
float[] c,
int Ldc,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
sormtr(String side,
String uplo,
String trans,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] c,
int _c_offset,
int Ldc,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
spbcon(String uplo,
int n,
int kd,
float[] ab,
int ldab,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
spbcon(String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
spbequ(String uplo,
int n,
int kd,
float[] ab,
int ldab,
float[] s,
org.netlib.util.floatW scond,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
spbequ(String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float[] s,
int _s_offset,
org.netlib.util.floatW scond,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
spbrfs(String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int ldab,
float[] afb,
int ldafb,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
spbrfs(String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] afb,
int _afb_offset,
int ldafb,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
spbstf(String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
org.netlib.util.intW info)
.. |
void |
spbstf(String uplo,
int n,
int kd,
float[] ab,
int ldab,
org.netlib.util.intW info)
.. |
void |
spbsv(String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int ldab,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
spbsv(String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
spbsvx(String fact,
String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int ldab,
float[] afb,
int ldafb,
org.netlib.util.StringW equed,
float[] s,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
spbsvx(String fact,
String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] afb,
int _afb_offset,
int ldafb,
org.netlib.util.StringW equed,
float[] s,
int _s_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
spbtf2(String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
org.netlib.util.intW info)
.. |
void |
spbtf2(String uplo,
int n,
int kd,
float[] ab,
int ldab,
org.netlib.util.intW info)
.. |
void |
spbtrf(String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
org.netlib.util.intW info)
.. |
void |
spbtrf(String uplo,
int n,
int kd,
float[] ab,
int ldab,
org.netlib.util.intW info)
.. |
void |
spbtrs(String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int ldab,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
spbtrs(String uplo,
int n,
int kd,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
spocon(String uplo,
int n,
float[] a,
int lda,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
spocon(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
spoequ(int n,
float[] a,
int lda,
float[] s,
org.netlib.util.floatW scond,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
spoequ(int n,
float[] a,
int _a_offset,
int lda,
float[] s,
int _s_offset,
org.netlib.util.floatW scond,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
sporfs(String uplo,
int n,
int nrhs,
float[] a,
int lda,
float[] af,
int ldaf,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sporfs(String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] af,
int _af_offset,
int ldaf,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sposv(String uplo,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sposv(String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sposvx(String fact,
String uplo,
int n,
int nrhs,
float[] a,
int lda,
float[] af,
int ldaf,
org.netlib.util.StringW equed,
float[] s,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sposvx(String fact,
String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] af,
int _af_offset,
int ldaf,
org.netlib.util.StringW equed,
float[] s,
int _s_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
spotf2(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
spotf2(String uplo,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
spotrf(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
spotrf(String uplo,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
spotri(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
spotri(String uplo,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
spotrs(String uplo,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
spotrs(String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sppcon(String uplo,
int n,
float[] ap,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sppcon(String uplo,
int n,
float[] ap,
int _ap_offset,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sppequ(String uplo,
int n,
float[] ap,
float[] s,
org.netlib.util.floatW scond,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
sppequ(String uplo,
int n,
float[] ap,
int _ap_offset,
float[] s,
int _s_offset,
org.netlib.util.floatW scond,
org.netlib.util.floatW amax,
org.netlib.util.intW info)
.. |
void |
spprfs(String uplo,
int n,
int nrhs,
float[] ap,
float[] afp,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
spprfs(String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] afp,
int _afp_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sppsv(String uplo,
int n,
int nrhs,
float[] ap,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sppsv(String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sppsvx(String fact,
String uplo,
int n,
int nrhs,
float[] ap,
float[] afp,
org.netlib.util.StringW equed,
float[] s,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sppsvx(String fact,
String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] afp,
int _afp_offset,
org.netlib.util.StringW equed,
float[] s,
int _s_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
spptrf(String uplo,
int n,
float[] ap,
int _ap_offset,
org.netlib.util.intW info)
.. |
void |
spptrf(String uplo,
int n,
float[] ap,
org.netlib.util.intW info)
.. |
void |
spptri(String uplo,
int n,
float[] ap,
int _ap_offset,
org.netlib.util.intW info)
.. |
void |
spptri(String uplo,
int n,
float[] ap,
org.netlib.util.intW info)
.. |
void |
spptrs(String uplo,
int n,
int nrhs,
float[] ap,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
spptrs(String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sptcon(int n,
float[] d,
float[] e,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
org.netlib.util.intW info)
.. |
void |
sptcon(int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
spteqr(String compz,
int n,
float[] d,
float[] e,
float[] z,
int ldz,
float[] work,
org.netlib.util.intW info)
.. |
void |
spteqr(String compz,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sptrfs(int n,
int nrhs,
float[] d,
float[] e,
float[] df,
float[] ef,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
org.netlib.util.intW info)
.. |
void |
sptrfs(int n,
int nrhs,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] df,
int _df_offset,
float[] ef,
int _ef_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sptsv(int n,
int nrhs,
float[] d,
float[] e,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sptsv(int n,
int nrhs,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sptsvx(String fact,
int n,
int nrhs,
float[] d,
float[] e,
float[] df,
float[] ef,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
org.netlib.util.intW info)
.. |
void |
sptsvx(String fact,
int n,
int nrhs,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] df,
int _df_offset,
float[] ef,
int _ef_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
spttrf(int n,
float[] d,
float[] e,
org.netlib.util.intW info)
.. |
void |
spttrf(int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
org.netlib.util.intW info)
.. |
void |
spttrs(int n,
int nrhs,
float[] d,
float[] e,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
spttrs(int n,
int nrhs,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sptts2(int n,
int nrhs,
float[] d,
float[] e,
float[] b,
int ldb)
.. |
void |
sptts2(int n,
int nrhs,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] b,
int _b_offset,
int ldb)
.. |
void |
srscl(int n,
float sa,
float[] sx,
int incx)
.. |
void |
srscl(int n,
float sa,
float[] sx,
int _sx_offset,
int incx)
.. |
void |
ssbev(String jobz,
String uplo,
int n,
int kd,
float[] ab,
int ldab,
float[] w,
float[] z,
int ldz,
float[] work,
org.netlib.util.intW info)
.. |
void |
ssbev(String jobz,
String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
ssbevd(String jobz,
String uplo,
int n,
int kd,
float[] ab,
int ldab,
float[] w,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssbevd(String jobz,
String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssbevx(String jobz,
String range,
String uplo,
int n,
int kd,
float[] ab,
int ldab,
float[] q,
int ldq,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
float[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
ssbevx(String jobz,
String range,
String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float[] q,
int _q_offset,
int ldq,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
ssbgst(String vect,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int ldab,
float[] bb,
int ldbb,
float[] x,
int ldx,
float[] work,
org.netlib.util.intW info)
.. |
void |
ssbgst(String vect,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int _ab_offset,
int ldab,
float[] bb,
int _bb_offset,
int ldbb,
float[] x,
int _x_offset,
int ldx,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
ssbgv(String jobz,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int ldab,
float[] bb,
int ldbb,
float[] w,
float[] z,
int ldz,
float[] work,
org.netlib.util.intW info)
.. |
void |
ssbgv(String jobz,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int _ab_offset,
int ldab,
float[] bb,
int _bb_offset,
int ldbb,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
ssbgvd(String jobz,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int ldab,
float[] bb,
int ldbb,
float[] w,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssbgvd(String jobz,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int _ab_offset,
int ldab,
float[] bb,
int _bb_offset,
int ldbb,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssbgvx(String jobz,
String range,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int ldab,
float[] bb,
int ldbb,
float[] q,
int ldq,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
float[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
ssbgvx(String jobz,
String range,
String uplo,
int n,
int ka,
int kb,
float[] ab,
int _ab_offset,
int ldab,
float[] bb,
int _bb_offset,
int ldbb,
float[] q,
int _q_offset,
int ldq,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
ssbtrd(String vect,
String uplo,
int n,
int kd,
float[] ab,
int ldab,
float[] d,
float[] e,
float[] q,
int ldq,
float[] work,
org.netlib.util.intW info)
.. |
void |
ssbtrd(String vect,
String uplo,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] q,
int _q_offset,
int ldq,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sspcon(String uplo,
int n,
float[] ap,
int[] ipiv,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sspcon(String uplo,
int n,
float[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sspev(String jobz,
String uplo,
int n,
float[] ap,
float[] w,
float[] z,
int ldz,
float[] work,
org.netlib.util.intW info)
.. |
void |
sspev(String jobz,
String uplo,
int n,
float[] ap,
int _ap_offset,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sspevd(String jobz,
String uplo,
int n,
float[] ap,
float[] w,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
sspevd(String jobz,
String uplo,
int n,
float[] ap,
int _ap_offset,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
sspevx(String jobz,
String range,
String uplo,
int n,
float[] ap,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
float[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
sspevx(String jobz,
String range,
String uplo,
int n,
float[] ap,
int _ap_offset,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
sspgst(int itype,
String uplo,
int n,
float[] ap,
float[] bp,
org.netlib.util.intW info)
.. |
void |
sspgst(int itype,
String uplo,
int n,
float[] ap,
int _ap_offset,
float[] bp,
int _bp_offset,
org.netlib.util.intW info)
.. |
void |
sspgv(int itype,
String jobz,
String uplo,
int n,
float[] ap,
float[] bp,
float[] w,
float[] z,
int ldz,
float[] work,
org.netlib.util.intW info)
.. |
void |
sspgv(int itype,
String jobz,
String uplo,
int n,
float[] ap,
int _ap_offset,
float[] bp,
int _bp_offset,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sspgvd(int itype,
String jobz,
String uplo,
int n,
float[] ap,
float[] bp,
float[] w,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
sspgvd(int itype,
String jobz,
String uplo,
int n,
float[] ap,
int _ap_offset,
float[] bp,
int _bp_offset,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
sspgvx(int itype,
String jobz,
String range,
String uplo,
int n,
float[] ap,
float[] bp,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
float[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
sspgvx(int itype,
String jobz,
String range,
String uplo,
int n,
float[] ap,
int _ap_offset,
float[] bp,
int _bp_offset,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
ssprfs(String uplo,
int n,
int nrhs,
float[] ap,
float[] afp,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
ssprfs(String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] afp,
int _afp_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sspsv(String uplo,
int n,
int nrhs,
float[] ap,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
sspsv(String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sspsvx(String fact,
String uplo,
int n,
int nrhs,
float[] ap,
float[] afp,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sspsvx(String fact,
String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] afp,
int _afp_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
ssptrd(String uplo,
int n,
float[] ap,
float[] d,
float[] e,
float[] tau,
org.netlib.util.intW info)
.. |
void |
ssptrd(String uplo,
int n,
float[] ap,
int _ap_offset,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] tau,
int _tau_offset,
org.netlib.util.intW info)
.. |
void |
ssptrf(String uplo,
int n,
float[] ap,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
ssptrf(String uplo,
int n,
float[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
ssptri(String uplo,
int n,
float[] ap,
int[] ipiv,
float[] work,
org.netlib.util.intW info)
.. |
void |
ssptri(String uplo,
int n,
float[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
ssptrs(String uplo,
int n,
int nrhs,
float[] ap,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
ssptrs(String uplo,
int n,
int nrhs,
float[] ap,
int _ap_offset,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
sstebz(String range,
String order,
int n,
float vl,
float vu,
int il,
int iu,
float abstol,
float[] d,
float[] e,
org.netlib.util.intW m,
org.netlib.util.intW nsplit,
float[] w,
int[] iblock,
int[] isplit,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
sstebz(String range,
String order,
int n,
float vl,
float vu,
int il,
int iu,
float abstol,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
org.netlib.util.intW m,
org.netlib.util.intW nsplit,
float[] w,
int _w_offset,
int[] iblock,
int _iblock_offset,
int[] isplit,
int _isplit_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
sstedc(String compz,
int n,
float[] d,
float[] e,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstedc(String compz,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstegr(String jobz,
String range,
int n,
float[] d,
float[] e,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
int[] isuppz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstegr(String jobz,
String range,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstein(int n,
float[] d,
float[] e,
int m,
float[] w,
int[] iblock,
int[] isplit,
float[] z,
int ldz,
float[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
sstein(int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
int m,
float[] w,
int _w_offset,
int[] iblock,
int _iblock_offset,
int[] isplit,
int _isplit_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
sstemr(String jobz,
String range,
int n,
float[] d,
float[] e,
float vl,
float vu,
int il,
int iu,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
int nzc,
int[] isuppz,
org.netlib.util.booleanW tryrac,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstemr(String jobz,
String range,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float vl,
float vu,
int il,
int iu,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
int nzc,
int[] isuppz,
int _isuppz_offset,
org.netlib.util.booleanW tryrac,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssteqr(String compz,
int n,
float[] d,
float[] e,
float[] z,
int ldz,
float[] work,
org.netlib.util.intW info)
.. |
void |
ssteqr(String compz,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
ssterf(int n,
float[] d,
float[] e,
org.netlib.util.intW info)
.. |
void |
ssterf(int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
org.netlib.util.intW info)
.. |
void |
sstev(String jobz,
int n,
float[] d,
float[] e,
float[] z,
int ldz,
float[] work,
org.netlib.util.intW info)
.. |
void |
sstev(String jobz,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
sstevd(String jobz,
int n,
float[] d,
float[] e,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstevd(String jobz,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstevr(String jobz,
String range,
int n,
float[] d,
float[] e,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
int[] isuppz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstevr(String jobz,
String range,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
sstevx(String jobz,
String range,
int n,
float[] d,
float[] e,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
float[] work,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
sstevx(String jobz,
String range,
int n,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
ssycon(String uplo,
int n,
float[] a,
int lda,
int[] ipiv,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
ssycon(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float anorm,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
ssyev(String jobz,
String uplo,
int n,
float[] a,
int lda,
float[] w,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssyev(String jobz,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] w,
int _w_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssyevd(String jobz,
String uplo,
int n,
float[] a,
int lda,
float[] w,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssyevd(String jobz,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] w,
int _w_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssyevr(String jobz,
String range,
String uplo,
int n,
float[] a,
int lda,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
int[] isuppz,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssyevr(String jobz,
String range,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
int[] isuppz,
int _isuppz_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssyevx(String jobz,
String range,
String uplo,
int n,
float[] a,
int lda,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
ssyevx(String jobz,
String range,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
ssygs2(int itype,
String uplo,
int n,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
ssygs2(int itype,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
ssygst(int itype,
String uplo,
int n,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
ssygst(int itype,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
ssygv(int itype,
String jobz,
String uplo,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] w,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssygv(int itype,
String jobz,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] w,
int _w_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssygvd(int itype,
String jobz,
String uplo,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] w,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssygvd(int itype,
String jobz,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] w,
int _w_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
ssygvx(int itype,
String jobz,
String range,
String uplo,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
float[] z,
int ldz,
float[] work,
int lwork,
int[] iwork,
int[] ifail,
org.netlib.util.intW info)
.. |
void |
ssygvx(int itype,
String jobz,
String range,
String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float vl,
float vu,
int il,
int iu,
float abstol,
org.netlib.util.intW m,
float[] w,
int _w_offset,
float[] z,
int _z_offset,
int ldz,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int[] ifail,
int _ifail_offset,
org.netlib.util.intW info)
.. |
void |
ssyrfs(String uplo,
int n,
int nrhs,
float[] a,
int lda,
float[] af,
int ldaf,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
ssyrfs(String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
ssysv(String uplo,
int n,
int nrhs,
float[] a,
int lda,
int[] ipiv,
float[] b,
int ldb,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssysv(String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssysvx(String fact,
String uplo,
int n,
int nrhs,
float[] a,
int lda,
float[] af,
int ldaf,
int[] ipiv,
float[] b,
int ldb,
float[] x,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
float[] berr,
float[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
ssysvx(String fact,
String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] af,
int _af_offset,
int ldaf,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
org.netlib.util.floatW rcond,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
ssytd2(String uplo,
int n,
float[] a,
int lda,
float[] d,
float[] e,
float[] tau,
org.netlib.util.intW info)
.. |
void |
ssytd2(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] tau,
int _tau_offset,
org.netlib.util.intW info)
.. |
void |
ssytf2(String uplo,
int n,
float[] a,
int lda,
int[] ipiv,
org.netlib.util.intW info)
.. |
void |
ssytf2(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
org.netlib.util.intW info)
.. |
void |
ssytrd(String uplo,
int n,
float[] a,
int lda,
float[] d,
float[] e,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssytrd(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
float[] d,
int _d_offset,
float[] e,
int _e_offset,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssytrf(String uplo,
int n,
float[] a,
int lda,
int[] ipiv,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssytrf(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
ssytri(String uplo,
int n,
float[] a,
int lda,
int[] ipiv,
float[] work,
org.netlib.util.intW info)
.. |
void |
ssytri(String uplo,
int n,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
ssytrs(String uplo,
int n,
int nrhs,
float[] a,
int lda,
int[] ipiv,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
ssytrs(String uplo,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
int[] ipiv,
int _ipiv_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
stbcon(String norm,
String uplo,
String diag,
int n,
int kd,
float[] ab,
int ldab,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
stbcon(String norm,
String uplo,
String diag,
int n,
int kd,
float[] ab,
int _ab_offset,
int ldab,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
stbrfs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
float[] ab,
int ldab,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
stbrfs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
stbtrs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
float[] ab,
int ldab,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
stbtrs(String uplo,
String trans,
String diag,
int n,
int kd,
int nrhs,
float[] ab,
int _ab_offset,
int ldab,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
stgevc(String side,
String howmny,
boolean[] select,
int n,
float[] s,
int lds,
float[] p,
int ldp,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
int mm,
org.netlib.util.intW m,
float[] work,
org.netlib.util.intW info)
.. |
void |
stgevc(String side,
String howmny,
boolean[] select,
int _select_offset,
int n,
float[] s,
int _s_offset,
int lds,
float[] p,
int _p_offset,
int ldp,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
int mm,
org.netlib.util.intW m,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
stgex2(boolean wantq,
boolean wantz,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] q,
int ldq,
float[] z,
int ldz,
int j1,
int n1,
int n2,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
stgex2(boolean wantq,
boolean wantz,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] q,
int _q_offset,
int ldq,
float[] z,
int _z_offset,
int ldz,
int j1,
int n1,
int n2,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
stgexc(boolean wantq,
boolean wantz,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] q,
int ldq,
float[] z,
int ldz,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
stgexc(boolean wantq,
boolean wantz,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] q,
int _q_offset,
int ldq,
float[] z,
int _z_offset,
int ldz,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
void |
stgsen(int ijob,
boolean wantq,
boolean wantz,
boolean[] select,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] alphar,
float[] alphai,
float[] beta,
float[] q,
int ldq,
float[] z,
int ldz,
org.netlib.util.intW m,
org.netlib.util.floatW pl,
org.netlib.util.floatW pr,
float[] dif,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
stgsen(int ijob,
boolean wantq,
boolean wantz,
boolean[] select,
int _select_offset,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] alphar,
int _alphar_offset,
float[] alphai,
int _alphai_offset,
float[] beta,
int _beta_offset,
float[] q,
int _q_offset,
int ldq,
float[] z,
int _z_offset,
int ldz,
org.netlib.util.intW m,
org.netlib.util.floatW pl,
org.netlib.util.floatW pr,
float[] dif,
int _dif_offset,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
stgsja(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
int k,
int l,
float[] a,
int lda,
float[] b,
int ldb,
float tola,
float tolb,
float[] alpha,
float[] beta,
float[] u,
int ldu,
float[] v,
int ldv,
float[] q,
int ldq,
float[] work,
org.netlib.util.intW ncycle,
org.netlib.util.intW info)
.. |
void |
stgsja(String jobu,
String jobv,
String jobq,
int m,
int p,
int n,
int k,
int l,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float tola,
float tolb,
float[] alpha,
int _alpha_offset,
float[] beta,
int _beta_offset,
float[] u,
int _u_offset,
int ldu,
float[] v,
int _v_offset,
int ldv,
float[] q,
int _q_offset,
int ldq,
float[] work,
int _work_offset,
org.netlib.util.intW ncycle,
org.netlib.util.intW info)
.. |
void |
stgsna(String job,
String howmny,
boolean[] select,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
float[] s,
float[] dif,
int mm,
org.netlib.util.intW m,
float[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
stgsna(String job,
String howmny,
boolean[] select,
int _select_offset,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
float[] s,
int _s_offset,
float[] dif,
int _dif_offset,
int mm,
org.netlib.util.intW m,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
stgsy2(String trans,
int ijob,
int m,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] c,
int Ldc,
float[] d,
int ldd,
float[] e,
int lde,
float[] f,
int ldf,
org.netlib.util.floatW scale,
org.netlib.util.floatW rdsum,
org.netlib.util.floatW rdscal,
int[] iwork,
org.netlib.util.intW pq,
org.netlib.util.intW info)
.. |
void |
stgsy2(String trans,
int ijob,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] c,
int _c_offset,
int Ldc,
float[] d,
int _d_offset,
int ldd,
float[] e,
int _e_offset,
int lde,
float[] f,
int _f_offset,
int ldf,
org.netlib.util.floatW scale,
org.netlib.util.floatW rdsum,
org.netlib.util.floatW rdscal,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW pq,
org.netlib.util.intW info)
.. |
void |
stgsyl(String trans,
int ijob,
int m,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] c,
int Ldc,
float[] d,
int ldd,
float[] e,
int lde,
float[] f,
int ldf,
org.netlib.util.floatW scale,
org.netlib.util.floatW dif,
float[] work,
int lwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
stgsyl(String trans,
int ijob,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] c,
int _c_offset,
int Ldc,
float[] d,
int _d_offset,
int ldd,
float[] e,
int _e_offset,
int lde,
float[] f,
int _f_offset,
int ldf,
org.netlib.util.floatW scale,
org.netlib.util.floatW dif,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
stpcon(String norm,
String uplo,
String diag,
int n,
float[] ap,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
stpcon(String norm,
String uplo,
String diag,
int n,
float[] ap,
int _ap_offset,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
stprfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] ap,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
stprfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
stptri(String uplo,
String diag,
int n,
float[] ap,
int _ap_offset,
org.netlib.util.intW info)
.. |
void |
stptri(String uplo,
String diag,
int n,
float[] ap,
org.netlib.util.intW info)
.. |
void |
stptrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] ap,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
stptrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] ap,
int _ap_offset,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
strcon(String norm,
String uplo,
String diag,
int n,
float[] a,
int lda,
org.netlib.util.floatW rcond,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
strcon(String norm,
String uplo,
String diag,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.floatW rcond,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
strevc(String side,
String howmny,
boolean[] select,
int n,
float[] t,
int ldt,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
int mm,
org.netlib.util.intW m,
float[] work,
org.netlib.util.intW info)
.. |
void |
strevc(String side,
String howmny,
boolean[] select,
int _select_offset,
int n,
float[] t,
int _t_offset,
int ldt,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
int mm,
org.netlib.util.intW m,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
strexc(String compq,
int n,
float[] t,
int ldt,
float[] q,
int ldq,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
float[] work,
org.netlib.util.intW info)
.. |
void |
strexc(String compq,
int n,
float[] t,
int _t_offset,
int ldt,
float[] q,
int _q_offset,
int ldq,
org.netlib.util.intW ifst,
org.netlib.util.intW ilst,
float[] work,
int _work_offset,
org.netlib.util.intW info)
.. |
void |
strrfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
float[] x,
int ldx,
float[] ferr,
float[] berr,
float[] work,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
strrfs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] x,
int _x_offset,
int ldx,
float[] ferr,
int _ferr_offset,
float[] berr,
int _berr_offset,
float[] work,
int _work_offset,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
strsen(String job,
String compq,
boolean[] select,
int n,
float[] t,
int ldt,
float[] q,
int ldq,
float[] wr,
float[] wi,
org.netlib.util.intW m,
org.netlib.util.floatW s,
org.netlib.util.floatW sep,
float[] work,
int lwork,
int[] iwork,
int liwork,
org.netlib.util.intW info)
.. |
void |
strsen(String job,
String compq,
boolean[] select,
int _select_offset,
int n,
float[] t,
int _t_offset,
int ldt,
float[] q,
int _q_offset,
int ldq,
float[] wr,
int _wr_offset,
float[] wi,
int _wi_offset,
org.netlib.util.intW m,
org.netlib.util.floatW s,
org.netlib.util.floatW sep,
float[] work,
int _work_offset,
int lwork,
int[] iwork,
int _iwork_offset,
int liwork,
org.netlib.util.intW info)
.. |
void |
strsna(String job,
String howmny,
boolean[] select,
int n,
float[] t,
int ldt,
float[] vl,
int ldvl,
float[] vr,
int ldvr,
float[] s,
float[] sep,
int mm,
org.netlib.util.intW m,
float[] work,
int ldwork,
int[] iwork,
org.netlib.util.intW info)
.. |
void |
strsna(String job,
String howmny,
boolean[] select,
int _select_offset,
int n,
float[] t,
int _t_offset,
int ldt,
float[] vl,
int _vl_offset,
int ldvl,
float[] vr,
int _vr_offset,
int ldvr,
float[] s,
int _s_offset,
float[] sep,
int _sep_offset,
int mm,
org.netlib.util.intW m,
float[] work,
int _work_offset,
int ldwork,
int[] iwork,
int _iwork_offset,
org.netlib.util.intW info)
.. |
void |
strsyl(String trana,
String tranb,
int isgn,
int m,
int n,
float[] a,
int lda,
float[] b,
int ldb,
float[] c,
int Ldc,
org.netlib.util.floatW scale,
org.netlib.util.intW info)
.. |
void |
strsyl(String trana,
String tranb,
int isgn,
int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
float[] c,
int _c_offset,
int Ldc,
org.netlib.util.floatW scale,
org.netlib.util.intW info)
.. |
void |
strti2(String uplo,
String diag,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
strti2(String uplo,
String diag,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
strtri(String uplo,
String diag,
int n,
float[] a,
int _a_offset,
int lda,
org.netlib.util.intW info)
.. |
void |
strtri(String uplo,
String diag,
int n,
float[] a,
int lda,
org.netlib.util.intW info)
.. |
void |
strtrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] a,
int lda,
float[] b,
int ldb,
org.netlib.util.intW info)
.. |
void |
strtrs(String uplo,
String trans,
String diag,
int n,
int nrhs,
float[] a,
int _a_offset,
int lda,
float[] b,
int _b_offset,
int ldb,
org.netlib.util.intW info)
.. |
void |
stzrqf(int m,
int n,
float[] a,
int lda,
float[] tau,
org.netlib.util.intW info)
.. |
void |
stzrqf(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
org.netlib.util.intW info)
.. |
void |
stzrzf(int m,
int n,
float[] a,
int lda,
float[] tau,
float[] work,
int lwork,
org.netlib.util.intW info)
.. |
void |
stzrzf(int m,
int n,
float[] a,
int _a_offset,
int lda,
float[] tau,
int _tau_offset,
float[] work,
int _work_offset,
int lwork,
org.netlib.util.intW info)
.. |
getInstance
public void dbdsdc(String uplo, String compq, int n, double[] d, double[] e, double[] u, int ldu, double[] vt, int ldvt, double[] q, int[] iq, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DBDSDC computes the singular value decomposition (SVD) of a real
N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
using a divide and conquer method, where S is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and
U and VT are orthogonal matrices of left and right singular vectors,
respectively. DBDSDC can be used to compute all singular values,
and optionally, singular vectors or singular vectors in compact form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See DLASD3 for details.
The code currently calls DLASDQ if singular values only are desired.
However, it can be slightly modified to compute singular values
using the divide and conquer method.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal.
= 'L': B is lower bidiagonal.
COMPQ (input) CHARACTER*1
Specifies whether singular vectors are to be computed
as follows:
= 'N': Compute singular values only;
= 'P': Compute singular values and compute singular
vectors in compact form;
= 'I': Compute singular values and singular vectors.
N (input) INTEGER
The order of the matrix B. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the elements of E contain the offdiagonal
elements of the bidiagonal matrix whose SVD is desired.
On exit, E has been destroyed.
U (output) DOUBLE PRECISION array, dimension (LDU,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, U contains the left singular vectors
of the bidiagonal matrix.
For other values of COMPQ, U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1.
If singular vectors are desired, then LDU >= max( 1, N ).
VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, VT' contains the right singular
vectors of the bidiagonal matrix.
For other values of COMPQ, VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1.
If singular vectors are desired, then LDVT >= max( 1, N ).
Q (output) DOUBLE PRECISION array, dimension (LDQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, Q contains all the DOUBLE PRECISION data in
LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, Q is not referenced.
IQ (output) INTEGER array, dimension (LDIQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, IQ contains all INTEGER data in
LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, IQ is not referenced.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
If COMPQ = 'N' then LWORK >= (4 * N).
If COMPQ = 'P' then LWORK >= (6 * N).
If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
IWORK (workspace) INTEGER array, dimension (8*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value.
The update process of divide and conquer failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
Changed dimension statement in comment describing E from (N) to
(N-1). Sven, 17 Feb 05.
=====================================================================
.. Parameters ..
public void dbdsdc(String uplo, String compq, int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int ldvt, double[] q, int _q_offset, int[] iq, int _iq_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DBDSDC computes the singular value decomposition (SVD) of a real
N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
using a divide and conquer method, where S is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and
U and VT are orthogonal matrices of left and right singular vectors,
respectively. DBDSDC can be used to compute all singular values,
and optionally, singular vectors or singular vectors in compact form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See DLASD3 for details.
The code currently calls DLASDQ if singular values only are desired.
However, it can be slightly modified to compute singular values
using the divide and conquer method.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal.
= 'L': B is lower bidiagonal.
COMPQ (input) CHARACTER*1
Specifies whether singular vectors are to be computed
as follows:
= 'N': Compute singular values only;
= 'P': Compute singular values and compute singular
vectors in compact form;
= 'I': Compute singular values and singular vectors.
N (input) INTEGER
The order of the matrix B. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the elements of E contain the offdiagonal
elements of the bidiagonal matrix whose SVD is desired.
On exit, E has been destroyed.
U (output) DOUBLE PRECISION array, dimension (LDU,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, U contains the left singular vectors
of the bidiagonal matrix.
For other values of COMPQ, U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1.
If singular vectors are desired, then LDU >= max( 1, N ).
VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, VT' contains the right singular
vectors of the bidiagonal matrix.
For other values of COMPQ, VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1.
If singular vectors are desired, then LDVT >= max( 1, N ).
Q (output) DOUBLE PRECISION array, dimension (LDQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, Q contains all the DOUBLE PRECISION data in
LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, Q is not referenced.
IQ (output) INTEGER array, dimension (LDIQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, IQ contains all INTEGER data in
LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, IQ is not referenced.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
If COMPQ = 'N' then LWORK >= (4 * N).
If COMPQ = 'P' then LWORK >= (6 * N).
If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
IWORK (workspace) INTEGER array, dimension (8*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value.
The update process of divide and conquer failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
Changed dimension statement in comment describing E from (N) to
(N-1). Sven, 17 Feb 05.
=====================================================================
.. Parameters ..
public void dbdsqr(String uplo, int n, int ncvt, int nru, int ncc, double[] d, double[] e, double[] vt, int ldvt, double[] u, int ldu, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DBDSQR computes the singular values and, optionally, the right and/or
left singular vectors from the singular value decomposition (SVD) of
a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
zero-shift QR algorithm. The SVD of B has the form
B = Q * S * P**T
where S is the diagonal matrix of singular values, Q is an orthogonal
matrix of left singular vectors, and P is an orthogonal matrix of
right singular vectors. If left singular vectors are requested, this
subroutine actually returns U*Q instead of Q, and, if right singular
vectors are requested, this subroutine returns P**T*VT instead of
P**T, for given real input matrices U and VT. When U and VT are the
orthogonal matrices that reduce a general matrix A to bidiagonal
form: A = U*B*VT, as computed by DGEBRD, then
A = (U*Q) * S * (P**T*VT)
is the SVD of A. Optionally, the subroutine may also compute Q**T*C
for a given real input matrix C.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
no. 5, pp. 873-912, Sept 1990) and
"Accurate singular values and differential qd algorithms," by
B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
Department, University of California at Berkeley, July 1992
for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal;
= 'L': B is lower bidiagonal.
N (input) INTEGER
The order of the matrix B. N >= 0.
NCVT (input) INTEGER
The number of columns of the matrix VT. NCVT >= 0.
NRU (input) INTEGER
The number of rows of the matrix U. NRU >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B in decreasing
order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the N-1 offdiagonal elements of the bidiagonal
matrix B.
On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
will contain the diagonal and superdiagonal elements of a
bidiagonal matrix orthogonally equivalent to the one given
as input.
VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
On entry, an N-by-NCVT matrix VT.
On exit, VT is overwritten by P**T * VT.
Not referenced if NCVT = 0.
LDVT (input) INTEGER
The leading dimension of the array VT.
LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
On entry, an NRU-by-N matrix U.
On exit, U is overwritten by U * Q.
Not referenced if NRU = 0.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,NRU).
C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
On entry, an N-by-NCC matrix C.
On exit, C is overwritten by Q**T * C.
Not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value
> 0: the algorithm did not converge; D and E contain the
elements of a bidiagonal matrix which is orthogonally
similar to the input matrix B; if INFO = i, i
elements of E have not converged to zero.
Internal Parameters
===================
TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
TOLMUL controls the convergence criterion of the QR loop.
If it is positive, TOLMUL*EPS is the desired relative
precision in the computed singular values.
If it is negative, abs(TOLMUL*EPS*sigma_max) is the
desired absolute accuracy in the computed singular
values (corresponds to relative accuracy
abs(TOLMUL*EPS) in the largest singular value.
abs(TOLMUL) should be between 1 and 1/EPS, and preferably
between 10 (for fast convergence) and .1/EPS
(for there to be some accuracy in the results).
Default is to lose at either one eighth or 2 of the
available decimal digits in each computed singular value
(whichever is smaller).
MAXITR INTEGER, default = 6
MAXITR controls the maximum number of passes of the
algorithm through its inner loop. The algorithms stops
(and so fails to converge) if the number of passes
through the inner loop exceeds MAXITR*N**2.
=====================================================================
.. Parameters ..
public void dbdsqr(String uplo, int n, int ncvt, int nru, int ncc, double[] d, int _d_offset, double[] e, int _e_offset, double[] vt, int _vt_offset, int ldvt, double[] u, int _u_offset, int ldu, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DBDSQR computes the singular values and, optionally, the right and/or
left singular vectors from the singular value decomposition (SVD) of
a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
zero-shift QR algorithm. The SVD of B has the form
B = Q * S * P**T
where S is the diagonal matrix of singular values, Q is an orthogonal
matrix of left singular vectors, and P is an orthogonal matrix of
right singular vectors. If left singular vectors are requested, this
subroutine actually returns U*Q instead of Q, and, if right singular
vectors are requested, this subroutine returns P**T*VT instead of
P**T, for given real input matrices U and VT. When U and VT are the
orthogonal matrices that reduce a general matrix A to bidiagonal
form: A = U*B*VT, as computed by DGEBRD, then
A = (U*Q) * S * (P**T*VT)
is the SVD of A. Optionally, the subroutine may also compute Q**T*C
for a given real input matrix C.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
no. 5, pp. 873-912, Sept 1990) and
"Accurate singular values and differential qd algorithms," by
B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
Department, University of California at Berkeley, July 1992
for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal;
= 'L': B is lower bidiagonal.
N (input) INTEGER
The order of the matrix B. N >= 0.
NCVT (input) INTEGER
The number of columns of the matrix VT. NCVT >= 0.
NRU (input) INTEGER
The number of rows of the matrix U. NRU >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B in decreasing
order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the N-1 offdiagonal elements of the bidiagonal
matrix B.
On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
will contain the diagonal and superdiagonal elements of a
bidiagonal matrix orthogonally equivalent to the one given
as input.
VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
On entry, an N-by-NCVT matrix VT.
On exit, VT is overwritten by P**T * VT.
Not referenced if NCVT = 0.
LDVT (input) INTEGER
The leading dimension of the array VT.
LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
On entry, an NRU-by-N matrix U.
On exit, U is overwritten by U * Q.
Not referenced if NRU = 0.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,NRU).
C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
On entry, an N-by-NCC matrix C.
On exit, C is overwritten by Q**T * C.
Not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value
> 0: the algorithm did not converge; D and E contain the
elements of a bidiagonal matrix which is orthogonally
similar to the input matrix B; if INFO = i, i
elements of E have not converged to zero.
Internal Parameters
===================
TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
TOLMUL controls the convergence criterion of the QR loop.
If it is positive, TOLMUL*EPS is the desired relative
precision in the computed singular values.
If it is negative, abs(TOLMUL*EPS*sigma_max) is the
desired absolute accuracy in the computed singular
values (corresponds to relative accuracy
abs(TOLMUL*EPS) in the largest singular value.
abs(TOLMUL) should be between 1 and 1/EPS, and preferably
between 10 (for fast convergence) and .1/EPS
(for there to be some accuracy in the results).
Default is to lose at either one eighth or 2 of the
available decimal digits in each computed singular value
(whichever is smaller).
MAXITR INTEGER, default = 6
MAXITR controls the maximum number of passes of the
algorithm through its inner loop. The algorithms stops
(and so fails to converge) if the number of passes
through the inner loop exceeds MAXITR*N**2.
=====================================================================
.. Parameters ..
public void ddisna(String job, int m, int n, double[] d, double[] sep, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DDISNA computes the reciprocal condition numbers for the eigenvectors
of a real symmetric or complex Hermitian matrix or for the left or
right singular vectors of a general m-by-n matrix. The reciprocal
condition number is the 'gap' between the corresponding eigenvalue or
singular value and the nearest other one.
The bound on the error, measured by angle in radians, in the I-th
computed vector is given by
DLAMCH( 'E' ) * ( ANORM / SEP( I ) )
where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed
to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of
the error bound.
DDISNA may also be used to compute error bounds for eigenvectors of
the generalized symmetric definite eigenproblem.
Arguments
=========
JOB (input) CHARACTER*1
Specifies for which problem the reciprocal condition numbers
should be computed:
= 'E': the eigenvectors of a symmetric/Hermitian matrix;
= 'L': the left singular vectors of a general matrix;
= 'R': the right singular vectors of a general matrix.
M (input) INTEGER
The number of rows of the matrix. M >= 0.
N (input) INTEGER
If JOB = 'L' or 'R', the number of columns of the matrix,
in which case N >= 0. Ignored if JOB = 'E'.
D (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The eigenvalues (if JOB = 'E') or singular values (if JOB =
'L' or 'R') of the matrix, in either increasing or decreasing
order. If singular values, they must be non-negative.
SEP (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The reciprocal condition numbers of the vectors.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void ddisna(String job, int m, int n, double[] d, int _d_offset, double[] sep, int _sep_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DDISNA computes the reciprocal condition numbers for the eigenvectors
of a real symmetric or complex Hermitian matrix or for the left or
right singular vectors of a general m-by-n matrix. The reciprocal
condition number is the 'gap' between the corresponding eigenvalue or
singular value and the nearest other one.
The bound on the error, measured by angle in radians, in the I-th
computed vector is given by
DLAMCH( 'E' ) * ( ANORM / SEP( I ) )
where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed
to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of
the error bound.
DDISNA may also be used to compute error bounds for eigenvectors of
the generalized symmetric definite eigenproblem.
Arguments
=========
JOB (input) CHARACTER*1
Specifies for which problem the reciprocal condition numbers
should be computed:
= 'E': the eigenvectors of a symmetric/Hermitian matrix;
= 'L': the left singular vectors of a general matrix;
= 'R': the right singular vectors of a general matrix.
M (input) INTEGER
The number of rows of the matrix. M >= 0.
N (input) INTEGER
If JOB = 'L' or 'R', the number of columns of the matrix,
in which case N >= 0. Ignored if JOB = 'E'.
D (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The eigenvalues (if JOB = 'E') or singular values (if JOB =
'L' or 'R') of the matrix, in either increasing or decreasing
order. If singular values, they must be non-negative.
SEP (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The reciprocal condition numbers of the vectors.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dgbbrd(String vect, int m, int n, int ncc, int kl, int ku, double[] ab, int ldab, double[] d, double[] e, double[] q, int ldq, double[] pt, int ldpt, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBBRD reduces a real general m-by-n band matrix A to upper
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
The routine computes B, and optionally forms Q or P', or computes
Q'*C for a given matrix C.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether or not the matrices Q and P' are to be
formed.
= 'N': do not form Q or P';
= 'Q': form Q only;
= 'P': form P' only;
= 'B': form both.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
KL (input) INTEGER
The number of subdiagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals of the matrix A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the m-by-n band matrix A, stored in rows 1 to
KL+KU+1. The j-th column of A is stored in the j-th column of
the array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
On exit, A is overwritten by values generated during the
reduction.
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KL+KU+1.
D (output) DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B.
E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
The superdiagonal elements of the bidiagonal matrix B.
Q (output) DOUBLE PRECISION array, dimension (LDQ,M)
If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
If VECT = 'N' or 'P', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
PT (output) DOUBLE PRECISION array, dimension (LDPT,N)
If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
If VECT = 'N' or 'Q', the array PT is not referenced.
LDPT (input) INTEGER
The leading dimension of the array PT.
LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
C (input/output) DOUBLE PRECISION array, dimension (LDC,NCC)
On entry, an m-by-ncc matrix C.
On exit, C is overwritten by Q'*C.
C is not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
WORK (workspace) DOUBLE PRECISION array, dimension (2*max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dgbbrd(String vect, int m, int n, int ncc, int kl, int ku, double[] ab, int _ab_offset, int ldab, double[] d, int _d_offset, double[] e, int _e_offset, double[] q, int _q_offset, int ldq, double[] pt, int _pt_offset, int ldpt, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBBRD reduces a real general m-by-n band matrix A to upper
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
The routine computes B, and optionally forms Q or P', or computes
Q'*C for a given matrix C.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether or not the matrices Q and P' are to be
formed.
= 'N': do not form Q or P';
= 'Q': form Q only;
= 'P': form P' only;
= 'B': form both.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
KL (input) INTEGER
The number of subdiagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals of the matrix A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the m-by-n band matrix A, stored in rows 1 to
KL+KU+1. The j-th column of A is stored in the j-th column of
the array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
On exit, A is overwritten by values generated during the
reduction.
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KL+KU+1.
D (output) DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B.
E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
The superdiagonal elements of the bidiagonal matrix B.
Q (output) DOUBLE PRECISION array, dimension (LDQ,M)
If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
If VECT = 'N' or 'P', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
PT (output) DOUBLE PRECISION array, dimension (LDPT,N)
If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
If VECT = 'N' or 'Q', the array PT is not referenced.
LDPT (input) INTEGER
The leading dimension of the array PT.
LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
C (input/output) DOUBLE PRECISION array, dimension (LDC,NCC)
On entry, an m-by-ncc matrix C.
On exit, C is overwritten by Q'*C.
C is not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
WORK (workspace) DOUBLE PRECISION array, dimension (2*max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dgbcon(String norm, int n, int kl, int ku, double[] ab, int ldab, int[] ipiv, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBCON estimates the reciprocal of the condition number of a real
general band matrix A, in either the 1-norm or the infinity-norm,
using the LU factorization computed by DGBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
ANORM (input) DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgbcon(String norm, int n, int kl, int ku, double[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBCON estimates the reciprocal of the condition number of a real
general band matrix A, in either the 1-norm or the infinity-norm,
using the LU factorization computed by DGBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
ANORM (input) DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgbequ(int m, int n, int kl, int ku, double[] ab, int ldab, double[] r, double[] c, org.netlib.util.doubleW rowcnd, org.netlib.util.doubleW colcnd, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBEQU computes row and column scalings intended to equilibrate an
M-by-N band matrix A and reduce its condition number. R returns the
row scale factors and C the column scale factors, chosen to try to
make the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
R (output) DOUBLE PRECISION array, dimension (M)
If INFO = 0, or INFO > M, R contains the row scale factors
for A.
C (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) DOUBLE PRECISION
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) DOUBLE PRECISION
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void dgbequ(int m, int n, int kl, int ku, double[] ab, int _ab_offset, int ldab, double[] r, int _r_offset, double[] c, int _c_offset, org.netlib.util.doubleW rowcnd, org.netlib.util.doubleW colcnd, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBEQU computes row and column scalings intended to equilibrate an
M-by-N band matrix A and reduce its condition number. R returns the
row scale factors and C the column scale factors, chosen to try to
make the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
R (output) DOUBLE PRECISION array, dimension (M)
If INFO = 0, or INFO > M, R contains the row scale factors
for A.
C (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) DOUBLE PRECISION
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) DOUBLE PRECISION
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void dgbrfs(String trans, int n, int kl, int ku, int nrhs, double[] ab, int ldab, double[] afb, int ldafb, int[] ipiv, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dgbrfs(String trans, int n, int kl, int ku, int nrhs, double[] ab, int _ab_offset, int ldab, double[] afb, int _afb_offset, int ldafb, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dgbsv(int n, int kl, int ku, int nrhs, double[] ab, int ldab, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBSV computes the solution to a real system of linear equations
A * X = B, where A is a band matrix of order N with KL subdiagonals
and KU superdiagonals, and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as A = L * U, where L is a product of permutation
and unit lower triangular matrices with KL subdiagonals, and U is
upper triangular with KL+KU superdiagonals. The factored form of A
is then used to solve the system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. External Subroutines ..
public void dgbsv(int n, int kl, int ku, int nrhs, double[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBSV computes the solution to a real system of linear equations
A * X = B, where A is a band matrix of order N with KL subdiagonals
and KU superdiagonals, and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as A = L * U, where L is a product of permutation
and unit lower triangular matrices with KL subdiagonals, and U is
upper triangular with KL+KU superdiagonals. The factored form of A
is then used to solve the system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. External Subroutines ..
public void dgbsvx(String fact, String trans, int n, int kl, int ku, int nrhs, double[] ab, int ldab, double[] afb, int ldafb, int[] ipiv, org.netlib.util.StringW equed, double[] r, double[] c, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
where A is a band matrix of order N with KL subdiagonals and KU
superdiagonals, and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed by this subroutine:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = L * U,
where L is a product of permutation and unit lower triangular
matrices with KL subdiagonals, and U is upper triangular with
KL+KU superdiagonals.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB and IPIV contain the factored form of
A. If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
AB, AFB, and IPIV are not modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
If FACT = 'F' and EQUED is not 'N', then A must have been
equilibrated by the scaling factors in R and/or C. AB is not
modified if FACT = 'F' or 'N', or if FACT = 'E' and
EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains details of the LU factorization of the band matrix
A, as computed by DGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns details of the LU factorization of A.
If FACT = 'E', then AFB is an output argument and on exit
returns details of the LU factorization of the equilibrated
matrix A (see the description of AB for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = L*U
as computed by DGBTRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) DOUBLE PRECISION array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) DOUBLE PRECISION array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) DOUBLE PRECISION array, dimension (3*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dgbsvx(String fact, String trans, int n, int kl, int ku, int nrhs, double[] ab, int _ab_offset, int ldab, double[] afb, int _afb_offset, int ldafb, int[] ipiv, int _ipiv_offset, org.netlib.util.StringW equed, double[] r, int _r_offset, double[] c, int _c_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
where A is a band matrix of order N with KL subdiagonals and KU
superdiagonals, and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed by this subroutine:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = L * U,
where L is a product of permutation and unit lower triangular
matrices with KL subdiagonals, and U is upper triangular with
KL+KU superdiagonals.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB and IPIV contain the factored form of
A. If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
AB, AFB, and IPIV are not modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
If FACT = 'F' and EQUED is not 'N', then A must have been
equilibrated by the scaling factors in R and/or C. AB is not
modified if FACT = 'F' or 'N', or if FACT = 'E' and
EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains details of the LU factorization of the band matrix
A, as computed by DGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns details of the LU factorization of A.
If FACT = 'E', then AFB is an output argument and on exit
returns details of the LU factorization of the equilibrated
matrix A (see the description of AB for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = L*U
as computed by DGBTRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) DOUBLE PRECISION array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) DOUBLE PRECISION array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) DOUBLE PRECISION array, dimension (3*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dgbtf2(int m, int n, int kl, int ku, double[] ab, int ldab, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBTF2 computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U, because of fill-in resulting from the row
interchanges.
=====================================================================
.. Parameters ..
public void dgbtf2(int m, int n, int kl, int ku, double[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBTF2 computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U, because of fill-in resulting from the row
interchanges.
=====================================================================
.. Parameters ..
public void dgbtrf(int m, int n, int kl, int ku, double[] ab, int ldab, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBTRF computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. Parameters ..
public void dgbtrf(int m, int n, int kl, int ku, double[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBTRF computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. Parameters ..
public void dgbtrs(String trans, int n, int kl, int ku, int nrhs, double[] ab, int ldab, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBTRS solves a system of linear equations
A * X = B or A' * X = B
with a general band matrix A using the LU factorization computed
by DGBTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgbtrs(String trans, int n, int kl, int ku, int nrhs, double[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGBTRS solves a system of linear equations
A * X = B or A' * X = B
with a general band matrix A using the LU factorization computed
by DGBTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgebak(String job, String side, int n, int ilo, int ihi, double[] scale, int m, double[] v, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBAK forms the right or left eigenvectors of a real general matrix
by backward transformation on the computed eigenvectors of the
balanced matrix output by DGEBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N', do nothing, return immediately;
= 'P', do backward transformation for permutation only;
= 'S', do backward transformation for scaling only;
= 'B', do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to DGEBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by DGEBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
SCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutation and scaling factors, as returned
by DGEBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by DHSEIN or DTREVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dgebak(String job, String side, int n, int ilo, int ihi, double[] scale, int _scale_offset, int m, double[] v, int _v_offset, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBAK forms the right or left eigenvectors of a real general matrix
by backward transformation on the computed eigenvectors of the
balanced matrix output by DGEBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N', do nothing, return immediately;
= 'P', do backward transformation for permutation only;
= 'S', do backward transformation for scaling only;
= 'B', do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to DGEBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by DGEBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
SCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutation and scaling factors, as returned
by DGEBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by DHSEIN or DTREVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dgebal(String job, int n, double[] a, int lda, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] scale, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBAL balances a general real matrix A. This involves, first,
permuting A by a similarity transformation to isolate eigenvalues
in the first 1 to ILO-1 and last IHI+1 to N elements on the
diagonal; and second, applying a diagonal similarity transformation
to rows and columns ILO to IHI to make the rows and columns as
close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrix, and improve the
accuracy of the computed eigenvalues and/or eigenvectors.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A:
= 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
for i = 1,...,N;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
SCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied to
A. If P(j) is the index of the row and column interchanged
with row and column j and D(j) is the scaling factor
applied to row and column j, then
SCALE(j) = P(j) for j = 1,...,ILO-1
= D(j) for j = ILO,...,IHI
= P(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The permutations consist of row and column interchanges which put
the matrix in the form
( T1 X Y )
P A P = ( 0 B Z )
( 0 0 T2 )
where T1 and T2 are upper triangular matrices whose eigenvalues lie
along the diagonal. The column indices ILO and IHI mark the starting
and ending columns of the submatrix B. Balancing consists of applying
a diagonal similarity transformation inv(D) * B * D to make the
1-norms of each row of B and its corresponding column nearly equal.
The output matrix is
( T1 X*D Y )
( 0 inv(D)*B*D inv(D)*Z ).
( 0 0 T2 )
Information about the permutations P and the diagonal matrix D is
returned in the vector SCALE.
This subroutine is based on the EISPACK routine BALANC.
Modified by Tzu-Yi Chen, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dgebal(String job, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] scale, int _scale_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBAL balances a general real matrix A. This involves, first,
permuting A by a similarity transformation to isolate eigenvalues
in the first 1 to ILO-1 and last IHI+1 to N elements on the
diagonal; and second, applying a diagonal similarity transformation
to rows and columns ILO to IHI to make the rows and columns as
close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrix, and improve the
accuracy of the computed eigenvalues and/or eigenvectors.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A:
= 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
for i = 1,...,N;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
SCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied to
A. If P(j) is the index of the row and column interchanged
with row and column j and D(j) is the scaling factor
applied to row and column j, then
SCALE(j) = P(j) for j = 1,...,ILO-1
= D(j) for j = ILO,...,IHI
= P(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The permutations consist of row and column interchanges which put
the matrix in the form
( T1 X Y )
P A P = ( 0 B Z )
( 0 0 T2 )
where T1 and T2 are upper triangular matrices whose eigenvalues lie
along the diagonal. The column indices ILO and IHI mark the starting
and ending columns of the submatrix B. Balancing consists of applying
a diagonal similarity transformation inv(D) * B * D to make the
1-norms of each row of B and its corresponding column nearly equal.
The output matrix is
( T1 X*D Y )
( 0 inv(D)*B*D inv(D)*Z ).
( 0 0 T2 )
Information about the permutations P and the diagonal matrix D is
returned in the vector SCALE.
This subroutine is based on the EISPACK routine BALANC.
Modified by Tzu-Yi Chen, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dgebd2(int m, int n, double[] a, int lda, double[] d, double[] e, double[] tauq, double[] taup, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBD2 reduces a real general m by n matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void dgebd2(int m, int n, double[] a, int _a_offset, int lda, double[] d, int _d_offset, double[] e, int _e_offset, double[] tauq, int _tauq_offset, double[] taup, int _taup_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBD2 reduces a real general m by n matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void dgebrd(int m, int n, double[] a, int lda, double[] d, double[] e, double[] tauq, double[] taup, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBRD reduces a general real M-by-N matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,M,N).
For optimum performance LWORK >= (M+N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void dgebrd(int m, int n, double[] a, int _a_offset, int lda, double[] d, int _d_offset, double[] e, int _e_offset, double[] tauq, int _tauq_offset, double[] taup, int _taup_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEBRD reduces a general real M-by-N matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,M,N).
For optimum performance LWORK >= (M+N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void dgecon(String norm, int n, double[] a, int lda, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGECON estimates the reciprocal of the condition number of a general
real matrix A, in either the 1-norm or the infinity-norm, using
the LU factorization computed by DGETRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by DGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgecon(String norm, int n, double[] a, int _a_offset, int lda, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGECON estimates the reciprocal of the condition number of a general
real matrix A, in either the 1-norm or the infinity-norm, using
the LU factorization computed by DGETRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by DGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgeequ(int m, int n, double[] a, int lda, double[] r, double[] c, org.netlib.util.doubleW rowcnd, org.netlib.util.doubleW colcnd, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEEQU computes row and column scalings intended to equilibrate an
M-by-N matrix A and reduce its condition number. R returns the row
scale factors and C the column scale factors, chosen to try to make
the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The M-by-N matrix whose equilibration factors are
to be computed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
R (output) DOUBLE PRECISION array, dimension (M)
If INFO = 0 or INFO > M, R contains the row scale factors
for A.
C (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) DOUBLE PRECISION
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) DOUBLE PRECISION
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void dgeequ(int m, int n, double[] a, int _a_offset, int lda, double[] r, int _r_offset, double[] c, int _c_offset, org.netlib.util.doubleW rowcnd, org.netlib.util.doubleW colcnd, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEEQU computes row and column scalings intended to equilibrate an
M-by-N matrix A and reduce its condition number. R returns the row
scale factors and C the column scale factors, chosen to try to make
the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The M-by-N matrix whose equilibration factors are
to be computed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
R (output) DOUBLE PRECISION array, dimension (M)
If INFO = 0 or INFO > M, R contains the row scale factors
for A.
C (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) DOUBLE PRECISION
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) DOUBLE PRECISION
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void dgees(String jobvs, String sort, Object select, int n, double[] a, int lda, org.netlib.util.intW sdim, double[] wr, double[] wi, double[] vs, int ldvs, double[] work, int lwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEES computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left.
The leading columns of Z then form an orthonormal basis for the
invariant subspace corresponding to the selected eigenvalues.
A matrix is in real Schur form if it is upper quasi-triangular with
1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
conjugate pair of eigenvalues is selected, then both complex
eigenvalues are selected.
Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO is set to N+2 (see INFO below).
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues in the same order
that they appear on the diagonal of the output Schur form T.
Complex conjugate pairs of eigenvalues will appear
consecutively with the eigenvalue having the positive
imaginary part first.
VS (output) DOUBLE PRECISION array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1; if
JOBVS = 'V', LDVS >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the matrix which reduces A
to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void dgees(String jobvs, String sort, Object select, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW sdim, double[] wr, int _wr_offset, double[] wi, int _wi_offset, double[] vs, int _vs_offset, int ldvs, double[] work, int _work_offset, int lwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEES computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left.
The leading columns of Z then form an orthonormal basis for the
invariant subspace corresponding to the selected eigenvalues.
A matrix is in real Schur form if it is upper quasi-triangular with
1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
conjugate pair of eigenvalues is selected, then both complex
eigenvalues are selected.
Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO is set to N+2 (see INFO below).
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues in the same order
that they appear on the diagonal of the output Schur form T.
Complex conjugate pairs of eigenvalues will appear
consecutively with the eigenvalue having the positive
imaginary part first.
VS (output) DOUBLE PRECISION array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1; if
JOBVS = 'V', LDVS >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the matrix which reduces A
to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void dgeesx(String jobvs, String sort, Object select, String sense, int n, double[] a, int lda, org.netlib.util.intW sdim, double[] wr, double[] wi, double[] vs, int ldvs, org.netlib.util.doubleW rconde, org.netlib.util.doubleW rcondv, double[] work, int lwork, int[] iwork, int liwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEESX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left;
computes a reciprocal condition number for the average of the
selected eigenvalues (RCONDE); and computes a reciprocal condition
number for the right invariant subspace corresponding to the
selected eigenvalues (RCONDV). The leading columns of Z form an
orthonormal basis for this invariant subspace.
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
these quantities are called s and sep respectively).
A real matrix is in real Schur form if it is upper quasi-triangular
with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
the form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a
complex conjugate pair of eigenvalues is selected, then both
are. Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO may be set to N+3 (see INFO below).
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for average of selected eigenvalues only;
= 'V': Computed for selected right invariant subspace only;
= 'B': Computed for both.
If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the N-by-N matrix A.
On exit, A is overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts, respectively,
of the computed eigenvalues, in the same order that they
appear on the diagonal of the output Schur form T. Complex
conjugate pairs of eigenvalues appear consecutively with the
eigenvalue having the positive imaginary part first.
VS (output) DOUBLE PRECISION array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1, and if
JOBVS = 'V', LDVS >= N.
RCONDE (output) DOUBLE PRECISION
If SENSE = 'E' or 'B', RCONDE contains the reciprocal
condition number for the average of the selected eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) DOUBLE PRECISION
If SENSE = 'V' or 'B', RCONDV contains the reciprocal
condition number for the selected right invariant subspace.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
Also, if SENSE = 'E' or 'V' or 'B',
LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
selected eigenvalues computed by this routine. Note that
N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
'B' this may not be large enough.
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates upper bounds on the optimal sizes of the
arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
may not be large enough.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates upper bounds on the optimal sizes of
the arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the transformation which
reduces A to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void dgeesx(String jobvs, String sort, Object select, String sense, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW sdim, double[] wr, int _wr_offset, double[] wi, int _wi_offset, double[] vs, int _vs_offset, int ldvs, org.netlib.util.doubleW rconde, org.netlib.util.doubleW rcondv, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEESX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left;
computes a reciprocal condition number for the average of the
selected eigenvalues (RCONDE); and computes a reciprocal condition
number for the right invariant subspace corresponding to the
selected eigenvalues (RCONDV). The leading columns of Z form an
orthonormal basis for this invariant subspace.
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
these quantities are called s and sep respectively).
A real matrix is in real Schur form if it is upper quasi-triangular
with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
the form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a
complex conjugate pair of eigenvalues is selected, then both
are. Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO may be set to N+3 (see INFO below).
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for average of selected eigenvalues only;
= 'V': Computed for selected right invariant subspace only;
= 'B': Computed for both.
If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the N-by-N matrix A.
On exit, A is overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts, respectively,
of the computed eigenvalues, in the same order that they
appear on the diagonal of the output Schur form T. Complex
conjugate pairs of eigenvalues appear consecutively with the
eigenvalue having the positive imaginary part first.
VS (output) DOUBLE PRECISION array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1, and if
JOBVS = 'V', LDVS >= N.
RCONDE (output) DOUBLE PRECISION
If SENSE = 'E' or 'B', RCONDE contains the reciprocal
condition number for the average of the selected eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) DOUBLE PRECISION
If SENSE = 'V' or 'B', RCONDV contains the reciprocal
condition number for the selected right invariant subspace.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
Also, if SENSE = 'E' or 'V' or 'B',
LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
selected eigenvalues computed by this routine. Note that
N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
'B' this may not be large enough.
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates upper bounds on the optimal sizes of the
arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
may not be large enough.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates upper bounds on the optimal sizes of
the arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the transformation which
reduces A to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void dgeev(String jobvl, String jobvr, int n, double[] a, int lda, double[] wr, double[] wi, double[] vl, int ldvl, double[] vr, int ldvr, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1; if
JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N), and
if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elements i+1:N of WR and WI contain eigenvalues which
have converged.
=====================================================================
.. Parameters ..
public void dgeev(String jobvl, String jobvr, int n, double[] a, int _a_offset, int lda, double[] wr, int _wr_offset, double[] wi, int _wi_offset, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1; if
JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N), and
if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elements i+1:N of WR and WI contain eigenvalues which
have converged.
=====================================================================
.. Parameters ..
public void dgeevx(String balanc, String jobvl, String jobvr, String sense, int n, double[] a, int lda, double[] wr, double[] wi, double[] vl, int ldvl, double[] vr, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] scale, org.netlib.util.doubleW abnrm, double[] rconde, double[] rcondv, double[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
(RCONDE), and reciprocal condition numbers for the right
eigenvectors (RCONDV).
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it
more nearly upper triangular, and applying a diagonal similarity
transformation D * A * D**(-1), where D is a diagonal matrix, to
make its rows and columns closer in norm and the condition numbers
of its eigenvalues and eigenvectors smaller. The computed
reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers
(in exact arithmetic) but diagonal scaling will. For further
explanation of balancing, see section 4.10.2 of the LAPACK
Users' Guide.
Arguments
=========
BALANC (input) CHARACTER*1
Indicates how the input matrix should be diagonally scaled
and/or permuted to improve the conditioning of its
eigenvalues.
= 'N': Do not diagonally scale or permute;
= 'P': Perform permutations to make the matrix more nearly
upper triangular. Do not diagonally scale;
= 'S': Diagonally scale the matrix, i.e. replace A by
D*A*D**(-1), where D is a diagonal matrix chosen
to make the rows and columns of A more equal in
norm. Do not permute;
= 'B': Both diagonally scale and permute A.
Computed reciprocal condition numbers will be for the matrix
after balancing and/or permuting. Permuting does not change
condition numbers (in exact arithmetic), but balancing does.
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVL must = 'V'.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVR must = 'V'.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for eigenvalues only;
= 'V': Computed for right eigenvectors only;
= 'B': Computed for eigenvalues and right eigenvectors.
If SENSE = 'E' or 'B', both left and right eigenvectors
must also be computed (JOBVL = 'V' and JOBVR = 'V').
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten. If JOBVL = 'V' or
JOBVR = 'V', A contains the real Schur form of the balanced
version of the input matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues will appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values determined when A was
balanced. The balanced A(i,j) = 0 if I > J and
J = 1,...,ILO-1 or I = IHI+1,...,N.
SCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
when balancing A. If P(j) is the index of the row and column
interchanged with row and column j, and D(j) is the scaling
factor applied to row and column j, then
SCALE(J) = P(J), for J = 1,...,ILO-1
= D(J), for J = ILO,...,IHI
= P(J) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) DOUBLE PRECISION
The one-norm of the balanced matrix (the maximum
of the sum of absolute values of elements of any column).
RCONDE (output) DOUBLE PRECISION array, dimension (N)
RCONDE(j) is the reciprocal condition number of the j-th
eigenvalue.
RCONDV (output) DOUBLE PRECISION array, dimension (N)
RCONDV(j) is the reciprocal condition number of the j-th
right eigenvector.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SENSE = 'N' or 'E',
LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (2*N-2)
If SENSE = 'N' or 'E', not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors or condition numbers
have been computed; elements 1:ILO-1 and i+1:N of WR
and WI contain eigenvalues which have converged.
=====================================================================
.. Parameters ..
public void dgeevx(String balanc, String jobvl, String jobvr, String sense, int n, double[] a, int _a_offset, int lda, double[] wr, int _wr_offset, double[] wi, int _wi_offset, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] scale, int _scale_offset, org.netlib.util.doubleW abnrm, double[] rconde, int _rconde_offset, double[] rcondv, int _rcondv_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
(RCONDE), and reciprocal condition numbers for the right
eigenvectors (RCONDV).
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it
more nearly upper triangular, and applying a diagonal similarity
transformation D * A * D**(-1), where D is a diagonal matrix, to
make its rows and columns closer in norm and the condition numbers
of its eigenvalues and eigenvectors smaller. The computed
reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers
(in exact arithmetic) but diagonal scaling will. For further
explanation of balancing, see section 4.10.2 of the LAPACK
Users' Guide.
Arguments
=========
BALANC (input) CHARACTER*1
Indicates how the input matrix should be diagonally scaled
and/or permuted to improve the conditioning of its
eigenvalues.
= 'N': Do not diagonally scale or permute;
= 'P': Perform permutations to make the matrix more nearly
upper triangular. Do not diagonally scale;
= 'S': Diagonally scale the matrix, i.e. replace A by
D*A*D**(-1), where D is a diagonal matrix chosen
to make the rows and columns of A more equal in
norm. Do not permute;
= 'B': Both diagonally scale and permute A.
Computed reciprocal condition numbers will be for the matrix
after balancing and/or permuting. Permuting does not change
condition numbers (in exact arithmetic), but balancing does.
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVL must = 'V'.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVR must = 'V'.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for eigenvalues only;
= 'V': Computed for right eigenvectors only;
= 'B': Computed for eigenvalues and right eigenvectors.
If SENSE = 'E' or 'B', both left and right eigenvectors
must also be computed (JOBVL = 'V' and JOBVR = 'V').
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten. If JOBVL = 'V' or
JOBVR = 'V', A contains the real Schur form of the balanced
version of the input matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues will appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values determined when A was
balanced. The balanced A(i,j) = 0 if I > J and
J = 1,...,ILO-1 or I = IHI+1,...,N.
SCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
when balancing A. If P(j) is the index of the row and column
interchanged with row and column j, and D(j) is the scaling
factor applied to row and column j, then
SCALE(J) = P(J), for J = 1,...,ILO-1
= D(J), for J = ILO,...,IHI
= P(J) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) DOUBLE PRECISION
The one-norm of the balanced matrix (the maximum
of the sum of absolute values of elements of any column).
RCONDE (output) DOUBLE PRECISION array, dimension (N)
RCONDE(j) is the reciprocal condition number of the j-th
eigenvalue.
RCONDV (output) DOUBLE PRECISION array, dimension (N)
RCONDV(j) is the reciprocal condition number of the j-th
right eigenvector.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SENSE = 'N' or 'E',
LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (2*N-2)
If SENSE = 'N' or 'E', not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors or condition numbers
have been computed; elements 1:ILO-1 and i+1:N of WR
and WI contain eigenvalues which have converged.
=====================================================================
.. Parameters ..
public void dgegs(String jobvsl, String jobvsr, int n, double[] a, int lda, double[] b, int ldb, double[] alphar, double[] alphai, double[] beta, double[] vsl, int ldvsl, double[] vsr, int ldvsr, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGGES.
DGEGS computes the eigenvalues, real Schur form, and, optionally,
left and or/right Schur vectors of a real matrix pair (A,B).
Given two square matrices A and B, the generalized real Schur
factorization has the form
A = Q*S*Z**T, B = Q*T*Z**T
where Q and Z are orthogonal matrices, T is upper triangular, and S
is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
of eigenvalues of (A,B). The columns of Q are the left Schur vectors
and the columns of Z are the right Schur vectors.
If only the eigenvalues of (A,B) are needed, the driver routine
DGEGV should be used instead. See DGEGV for a description of the
eigenvalues of the generalized nonsymmetric eigenvalue problem
(GNEP).
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors (returned in VSL).
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors (returned in VSR).
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A.
On exit, the upper quasi-triangular matrix S from the
generalized real Schur factorization.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B.
On exit, the upper triangular matrix T from the generalized
real Schur factorization.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and (j+1)-st
eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) DOUBLE PRECISION array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
If JOBVSL = 'V', the matrix of left Schur vectors Q.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
If JOBVSR = 'V', the matrix of right Schur vectors Z.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,4*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
The optimal LWORK is 2*N + N*(NB+1).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from DGGBAL
=N+2: error return from DGEQRF
=N+3: error return from DORMQR
=N+4: error return from DORGQR
=N+5: error return from DGGHRD
=N+6: error return from DHGEQZ (other than failed
iteration)
=N+7: error return from DGGBAK (computing VSL)
=N+8: error return from DGGBAK (computing VSR)
=N+9: error return from DLASCL (various places)
=====================================================================
.. Parameters ..
public void dgegs(String jobvsl, String jobvsr, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] vsl, int _vsl_offset, int ldvsl, double[] vsr, int _vsr_offset, int ldvsr, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGGES.
DGEGS computes the eigenvalues, real Schur form, and, optionally,
left and or/right Schur vectors of a real matrix pair (A,B).
Given two square matrices A and B, the generalized real Schur
factorization has the form
A = Q*S*Z**T, B = Q*T*Z**T
where Q and Z are orthogonal matrices, T is upper triangular, and S
is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
of eigenvalues of (A,B). The columns of Q are the left Schur vectors
and the columns of Z are the right Schur vectors.
If only the eigenvalues of (A,B) are needed, the driver routine
DGEGV should be used instead. See DGEGV for a description of the
eigenvalues of the generalized nonsymmetric eigenvalue problem
(GNEP).
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors (returned in VSL).
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors (returned in VSR).
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A.
On exit, the upper quasi-triangular matrix S from the
generalized real Schur factorization.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B.
On exit, the upper triangular matrix T from the generalized
real Schur factorization.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and (j+1)-st
eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) DOUBLE PRECISION array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
If JOBVSL = 'V', the matrix of left Schur vectors Q.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
If JOBVSR = 'V', the matrix of right Schur vectors Z.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,4*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
The optimal LWORK is 2*N + N*(NB+1).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from DGGBAL
=N+2: error return from DGEQRF
=N+3: error return from DORMQR
=N+4: error return from DORGQR
=N+5: error return from DGGHRD
=N+6: error return from DHGEQZ (other than failed
iteration)
=N+7: error return from DGGBAK (computing VSL)
=N+8: error return from DGGBAK (computing VSR)
=N+9: error return from DLASCL (various places)
=====================================================================
.. Parameters ..
public void dgegv(String jobvl, String jobvr, int n, double[] a, int lda, double[] b, int ldb, double[] alphar, double[] alphai, double[] beta, double[] vl, int ldvl, double[] vr, int ldvr, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGGEV.
DGEGV computes the eigenvalues and, optionally, the left and/or right
eigenvectors of a real matrix pair (A,B).
Given two square matrices A and B,
the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
eigenvalues lambda and corresponding (non-zero) eigenvectors x such
that
A*x = lambda*B*x.
An alternate form is to find the eigenvalues mu and corresponding
eigenvectors y such that
mu*A*y = B*y.
These two forms are equivalent with mu = 1/lambda and x = y if
neither lambda nor mu is zero. In order to deal with the case that
lambda or mu is zero or small, two values alpha and beta are returned
for each eigenvalue, such that lambda = alpha/beta and
mu = beta/alpha.
The vectors x and y in the above equations are right eigenvectors of
the matrix pair (A,B). Vectors u and v satisfying
u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
are left eigenvectors of (A,B).
Note: this routine performs "full balancing" on A and B -- see
"Further Details", below.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors (returned
in VL).
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors (returned
in VR).
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A.
If JOBVL = 'V' or JOBVR = 'V', then on exit A
contains the real Schur form of A from the generalized Schur
factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only the diagonal
blocks from the Schur form will be correct. See DGGHRD and
DHGEQZ for details.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B.
If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
upper triangular matrix obtained from B in the generalized
Schur factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only those elements of
B corresponding to the diagonal blocks from the Schur form of
A will be correct. See DGGHRD and DHGEQZ for details.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue of
GNEP.
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) DOUBLE PRECISION array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored
in the columns of VL, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then u(j) = VL(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
u(j) = VL(:,j) + i*VL(:,j+1)
and
u(j+1) = VL(:,j) - i*VL(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvectors
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors x(j) are stored
in the columns of VR, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then x(j) = VR(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
x(j) = VR(:,j) + i*VR(:,j+1)
and
x(j+1) = VR(:,j) - i*VR(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvalues
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
The optimal LWORK is:
2*N + MAX( 6*N, N*(NB+1) ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from DGGBAL
=N+2: error return from DGEQRF
=N+3: error return from DORMQR
=N+4: error return from DORGQR
=N+5: error return from DGGHRD
=N+6: error return from DHGEQZ (other than failed
iteration)
=N+7: error return from DTGEVC
=N+8: error return from DGGBAK (computing VL)
=N+9: error return from DGGBAK (computing VR)
=N+10: error return from DLASCL (various calls)
Further Details
===============
Balancing
---------
This driver calls DGGBAL to both permute and scale rows and columns
of A and B. The permutations PL and PR are chosen so that PL*A*PR
and PL*B*R will be upper triangular except for the diagonal blocks
A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
possible. The diagonal scaling matrices DL and DR are chosen so
that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
one (except for the elements that start out zero.)
After the eigenvalues and eigenvectors of the balanced matrices
have been computed, DGGBAK transforms the eigenvectors back to what
they would have been (in perfect arithmetic) if they had not been
balanced.
Contents of A and B on Exit
-------- -- - --- - -- ----
If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
both), then on exit the arrays A and B will contain the real Schur
form[*] of the "balanced" versions of A and B. If no eigenvectors
are computed, then only the diagonal blocks will be correct.
[*] See DHGEQZ, DGEGS, or read the book "Matrix Computations",
by Golub & van Loan, pub. by Johns Hopkins U. Press.
=====================================================================
.. Parameters ..
public void dgegv(String jobvl, String jobvr, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGGEV.
DGEGV computes the eigenvalues and, optionally, the left and/or right
eigenvectors of a real matrix pair (A,B).
Given two square matrices A and B,
the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
eigenvalues lambda and corresponding (non-zero) eigenvectors x such
that
A*x = lambda*B*x.
An alternate form is to find the eigenvalues mu and corresponding
eigenvectors y such that
mu*A*y = B*y.
These two forms are equivalent with mu = 1/lambda and x = y if
neither lambda nor mu is zero. In order to deal with the case that
lambda or mu is zero or small, two values alpha and beta are returned
for each eigenvalue, such that lambda = alpha/beta and
mu = beta/alpha.
The vectors x and y in the above equations are right eigenvectors of
the matrix pair (A,B). Vectors u and v satisfying
u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
are left eigenvectors of (A,B).
Note: this routine performs "full balancing" on A and B -- see
"Further Details", below.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors (returned
in VL).
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors (returned
in VR).
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A.
If JOBVL = 'V' or JOBVR = 'V', then on exit A
contains the real Schur form of A from the generalized Schur
factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only the diagonal
blocks from the Schur form will be correct. See DGGHRD and
DHGEQZ for details.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B.
If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
upper triangular matrix obtained from B in the generalized
Schur factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only those elements of
B corresponding to the diagonal blocks from the Schur form of
A will be correct. See DGGHRD and DHGEQZ for details.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue of
GNEP.
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) DOUBLE PRECISION array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored
in the columns of VL, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then u(j) = VL(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
u(j) = VL(:,j) + i*VL(:,j+1)
and
u(j+1) = VL(:,j) - i*VL(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvectors
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors x(j) are stored
in the columns of VR, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then x(j) = VR(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
x(j) = VR(:,j) + i*VR(:,j+1)
and
x(j+1) = VR(:,j) - i*VR(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvalues
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
The optimal LWORK is:
2*N + MAX( 6*N, N*(NB+1) ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from DGGBAL
=N+2: error return from DGEQRF
=N+3: error return from DORMQR
=N+4: error return from DORGQR
=N+5: error return from DGGHRD
=N+6: error return from DHGEQZ (other than failed
iteration)
=N+7: error return from DTGEVC
=N+8: error return from DGGBAK (computing VL)
=N+9: error return from DGGBAK (computing VR)
=N+10: error return from DLASCL (various calls)
Further Details
===============
Balancing
---------
This driver calls DGGBAL to both permute and scale rows and columns
of A and B. The permutations PL and PR are chosen so that PL*A*PR
and PL*B*R will be upper triangular except for the diagonal blocks
A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
possible. The diagonal scaling matrices DL and DR are chosen so
that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
one (except for the elements that start out zero.)
After the eigenvalues and eigenvectors of the balanced matrices
have been computed, DGGBAK transforms the eigenvectors back to what
they would have been (in perfect arithmetic) if they had not been
balanced.
Contents of A and B on Exit
-------- -- - --- - -- ----
If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
both), then on exit the arrays A and B will contain the real Schur
form[*] of the "balanced" versions of A and B. If no eigenvectors
are computed, then only the diagonal blocks will be correct.
[*] See DHGEQZ, DGEGS, or read the book "Matrix Computations",
by Golub & van Loan, pub. by Johns Hopkins U. Press.
=====================================================================
.. Parameters ..
public void dgehd2(int n, int ilo, int ihi, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= max(1,N).
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the n by n general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dgehd2(int n, int ilo, int ihi, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= max(1,N).
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the n by n general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dgehrd(int n, int ilo, int ihi, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEHRD reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
zero.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's DGEHRD
subroutine incorporating improvements proposed by Quintana-Orti and
Van de Geijn (2005).
=====================================================================
.. Parameters ..
public void dgehrd(int n, int ilo, int ihi, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEHRD reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
zero.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's DGEHRD
subroutine incorporating improvements proposed by Quintana-Orti and
Van de Geijn (2005).
=====================================================================
.. Parameters ..
public void dgelq2(int m, int n, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELQ2 computes an LQ factorization of a real m by n matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and below the diagonal of the array
contain the m by min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgelq2(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELQ2 computes an LQ factorization of a real m by n matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and below the diagonal of the array
contain the m by min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgelqf(int m, int n, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELQF computes an LQ factorization of a real M-by-N matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal of the array
contain the m-by-min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgelqf(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELQF computes an LQ factorization of a real M-by-N matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal of the array
contain the m-by-min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgels(String trans, int m, int n, int nrhs, double[] a, int lda, double[] b, int ldb, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELS solves overdetermined or underdetermined real linear systems
involving an M-by-N matrix A, or its transpose, using a QR or LQ
factorization of A. It is assumed that A has full rank.
The following options are provided:
1. If TRANS = 'N' and m >= n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A*X ||.
2. If TRANS = 'N' and m < n: find the minimum norm solution of
an underdetermined system A * X = B.
3. If TRANS = 'T' and m >= n: find the minimum norm solution of
an undetermined system A**T * X = B.
4. If TRANS = 'T' and m < n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A**T * X ||.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N': the linear system involves A;
= 'T': the linear system involves A**T.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of the matrices B and X. NRHS >=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if M >= N, A is overwritten by details of its QR
factorization as returned by DGEQRF;
if M < N, A is overwritten by details of its LQ
factorization as returned by DGELQF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix B of right hand side vectors, stored
columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
if TRANS = 'T'.
On exit, if INFO = 0, B is overwritten by the solution
vectors, stored columnwise:
if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
squares solution vectors; the residual sum of squares for the
solution in each column is given by the sum of squares of
elements N+1 to M in that column;
if TRANS = 'N' and m < n, rows 1 to N of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m >= n, rows 1 to M of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m < n, rows 1 to M of B contain the
least squares solution vectors; the residual sum of squares
for the solution in each column is given by the sum of
squares of elements M+1 to N in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= MAX(1,M,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= max( 1, MN + max( MN, NRHS ) ).
For optimal performance,
LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
where MN = min(M,N) and NB is the optimum block size.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of the
triangular factor of A is zero, so that A does not have
full rank; the least squares solution could not be
computed.
=====================================================================
.. Parameters ..
public void dgels(String trans, int m, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELS solves overdetermined or underdetermined real linear systems
involving an M-by-N matrix A, or its transpose, using a QR or LQ
factorization of A. It is assumed that A has full rank.
The following options are provided:
1. If TRANS = 'N' and m >= n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A*X ||.
2. If TRANS = 'N' and m < n: find the minimum norm solution of
an underdetermined system A * X = B.
3. If TRANS = 'T' and m >= n: find the minimum norm solution of
an undetermined system A**T * X = B.
4. If TRANS = 'T' and m < n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A**T * X ||.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N': the linear system involves A;
= 'T': the linear system involves A**T.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of the matrices B and X. NRHS >=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if M >= N, A is overwritten by details of its QR
factorization as returned by DGEQRF;
if M < N, A is overwritten by details of its LQ
factorization as returned by DGELQF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix B of right hand side vectors, stored
columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
if TRANS = 'T'.
On exit, if INFO = 0, B is overwritten by the solution
vectors, stored columnwise:
if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
squares solution vectors; the residual sum of squares for the
solution in each column is given by the sum of squares of
elements N+1 to M in that column;
if TRANS = 'N' and m < n, rows 1 to N of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m >= n, rows 1 to M of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m < n, rows 1 to M of B contain the
least squares solution vectors; the residual sum of squares
for the solution in each column is given by the sum of
squares of elements M+1 to N in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= MAX(1,M,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= max( 1, MN + max( MN, NRHS ) ).
For optimal performance,
LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
where MN = min(M,N) and NB is the optimum block size.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of the
triangular factor of A is zero, so that A does not have
full rank; the least squares solution could not be
computed.
=====================================================================
.. Parameters ..
public void dgelsd(int m, int n, int nrhs, double[] a, int lda, double[] b, int ldb, double[] s, double rcond, org.netlib.util.intW rank, double[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELSD computes the minimum-norm solution to a real linear least
squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with
Householder transformations, reducing the original problem
into a "bidiagonal least squares problem" (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder tranformations to solve
the original least squares problem.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
M (input) INTEGER
The number of rows of A. M >= 0.
N (input) INTEGER
The number of columns of A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK must be at least 1.
The exact minimum amount of workspace needed depends on M,
N and NRHS. As long as LWORK is at least
12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
if M is greater than or equal to N or
12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
if M is less than N, the code will execute correctly.
SMLSIZ is returned by ILAENV and is equal to the maximum
size of the subproblems at the bottom of the computation
tree (usually about 25), and
NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,
where MINMN = MIN( M,N ).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dgelsd(int m, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] s, int _s_offset, double rcond, org.netlib.util.intW rank, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELSD computes the minimum-norm solution to a real linear least
squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with
Householder transformations, reducing the original problem
into a "bidiagonal least squares problem" (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder tranformations to solve
the original least squares problem.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
M (input) INTEGER
The number of rows of A. M >= 0.
N (input) INTEGER
The number of columns of A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK must be at least 1.
The exact minimum amount of workspace needed depends on M,
N and NRHS. As long as LWORK is at least
12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
if M is greater than or equal to N or
12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
if M is less than N, the code will execute correctly.
SMLSIZ is returned by ILAENV and is equal to the maximum
size of the subproblems at the bottom of the computation
tree (usually about 25), and
NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,
where MINMN = MIN( M,N ).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dgelss(int m, int n, int nrhs, double[] a, int lda, double[] b, int ldb, double[] s, double rcond, org.netlib.util.intW rank, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELSS computes the minimum norm solution to a real linear least
squares problem:
Minimize 2-norm(| b - A*x |).
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
X.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the first min(m,n) rows of A are overwritten with
its right singular vectors, stored rowwise.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1, and also:
LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
=====================================================================
.. Parameters ..
public void dgelss(int m, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] s, int _s_offset, double rcond, org.netlib.util.intW rank, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELSS computes the minimum norm solution to a real linear least
squares problem:
Minimize 2-norm(| b - A*x |).
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
X.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the first min(m,n) rows of A are overwritten with
its right singular vectors, stored rowwise.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1, and also:
LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
=====================================================================
.. Parameters ..
public void dgelsx(int m, int n, int nrhs, double[] a, int lda, double[] b, int ldb, int[] jpvt, double rcond, org.netlib.util.intW rank, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGELSY.
DGELSX computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
If m >= n and RANK = n, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of elements N+1:M in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is an
initial column, otherwise it is a free column. Before
the QR factorization of A, all initial columns are
permuted to the leading positions; only the remaining
free columns are moved as a result of column pivoting
during the factorization.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace) DOUBLE PRECISION array, dimension
(max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgelsx(int m, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, int[] jpvt, int _jpvt_offset, double rcond, org.netlib.util.intW rank, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGELSY.
DGELSX computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
If m >= n and RANK = n, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of elements N+1:M in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is an
initial column, otherwise it is a free column. Before
the QR factorization of A, all initial columns are
permuted to the leading positions; only the remaining
free columns are moved as a result of column pivoting
during the factorization.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace) DOUBLE PRECISION array, dimension
(max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgelsy(int m, int n, int nrhs, double[] a, int lda, double[] b, int ldb, int[] jpvt, double rcond, org.netlib.util.intW rank, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELSY computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
This routine is basically identical to the original xGELSX except
three differences:
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
o The permutation of matrix B (the right hand side) is faster and
more simple.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of AP, otherwise column i is a free column.
On exit, if JPVT(i) = k, then the i-th column of AP
was the k-th column of A.
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
The unblocked strategy requires that:
LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
where MN = min( M, N ).
The block algorithm requires that:
LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
where NB is an upper bound on the blocksize returned
by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
and DORMRZ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
=====================================================================
.. Parameters ..
public void dgelsy(int m, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, int[] jpvt, int _jpvt_offset, double rcond, org.netlib.util.intW rank, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGELSY computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
This routine is basically identical to the original xGELSX except
three differences:
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
o The permutation of matrix B (the right hand side) is faster and
more simple.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of AP, otherwise column i is a free column.
On exit, if JPVT(i) = k, then the i-th column of AP
was the k-th column of A.
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
The unblocked strategy requires that:
LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
where MN = min( M, N ).
The block algorithm requires that:
LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
where NB is an upper bound on the blocksize returned
by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
and DORMRZ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
=====================================================================
.. Parameters ..
public void dgeql2(int m, int n, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQL2 computes a QL factorization of a real m by n matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the m by n lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgeql2(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQL2 computes a QL factorization of a real m by n matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the m by n lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgeqlf(int m, int n, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQLF computes a QL factorization of a real M-by-N matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the M-by-N lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgeqlf(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQLF computes a QL factorization of a real M-by-N matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the M-by-N lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgeqp3(int m, int n, double[] a, int lda, int[] jpvt, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQP3 computes a QR factorization with column pivoting of a
matrix A: A*P = Q*R using Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper trapezoidal matrix R; the elements below
the diagonal, together with the array TAU, represent the
orthogonal matrix Q as a product of min(M,N) elementary
reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(J).ne.0, the J-th column of A is permuted
to the front of A*P (a leading column); if JPVT(J)=0,
the J-th column of A is a free column.
On exit, if JPVT(J)=K, then the J-th column of A*P was the
the K-th column of A.
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO=0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 3*N+1.
For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real/complex scalar, and v is a real/complex vector
with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
A(i+1:m,i), and tau in TAU(i).
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
=====================================================================
.. Parameters ..
public void dgeqp3(int m, int n, double[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQP3 computes a QR factorization with column pivoting of a
matrix A: A*P = Q*R using Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper trapezoidal matrix R; the elements below
the diagonal, together with the array TAU, represent the
orthogonal matrix Q as a product of min(M,N) elementary
reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(J).ne.0, the J-th column of A is permuted
to the front of A*P (a leading column); if JPVT(J)=0,
the J-th column of A is a free column.
On exit, if JPVT(J)=K, then the J-th column of A*P was the
the K-th column of A.
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO=0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 3*N+1.
For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real/complex scalar, and v is a real/complex vector
with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
A(i+1:m,i), and tau in TAU(i).
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
=====================================================================
.. Parameters ..
public void dgeqpf(int m, int n, double[] a, int lda, int[] jpvt, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGEQP3.
DGEQPF computes a QR factorization with column pivoting of a
real M-by-N matrix A: A*P = Q*R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper triangular matrix R; the elements
below the diagonal, together with the array TAU,
represent the orthogonal matrix Q as a product of
min(m,n) elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n)
Each H(i) has the form
H = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
The matrix P is represented in jpvt as follows: If
jpvt(j) = i
then the jth column of P is the ith canonical unit vector.
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void dgeqpf(int m, int n, double[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DGEQP3.
DGEQPF computes a QR factorization with column pivoting of a
real M-by-N matrix A: A*P = Q*R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper triangular matrix R; the elements
below the diagonal, together with the array TAU,
represent the orthogonal matrix Q as a product of
min(m,n) elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n)
Each H(i) has the form
H = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
The matrix P is represented in jpvt as follows: If
jpvt(j) = i
then the jth column of P is the ith canonical unit vector.
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void dgeqr2(int m, int n, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQR2 computes a QR factorization of a real m by n matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgeqr2(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQR2 computes a QR factorization of a real m by n matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgeqrf(int m, int n, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQRF computes a QR factorization of a real M-by-N matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgeqrf(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGEQRF computes a QR factorization of a real M-by-N matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgerfs(String trans, int n, int nrhs, double[] a, int lda, double[] af, int ldaf, int[] ipiv, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGERFS improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates for
the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The original N-by-N matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
The factors L and U from the factorization A = P*L*U
as computed by DGETRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGETRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dgerfs(String trans, int n, int nrhs, double[] a, int _a_offset, int lda, double[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGERFS improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates for
the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The original N-by-N matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
The factors L and U from the factorization A = P*L*U
as computed by DGETRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGETRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dgerq2(int m, int n, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGERQ2 computes an RQ factorization of a real m by n matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgerq2(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGERQ2 computes an RQ factorization of a real m by n matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void dgerqf(int m, int n, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGERQF computes an RQ factorization of a real M-by-N matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of min(m,n) elementary
reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgerqf(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGERQF computes an RQ factorization of a real M-by-N matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of min(m,n) elementary
reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void dgesc2(int n, double[] a, int lda, double[] rhs, int[] ipiv, int[] jpiv, org.netlib.util.doubleW scale)
LAPACK
..
Purpose
=======
DGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by DGETC2.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by DGETC2: A = P * L * U * Q
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, N).
RHS (input/output) DOUBLE PRECISION array, dimension (N).
On entry, the right hand side vector b.
On exit, the solution vector X.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
SCALE (output) DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent owerflow in the solution.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void dgesc2(int n, double[] a, int _a_offset, int lda, double[] rhs, int _rhs_offset, int[] ipiv, int _ipiv_offset, int[] jpiv, int _jpiv_offset, org.netlib.util.doubleW scale)
LAPACK
..
Purpose
=======
DGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by DGETC2.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by DGETC2: A = P * L * U * Q
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, N).
RHS (input/output) DOUBLE PRECISION array, dimension (N).
On entry, the right hand side vector b.
On exit, the solution vector X.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
SCALE (output) DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent owerflow in the solution.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void dgesdd(String jobz, int m, int n, double[] a, int lda, double[] s, double[] u, int ldu, double[] vt, int ldvt, double[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESDD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and right singular
vectors. If singular vectors are desired, it uses a
divide-and-conquer algorithm.
The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**T, not V.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U and all N rows of V**T are
returned in the arrays U and VT;
= 'S': the first min(M,N) columns of U and the first
min(M,N) rows of V**T are returned in the arrays U
and VT;
= 'O': If M >= N, the first N columns of U are overwritten
on the array A and all rows of V**T are returned in
the array VT;
otherwise, all columns of U are returned in the
array U and the first M rows of V**T are overwritten
in the array A;
= 'N': no columns of U or rows of V**T are computed.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBZ = 'O', A is overwritten with the first N columns
of U (the left singular vectors, stored
columnwise) if M >= N;
A is overwritten with the first M rows
of V**T (the right singular vectors, stored
rowwise) otherwise.
if JOBZ .ne. 'O', the contents of A are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
UCOL = min(M,N) if JOBZ = 'S'.
If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
orthogonal matrix U;
if JOBZ = 'S', U contains the first min(M,N) columns of U
(the left singular vectors, stored columnwise);
if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
N-by-N orthogonal matrix V**T;
if JOBZ = 'S', VT contains the first min(M,N) rows of
V**T (the right singular vectors, stored rowwise);
if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
if JOBZ = 'S', LDVT >= min(M,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
If JOBZ = 'N',
LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)).
If JOBZ = 'O',
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
If JOBZ = 'S' or 'A'
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1 but other input arguments are legal, WORK(1)
returns the optimal LWORK.
IWORK (workspace) INTEGER array, dimension (8*min(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: DBDSDC did not converge, updating process failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dgesdd(String jobz, int m, int n, double[] a, int _a_offset, int lda, double[] s, int _s_offset, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int ldvt, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESDD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and right singular
vectors. If singular vectors are desired, it uses a
divide-and-conquer algorithm.
The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**T, not V.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U and all N rows of V**T are
returned in the arrays U and VT;
= 'S': the first min(M,N) columns of U and the first
min(M,N) rows of V**T are returned in the arrays U
and VT;
= 'O': If M >= N, the first N columns of U are overwritten
on the array A and all rows of V**T are returned in
the array VT;
otherwise, all columns of U are returned in the
array U and the first M rows of V**T are overwritten
in the array A;
= 'N': no columns of U or rows of V**T are computed.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBZ = 'O', A is overwritten with the first N columns
of U (the left singular vectors, stored
columnwise) if M >= N;
A is overwritten with the first M rows
of V**T (the right singular vectors, stored
rowwise) otherwise.
if JOBZ .ne. 'O', the contents of A are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
UCOL = min(M,N) if JOBZ = 'S'.
If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
orthogonal matrix U;
if JOBZ = 'S', U contains the first min(M,N) columns of U
(the left singular vectors, stored columnwise);
if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
N-by-N orthogonal matrix V**T;
if JOBZ = 'S', VT contains the first min(M,N) rows of
V**T (the right singular vectors, stored rowwise);
if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
if JOBZ = 'S', LDVT >= min(M,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
If JOBZ = 'N',
LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)).
If JOBZ = 'O',
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
If JOBZ = 'S' or 'A'
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1 but other input arguments are legal, WORK(1)
returns the optimal LWORK.
IWORK (workspace) INTEGER array, dimension (8*min(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: DBDSDC did not converge, updating process failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dgesv(int n, int nrhs, double[] a, int lda, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is
upper triangular. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution could not be computed.
=====================================================================
.. External Subroutines ..
public void dgesv(int n, int nrhs, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is
upper triangular. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution could not be computed.
=====================================================================
.. External Subroutines ..
public void dgesvd(String jobu, String jobvt, int m, int n, double[] a, int lda, double[] s, double[] u, int ldu, double[] vt, int ldvt, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESVD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns V**T, not V.
Arguments
=========
JOBU (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U are returned in array U:
= 'S': the first min(m,n) columns of U (the left singular
vectors) are returned in the array U;
= 'O': the first min(m,n) columns of U (the left singular
vectors) are overwritten on the array A;
= 'N': no columns of U (no left singular vectors) are
computed.
JOBVT (input) CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:
= 'A': all N rows of V**T are returned in the array VT;
= 'S': the first min(m,n) rows of V**T (the right singular
vectors) are returned in the array VT;
= 'O': the first min(m,n) rows of V**T (the right singular
vectors) are overwritten on the array A;
= 'N': no rows of V**T (no right singular vectors) are
computed.
JOBVT and JOBU cannot both be 'O'.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBU = 'O', A is overwritten with the first min(m,n)
columns of U (the left singular vectors,
stored columnwise);
if JOBVT = 'O', A is overwritten with the first min(m,n)
rows of V**T (the right singular vectors,
stored rowwise);
if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
(LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
if JOBU = 'S', U contains the first min(m,n) columns of U
(the left singular vectors, stored columnwise);
if JOBU = 'N' or 'O', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = 'S' or 'A', LDU >= M.
VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
V**T;
if JOBVT = 'S', VT contains the first min(m,n) rows of
V**T (the right singular vectors, stored rowwise);
if JOBVT = 'N' or 'O', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B
whose diagonal is in S (not necessarily sorted). B
satisfies A = U * B * VT, so it has the same singular values
as A, and singular vectors related by U and VT.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if DBDSQR did not converge, INFO specifies how many
superdiagonals of an intermediate bidiagonal form B
did not converge to zero. See the description of WORK
above for details.
=====================================================================
.. Parameters ..
public void dgesvd(String jobu, String jobvt, int m, int n, double[] a, int _a_offset, int lda, double[] s, int _s_offset, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int ldvt, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESVD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns V**T, not V.
Arguments
=========
JOBU (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U are returned in array U:
= 'S': the first min(m,n) columns of U (the left singular
vectors) are returned in the array U;
= 'O': the first min(m,n) columns of U (the left singular
vectors) are overwritten on the array A;
= 'N': no columns of U (no left singular vectors) are
computed.
JOBVT (input) CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:
= 'A': all N rows of V**T are returned in the array VT;
= 'S': the first min(m,n) rows of V**T (the right singular
vectors) are returned in the array VT;
= 'O': the first min(m,n) rows of V**T (the right singular
vectors) are overwritten on the array A;
= 'N': no rows of V**T (no right singular vectors) are
computed.
JOBVT and JOBU cannot both be 'O'.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBU = 'O', A is overwritten with the first min(m,n)
columns of U (the left singular vectors,
stored columnwise);
if JOBVT = 'O', A is overwritten with the first min(m,n)
rows of V**T (the right singular vectors,
stored rowwise);
if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
(LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
if JOBU = 'S', U contains the first min(m,n) columns of U
(the left singular vectors, stored columnwise);
if JOBU = 'N' or 'O', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = 'S' or 'A', LDU >= M.
VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
V**T;
if JOBVT = 'S', VT contains the first min(m,n) rows of
V**T (the right singular vectors, stored rowwise);
if JOBVT = 'N' or 'O', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B
whose diagonal is in S (not necessarily sorted). B
satisfies A = U * B * VT, so it has the same singular values
as A, and singular vectors related by U and VT.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if DBDSQR did not converge, INFO specifies how many
superdiagonals of an intermediate bidiagonal form B
did not converge to zero. See the description of WORK
above for details.
=====================================================================
.. Parameters ..
public void dgesvx(String fact, String trans, int n, int nrhs, double[] a, int lda, double[] af, int ldaf, int[] ipiv, org.netlib.util.StringW equed, double[] r, double[] c, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESVX uses the LU factorization to compute the solution to a real
system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = P * L * U,
where P is a permutation matrix, L is a unit lower triangular
matrix, and U is upper triangular.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF and IPIV contain the factored form of A.
If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
A, AF, and IPIV are not modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
not 'N', then A must have been equilibrated by the scaling
factors in R and/or C. A is not modified if FACT = 'F' or
'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the factors L and U from the factorization
A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then
AF is the factored form of the equilibrated matrix A.
If FACT = 'N', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the equilibrated matrix A (see the description of A for
the form of the equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = P*L*U
as computed by DGETRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) DOUBLE PRECISION array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) DOUBLE PRECISION array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) DOUBLE PRECISION array, dimension (4*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dgesvx(String fact, String trans, int n, int nrhs, double[] a, int _a_offset, int lda, double[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, org.netlib.util.StringW equed, double[] r, int _r_offset, double[] c, int _c_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGESVX uses the LU factorization to compute the solution to a real
system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = P * L * U,
where P is a permutation matrix, L is a unit lower triangular
matrix, and U is upper triangular.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF and IPIV contain the factored form of A.
If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
A, AF, and IPIV are not modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
not 'N', then A must have been equilibrated by the scaling
factors in R and/or C. A is not modified if FACT = 'F' or
'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the factors L and U from the factorization
A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then
AF is the factored form of the equilibrated matrix A.
If FACT = 'N', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the equilibrated matrix A (see the description of A for
the form of the equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = P*L*U
as computed by DGETRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) DOUBLE PRECISION array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) DOUBLE PRECISION array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) DOUBLE PRECISION array, dimension (4*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dgetc2(int n, double[] a, int lda, int[] ipiv, int[] jpiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETC2 computes an LU factorization with complete pivoting of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is the Level 2 BLAS algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the n-by-n matrix A to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, i.e., giving a nonsingular perturbed system.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce owerflow if
we try to solve for x in Ax = b. So U is perturbed to
avoid the overflow.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void dgetc2(int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, int[] jpiv, int _jpiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETC2 computes an LU factorization with complete pivoting of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is the Level 2 BLAS algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the n-by-n matrix A to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, i.e., giving a nonsingular perturbed system.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce owerflow if
we try to solve for x in Ax = b. So U is perturbed to
avoid the overflow.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void dgetf2(int m, int n, double[] a, int lda, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void dgetf2(int m, int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void dgetrf(int m, int n, double[] a, int lda, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void dgetrf(int m, int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void dgetri(int n, double[] a, int lda, int[] ipiv, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETRI computes the inverse of a matrix using the LU factorization
computed by DGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by DGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.
=====================================================================
.. Parameters ..
public void dgetri(int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETRI computes the inverse of a matrix using the LU factorization
computed by DGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by DGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.
=====================================================================
.. Parameters ..
public void dgetrs(String trans, int n, int nrhs, double[] a, int lda, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETRS solves a system of linear equations
A * X = B or A' * X = B
with a general N-by-N matrix A using the LU factorization computed
by DGETRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by DGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgetrs(String trans, int n, int nrhs, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGETRS solves a system of linear equations
A * X = B or A' * X = B
with a general N-by-N matrix A using the LU factorization computed
by DGETRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by DGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dggbak(String job, String side, int n, int ilo, int ihi, double[] lscale, double[] rscale, int m, double[] v, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGBAK forms the right or left eigenvectors of a real generalized
eigenvalue problem A*x = lambda*B*x, by backward transformation on
the computed eigenvectors of the balanced pair of matrices output by
DGGBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N': do nothing, return immediately;
= 'P': do backward transformation for permutation only;
= 'S': do backward transformation for scaling only;
= 'B': do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to DGGBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by DGGBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
LSCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutations and/or scaling factors applied
to the left side of A and B, as returned by DGGBAL.
RSCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutations and/or scaling factors applied
to the right side of A and B, as returned by DGGBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by DTGEVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the matrix V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. Ward, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Local Scalars ..
public void dggbak(String job, String side, int n, int ilo, int ihi, double[] lscale, int _lscale_offset, double[] rscale, int _rscale_offset, int m, double[] v, int _v_offset, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGBAK forms the right or left eigenvectors of a real generalized
eigenvalue problem A*x = lambda*B*x, by backward transformation on
the computed eigenvectors of the balanced pair of matrices output by
DGGBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N': do nothing, return immediately;
= 'P': do backward transformation for permutation only;
= 'S': do backward transformation for scaling only;
= 'B': do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to DGGBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by DGGBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
LSCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutations and/or scaling factors applied
to the left side of A and B, as returned by DGGBAL.
RSCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutations and/or scaling factors applied
to the right side of A and B, as returned by DGGBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by DTGEVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the matrix V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. Ward, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Local Scalars ..
public void dggbal(String job, int n, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] lscale, double[] rscale, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGBAL balances a pair of general real matrices (A,B). This
involves, first, permuting A and B by similarity transformations to
isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
elements on the diagonal; and second, applying a diagonal similarity
transformation to rows and columns ILO to IHI to make the rows
and columns as close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrices, and improve the
accuracy of the computed eigenvalues and/or eigenvectors in the
generalized eigenvalue problem A*x = lambda*B*x.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A and B:
= 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
and RSCALE(I) = 1.0 for i = 1,...,N.
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the input matrix B.
On exit, B is overwritten by the balanced matrix.
If JOB = 'N', B is not referenced.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If P(j) is the index of the
row interchanged with row j, and D(j)
is the scaling factor applied to row j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If P(j) is the index of the
column interchanged with column j, and D(j)
is the scaling factor applied to column j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
WORK (workspace) REAL array, dimension (lwork)
lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
at least 1 when JOB = 'N' or 'P'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. WARD, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Parameters ..
public void dggbal(String job, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] lscale, int _lscale_offset, double[] rscale, int _rscale_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGBAL balances a pair of general real matrices (A,B). This
involves, first, permuting A and B by similarity transformations to
isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
elements on the diagonal; and second, applying a diagonal similarity
transformation to rows and columns ILO to IHI to make the rows
and columns as close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrices, and improve the
accuracy of the computed eigenvalues and/or eigenvectors in the
generalized eigenvalue problem A*x = lambda*B*x.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A and B:
= 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
and RSCALE(I) = 1.0 for i = 1,...,N.
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the input matrix B.
On exit, B is overwritten by the balanced matrix.
If JOB = 'N', B is not referenced.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If P(j) is the index of the
row interchanged with row j, and D(j)
is the scaling factor applied to row j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If P(j) is the index of the
column interchanged with column j, and D(j)
is the scaling factor applied to column j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
WORK (workspace) REAL array, dimension (lwork)
lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
at least 1 when JOB = 'N' or 'P'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. WARD, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Parameters ..
public void dgges(String jobvsl, String jobvsr, String sort, Object selctg, int n, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW sdim, double[] alphar, double[] alphai, double[] beta, double[] vsl, int ldvsl, double[] vsr, int ldvsr, double[] work, int lwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
the generalized eigenvalues, the generalized real Schur form (S,T),
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T.The
leading columns of VSL and VSR then form an orthonormal basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver
DGGEV instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG);
SELCTG (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISI
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
in this case.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i,
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
For good performance , LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in DTGSEN.
=====================================================================
.. Parameters ..
public void dgges(String jobvsl, String jobvsr, String sort, Object selctg, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW sdim, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] vsl, int _vsl_offset, int ldvsl, double[] vsr, int _vsr_offset, int ldvsr, double[] work, int _work_offset, int lwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
the generalized eigenvalues, the generalized real Schur form (S,T),
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T.The
leading columns of VSL and VSR then form an orthonormal basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver
DGGEV instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG);
SELCTG (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISI
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
in this case.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i,
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
For good performance , LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in DTGSEN.
=====================================================================
.. Parameters ..
public void dggesx(String jobvsl, String jobvsr, String sort, Object selctg, String sense, int n, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW sdim, double[] alphar, double[] alphai, double[] beta, double[] vsl, int ldvsl, double[] vsr, int ldvsr, double[] rconde, double[] rcondv, double[] work, int lwork, int[] iwork, int liwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGESX computes for a pair of N-by-N real nonsymmetric matrices
(A,B), the generalized eigenvalues, the real Schur form (S,T), and,
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T; computes
a reciprocal condition number for the average of the selected
eigenvalues (RCONDE); and computes a reciprocal condition number for
the right and left deflating subspaces corresponding to the selected
eigenvalues (RCONDV). The leading columns of VSL and VSR then form
an orthonormal basis for the corresponding left and right eigenspaces
(deflating subspaces).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG).
SELCTG (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISI
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that a selected complex eigenvalue may no longer satisfy
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
since ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned), in this
case INFO is set to N+3.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N' : None are computed;
= 'E' : Computed for average of selected eigenvalues only;
= 'V' : Computed for selected deflating subspaces only;
= 'B' : Computed for both.
If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
RCONDE (output) DOUBLE PRECISION array, dimension ( 2 )
If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
reciprocal condition numbers for the average of the selected
eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) DOUBLE PRECISION array, dimension ( 2 )
If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
reciprocal condition numbers for the selected deflating
subspaces.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
LWORK >= max( 8*N, 6*N+16 ).
Note that 2*SDIM*(N-SDIM) <= N*N/2.
Note also that an error is only returned if
LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
this may not be large enough.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the bound on the optimal size of the WORK
array and the minimum size of the IWORK array, returns these
values as the first entries of the WORK and IWORK arrays, and
no error message related to LWORK or LIWORK is issued by
XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
LIWORK >= N+6.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the bound on the optimal size of the
WORK array and the minimum size of the IWORK array, returns
these values as the first entries of the WORK and IWORK
arrays, and no error message related to LWORK or LIWORK is
issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in DTGSEN.
Further details
===============
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / RCONDE( 1 ).
An approximate (asymptotic) bound on the maximum angular error in
the computed deflating subspaces is
EPS * norm((A, B)) / RCONDV( 2 ).
See LAPACK User's Guide, section 4.11 for more information.
=====================================================================
.. Parameters ..
public void dggesx(String jobvsl, String jobvsr, String sort, Object selctg, String sense, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW sdim, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] vsl, int _vsl_offset, int ldvsl, double[] vsr, int _vsr_offset, int ldvsr, double[] rconde, int _rconde_offset, double[] rcondv, int _rcondv_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGESX computes for a pair of N-by-N real nonsymmetric matrices
(A,B), the generalized eigenvalues, the real Schur form (S,T), and,
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T; computes
a reciprocal condition number for the average of the selected
eigenvalues (RCONDE); and computes a reciprocal condition number for
the right and left deflating subspaces corresponding to the selected
eigenvalues (RCONDV). The leading columns of VSL and VSR then form
an orthonormal basis for the corresponding left and right eigenspaces
(deflating subspaces).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG).
SELCTG (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISI
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that a selected complex eigenvalue may no longer satisfy
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
since ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned), in this
case INFO is set to N+3.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N' : None are computed;
= 'E' : Computed for average of selected eigenvalues only;
= 'V' : Computed for selected deflating subspaces only;
= 'B' : Computed for both.
If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
RCONDE (output) DOUBLE PRECISION array, dimension ( 2 )
If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
reciprocal condition numbers for the average of the selected
eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) DOUBLE PRECISION array, dimension ( 2 )
If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
reciprocal condition numbers for the selected deflating
subspaces.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
LWORK >= max( 8*N, 6*N+16 ).
Note that 2*SDIM*(N-SDIM) <= N*N/2.
Note also that an error is only returned if
LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
this may not be large enough.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the bound on the optimal size of the WORK
array and the minimum size of the IWORK array, returns these
values as the first entries of the WORK and IWORK arrays, and
no error message related to LWORK or LIWORK is issued by
XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
LIWORK >= N+6.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the bound on the optimal size of the
WORK array and the minimum size of the IWORK array, returns
these values as the first entries of the WORK and IWORK
arrays, and no error message related to LWORK or LIWORK is
issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in DTGSEN.
Further details
===============
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / RCONDE( 1 ).
An approximate (asymptotic) bound on the maximum angular error in
the computed deflating subspaces is
EPS * norm((A, B)) / RCONDV( 2 ).
See LAPACK User's Guide, section 4.11 for more information.
=====================================================================
.. Parameters ..
public void dggev(String jobvl, String jobvr, int n, double[] a, int lda, double[] b, int ldb, double[] alphar, double[] alphai, double[] beta, double[] vl, int ldvl, double[] vr, int ldvr, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B .
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
alpha/beta. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: error return from DTGEVC.
=====================================================================
.. Parameters ..
public void dggev(String jobvl, String jobvr, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B .
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
alpha/beta. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: error return from DTGEVC.
=====================================================================
.. Parameters ..
public void dggevx(String balanc, String jobvl, String jobvr, String sense, int n, double[] a, int lda, double[] b, int ldb, double[] alphar, double[] alphai, double[] beta, double[] vl, int ldvl, double[] vr, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] lscale, double[] rscale, org.netlib.util.doubleW abnrm, org.netlib.util.doubleW bbnrm, double[] rconde, double[] rcondv, double[] work, int lwork, int[] iwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
the eigenvalues (RCONDE), and reciprocal condition numbers for the
right eigenvectors (RCONDV).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j) .
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B.
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
BALANC (input) CHARACTER*1
Specifies the balance option to be performed.
= 'N': do not diagonally scale or permute;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
Computed reciprocal condition numbers will be for the
matrices after permuting and/or balancing. Permuting does
not change condition numbers (in exact arithmetic), but
balancing does.
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': none are computed;
= 'E': computed for eigenvalues only;
= 'V': computed for eigenvectors only;
= 'B': computed for eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then A contains the first part of the real Schur
form of the "balanced" versions of the input A and B.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then B contains the second part of the real Schur
form of the "balanced" versions of the input A and B.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If PL(j) is the index of the
row interchanged with row j, and DL(j) is the scaling
factor applied to row j, then
LSCALE(j) = PL(j) for j = 1,...,ILO-1
= DL(j) for j = ILO,...,IHI
= PL(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If PR(j) is the index of the
column interchanged with column j, and DR(j) is the scaling
factor applied to column j, then
RSCALE(j) = PR(j) for j = 1,...,ILO-1
= DR(j) for j = ILO,...,IHI
= PR(j) for j = IHI+1,...,N
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) DOUBLE PRECISION
The one-norm of the balanced matrix A.
BBNRM (output) DOUBLE PRECISION
The one-norm of the balanced matrix B.
RCONDE (output) DOUBLE PRECISION array, dimension (N)
If SENSE = 'E' or 'B', the reciprocal condition numbers of
the eigenvalues, stored in consecutive elements of the array.
For a complex conjugate pair of eigenvalues two consecutive
elements of RCONDE are set to the same value. Thus RCONDE(j),
RCONDV(j), and the j-th columns of VL and VR all correspond
to the j-th eigenpair.
If SENSE = 'N or 'V', RCONDE is not referenced.
RCONDV (output) DOUBLE PRECISION array, dimension (N)
If SENSE = 'V' or 'B', the estimated reciprocal condition
numbers of the eigenvectors, stored in consecutive elements
of the array. For a complex eigenvector two consecutive
elements of RCONDV are set to the same value. If the
eigenvalues cannot be reordered to compute RCONDV(j),
RCONDV(j) is set to 0; this can only occur when the true
value would be very small anyway.
If SENSE = 'N' or 'E', RCONDV is not referenced.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
LWORK >= max(1,6*N).
If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N+6)
If SENSE = 'E', IWORK is not referenced.
BWORK (workspace) LOGICAL array, dimension (N)
If SENSE = 'N', BWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: error return from DTGEVC.
Further Details
===============
Balancing a matrix pair (A,B) includes, first, permuting rows and
columns to isolate eigenvalues, second, applying diagonal similarity
transformation to the rows and columns to make the rows and columns
as close in norm as possible. The computed reciprocal condition
numbers correspond to the balanced matrix. Permuting rows and columns
will not change the condition numbers (in exact arithmetic) but
diagonal scaling will. For further explanation of balancing, see
section 4.11.1.2 of LAPACK Users' Guide.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
An approximate error bound for the angle between the i-th computed
eigenvector VL(i) or VR(i) is given by
EPS * norm(ABNRM, BBNRM) / DIF(i).
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see section 4.11 of LAPACK User's Guide.
=====================================================================
.. Parameters ..
public void dggevx(String balanc, String jobvl, String jobvr, String sense, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, double[] lscale, int _lscale_offset, double[] rscale, int _rscale_offset, org.netlib.util.doubleW abnrm, org.netlib.util.doubleW bbnrm, double[] rconde, int _rconde_offset, double[] rcondv, int _rcondv_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
the eigenvalues (RCONDE), and reciprocal condition numbers for the
right eigenvectors (RCONDV).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j) .
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B.
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
BALANC (input) CHARACTER*1
Specifies the balance option to be performed.
= 'N': do not diagonally scale or permute;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
Computed reciprocal condition numbers will be for the
matrices after permuting and/or balancing. Permuting does
not change condition numbers (in exact arithmetic), but
balancing does.
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': none are computed;
= 'E': computed for eigenvalues only;
= 'V': computed for eigenvectors only;
= 'B': computed for eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then A contains the first part of the real Schur
form of the "balanced" versions of the input A and B.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then B contains the second part of the real Schur
form of the "balanced" versions of the input A and B.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If PL(j) is the index of the
row interchanged with row j, and DL(j) is the scaling
factor applied to row j, then
LSCALE(j) = PL(j) for j = 1,...,ILO-1
= DL(j) for j = ILO,...,IHI
= PL(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If PR(j) is the index of the
column interchanged with column j, and DR(j) is the scaling
factor applied to column j, then
RSCALE(j) = PR(j) for j = 1,...,ILO-1
= DR(j) for j = ILO,...,IHI
= PR(j) for j = IHI+1,...,N
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) DOUBLE PRECISION
The one-norm of the balanced matrix A.
BBNRM (output) DOUBLE PRECISION
The one-norm of the balanced matrix B.
RCONDE (output) DOUBLE PRECISION array, dimension (N)
If SENSE = 'E' or 'B', the reciprocal condition numbers of
the eigenvalues, stored in consecutive elements of the array.
For a complex conjugate pair of eigenvalues two consecutive
elements of RCONDE are set to the same value. Thus RCONDE(j),
RCONDV(j), and the j-th columns of VL and VR all correspond
to the j-th eigenpair.
If SENSE = 'N or 'V', RCONDE is not referenced.
RCONDV (output) DOUBLE PRECISION array, dimension (N)
If SENSE = 'V' or 'B', the estimated reciprocal condition
numbers of the eigenvectors, stored in consecutive elements
of the array. For a complex eigenvector two consecutive
elements of RCONDV are set to the same value. If the
eigenvalues cannot be reordered to compute RCONDV(j),
RCONDV(j) is set to 0; this can only occur when the true
value would be very small anyway.
If SENSE = 'N' or 'E', RCONDV is not referenced.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
LWORK >= max(1,6*N).
If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N+6)
If SENSE = 'E', IWORK is not referenced.
BWORK (workspace) LOGICAL array, dimension (N)
If SENSE = 'N', BWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: error return from DTGEVC.
Further Details
===============
Balancing a matrix pair (A,B) includes, first, permuting rows and
columns to isolate eigenvalues, second, applying diagonal similarity
transformation to the rows and columns to make the rows and columns
as close in norm as possible. The computed reciprocal condition
numbers correspond to the balanced matrix. Permuting rows and columns
will not change the condition numbers (in exact arithmetic) but
diagonal scaling will. For further explanation of balancing, see
section 4.11.1.2 of LAPACK Users' Guide.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
An approximate error bound for the angle between the i-th computed
eigenvector VL(i) or VR(i) is given by
EPS * norm(ABNRM, BBNRM) / DIF(i).
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see section 4.11 of LAPACK User's Guide.
=====================================================================
.. Parameters ..
public void dggglm(int n, int m, int p, double[] a, int lda, double[] b, int ldb, double[] d, double[] x, double[] y, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
minimize || y ||_2 subject to d = A*x + B*y
x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
given N-vector. It is assumed that M <= N <= M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always
consistent, and there is a unique solution x and a minimal 2-norm
solution y, which is obtained using a generalized QR factorization
of the matrices (A, B) given by
A = Q*(R), B = Q*T*Z.
(0)
In particular, if matrix B is square nonsingular, then the problem
GLM is equivalent to the following weighted linear least squares
problem
minimize || inv(B)*(d-A*x) ||_2
x
where inv(B) denotes the inverse of B.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. 0 <= M <= N.
P (input) INTEGER
The number of columns of the matrix B. P >= N-M.
A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the upper triangular part of the array A contains
the M-by-M upper triangular matrix R.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)th subdiagonal
contain the N-by-P upper trapezoidal matrix T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D is the left hand side of the GLM equation.
On exit, D is destroyed.
X (output) DOUBLE PRECISION array, dimension (M)
Y (output) DOUBLE PRECISION array, dimension (P)
On exit, X and Y are the solutions of the GLM problem.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N+M+P).
For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
where NB is an upper bound for the optimal blocksizes for
DGEQRF, SGERQF, DORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with A in the
generalized QR factorization of the pair (A, B) is
singular, so that rank(A) < M; the least squares
solution could not be computed.
= 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
factor T associated with B in the generalized QR
factorization of the pair (A, B) is singular, so that
rank( A B ) < N; the least squares solution could not
be computed.
===================================================================
.. Parameters ..
public void dggglm(int n, int m, int p, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] d, int _d_offset, double[] x, int _x_offset, double[] y, int _y_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
minimize || y ||_2 subject to d = A*x + B*y
x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
given N-vector. It is assumed that M <= N <= M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always
consistent, and there is a unique solution x and a minimal 2-norm
solution y, which is obtained using a generalized QR factorization
of the matrices (A, B) given by
A = Q*(R), B = Q*T*Z.
(0)
In particular, if matrix B is square nonsingular, then the problem
GLM is equivalent to the following weighted linear least squares
problem
minimize || inv(B)*(d-A*x) ||_2
x
where inv(B) denotes the inverse of B.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. 0 <= M <= N.
P (input) INTEGER
The number of columns of the matrix B. P >= N-M.
A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the upper triangular part of the array A contains
the M-by-M upper triangular matrix R.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)th subdiagonal
contain the N-by-P upper trapezoidal matrix T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D is the left hand side of the GLM equation.
On exit, D is destroyed.
X (output) DOUBLE PRECISION array, dimension (M)
Y (output) DOUBLE PRECISION array, dimension (P)
On exit, X and Y are the solutions of the GLM problem.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N+M+P).
For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
where NB is an upper bound for the optimal blocksizes for
DGEQRF, SGERQF, DORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with A in the
generalized QR factorization of the pair (A, B) is
singular, so that rank(A) < M; the least squares
solution could not be computed.
= 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
factor T associated with B in the generalized QR
factorization of the pair (A, B) is singular, so that
rank( A B ) < N; the least squares solution could not
be computed.
===================================================================
.. Parameters ..
public void dgghrd(String compq, String compz, int n, int ilo, int ihi, double[] a, int lda, double[] b, int ldb, double[] q, int ldq, double[] z, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGHRD reduces a pair of real matrices (A,B) to generalized upper
Hessenberg form using orthogonal transformations, where A is a
general matrix and B is upper triangular. The form of the
generalized eigenvalue problem is
A*x = lambda*B*x,
and B is typically made upper triangular by computing its QR
factorization and moving the orthogonal matrix Q to the left side
of the equation.
This subroutine simultaneously reduces A to a Hessenberg matrix H:
Q**T*A*Z = H
and transforms B to another upper triangular matrix T:
Q**T*B*Z = T
in order to reduce the problem to its standard form
H*y = lambda*T*y
where y = Z**T*x.
The orthogonal matrices Q and Z are determined as products of Givens
rotations. They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
If Q1 is the orthogonal matrix from the QR factorization of B in the
original equation A*x = lambda*B*x, then DGGHRD reduces the original
problem to generalized Hessenberg form.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry,
and the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': do not compute Z;
= 'I': Z is initialized to the unit matrix, and the
orthogonal matrix Z is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry,
and the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of A which are to be
reduced. It is assumed that A is already upper triangular
in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
normally set by a previous call to SGGBAL; otherwise they
should be set to 1 and N respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
rest is set to zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the N-by-N upper triangular matrix B.
On exit, the upper triangular matrix T = Q**T B Z. The
elements below the diagonal are set to zero.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, if COMPQ = 'V', the orthogonal matrix Q1,
typically from the QR factorization of B.
On exit, if COMPQ='I', the orthogonal matrix Q, and if
COMPQ = 'V', the product Q1*Q.
Not referenced if COMPQ='N'.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1.
On exit, if COMPZ='I', the orthogonal matrix Z, and if
COMPZ = 'V', the product Z1*Z.
Not referenced if COMPZ='N'.
LDZ (input) INTEGER
The leading dimension of the array Z.
LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
This routine reduces A to Hessenberg and B to triangular form by
an unblocked reduction, as described in _Matrix_Computations_,
by Golub and Van Loan (Johns Hopkins Press.)
=====================================================================
.. Parameters ..
public void dgghrd(String compq, String compz, int n, int ilo, int ihi, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] q, int _q_offset, int ldq, double[] z, int _z_offset, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGHRD reduces a pair of real matrices (A,B) to generalized upper
Hessenberg form using orthogonal transformations, where A is a
general matrix and B is upper triangular. The form of the
generalized eigenvalue problem is
A*x = lambda*B*x,
and B is typically made upper triangular by computing its QR
factorization and moving the orthogonal matrix Q to the left side
of the equation.
This subroutine simultaneously reduces A to a Hessenberg matrix H:
Q**T*A*Z = H
and transforms B to another upper triangular matrix T:
Q**T*B*Z = T
in order to reduce the problem to its standard form
H*y = lambda*T*y
where y = Z**T*x.
The orthogonal matrices Q and Z are determined as products of Givens
rotations. They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
If Q1 is the orthogonal matrix from the QR factorization of B in the
original equation A*x = lambda*B*x, then DGGHRD reduces the original
problem to generalized Hessenberg form.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry,
and the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': do not compute Z;
= 'I': Z is initialized to the unit matrix, and the
orthogonal matrix Z is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry,
and the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of A which are to be
reduced. It is assumed that A is already upper triangular
in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
normally set by a previous call to SGGBAL; otherwise they
should be set to 1 and N respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
rest is set to zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the N-by-N upper triangular matrix B.
On exit, the upper triangular matrix T = Q**T B Z. The
elements below the diagonal are set to zero.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, if COMPQ = 'V', the orthogonal matrix Q1,
typically from the QR factorization of B.
On exit, if COMPQ='I', the orthogonal matrix Q, and if
COMPQ = 'V', the product Q1*Q.
Not referenced if COMPQ='N'.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1.
On exit, if COMPZ='I', the orthogonal matrix Z, and if
COMPZ = 'V', the product Z1*Z.
Not referenced if COMPZ='N'.
LDZ (input) INTEGER
The leading dimension of the array Z.
LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
This routine reduces A to Hessenberg and B to triangular form by
an unblocked reduction, as described in _Matrix_Computations_,
by Golub and Van Loan (Johns Hopkins Press.)
=====================================================================
.. Parameters ..
public void dgglse(int m, int n, int p, double[] a, int lda, double[] b, int ldb, double[] c, double[] d, double[] x, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGLSE solves the linear equality-constrained least squares (LSE)
problem:
minimize || c - A*x ||_2 subject to B*x = d
where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
M-vector, and d is a given P-vector. It is assumed that
P <= N <= M+P, and
rank(B) = P and rank( (A) ) = N.
( (B) )
These conditions ensure that the LSE problem has a unique solution,
which is obtained using a generalized RQ factorization of the
matrices (B, A) given by
B = (0 R)*Q, A = Z*T*Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. 0 <= P <= N <= M+P.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
contains the P-by-P upper triangular matrix R.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
C (input/output) DOUBLE PRECISION array, dimension (M)
On entry, C contains the right hand side vector for the
least squares part of the LSE problem.
On exit, the residual sum of squares for the solution
is given by the sum of squares of elements N-P+1 to M of
vector C.
D (input/output) DOUBLE PRECISION array, dimension (P)
On entry, D contains the right hand side vector for the
constrained equation.
On exit, D is destroyed.
X (output) DOUBLE PRECISION array, dimension (N)
On exit, X is the solution of the LSE problem.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M+N+P).
For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
where NB is an upper bound for the optimal blocksizes for
DGEQRF, SGERQF, DORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with B in the
generalized RQ factorization of the pair (B, A) is
singular, so that rank(B) < P; the least squares
solution could not be computed.
= 2: the (N-P) by (N-P) part of the upper trapezoidal factor
T associated with A in the generalized RQ factorization
of the pair (B, A) is singular, so that
rank( (A) ) < N; the least squares solution could not
( (B) )
be computed.
=====================================================================
.. Parameters ..
public void dgglse(int m, int n, int p, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] c, int _c_offset, double[] d, int _d_offset, double[] x, int _x_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGLSE solves the linear equality-constrained least squares (LSE)
problem:
minimize || c - A*x ||_2 subject to B*x = d
where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
M-vector, and d is a given P-vector. It is assumed that
P <= N <= M+P, and
rank(B) = P and rank( (A) ) = N.
( (B) )
These conditions ensure that the LSE problem has a unique solution,
which is obtained using a generalized RQ factorization of the
matrices (B, A) given by
B = (0 R)*Q, A = Z*T*Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. 0 <= P <= N <= M+P.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
contains the P-by-P upper triangular matrix R.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
C (input/output) DOUBLE PRECISION array, dimension (M)
On entry, C contains the right hand side vector for the
least squares part of the LSE problem.
On exit, the residual sum of squares for the solution
is given by the sum of squares of elements N-P+1 to M of
vector C.
D (input/output) DOUBLE PRECISION array, dimension (P)
On entry, D contains the right hand side vector for the
constrained equation.
On exit, D is destroyed.
X (output) DOUBLE PRECISION array, dimension (N)
On exit, X is the solution of the LSE problem.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M+N+P).
For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
where NB is an upper bound for the optimal blocksizes for
DGEQRF, SGERQF, DORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with B in the
generalized RQ factorization of the pair (B, A) is
singular, so that rank(B) < P; the least squares
solution could not be computed.
= 2: the (N-P) by (N-P) part of the upper trapezoidal factor
T associated with A in the generalized RQ factorization
of the pair (B, A) is singular, so that
rank( (A) ) < N; the least squares solution could not
( (B) )
be computed.
=====================================================================
.. Parameters ..
public void dggqrf(int n, int m, int p, double[] a, int lda, double[] taua, double[] b, int ldb, double[] taub, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGQRF computes a generalized QR factorization of an N-by-M matrix A
and an N-by-P matrix B:
A = Q*R, B = Q*T*Z,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N,
( 0 ) N-M N M-N
M
where R11 is upper triangular, and
if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P,
P-N N ( T21 ) P
P
where T12 or T21 is upper triangular.
In particular, if B is square and nonsingular, the GQR factorization
of A and B implicitly gives the QR factorization of inv(B)*A:
inv(B)*A = Z'*(inv(T)*R)
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. M >= 0.
P (input) INTEGER
The number of columns of the matrix B. P >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(N,M)-by-M upper trapezoidal matrix R (R is
upper triangular if N >= M); the elements below the diagonal,
with the array TAUA, represent the orthogonal matrix Q as a
product of min(N,M) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAUA (output) DOUBLE PRECISION array, dimension (min(N,M))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) DOUBLE PRECISION array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)-th subdiagonal
contain the N-by-P upper trapezoidal matrix T; the remaining
elements, with the array TAUB, represent the orthogonal
matrix Z as a product of elementary reflectors (see Further
Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
TAUB (output) DOUBLE PRECISION array, dimension (min(N,P))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the QR factorization
of an N-by-M matrix, NB2 is the optimal blocksize for the
RQ factorization of an N-by-P matrix, and NB3 is the optimal
blocksize for a call of DORMQR.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(n,m).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine DORGQR.
To use Q to update another matrix, use LAPACK subroutine DORMQR.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(n,p).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine DORGRQ.
To use Z to update another matrix, use LAPACK subroutine DORMRQ.
=====================================================================
.. Local Scalars ..
public void dggqrf(int n, int m, int p, double[] a, int _a_offset, int lda, double[] taua, int _taua_offset, double[] b, int _b_offset, int ldb, double[] taub, int _taub_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGQRF computes a generalized QR factorization of an N-by-M matrix A
and an N-by-P matrix B:
A = Q*R, B = Q*T*Z,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N,
( 0 ) N-M N M-N
M
where R11 is upper triangular, and
if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P,
P-N N ( T21 ) P
P
where T12 or T21 is upper triangular.
In particular, if B is square and nonsingular, the GQR factorization
of A and B implicitly gives the QR factorization of inv(B)*A:
inv(B)*A = Z'*(inv(T)*R)
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. M >= 0.
P (input) INTEGER
The number of columns of the matrix B. P >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(N,M)-by-M upper trapezoidal matrix R (R is
upper triangular if N >= M); the elements below the diagonal,
with the array TAUA, represent the orthogonal matrix Q as a
product of min(N,M) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAUA (output) DOUBLE PRECISION array, dimension (min(N,M))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) DOUBLE PRECISION array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)-th subdiagonal
contain the N-by-P upper trapezoidal matrix T; the remaining
elements, with the array TAUB, represent the orthogonal
matrix Z as a product of elementary reflectors (see Further
Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
TAUB (output) DOUBLE PRECISION array, dimension (min(N,P))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the QR factorization
of an N-by-M matrix, NB2 is the optimal blocksize for the
RQ factorization of an N-by-P matrix, and NB3 is the optimal
blocksize for a call of DORMQR.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(n,m).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine DORGQR.
To use Q to update another matrix, use LAPACK subroutine DORMQR.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(n,p).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine DORGRQ.
To use Z to update another matrix, use LAPACK subroutine DORMRQ.
=====================================================================
.. Local Scalars ..
public void dggrqf(int m, int p, int n, double[] a, int lda, double[] taua, double[] b, int ldb, double[] taub, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGRQF computes a generalized RQ factorization of an M-by-N matrix A
and a P-by-N matrix B:
A = R*Q, B = Z*T*Q,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,
N-M M ( R21 ) N
N
where R12 or R21 is upper triangular, and
if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,
( 0 ) P-N P N-P
N
where T11 is upper triangular.
In particular, if B is square and nonsingular, the GRQ factorization
of A and B implicitly gives the RQ factorization of A*inv(B):
A*inv(B) = (R*inv(T))*Z'
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, if M <= N, the upper triangle of the subarray
A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
if M > N, the elements on and above the (M-N)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R; the remaining
elements, with the array TAUA, represent the orthogonal
matrix Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAUA (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the elements on and above the diagonal of the array
contain the min(P,N)-by-N upper trapezoidal matrix T (T is
upper triangular if P >= N); the elements below the diagonal,
with the array TAUB, represent the orthogonal matrix Z as a
product of elementary reflectors (see Further Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TAUB (output) DOUBLE PRECISION array, dimension (min(P,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the RQ factorization
of an M-by-N matrix, NB2 is the optimal blocksize for the
QR factorization of a P-by-N matrix, and NB3 is the optimal
blocksize for a call of DORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INF0= -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine DORGRQ.
To use Q to update another matrix, use LAPACK subroutine DORMRQ.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(p,n).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine DORGQR.
To use Z to update another matrix, use LAPACK subroutine DORMQR.
=====================================================================
.. Local Scalars ..
public void dggrqf(int m, int p, int n, double[] a, int _a_offset, int lda, double[] taua, int _taua_offset, double[] b, int _b_offset, int ldb, double[] taub, int _taub_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGRQF computes a generalized RQ factorization of an M-by-N matrix A
and a P-by-N matrix B:
A = R*Q, B = Z*T*Q,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,
N-M M ( R21 ) N
N
where R12 or R21 is upper triangular, and
if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,
( 0 ) P-N P N-P
N
where T11 is upper triangular.
In particular, if B is square and nonsingular, the GRQ factorization
of A and B implicitly gives the RQ factorization of A*inv(B):
A*inv(B) = (R*inv(T))*Z'
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, if M <= N, the upper triangle of the subarray
A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
if M > N, the elements on and above the (M-N)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R; the remaining
elements, with the array TAUA, represent the orthogonal
matrix Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAUA (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the elements on and above the diagonal of the array
contain the min(P,N)-by-N upper trapezoidal matrix T (T is
upper triangular if P >= N); the elements below the diagonal,
with the array TAUB, represent the orthogonal matrix Z as a
product of elementary reflectors (see Further Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TAUB (output) DOUBLE PRECISION array, dimension (min(P,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the RQ factorization
of an M-by-N matrix, NB2 is the optimal blocksize for the
QR factorization of a P-by-N matrix, and NB3 is the optimal
blocksize for a call of DORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INF0= -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine DORGRQ.
To use Q to update another matrix, use LAPACK subroutine DORMRQ.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(p,n).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine DORGQR.
To use Z to update another matrix, use LAPACK subroutine DORMQR.
=====================================================================
.. Local Scalars ..
public void dggsvd(String jobu, String jobv, String jobq, int m, int n, int p, org.netlib.util.intW k, org.netlib.util.intW l, double[] a, int lda, double[] b, int ldb, double[] alpha, double[] beta, double[] u, int ldu, double[] v, int ldv, double[] q, int ldq, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGSVD computes the generalized singular value decomposition (GSVD)
of an M-by-N real matrix A and P-by-N real matrix B:
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
where U, V and Q are orthogonal matrices, and Z' is the transpose
of Z. Let K+L = the effective numerical rank of the matrix (A',B')',
then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the orthogonal
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V'.
If ( A',B')' has orthonormal columns, then the GSVD of A and B is
also equal to the CS decomposition of A and B. Furthermore, the GSVD
can be used to derive the solution of the eigenvalue problem:
A'*A x = lambda* B'*B x.
In some literature, the GSVD of A and B is presented in the form
U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in the Purpose section.
K + L = effective numerical rank of (A',B')'.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix R if M-K-L < 0.
See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
ALPHA (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0
U (output) DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) DOUBLE PRECISION array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) DOUBLE PRECISION array,
dimension (max(3*N,M,P)+N)
IWORK (workspace/output) INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine DTGSJA.
Internal Parameters
===================
TOLA DOUBLE PRECISION
TOLB DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
rank of (A',B')'. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MAZHEPS,
TOLB = MAX(P,N)*norm(B)*MAZHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
Further Details
===============
2-96 Based on modifications by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void dggsvd(String jobu, String jobv, String jobq, int m, int n, int p, org.netlib.util.intW k, org.netlib.util.intW l, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] alpha, int _alpha_offset, double[] beta, int _beta_offset, double[] u, int _u_offset, int ldu, double[] v, int _v_offset, int ldv, double[] q, int _q_offset, int ldq, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGSVD computes the generalized singular value decomposition (GSVD)
of an M-by-N real matrix A and P-by-N real matrix B:
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
where U, V and Q are orthogonal matrices, and Z' is the transpose
of Z. Let K+L = the effective numerical rank of the matrix (A',B')',
then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the orthogonal
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V'.
If ( A',B')' has orthonormal columns, then the GSVD of A and B is
also equal to the CS decomposition of A and B. Furthermore, the GSVD
can be used to derive the solution of the eigenvalue problem:
A'*A x = lambda* B'*B x.
In some literature, the GSVD of A and B is presented in the form
U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in the Purpose section.
K + L = effective numerical rank of (A',B')'.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix R if M-K-L < 0.
See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
ALPHA (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0
U (output) DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) DOUBLE PRECISION array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) DOUBLE PRECISION array,
dimension (max(3*N,M,P)+N)
IWORK (workspace/output) INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine DTGSJA.
Internal Parameters
===================
TOLA DOUBLE PRECISION
TOLB DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
rank of (A',B')'. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MAZHEPS,
TOLB = MAX(P,N)*norm(B)*MAZHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
Further Details
===============
2-96 Based on modifications by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void dggsvp(String jobu, String jobv, String jobq, int m, int p, int n, double[] a, int lda, double[] b, int ldb, double tola, double tolb, org.netlib.util.intW k, org.netlib.util.intW l, double[] u, int ldu, double[] v, int ldv, double[] q, int ldq, int[] iwork, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGSVP computes orthogonal matrices U, V and Q such that
N-K-L K L
U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
DGGSVD.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular (or trapezoidal) matrix
described in the Purpose section.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix described in
the Purpose section.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) DOUBLE PRECISION
TOLB (input) DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
TOLA = MAX(M,N)*norm(A)*MAZHEPS,
TOLB = MAX(P,N)*norm(B)*MAZHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A',B')'.
U (output) DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) DOUBLE PRECISION array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK (workspace) INTEGER array, dimension (N)
TAU (workspace) DOUBLE PRECISION array, dimension (N)
WORK (workspace) DOUBLE PRECISION array, dimension (max(3*N,M,P))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The subroutine uses LAPACK subroutine DGEQPF for the QR factorization
with column pivoting to detect the effective numerical rank of the
a matrix. It may be replaced by a better rank determination strategy.
=====================================================================
.. Parameters ..
public void dggsvp(String jobu, String jobv, String jobq, int m, int p, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double tola, double tolb, org.netlib.util.intW k, org.netlib.util.intW l, double[] u, int _u_offset, int ldu, double[] v, int _v_offset, int ldv, double[] q, int _q_offset, int ldq, int[] iwork, int _iwork_offset, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGGSVP computes orthogonal matrices U, V and Q such that
N-K-L K L
U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
DGGSVD.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular (or trapezoidal) matrix
described in the Purpose section.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix described in
the Purpose section.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) DOUBLE PRECISION
TOLB (input) DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
TOLA = MAX(M,N)*norm(A)*MAZHEPS,
TOLB = MAX(P,N)*norm(B)*MAZHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A',B')'.
U (output) DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) DOUBLE PRECISION array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK (workspace) INTEGER array, dimension (N)
TAU (workspace) DOUBLE PRECISION array, dimension (N)
WORK (workspace) DOUBLE PRECISION array, dimension (max(3*N,M,P))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The subroutine uses LAPACK subroutine DGEQPF for the QR factorization
with column pivoting to detect the effective numerical rank of the
a matrix. It may be replaced by a better rank determination strategy.
=====================================================================
.. Parameters ..
public void dgtcon(String norm, int n, double[] dl, double[] d, double[] du, double[] du2, int[] ipiv, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTCON estimates the reciprocal of the condition number of a real
tridiagonal matrix A using the LU factorization as computed by
DGTTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by DGTTRF.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
ANORM (input) DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgtcon(String norm, int n, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTCON estimates the reciprocal of the condition number of a real
tridiagonal matrix A using the LU factorization as computed by
DGTTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by DGTTRF.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
ANORM (input) DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dgtrfs(String trans, int n, int nrhs, double[] dl, double[] d, double[] du, double[] dlf, double[] df, double[] duf, double[] du2, int[] ipiv, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by DGTTRF.
DF (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DUF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dgtrfs(String trans, int n, int nrhs, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] dlf, int _dlf_offset, double[] df, int _df_offset, double[] duf, int _duf_offset, double[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by DGTTRF.
DF (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DUF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dgtsv(int n, int nrhs, double[] dl, double[] d, double[] du, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTSV solves the equation
A*X = B,
where A is an n by n tridiagonal matrix, by Gaussian elimination with
partial pivoting.
Note that the equation A'*X = B may be solved by interchanging the
order of the arguments DU and DL.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-2) elements of the
second super-diagonal of the upper triangular matrix U from
the LU factorization of A, in DL(1), ..., DL(n-2).
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of U.
DU (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N by NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero, and the solution
has not been computed. The factorization has not been
completed unless i = N.
=====================================================================
.. Parameters ..
public void dgtsv(int n, int nrhs, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTSV solves the equation
A*X = B,
where A is an n by n tridiagonal matrix, by Gaussian elimination with
partial pivoting.
Note that the equation A'*X = B may be solved by interchanging the
order of the arguments DU and DL.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-2) elements of the
second super-diagonal of the upper triangular matrix U from
the LU factorization of A, in DL(1), ..., DL(n-2).
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of U.
DU (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N by NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero, and the solution
has not been computed. The factorization has not been
completed unless i = N.
=====================================================================
.. Parameters ..
public void dgtsvx(String fact, String trans, int n, int nrhs, double[] dl, double[] d, double[] du, double[] dlf, double[] df, double[] duf, double[] du2, int[] ipiv, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B or A**T * X = B,
where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the LU decomposition is used to factor the matrix A
as A = L * U, where L is a product of permutation and unit lower
bidiagonal matrices and U is upper triangular with nonzeros in
only the main diagonal and first two superdiagonals.
2. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': DLF, DF, DUF, DU2, and IPIV contain the factored
form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
will not be modified.
= 'N': The matrix will be copied to DLF, DF, and DUF
and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then DLF is an input argument and on entry
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A as computed by DGTTRF.
If FACT = 'N', then DLF is an output argument and on exit
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A.
DF (input or output) DOUBLE PRECISION array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
DUF (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then DUF is an input argument and on entry
contains the (n-1) elements of the first superdiagonal of U.
If FACT = 'N', then DUF is an output argument and on exit
contains the (n-1) elements of the first superdiagonal of U.
DU2 (input or output) DOUBLE PRECISION array, dimension (N-2)
If FACT = 'F', then DU2 is an input argument and on entry
contains the (n-2) elements of the second superdiagonal of
U.
If FACT = 'N', then DU2 is an output argument and on exit
contains the (n-2) elements of the second superdiagonal of
U.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the LU factorization of A as
computed by DGTTRF.
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the LU factorization of A;
row i of the matrix was interchanged with row IPIV(i).
IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
a row interchange was not required.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has not been completed unless i = N, but the
factor U is exactly singular, so the solution
and error bounds could not be computed.
RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dgtsvx(String fact, String trans, int n, int nrhs, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] dlf, int _dlf_offset, double[] df, int _df_offset, double[] duf, int _duf_offset, double[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B or A**T * X = B,
where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the LU decomposition is used to factor the matrix A
as A = L * U, where L is a product of permutation and unit lower
bidiagonal matrices and U is upper triangular with nonzeros in
only the main diagonal and first two superdiagonals.
2. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': DLF, DF, DUF, DU2, and IPIV contain the factored
form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
will not be modified.
= 'N': The matrix will be copied to DLF, DF, and DUF
and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then DLF is an input argument and on entry
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A as computed by DGTTRF.
If FACT = 'N', then DLF is an output argument and on exit
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A.
DF (input or output) DOUBLE PRECISION array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
DUF (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then DUF is an input argument and on entry
contains the (n-1) elements of the first superdiagonal of U.
If FACT = 'N', then DUF is an output argument and on exit
contains the (n-1) elements of the first superdiagonal of U.
DU2 (input or output) DOUBLE PRECISION array, dimension (N-2)
If FACT = 'F', then DU2 is an input argument and on entry
contains the (n-2) elements of the second superdiagonal of
U.
If FACT = 'N', then DU2 is an output argument and on exit
contains the (n-2) elements of the second superdiagonal of
U.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the LU factorization of A as
computed by DGTTRF.
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the LU factorization of A;
row i of the matrix was interchanged with row IPIV(i).
IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
a row interchange was not required.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has not been completed unless i = N, but the
factor U is exactly singular, so the solution
and error bounds could not be computed.
RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dgttrf(int n, double[] dl, double[] d, double[] du, double[] du2, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTTRF computes an LU factorization of a real tridiagonal matrix A
using elimination with partial pivoting and row interchanges.
The factorization has the form
A = L * U
where L is a product of permutation and unit lower bidiagonal
matrices and U is upper triangular with nonzeros in only the main
diagonal and first two superdiagonals.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
DL (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-1) multipliers that
define the matrix L from the LU factorization of A.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of the
upper triangular matrix U from the LU factorization of A.
DU (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
DU2 (output) DOUBLE PRECISION array, dimension (N-2)
On exit, DU2 is overwritten by the (n-2) elements of the
second super-diagonal of U.
IPIV (output) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void dgttrf(int n, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTTRF computes an LU factorization of a real tridiagonal matrix A
using elimination with partial pivoting and row interchanges.
The factorization has the form
A = L * U
where L is a product of permutation and unit lower bidiagonal
matrices and U is upper triangular with nonzeros in only the main
diagonal and first two superdiagonals.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
DL (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-1) multipliers that
define the matrix L from the LU factorization of A.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of the
upper triangular matrix U from the LU factorization of A.
DU (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
DU2 (output) DOUBLE PRECISION array, dimension (N-2)
On exit, DU2 is overwritten by the (n-2) elements of the
second super-diagonal of U.
IPIV (output) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void dgttrs(String trans, int n, int nrhs, double[] dl, double[] d, double[] du, double[] du2, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTTRS solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dgttrs(String trans, int n, int nrhs, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DGTTRS solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dgtts2(int itrans, int n, int nrhs, double[] dl, double[] d, double[] du, double[] du2, int[] ipiv, double[] b, int ldb)
LAPACK
..
Purpose
=======
DGTTS2 solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.
Arguments
=========
ITRANS (input) INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A'* X = B (Transpose)
= 2: A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void dgtts2(int itrans, int n, int nrhs, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
DGTTS2 solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.
Arguments
=========
ITRANS (input) INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A'* X = B (Transpose)
= 2: A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void dhgeqz(String job, String compq, String compz, int n, int ilo, int ihi, double[] h, int ldh, double[] t, int ldt, double[] alphar, double[] alphai, double[] beta, double[] q, int ldq, double[] z, int ldz, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DHGEQZ computes the eigenvalues of a real matrix pair (H,T),
where H is an upper Hessenberg matrix and T is upper triangular,
using the double-shift QZ method.
Matrix pairs of this type are produced by the reduction to
generalized upper Hessenberg form of a real matrix pair (A,B):
A = Q1*H*Z1**T, B = Q1*T*Z1**T,
as computed by DGGHRD.
If JOB='S', then the Hessenberg-triangular pair (H,T) is
also reduced to generalized Schur form,
H = Q*S*Z**T, T = Q*P*Z**T,
where Q and Z are orthogonal matrices, P is an upper triangular
matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
(H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of P
corresponding to 2-by-2 blocks of S are reduced to positive diagonal
form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
P(j,j) > 0, and P(j+1,j+1) > 0.
Optionally, the orthogonal matrix Q from the generalized Schur
factorization may be postmultiplied into an input matrix Q1, and the
orthogonal matrix Z may be postmultiplied into an input matrix Z1.
If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced
the matrix pair (A,B) to generalized upper Hessenberg form, then the
output matrices Q1*Q and Z1*Z are the orthogonal factors from the
generalized Schur factorization of (A,B):
A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.
To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently
of (A,B)) are computed as a pair of values (alpha,beta), where alpha
complex and beta real.
If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
generalized nonsymmetric eigenvalue problem (GNEP)
A*x = lambda*B*x
and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
alternate form of the GNEP
mu*A*y = B*y.
Real eigenvalues can be read directly from the generalized Schur
form:
alpha = S(i,i), beta = P(i,i).
Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
pp. 241--256.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': Compute eigenvalues only;
= 'S': Compute eigenvalues and the Schur form.
COMPQ (input) CHARACTER*1
= 'N': Left Schur vectors (Q) are not computed;
= 'I': Q is initialized to the unit matrix and the matrix Q
of left Schur vectors of (H,T) is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry and
the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': Right Schur vectors (Z) are not computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of right Schur vectors of (H,T) is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry and
the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices H, T, Q, and Z. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of H which are in
Hessenberg form. It is assumed that A is already upper
triangular in rows and columns 1:ILO-1 and IHI+1:N.
If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
H (input/output) DOUBLE PRECISION array, dimension (LDH, N)
On entry, the N-by-N upper Hessenberg matrix H.
On exit, if JOB = 'S', H contains the upper quasi-triangular
matrix S from the generalized Schur factorization;
2-by-2 diagonal blocks (corresponding to complex conjugate
pairs of eigenvalues) are returned in standard form, with
H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0.
If JOB = 'E', the diagonal blocks of H match those of S, but
the rest of H is unspecified.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max( 1, N ).
T (input/output) DOUBLE PRECISION array, dimension (LDT, N)
On entry, the N-by-N upper triangular matrix T.
On exit, if JOB = 'S', T contains the upper triangular
matrix P from the generalized Schur factorization;
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of
are reduced to positive diagonal form, i.e., if H(j+1,j) is
non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
T(j+1,j+1) > 0.
If JOB = 'E', the diagonal blocks of T match those of P, but
the rest of T is unspecified.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max( 1, N ).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
BETA (output) DOUBLE PRECISION array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of left Schur
vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix
of left Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If COMPQ='V' or 'I', then LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of
right Schur vectors of (H,T), and if COMPZ = 'V', the
orthogonal matrix of right Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If COMPZ='V' or 'I', then LDZ >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1,...,N: the QZ iteration did not converge. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO+1,...,N should be correct.
= N+1,...,2*N: the shift calculation failed. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO-N+1,...,N should be correct.
Further Details
===============
Iteration counters:
JITER -- counts iterations.
IITER -- counts iterations run since ILAST was last
changed. This is therefore reset only when a 1-by-1 or
2-by-2 block deflates off the bottom.
=====================================================================
.. Parameters ..
$ SAFETY = 1.0E+0 )
public void dhgeqz(String job, String compq, String compz, int n, int ilo, int ihi, double[] h, int _h_offset, int ldh, double[] t, int _t_offset, int ldt, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] q, int _q_offset, int ldq, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DHGEQZ computes the eigenvalues of a real matrix pair (H,T),
where H is an upper Hessenberg matrix and T is upper triangular,
using the double-shift QZ method.
Matrix pairs of this type are produced by the reduction to
generalized upper Hessenberg form of a real matrix pair (A,B):
A = Q1*H*Z1**T, B = Q1*T*Z1**T,
as computed by DGGHRD.
If JOB='S', then the Hessenberg-triangular pair (H,T) is
also reduced to generalized Schur form,
H = Q*S*Z**T, T = Q*P*Z**T,
where Q and Z are orthogonal matrices, P is an upper triangular
matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
(H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of P
corresponding to 2-by-2 blocks of S are reduced to positive diagonal
form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
P(j,j) > 0, and P(j+1,j+1) > 0.
Optionally, the orthogonal matrix Q from the generalized Schur
factorization may be postmultiplied into an input matrix Q1, and the
orthogonal matrix Z may be postmultiplied into an input matrix Z1.
If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced
the matrix pair (A,B) to generalized upper Hessenberg form, then the
output matrices Q1*Q and Z1*Z are the orthogonal factors from the
generalized Schur factorization of (A,B):
A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.
To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently
of (A,B)) are computed as a pair of values (alpha,beta), where alpha
complex and beta real.
If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
generalized nonsymmetric eigenvalue problem (GNEP)
A*x = lambda*B*x
and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
alternate form of the GNEP
mu*A*y = B*y.
Real eigenvalues can be read directly from the generalized Schur
form:
alpha = S(i,i), beta = P(i,i).
Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
pp. 241--256.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': Compute eigenvalues only;
= 'S': Compute eigenvalues and the Schur form.
COMPQ (input) CHARACTER*1
= 'N': Left Schur vectors (Q) are not computed;
= 'I': Q is initialized to the unit matrix and the matrix Q
of left Schur vectors of (H,T) is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry and
the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': Right Schur vectors (Z) are not computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of right Schur vectors of (H,T) is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry and
the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices H, T, Q, and Z. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of H which are in
Hessenberg form. It is assumed that A is already upper
triangular in rows and columns 1:ILO-1 and IHI+1:N.
If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
H (input/output) DOUBLE PRECISION array, dimension (LDH, N)
On entry, the N-by-N upper Hessenberg matrix H.
On exit, if JOB = 'S', H contains the upper quasi-triangular
matrix S from the generalized Schur factorization;
2-by-2 diagonal blocks (corresponding to complex conjugate
pairs of eigenvalues) are returned in standard form, with
H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0.
If JOB = 'E', the diagonal blocks of H match those of S, but
the rest of H is unspecified.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max( 1, N ).
T (input/output) DOUBLE PRECISION array, dimension (LDT, N)
On entry, the N-by-N upper triangular matrix T.
On exit, if JOB = 'S', T contains the upper triangular
matrix P from the generalized Schur factorization;
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of
are reduced to positive diagonal form, i.e., if H(j+1,j) is
non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
T(j+1,j+1) > 0.
If JOB = 'E', the diagonal blocks of T match those of P, but
the rest of T is unspecified.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max( 1, N ).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
BETA (output) DOUBLE PRECISION array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of left Schur
vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix
of left Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If COMPQ='V' or 'I', then LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of
right Schur vectors of (H,T), and if COMPZ = 'V', the
orthogonal matrix of right Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If COMPZ='V' or 'I', then LDZ >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1,...,N: the QZ iteration did not converge. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO+1,...,N should be correct.
= N+1,...,2*N: the shift calculation failed. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO-N+1,...,N should be correct.
Further Details
===============
Iteration counters:
JITER -- counts iterations.
IITER -- counts iterations run since ILAST was last
changed. This is therefore reset only when a 1-by-1 or
2-by-2 block deflates off the bottom.
=====================================================================
.. Parameters ..
$ SAFETY = 1.0E+0 )
public void dhsein(String side, String eigsrc, String initv, boolean[] select, int n, double[] h, int ldh, double[] wr, double[] wi, double[] vl, int ldvl, double[] vr, int ldvr, int mm, org.netlib.util.intW m, double[] work, int[] ifaill, int[] ifailr, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DHSEIN uses inverse iteration to find specified right and/or left
eigenvectors of a real upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H
corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
EIGSRC (input) CHARACTER*1
Specifies the source of eigenvalues supplied in (WR,WI):
= 'Q': the eigenvalues were found using DHSEQR; thus, if
H has zero subdiagonal elements, and so is
block-triangular, then the j-th eigenvalue can be
assumed to be an eigenvalue of the block containing
the j-th row/column. This property allows DHSEIN to
perform inverse iteration on just one diagonal block.
= 'N': no assumptions are made on the correspondence
between eigenvalues and diagonal blocks. In this
case, DHSEIN must always perform inverse iteration
using the whole matrix H.
INITV (input) CHARACTER*1
= 'N': no initial vectors are supplied;
= 'U': user-supplied initial vectors are stored in the arrays
VL and/or VR.
SELECT (input/output) LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To select the
real eigenvector corresponding to a real eigenvalue WR(j),
SELECT(j) must be set to .TRUE.. To select the complex
eigenvector corresponding to a complex eigenvalue
(WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
.FALSE..
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) DOUBLE PRECISION array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input/output) DOUBLE PRECISION array, dimension (N)
WI (input) DOUBLE PRECISION array, dimension (N)
On entry, the real and imaginary parts of the eigenvalues of
H; a complex conjugate pair of eigenvalues must be stored in
consecutive elements of WR and WI.
On exit, WR may have been altered since close eigenvalues
are perturbed slightly in searching for independent
eigenvectors.
VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
contain starting vectors for the inverse iteration for the
left eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'L' or 'B', the left eigenvectors
specified by SELECT will be stored consecutively in the
columns of VL, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
contain starting vectors for the inverse iteration for the
right eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'R' or 'B', the right eigenvectors
specified by SELECT will be stored consecutively in the
columns of VR, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR required to
store the eigenvectors; each selected real eigenvector
occupies one column and each selected complex eigenvector
occupies two columns.
WORK (workspace) DOUBLE PRECISION array, dimension ((N+2)*N)
IFAILL (output) INTEGER array, dimension (MM)
If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
eigenvector in the i-th column of VL (corresponding to the
eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VL hold a complex eigenvector, then IFAILL(i) and
IFAILL(i+1) are set to the same value.
If SIDE = 'R', IFAILL is not referenced.
IFAILR (output) INTEGER array, dimension (MM)
If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
eigenvector in the i-th column of VR (corresponding to the
eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VR hold a complex eigenvector, then IFAILR(i) and
IFAILR(i+1) are set to the same value.
If SIDE = 'L', IFAILR is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, i is the number of eigenvectors which
failed to converge; see IFAILL and IFAILR for further
details.
Further Details
===============
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x|+|y|.
=====================================================================
.. Parameters ..
public void dhsein(String side, String eigsrc, String initv, boolean[] select, int _select_offset, int n, double[] h, int _h_offset, int ldh, double[] wr, int _wr_offset, double[] wi, int _wi_offset, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, int mm, org.netlib.util.intW m, double[] work, int _work_offset, int[] ifaill, int _ifaill_offset, int[] ifailr, int _ifailr_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DHSEIN uses inverse iteration to find specified right and/or left
eigenvectors of a real upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H
corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
EIGSRC (input) CHARACTER*1
Specifies the source of eigenvalues supplied in (WR,WI):
= 'Q': the eigenvalues were found using DHSEQR; thus, if
H has zero subdiagonal elements, and so is
block-triangular, then the j-th eigenvalue can be
assumed to be an eigenvalue of the block containing
the j-th row/column. This property allows DHSEIN to
perform inverse iteration on just one diagonal block.
= 'N': no assumptions are made on the correspondence
between eigenvalues and diagonal blocks. In this
case, DHSEIN must always perform inverse iteration
using the whole matrix H.
INITV (input) CHARACTER*1
= 'N': no initial vectors are supplied;
= 'U': user-supplied initial vectors are stored in the arrays
VL and/or VR.
SELECT (input/output) LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To select the
real eigenvector corresponding to a real eigenvalue WR(j),
SELECT(j) must be set to .TRUE.. To select the complex
eigenvector corresponding to a complex eigenvalue
(WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
.FALSE..
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) DOUBLE PRECISION array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input/output) DOUBLE PRECISION array, dimension (N)
WI (input) DOUBLE PRECISION array, dimension (N)
On entry, the real and imaginary parts of the eigenvalues of
H; a complex conjugate pair of eigenvalues must be stored in
consecutive elements of WR and WI.
On exit, WR may have been altered since close eigenvalues
are perturbed slightly in searching for independent
eigenvectors.
VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
contain starting vectors for the inverse iteration for the
left eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'L' or 'B', the left eigenvectors
specified by SELECT will be stored consecutively in the
columns of VL, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
contain starting vectors for the inverse iteration for the
right eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'R' or 'B', the right eigenvectors
specified by SELECT will be stored consecutively in the
columns of VR, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR required to
store the eigenvectors; each selected real eigenvector
occupies one column and each selected complex eigenvector
occupies two columns.
WORK (workspace) DOUBLE PRECISION array, dimension ((N+2)*N)
IFAILL (output) INTEGER array, dimension (MM)
If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
eigenvector in the i-th column of VL (corresponding to the
eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VL hold a complex eigenvector, then IFAILL(i) and
IFAILL(i+1) are set to the same value.
If SIDE = 'R', IFAILL is not referenced.
IFAILR (output) INTEGER array, dimension (MM)
If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
eigenvector in the i-th column of VR (corresponding to the
eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VR hold a complex eigenvector, then IFAILR(i) and
IFAILR(i+1) are set to the same value.
If SIDE = 'L', IFAILR is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, i is the number of eigenvectors which
failed to converge; see IFAILL and IFAILR for further
details.
Further Details
===============
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x|+|y|.
=====================================================================
.. Parameters ..
public void dhseqr(String job, String compz, int n, int ilo, int ihi, double[] h, int ldh, double[] wr, double[] wi, double[] z, int ldz, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DHSEQR computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': compute eigenvalues only;
= 'S': compute eigenvalues and the Schur form T.
COMPZ (input) CHARACTER*1
= 'N': no Schur vectors are computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of Schur vectors of H is returned;
= 'V': Z must contain an orthogonal matrix Q on entry, and
the product Q*Z is returned.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL, and then passed to DGEHRD
when the matrix output by DGEBAL is reduced to Hessenberg
form. Otherwise ILO and IHI should be set to 1 and N
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and JOB = 'S', then H contains the
upper quasi-triangular matrix T from the Schur decomposition
(the Schur form); 2-by-2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in
standard form, with H(i,i) = H(i+1,i+1) and
H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
contents of H are unspecified on exit. (The output value of
H when INFO.GT.0 is given under the description of INFO
below.)
Unlike earlier versions of DHSEQR, this subroutine may
explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues. If two eigenvalues are computed as a complex
conjugate pair, they are stored in consecutive elements of
WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
the same order as on the diagonal of the Schur form returned
in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
If COMPZ = 'N', Z is not referenced.
If COMPZ = 'I', on entry Z need not be set and on exit,
if INFO = 0, Z contains the orthogonal matrix Z of the Schur
vectors of H. If COMPZ = 'V', on entry Z must contain an
N-by-N matrix Q, which is assumed to be equal to the unit
matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
if INFO = 0, Z contains Q*Z.
Normally Q is the orthogonal matrix generated by DORGHR
after the call to DGEHRD which formed the Hessenberg matrix
H. (The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if COMPZ = 'I' or
COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then DHSEQR does a workspace query.
In this case, DHSEQR checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.LT. 0: if INFO = -i, the i-th argument had an illegal
value
.GT. 0: if INFO = i, DHSEQR failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and JOB = 'E', then on exit, the
remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and JOB = 'S', then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and COMPZ = 'V', then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'I', then on exit
(final value of Z) = U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'N', then Z is not
accessed.
================================================================
Default values supplied by
ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
It is suggested that these defaults be adjusted in order
to attain best performance in each particular
computational environment.
ISPEC=1: The DLAHQR vs DLAQR0 crossover point.
Default: 75. (Must be at least 11.)
ISPEC=2: Recommended deflation window size.
This depends on ILO, IHI and NS. NS is the
number of simultaneous shifts returned
by ILAENV(ISPEC=4). (See ISPEC=4 below.)
The default for (IHI-ILO+1).LE.500 is NS.
The default for (IHI-ILO+1).GT.500 is 3*NS/2.
ISPEC=3: Nibble crossover point. (See ILAENV for
details.) Default: 14% of deflation window
size.
ISPEC=4: Number of simultaneous shifts, NS, in
a multi-shift QR iteration.
If IHI-ILO+1 is ...
greater than ...but less ... the
or equal to ... than default is
1 30 NS - 2(+)
30 60 NS - 4(+)
60 150 NS = 10(+)
150 590 NS = **
590 3000 NS = 64
3000 6000 NS = 128
6000 infinity NS = 256
(+) By default some or all matrices of this order
are passed to the implicit double shift routine
DLAHQR and NS is ignored. See ISPEC=1 above
and comments in IPARM for details.
The asterisks (**) indicate an ad-hoc
function of N increasing from 10 to 64.
ISPEC=5: Select structured matrix multiply.
(See ILAENV for details.) Default: 3.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. DLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== NL allocates some local workspace to help small matrices
. through a rare DLAHQR failure. NL .GT. NTINY = 11 is
. required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom-
. mended. (The default value of NMIN is 75.) Using NL = 49
. allows up to six simultaneous shifts and a 16-by-16
. deflation window. ====
public void dhseqr(String job, String compz, int n, int ilo, int ihi, double[] h, int _h_offset, int ldh, double[] wr, int _wr_offset, double[] wi, int _wi_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DHSEQR computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': compute eigenvalues only;
= 'S': compute eigenvalues and the Schur form T.
COMPZ (input) CHARACTER*1
= 'N': no Schur vectors are computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of Schur vectors of H is returned;
= 'V': Z must contain an orthogonal matrix Q on entry, and
the product Q*Z is returned.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL, and then passed to DGEHRD
when the matrix output by DGEBAL is reduced to Hessenberg
form. Otherwise ILO and IHI should be set to 1 and N
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and JOB = 'S', then H contains the
upper quasi-triangular matrix T from the Schur decomposition
(the Schur form); 2-by-2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in
standard form, with H(i,i) = H(i+1,i+1) and
H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
contents of H are unspecified on exit. (The output value of
H when INFO.GT.0 is given under the description of INFO
below.)
Unlike earlier versions of DHSEQR, this subroutine may
explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues. If two eigenvalues are computed as a complex
conjugate pair, they are stored in consecutive elements of
WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
the same order as on the diagonal of the Schur form returned
in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
If COMPZ = 'N', Z is not referenced.
If COMPZ = 'I', on entry Z need not be set and on exit,
if INFO = 0, Z contains the orthogonal matrix Z of the Schur
vectors of H. If COMPZ = 'V', on entry Z must contain an
N-by-N matrix Q, which is assumed to be equal to the unit
matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
if INFO = 0, Z contains Q*Z.
Normally Q is the orthogonal matrix generated by DORGHR
after the call to DGEHRD which formed the Hessenberg matrix
H. (The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if COMPZ = 'I' or
COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then DHSEQR does a workspace query.
In this case, DHSEQR checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.LT. 0: if INFO = -i, the i-th argument had an illegal
value
.GT. 0: if INFO = i, DHSEQR failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and JOB = 'E', then on exit, the
remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and JOB = 'S', then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and COMPZ = 'V', then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'I', then on exit
(final value of Z) = U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'N', then Z is not
accessed.
================================================================
Default values supplied by
ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
It is suggested that these defaults be adjusted in order
to attain best performance in each particular
computational environment.
ISPEC=1: The DLAHQR vs DLAQR0 crossover point.
Default: 75. (Must be at least 11.)
ISPEC=2: Recommended deflation window size.
This depends on ILO, IHI and NS. NS is the
number of simultaneous shifts returned
by ILAENV(ISPEC=4). (See ISPEC=4 below.)
The default for (IHI-ILO+1).LE.500 is NS.
The default for (IHI-ILO+1).GT.500 is 3*NS/2.
ISPEC=3: Nibble crossover point. (See ILAENV for
details.) Default: 14% of deflation window
size.
ISPEC=4: Number of simultaneous shifts, NS, in
a multi-shift QR iteration.
If IHI-ILO+1 is ...
greater than ...but less ... the
or equal to ... than default is
1 30 NS - 2(+)
30 60 NS - 4(+)
60 150 NS = 10(+)
150 590 NS = **
590 3000 NS = 64
3000 6000 NS = 128
6000 infinity NS = 256
(+) By default some or all matrices of this order
are passed to the implicit double shift routine
DLAHQR and NS is ignored. See ISPEC=1 above
and comments in IPARM for details.
The asterisks (**) indicate an ad-hoc
function of N increasing from 10 to 64.
ISPEC=5: Select structured matrix multiply.
(See ILAENV for details.) Default: 3.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. DLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== NL allocates some local workspace to help small matrices
. through a rare DLAHQR failure. NL .GT. NTINY = 11 is
. required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom-
. mended. (The default value of NMIN is 75.) Using NL = 49
. allows up to six simultaneous shifts and a 16-by-16
. deflation window. ====
public boolean disnan(double din)
LAPACK
..
Purpose
=======
DISNAN returns .TRUE. if its argument is NaN, and .FALSE.
otherwise. To be replaced by the Fortran 2003 intrinsic in the
future.
Arguments
=========
DIN (input) DOUBLE PRECISION
Input to test for NaN.
=====================================================================
.. External Functions ..
public void dlabad(org.netlib.util.doubleW small, org.netlib.util.doubleW large)
LAPACK
..
Purpose
=======
DLABAD takes as input the values computed by DLAMCH for underflow and
overflow, and returns the square root of each of these values if the
log of LARGE is sufficiently large. This subroutine is intended to
identify machines with a large exponent range, such as the Crays, and
redefine the underflow and overflow limits to be the square roots of
the values computed by DLAMCH. This subroutine is needed because
DLAMCH does not compensate for poor arithmetic in the upper half of
the exponent range, as is found on a Cray.
Arguments
=========
SMALL (input/output) DOUBLE PRECISION
On entry, the underflow threshold as computed by DLAMCH.
On exit, if LOG10(LARGE) is sufficiently large, the square
root of SMALL, otherwise unchanged.
LARGE (input/output) DOUBLE PRECISION
On entry, the overflow threshold as computed by DLAMCH.
On exit, if LOG10(LARGE) is sufficiently large, the square
root of LARGE, otherwise unchanged.
=====================================================================
.. Intrinsic Functions ..
public void dlabrd(int m, int n, int nb, double[] a, int lda, double[] d, double[] e, double[] tauq, double[] taup, double[] x, int ldx, double[] y, int ldy)
LAPACK
..
Purpose
=======
DLABRD reduces the first NB rows and columns of a real general
m by n matrix A to upper or lower bidiagonal form by an orthogonal
transformation Q' * A * P, and returns the matrices X and Y which
are needed to apply the transformation to the unreduced part of A.
If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
bidiagonal form.
This is an auxiliary routine called by DGEBRD
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A.
N (input) INTEGER
The number of columns in the matrix A.
NB (input) INTEGER
The number of leading rows and columns of A to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit, the first NB rows and columns of the matrix are
overwritten; the rest of the array is unchanged.
If m >= n, elements on and below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors; and
elements above the diagonal in the first NB rows, with the
array TAUP, represent the orthogonal matrix P as a product
of elementary reflectors.
If m < n, elements below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors, and
elements on and above the diagonal in the first NB rows,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) DOUBLE PRECISION array, dimension (NB)
The diagonal elements of the first NB rows and columns of
the reduced matrix. D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (NB)
The off-diagonal elements of the first NB rows and columns of
the reduced matrix.
TAUQ (output) DOUBLE PRECISION array dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) DOUBLE PRECISION array, dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
X (output) DOUBLE PRECISION array, dimension (LDX,NB)
The m-by-nb matrix X required to update the unreduced part
of A.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= M.
Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
The n-by-nb matrix Y required to update the unreduced part
of A.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors.
If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
The elements of the vectors v and u together form the m-by-nb matrix
V and the nb-by-n matrix U' which are needed, with X and Y, to apply
the transformation to the unreduced part of the matrix, using a block
update of the form: A := A - V*Y' - X*U'.
The contents of A on exit are illustrated by the following examples
with nb = 2:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
( v1 v2 a a a ) ( v1 1 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix which is unchanged,
vi denotes an element of the vector defining H(i), and ui an element
of the vector defining G(i).
=====================================================================
.. Parameters ..
public void dlabrd(int m, int n, int nb, double[] a, int _a_offset, int lda, double[] d, int _d_offset, double[] e, int _e_offset, double[] tauq, int _tauq_offset, double[] taup, int _taup_offset, double[] x, int _x_offset, int ldx, double[] y, int _y_offset, int ldy)
LAPACK
..
Purpose
=======
DLABRD reduces the first NB rows and columns of a real general
m by n matrix A to upper or lower bidiagonal form by an orthogonal
transformation Q' * A * P, and returns the matrices X and Y which
are needed to apply the transformation to the unreduced part of A.
If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
bidiagonal form.
This is an auxiliary routine called by DGEBRD
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A.
N (input) INTEGER
The number of columns in the matrix A.
NB (input) INTEGER
The number of leading rows and columns of A to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit, the first NB rows and columns of the matrix are
overwritten; the rest of the array is unchanged.
If m >= n, elements on and below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors; and
elements above the diagonal in the first NB rows, with the
array TAUP, represent the orthogonal matrix P as a product
of elementary reflectors.
If m < n, elements below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors, and
elements on and above the diagonal in the first NB rows,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) DOUBLE PRECISION array, dimension (NB)
The diagonal elements of the first NB rows and columns of
the reduced matrix. D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (NB)
The off-diagonal elements of the first NB rows and columns of
the reduced matrix.
TAUQ (output) DOUBLE PRECISION array dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) DOUBLE PRECISION array, dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
X (output) DOUBLE PRECISION array, dimension (LDX,NB)
The m-by-nb matrix X required to update the unreduced part
of A.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= M.
Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
The n-by-nb matrix Y required to update the unreduced part
of A.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors.
If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
The elements of the vectors v and u together form the m-by-nb matrix
V and the nb-by-n matrix U' which are needed, with X and Y, to apply
the transformation to the unreduced part of the matrix, using a block
update of the form: A := A - V*Y' - X*U'.
The contents of A on exit are illustrated by the following examples
with nb = 2:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
( v1 v2 a a a ) ( v1 1 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix which is unchanged,
vi denotes an element of the vector defining H(i), and ui an element
of the vector defining G(i).
=====================================================================
.. Parameters ..
public void dlacn2(int n, double[] v, double[] x, int[] isgn, org.netlib.util.doubleW est, org.netlib.util.intW kase, int[] isave)
LAPACK
..
Purpose
=======
DLACN2 estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) DOUBLE PRECISION array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) DOUBLE PRECISION array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and DLACN2 must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) DOUBLE PRECISION
On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
unchanged from the previous call to DLACN2.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to DLACN2, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from DLACN2, KASE will again be 0.
ISAVE (input/output) INTEGER array, dimension (3)
ISAVE is used to save variables between calls to DLACN2
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
This is a thread safe version of DLACON, which uses the array ISAVE
in place of a SAVE statement, as follows:
DLACON DLACN2
JUMP ISAVE(1)
J ISAVE(2)
ITER ISAVE(3)
=====================================================================
.. Parameters ..
public void dlacn2(int n, double[] v, int _v_offset, double[] x, int _x_offset, int[] isgn, int _isgn_offset, org.netlib.util.doubleW est, org.netlib.util.intW kase, int[] isave, int _isave_offset)
LAPACK
..
Purpose
=======
DLACN2 estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) DOUBLE PRECISION array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) DOUBLE PRECISION array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and DLACN2 must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) DOUBLE PRECISION
On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
unchanged from the previous call to DLACN2.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to DLACN2, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from DLACN2, KASE will again be 0.
ISAVE (input/output) INTEGER array, dimension (3)
ISAVE is used to save variables between calls to DLACN2
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
This is a thread safe version of DLACON, which uses the array ISAVE
in place of a SAVE statement, as follows:
DLACON DLACN2
JUMP ISAVE(1)
J ISAVE(2)
ITER ISAVE(3)
=====================================================================
.. Parameters ..
public void dlacon(int n, double[] v, double[] x, int[] isgn, org.netlib.util.doubleW est, org.netlib.util.intW kase)
LAPACK
..
Purpose
=======
DLACON estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) DOUBLE PRECISION array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) DOUBLE PRECISION array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and DLACON must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) DOUBLE PRECISION
On entry with KASE = 1 or 2 and JUMP = 3, EST should be
unchanged from the previous call to DLACON.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to DLACON, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from DLACON, KASE will again be 0.
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
=====================================================================
.. Parameters ..
public void dlacon(int n, double[] v, int _v_offset, double[] x, int _x_offset, int[] isgn, int _isgn_offset, org.netlib.util.doubleW est, org.netlib.util.intW kase)
LAPACK
..
Purpose
=======
DLACON estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) DOUBLE PRECISION array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) DOUBLE PRECISION array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and DLACON must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) DOUBLE PRECISION
On entry with KASE = 1 or 2 and JUMP = 3, EST should be
unchanged from the previous call to DLACON.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to DLACON, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from DLACON, KASE will again be 0.
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
=====================================================================
.. Parameters ..
public void dlacpy(String uplo, int m, int n, double[] a, int lda, double[] b, int ldb)
LAPACK
..
Purpose
=======
DLACPY copies all or part of a two-dimensional matrix A to another
matrix B.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be copied to B.
= 'U': Upper triangular part
= 'L': Lower triangular part
Otherwise: All of the matrix A
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The m by n matrix A. If UPLO = 'U', only the upper triangle
or trapezoid is accessed; if UPLO = 'L', only the lower
triangle or trapezoid is accessed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (output) DOUBLE PRECISION array, dimension (LDB,N)
On exit, B = A in the locations specified by UPLO.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M).
=====================================================================
.. Local Scalars ..
public void dlacpy(String uplo, int m, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
DLACPY copies all or part of a two-dimensional matrix A to another
matrix B.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be copied to B.
= 'U': Upper triangular part
= 'L': Lower triangular part
Otherwise: All of the matrix A
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The m by n matrix A. If UPLO = 'U', only the upper triangle
or trapezoid is accessed; if UPLO = 'L', only the lower
triangle or trapezoid is accessed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (output) DOUBLE PRECISION array, dimension (LDB,N)
On exit, B = A in the locations specified by UPLO.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M).
=====================================================================
.. Local Scalars ..
public void dladiv(double a, double b, double c, double d, org.netlib.util.doubleW p, org.netlib.util.doubleW q)
LAPACK
..
Purpose
=======
DLADIV performs complex division in real arithmetic
a + i*b
p + i*q = ---------
c + i*d
The algorithm is due to Robert L. Smith and can be found
in D. Knuth, The art of Computer Programming, Vol.2, p.195
Arguments
=========
A (input) DOUBLE PRECISION
B (input) DOUBLE PRECISION
C (input) DOUBLE PRECISION
D (input) DOUBLE PRECISION
The scalars a, b, c, and d in the above expression.
P (output) DOUBLE PRECISION
Q (output) DOUBLE PRECISION
The scalars p and q in the above expression.
=====================================================================
.. Local Scalars ..
public void dlae2(double a, double b, double c, org.netlib.util.doubleW rt1, org.netlib.util.doubleW rt2)
LAPACK
..
Purpose
=======
DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
[ A B ]
[ B C ].
On return, RT1 is the eigenvalue of larger absolute value, and RT2
is the eigenvalue of smaller absolute value.
Arguments
=========
A (input) DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
B (input) DOUBLE PRECISION
The (1,2) and (2,1) elements of the 2-by-2 matrix.
C (input) DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
RT1 (output) DOUBLE PRECISION
The eigenvalue of larger absolute value.
RT2 (output) DOUBLE PRECISION
The eigenvalue of smaller absolute value.
Further Details
===============
RT1 is accurate to a few ulps barring over/underflow.
RT2 may be inaccurate if there is massive cancellation in the
determinant A*C-B*B; higher precision or correctly rounded or
correctly truncated arithmetic would be needed to compute RT2
accurately in all cases.
Overflow is possible only if RT1 is within a factor of 5 of overflow.
Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.
=====================================================================
.. Parameters ..
public void dlaebz(int ijob, int nitmax, int n, int mmax, int minp, int nbmin, double abstol, double reltol, double pivmin, double[] d, double[] e, double[] e2, int[] nval, double[] ab, double[] c, org.netlib.util.intW mout, int[] nab, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEBZ contains the iteration loops which compute and use the
function N(w), which is the count of eigenvalues of a symmetric
tridiagonal matrix T less than or equal to its argument w. It
performs a choice of two types of loops:
IJOB=1, followed by
IJOB=2: It takes as input a list of intervals and returns a list of
sufficiently small intervals whose union contains the same
eigenvalues as the union of the original intervals.
The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
The output interval (AB(j,1),AB(j,2)] will contain
eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
IJOB=3: It performs a binary search in each input interval
(AB(j,1),AB(j,2)] for a point w(j) such that
N(w(j))=NVAL(j), and uses C(j) as the starting point of
the search. If such a w(j) is found, then on output
AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
(AB(j,1),AB(j,2)] will be a small interval containing the
point where N(w) jumps through NVAL(j), unless that point
lies outside the initial interval.
Note that the intervals are in all cases half-open intervals,
i.e., of the form (a,b] , which includes b but not a .
To avoid underflow, the matrix should be scaled so that its largest
element is no greater than overflow**(1/2) * underflow**(1/4)
in absolute value. To assure the most accurate computation
of small eigenvalues, the matrix should be scaled to be
not much smaller than that, either.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966
Note: the arguments are, in general, *not* checked for unreasonable
values.
Arguments
=========
IJOB (input) INTEGER
Specifies what is to be done:
= 1: Compute NAB for the initial intervals.
= 2: Perform bisection iteration to find eigenvalues of T.
= 3: Perform bisection iteration to invert N(w), i.e.,
to find a point which has a specified number of
eigenvalues of T to its left.
Other values will cause DLAEBZ to return with INFO=-1.
NITMAX (input) INTEGER
The maximum number of "levels" of bisection to be
performed, i.e., an interval of width W will not be made
smaller than 2^(-NITMAX) * W. If not all intervals
have converged after NITMAX iterations, then INFO is set
to the number of non-converged intervals.
N (input) INTEGER
The dimension n of the tridiagonal matrix T. It must be at
least 1.
MMAX (input) INTEGER
The maximum number of intervals. If more than MMAX intervals
are generated, then DLAEBZ will quit with INFO=MMAX+1.
MINP (input) INTEGER
The initial number of intervals. It may not be greater than
MMAX.
NBMIN (input) INTEGER
The smallest number of intervals that should be processed
using a vector loop. If zero, then only the scalar loop
will be used.
ABSTOL (input) DOUBLE PRECISION
The minimum (absolute) width of an interval. When an
interval is narrower than ABSTOL, or than RELTOL times the
larger (in magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. This must be at least
zero.
RELTOL (input) DOUBLE PRECISION
The minimum relative width of an interval. When an interval
is narrower than ABSTOL, or than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
PIVMIN (input) DOUBLE PRECISION
The minimum absolute value of a "pivot" in the Sturm
sequence loop. This *must* be at least max |e(j)**2| *
safe_min and at least safe_min, where safe_min is at least
the smallest number that can divide one without overflow.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N)
The offdiagonal elements of the tridiagonal matrix T in
positions 1 through N-1. E(N) is arbitrary.
E2 (input) DOUBLE PRECISION array, dimension (N)
The squares of the offdiagonal elements of the tridiagonal
matrix T. E2(N) is ignored.
NVAL (input/output) INTEGER array, dimension (MINP)
If IJOB=1 or 2, not referenced.
If IJOB=3, the desired values of N(w). The elements of NVAL
will be reordered to correspond with the intervals in AB.
Thus, NVAL(j) on output will not, in general be the same as
NVAL(j) on input, but it will correspond with the interval
(AB(j,1),AB(j,2)] on output.
AB (input/output) DOUBLE PRECISION array, dimension (MMAX,2)
The endpoints of the intervals. AB(j,1) is a(j), the left
endpoint of the j-th interval, and AB(j,2) is b(j), the
right endpoint of the j-th interval. The input intervals
will, in general, be modified, split, and reordered by the
calculation.
C (input/output) DOUBLE PRECISION array, dimension (MMAX)
If IJOB=1, ignored.
If IJOB=2, workspace.
If IJOB=3, then on input C(j) should be initialized to the
first search point in the binary search.
MOUT (output) INTEGER
If IJOB=1, the number of eigenvalues in the intervals.
If IJOB=2 or 3, the number of intervals output.
If IJOB=3, MOUT will equal MINP.
NAB (input/output) INTEGER array, dimension (MMAX,2)
If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
If IJOB=2, then on input, NAB(i,j) should be set. It must
satisfy the condition:
N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
which means that in interval i only eigenvalues
NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with
IJOB=1.
On output, NAB(i,j) will contain
max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
the input interval that the output interval
(AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
the input values of NAB(k,1) and NAB(k,2).
If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
unless N(w) > NVAL(i) for all search points w , in which
case NAB(i,1) will not be modified, i.e., the output
value will be the same as the input value (modulo
reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
for all search points w , in which case NAB(i,2) will
not be modified. Normally, NAB should be set to some
distinctive value(s) before DLAEBZ is called.
WORK (workspace) DOUBLE PRECISION array, dimension (MMAX)
Workspace.
IWORK (workspace) INTEGER array, dimension (MMAX)
Workspace.
INFO (output) INTEGER
= 0: All intervals converged.
= 1--MMAX: The last INFO intervals did not converge.
= MMAX+1: More than MMAX intervals were generated.
Further Details
===============
This routine is intended to be called only by other LAPACK
routines, thus the interface is less user-friendly. It is intended
for two purposes:
(a) finding eigenvalues. In this case, DLAEBZ should have one or
more initial intervals set up in AB, and DLAEBZ should be called
with IJOB=1. This sets up NAB, and also counts the eigenvalues.
Intervals with no eigenvalues would usually be thrown out at
this point. Also, if not all the eigenvalues in an interval i
are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX
no smaller than the value of MOUT returned by the call with
IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
tolerance specified by ABSTOL and RELTOL.
(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
In this case, start with a Gershgorin interval (a,b). Set up
AB to contain 2 search intervals, both initially (a,b). One
NVAL element should contain f-1 and the other should contain l
, while C should contain a and b, resp. NAB(i,1) should be -1
and NAB(i,2) should be N+1, to flag an error if the desired
interval does not lie in (a,b). DLAEBZ is then called with
IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
>= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
w(l-r)=...=w(l+k) are handled similarly.
=====================================================================
.. Parameters ..
public void dlaebz(int ijob, int nitmax, int n, int mmax, int minp, int nbmin, double abstol, double reltol, double pivmin, double[] d, int _d_offset, double[] e, int _e_offset, double[] e2, int _e2_offset, int[] nval, int _nval_offset, double[] ab, int _ab_offset, double[] c, int _c_offset, org.netlib.util.intW mout, int[] nab, int _nab_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEBZ contains the iteration loops which compute and use the
function N(w), which is the count of eigenvalues of a symmetric
tridiagonal matrix T less than or equal to its argument w. It
performs a choice of two types of loops:
IJOB=1, followed by
IJOB=2: It takes as input a list of intervals and returns a list of
sufficiently small intervals whose union contains the same
eigenvalues as the union of the original intervals.
The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
The output interval (AB(j,1),AB(j,2)] will contain
eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
IJOB=3: It performs a binary search in each input interval
(AB(j,1),AB(j,2)] for a point w(j) such that
N(w(j))=NVAL(j), and uses C(j) as the starting point of
the search. If such a w(j) is found, then on output
AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
(AB(j,1),AB(j,2)] will be a small interval containing the
point where N(w) jumps through NVAL(j), unless that point
lies outside the initial interval.
Note that the intervals are in all cases half-open intervals,
i.e., of the form (a,b] , which includes b but not a .
To avoid underflow, the matrix should be scaled so that its largest
element is no greater than overflow**(1/2) * underflow**(1/4)
in absolute value. To assure the most accurate computation
of small eigenvalues, the matrix should be scaled to be
not much smaller than that, either.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966
Note: the arguments are, in general, *not* checked for unreasonable
values.
Arguments
=========
IJOB (input) INTEGER
Specifies what is to be done:
= 1: Compute NAB for the initial intervals.
= 2: Perform bisection iteration to find eigenvalues of T.
= 3: Perform bisection iteration to invert N(w), i.e.,
to find a point which has a specified number of
eigenvalues of T to its left.
Other values will cause DLAEBZ to return with INFO=-1.
NITMAX (input) INTEGER
The maximum number of "levels" of bisection to be
performed, i.e., an interval of width W will not be made
smaller than 2^(-NITMAX) * W. If not all intervals
have converged after NITMAX iterations, then INFO is set
to the number of non-converged intervals.
N (input) INTEGER
The dimension n of the tridiagonal matrix T. It must be at
least 1.
MMAX (input) INTEGER
The maximum number of intervals. If more than MMAX intervals
are generated, then DLAEBZ will quit with INFO=MMAX+1.
MINP (input) INTEGER
The initial number of intervals. It may not be greater than
MMAX.
NBMIN (input) INTEGER
The smallest number of intervals that should be processed
using a vector loop. If zero, then only the scalar loop
will be used.
ABSTOL (input) DOUBLE PRECISION
The minimum (absolute) width of an interval. When an
interval is narrower than ABSTOL, or than RELTOL times the
larger (in magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. This must be at least
zero.
RELTOL (input) DOUBLE PRECISION
The minimum relative width of an interval. When an interval
is narrower than ABSTOL, or than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
PIVMIN (input) DOUBLE PRECISION
The minimum absolute value of a "pivot" in the Sturm
sequence loop. This *must* be at least max |e(j)**2| *
safe_min and at least safe_min, where safe_min is at least
the smallest number that can divide one without overflow.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N)
The offdiagonal elements of the tridiagonal matrix T in
positions 1 through N-1. E(N) is arbitrary.
E2 (input) DOUBLE PRECISION array, dimension (N)
The squares of the offdiagonal elements of the tridiagonal
matrix T. E2(N) is ignored.
NVAL (input/output) INTEGER array, dimension (MINP)
If IJOB=1 or 2, not referenced.
If IJOB=3, the desired values of N(w). The elements of NVAL
will be reordered to correspond with the intervals in AB.
Thus, NVAL(j) on output will not, in general be the same as
NVAL(j) on input, but it will correspond with the interval
(AB(j,1),AB(j,2)] on output.
AB (input/output) DOUBLE PRECISION array, dimension (MMAX,2)
The endpoints of the intervals. AB(j,1) is a(j), the left
endpoint of the j-th interval, and AB(j,2) is b(j), the
right endpoint of the j-th interval. The input intervals
will, in general, be modified, split, and reordered by the
calculation.
C (input/output) DOUBLE PRECISION array, dimension (MMAX)
If IJOB=1, ignored.
If IJOB=2, workspace.
If IJOB=3, then on input C(j) should be initialized to the
first search point in the binary search.
MOUT (output) INTEGER
If IJOB=1, the number of eigenvalues in the intervals.
If IJOB=2 or 3, the number of intervals output.
If IJOB=3, MOUT will equal MINP.
NAB (input/output) INTEGER array, dimension (MMAX,2)
If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
If IJOB=2, then on input, NAB(i,j) should be set. It must
satisfy the condition:
N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
which means that in interval i only eigenvalues
NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with
IJOB=1.
On output, NAB(i,j) will contain
max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
the input interval that the output interval
(AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
the input values of NAB(k,1) and NAB(k,2).
If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
unless N(w) > NVAL(i) for all search points w , in which
case NAB(i,1) will not be modified, i.e., the output
value will be the same as the input value (modulo
reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
for all search points w , in which case NAB(i,2) will
not be modified. Normally, NAB should be set to some
distinctive value(s) before DLAEBZ is called.
WORK (workspace) DOUBLE PRECISION array, dimension (MMAX)
Workspace.
IWORK (workspace) INTEGER array, dimension (MMAX)
Workspace.
INFO (output) INTEGER
= 0: All intervals converged.
= 1--MMAX: The last INFO intervals did not converge.
= MMAX+1: More than MMAX intervals were generated.
Further Details
===============
This routine is intended to be called only by other LAPACK
routines, thus the interface is less user-friendly. It is intended
for two purposes:
(a) finding eigenvalues. In this case, DLAEBZ should have one or
more initial intervals set up in AB, and DLAEBZ should be called
with IJOB=1. This sets up NAB, and also counts the eigenvalues.
Intervals with no eigenvalues would usually be thrown out at
this point. Also, if not all the eigenvalues in an interval i
are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX
no smaller than the value of MOUT returned by the call with
IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
tolerance specified by ABSTOL and RELTOL.
(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
In this case, start with a Gershgorin interval (a,b). Set up
AB to contain 2 search intervals, both initially (a,b). One
NVAL element should contain f-1 and the other should contain l
, while C should contain a and b, resp. NAB(i,1) should be -1
and NAB(i,2) should be N+1, to flag an error if the desired
interval does not lie in (a,b). DLAEBZ is then called with
IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
>= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
w(l-r)=...=w(l+k) are handled similarly.
=====================================================================
.. Parameters ..
public void dlaed0(int icompq, int qsiz, int n, double[] d, double[] e, double[] q, int ldq, double[] qstore, int ldqs, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED0 computes all eigenvalues and corresponding eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
= 2: Compute eigenvalues and eigenvectors of tridiagonal
matrix.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the main diagonal of the tridiagonal matrix.
On exit, its eigenvalues.
E (input) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, Q must contain an N-by-N orthogonal matrix.
If ICOMPQ = 0 Q is not referenced.
If ICOMPQ = 1 On entry, Q is a subset of the columns of the
orthogonal matrix used to reduce the full
matrix to tridiagonal form corresponding to
the subset of the full matrix which is being
decomposed at this time.
If ICOMPQ = 2 On entry, Q will be the identity matrix.
On exit, Q contains the eigenvectors of the
tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. If eigenvectors are
desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)
Referenced only when ICOMPQ = 1. Used to store parts of
the eigenvector matrix when the updating matrix multiplies
take place.
LDQS (input) INTEGER
The leading dimension of the array QSTORE. If ICOMPQ = 1,
then LDQS >= max(1,N). In any case, LDQS >= 1.
WORK (workspace) DOUBLE PRECISION array,
If ICOMPQ = 0 or 1, the dimension of WORK must be at least
1 + 3*N + 2*N*lg N + 2*N**2
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of WORK must be at least
4*N + N**2.
IWORK (workspace) INTEGER array,
If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
6 + 6*N + 5*N*lg N.
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of IWORK must be at least
3 + 5*N.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed0(int icompq, int qsiz, int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] q, int _q_offset, int ldq, double[] qstore, int _qstore_offset, int ldqs, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED0 computes all eigenvalues and corresponding eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
= 2: Compute eigenvalues and eigenvectors of tridiagonal
matrix.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the main diagonal of the tridiagonal matrix.
On exit, its eigenvalues.
E (input) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, Q must contain an N-by-N orthogonal matrix.
If ICOMPQ = 0 Q is not referenced.
If ICOMPQ = 1 On entry, Q is a subset of the columns of the
orthogonal matrix used to reduce the full
matrix to tridiagonal form corresponding to
the subset of the full matrix which is being
decomposed at this time.
If ICOMPQ = 2 On entry, Q will be the identity matrix.
On exit, Q contains the eigenvectors of the
tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. If eigenvectors are
desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)
Referenced only when ICOMPQ = 1. Used to store parts of
the eigenvector matrix when the updating matrix multiplies
take place.
LDQS (input) INTEGER
The leading dimension of the array QSTORE. If ICOMPQ = 1,
then LDQS >= max(1,N). In any case, LDQS >= 1.
WORK (workspace) DOUBLE PRECISION array,
If ICOMPQ = 0 or 1, the dimension of WORK must be at least
1 + 3*N + 2*N*lg N + 2*N**2
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of WORK must be at least
4*N + N**2.
IWORK (workspace) INTEGER array,
If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
6 + 6*N + 5*N*lg N.
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of IWORK must be at least
3 + 5*N.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed1(int n, double[] d, double[] q, int ldq, int[] indxq, org.netlib.util.doubleW rho, int cutpnt, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED1 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
the case in which eigenvalues only or eigenvalues and eigenvectors
of a full symmetric matrix (which was reduced to tridiagonal form)
are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLAED2.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine DLAED4 (as called by DLAED3).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
On entry, the permutation which separately sorts the two
subproblems in D into ascending order.
On exit, the permutation which will reintegrate the
subproblems back into sorted order,
i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
RHO (input) DOUBLE PRECISION
The subdiagonal entry used to create the rank-1 modification.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= CUTPNT <= N/2.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Local Scalars ..
public void dlaed1(int n, double[] d, int _d_offset, double[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.doubleW rho, int cutpnt, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED1 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
the case in which eigenvalues only or eigenvalues and eigenvectors
of a full symmetric matrix (which was reduced to tridiagonal form)
are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLAED2.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine DLAED4 (as called by DLAED3).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
On entry, the permutation which separately sorts the two
subproblems in D into ascending order.
On exit, the permutation which will reintegrate the
subproblems back into sorted order,
i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
RHO (input) DOUBLE PRECISION
The subdiagonal entry used to create the rank-1 modification.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= CUTPNT <= N/2.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Local Scalars ..
public void dlaed2(org.netlib.util.intW k, int n, int n1, double[] d, double[] q, int ldq, int[] indxq, org.netlib.util.doubleW rho, double[] z, double[] dlamda, double[] w, double[] q2, int[] indx, int[] indxc, int[] indxp, int[] coltyp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED2 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation. 0 <= K <=N.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
N1 (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= N1 <= N/2.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D contains the eigenvalues of the two submatrices to
be combined.
On exit, D contains the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, Q contains the eigenvectors of two submatrices in
the two square blocks with corners at (1,1), (N1,N1)
and (N1+1, N1+1), (N,N).
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have N1 added to their
values. Destroyed on exit.
RHO (input/output) DOUBLE PRECISION
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
DLAED3.
Z (input) DOUBLE PRECISION array, dimension (N)
On entry, Z contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
On exit, the contents of Z have been destroyed by the updating
process.
DLAMDA (output) DOUBLE PRECISION array, dimension (N)
A copy of the first K eigenvalues which will be used by
DLAED3 to form the secular equation.
W (output) DOUBLE PRECISION array, dimension (N)
The first k values of the final deflation-altered z-vector
which will be passed to DLAED3.
Q2 (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
A copy of the first K eigenvectors which will be used by
DLAED3 in a matrix multiply (DGEMM) to solve for the new
eigenvectors.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of DLAMDA into
ascending order.
INDXC (output) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups: the first group contains non-zero
elements only at and above N1, the second contains
non-zero elements only below N1, and the third is dense.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
COLTYP (workspace/output) INTEGER array, dimension (N)
During execution, a label which will indicate which of the
following types a column in the Q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.
On exit, COLTYP(i) is the number of columns of type i,
for i=1 to 4 only.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void dlaed2(org.netlib.util.intW k, int n, int n1, double[] d, int _d_offset, double[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.doubleW rho, double[] z, int _z_offset, double[] dlamda, int _dlamda_offset, double[] w, int _w_offset, double[] q2, int _q2_offset, int[] indx, int _indx_offset, int[] indxc, int _indxc_offset, int[] indxp, int _indxp_offset, int[] coltyp, int _coltyp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED2 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation. 0 <= K <=N.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
N1 (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= N1 <= N/2.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D contains the eigenvalues of the two submatrices to
be combined.
On exit, D contains the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, Q contains the eigenvectors of two submatrices in
the two square blocks with corners at (1,1), (N1,N1)
and (N1+1, N1+1), (N,N).
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have N1 added to their
values. Destroyed on exit.
RHO (input/output) DOUBLE PRECISION
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
DLAED3.
Z (input) DOUBLE PRECISION array, dimension (N)
On entry, Z contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
On exit, the contents of Z have been destroyed by the updating
process.
DLAMDA (output) DOUBLE PRECISION array, dimension (N)
A copy of the first K eigenvalues which will be used by
DLAED3 to form the secular equation.
W (output) DOUBLE PRECISION array, dimension (N)
The first k values of the final deflation-altered z-vector
which will be passed to DLAED3.
Q2 (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
A copy of the first K eigenvectors which will be used by
DLAED3 in a matrix multiply (DGEMM) to solve for the new
eigenvectors.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of DLAMDA into
ascending order.
INDXC (output) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups: the first group contains non-zero
elements only at and above N1, the second contains
non-zero elements only below N1, and the third is dense.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
COLTYP (workspace/output) INTEGER array, dimension (N)
During execution, a label which will indicate which of the
following types a column in the Q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.
On exit, COLTYP(i) is the number of columns of type i,
for i=1 to 4 only.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void dlaed3(int k, int n, int n1, double[] d, double[] q, int ldq, double rho, double[] dlamda, double[] q2, int[] indx, int[] ctot, double[] w, double[] s, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED3 finds the roots of the secular equation, as defined by the
values in D, W, and RHO, between 1 and K. It makes the
appropriate calls to DLAED4 and then updates the eigenvectors by
multiplying the matrix of eigenvectors of the pair of eigensystems
being combined by the matrix of eigenvectors of the K-by-K system
which is solved here.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
DLAED4. K >= 0.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (deflation may result in N>K).
N1 (input) INTEGER
The location of the last eigenvalue in the leading submatrix.
min(1,N) <= N1 <= N/2.
D (output) DOUBLE PRECISION array, dimension (N)
D(I) contains the updated eigenvalues for
1 <= I <= K.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
Initially the first K columns are used as workspace.
On output the columns 1 to K contain
the updated eigenvectors.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
RHO (input) DOUBLE PRECISION
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input/output) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation. May be changed on output by
having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
Cray-2, or Cray C-90, as described above.
Q2 (input) DOUBLE PRECISION array, dimension (LDQ2, N)
The first K columns of this matrix contain the non-deflated
eigenvectors for the split problem.
INDX (input) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups (see DLAED2).
The rows of the eigenvectors found by DLAED4 must be likewise
permuted before the matrix multiply can take place.
CTOT (input) INTEGER array, dimension (4)
A count of the total number of the various types of columns
in Q, as described in INDX. The fourth column type is any
column which has been deflated.
W (input/output) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector. Destroyed on
output.
S (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
Will contain the eigenvectors of the repaired matrix which
will be multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max(1,K).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void dlaed3(int k, int n, int n1, double[] d, int _d_offset, double[] q, int _q_offset, int ldq, double rho, double[] dlamda, int _dlamda_offset, double[] q2, int _q2_offset, int[] indx, int _indx_offset, int[] ctot, int _ctot_offset, double[] w, int _w_offset, double[] s, int _s_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED3 finds the roots of the secular equation, as defined by the
values in D, W, and RHO, between 1 and K. It makes the
appropriate calls to DLAED4 and then updates the eigenvectors by
multiplying the matrix of eigenvectors of the pair of eigensystems
being combined by the matrix of eigenvectors of the K-by-K system
which is solved here.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
DLAED4. K >= 0.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (deflation may result in N>K).
N1 (input) INTEGER
The location of the last eigenvalue in the leading submatrix.
min(1,N) <= N1 <= N/2.
D (output) DOUBLE PRECISION array, dimension (N)
D(I) contains the updated eigenvalues for
1 <= I <= K.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
Initially the first K columns are used as workspace.
On output the columns 1 to K contain
the updated eigenvectors.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
RHO (input) DOUBLE PRECISION
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input/output) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation. May be changed on output by
having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
Cray-2, or Cray C-90, as described above.
Q2 (input) DOUBLE PRECISION array, dimension (LDQ2, N)
The first K columns of this matrix contain the non-deflated
eigenvectors for the split problem.
INDX (input) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups (see DLAED2).
The rows of the eigenvectors found by DLAED4 must be likewise
permuted before the matrix multiply can take place.
CTOT (input) INTEGER array, dimension (4)
A count of the total number of the various types of columns
in Q, as described in INDX. The fourth column type is any
column which has been deflated.
W (input/output) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector. Destroyed on
output.
S (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
Will contain the eigenvectors of the repaired matrix which
will be multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max(1,K).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void dlaed4(int n, int i, double[] d, double[] z, double[] delta, double rho, org.netlib.util.doubleW dlam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the I-th updated eigenvalue of a symmetric
rank-one modification to a diagonal matrix whose elements are
given in the array d, and that
D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) DOUBLE PRECISION array, dimension (N)
The original eigenvalues. It is assumed that they are in
order, D(I) < D(J) for I < J.
Z (input) DOUBLE PRECISION array, dimension (N)
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension (N)
If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th
component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
for detail. The vector DELTA contains the information necessar
to construct the eigenvectors by DLAED3 and DLAED9.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
DLAM (output) DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed4(int n, int i, double[] d, int _d_offset, double[] z, int _z_offset, double[] delta, int _delta_offset, double rho, org.netlib.util.doubleW dlam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the I-th updated eigenvalue of a symmetric
rank-one modification to a diagonal matrix whose elements are
given in the array d, and that
D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) DOUBLE PRECISION array, dimension (N)
The original eigenvalues. It is assumed that they are in
order, D(I) < D(J) for I < J.
Z (input) DOUBLE PRECISION array, dimension (N)
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension (N)
If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th
component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
for detail. The vector DELTA contains the information necessar
to construct the eigenvectors by DLAED3 and DLAED9.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
DLAM (output) DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed5(int i, double[] d, double[] z, double[] delta, double rho, org.netlib.util.doubleW dlam)
LAPACK
..
Purpose
=======
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) DOUBLE PRECISION array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) DOUBLE PRECISION array, dimension (2)
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
DLAM (output) DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed5(int i, double[] d, int _d_offset, double[] z, int _z_offset, double[] delta, int _delta_offset, double rho, org.netlib.util.doubleW dlam)
LAPACK
..
Purpose
=======
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) DOUBLE PRECISION array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) DOUBLE PRECISION array, dimension (2)
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
DLAM (output) DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed6(int kniter, boolean orgati, double rho, double[] d, double[] z, double finit, org.netlib.util.doubleW tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED6 computes the positive or negative root (closest to the origin)
of
z(1) z(2) z(3)
f(x) = rho + --------- + ---------- + ---------
d(1)-x d(2)-x d(3)-x
It is assumed that
if ORGATI = .true. the root is between d(2) and d(3);
otherwise it is between d(1) and d(2)
This routine will be called by DLAED4 when necessary. In most cases,
the root sought is the smallest in magnitude, though it might not be
in some extremely rare situations.
Arguments
=========
KNITER (input) INTEGER
Refer to DLAED4 for its significance.
ORGATI (input) LOGICAL
If ORGATI is true, the needed root is between d(2) and
d(3); otherwise it is between d(1) and d(2). See
DLAED4 for further details.
RHO (input) DOUBLE PRECISION
Refer to the equation f(x) above.
D (input) DOUBLE PRECISION array, dimension (3)
D satisfies d(1) < d(2) < d(3).
Z (input) DOUBLE PRECISION array, dimension (3)
Each of the elements in z must be positive.
FINIT (input) DOUBLE PRECISION
The value of f at 0. It is more accurate than the one
evaluated inside this routine (if someone wants to do
so).
TAU (output) DOUBLE PRECISION
The root of the equation f(x).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, failure to converge
Further Details
===============
30/06/99: Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
10/02/03: This version has a few statements commented out for thread
safety (machine parameters are computed on each entry). SJH.
05/10/06: Modified from a new version of Ren-Cang Li, use
Gragg-Thornton-Warner cubic convergent scheme for better stability
=====================================================================
.. Parameters ..
public void dlaed6(int kniter, boolean orgati, double rho, double[] d, int _d_offset, double[] z, int _z_offset, double finit, org.netlib.util.doubleW tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED6 computes the positive or negative root (closest to the origin)
of
z(1) z(2) z(3)
f(x) = rho + --------- + ---------- + ---------
d(1)-x d(2)-x d(3)-x
It is assumed that
if ORGATI = .true. the root is between d(2) and d(3);
otherwise it is between d(1) and d(2)
This routine will be called by DLAED4 when necessary. In most cases,
the root sought is the smallest in magnitude, though it might not be
in some extremely rare situations.
Arguments
=========
KNITER (input) INTEGER
Refer to DLAED4 for its significance.
ORGATI (input) LOGICAL
If ORGATI is true, the needed root is between d(2) and
d(3); otherwise it is between d(1) and d(2). See
DLAED4 for further details.
RHO (input) DOUBLE PRECISION
Refer to the equation f(x) above.
D (input) DOUBLE PRECISION array, dimension (3)
D satisfies d(1) < d(2) < d(3).
Z (input) DOUBLE PRECISION array, dimension (3)
Each of the elements in z must be positive.
FINIT (input) DOUBLE PRECISION
The value of f at 0. It is more accurate than the one
evaluated inside this routine (if someone wants to do
so).
TAU (output) DOUBLE PRECISION
The root of the equation f(x).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, failure to converge
Further Details
===============
30/06/99: Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
10/02/03: This version has a few statements commented out for thread
safety (machine parameters are computed on each entry). SJH.
05/10/06: Modified from a new version of Ren-Cang Li, use
Gragg-Thornton-Warner cubic convergent scheme for better stability
=====================================================================
.. Parameters ..
public void dlaed7(int icompq, int n, int qsiz, int tlvls, int curlvl, int curpbm, double[] d, double[] q, int ldq, int[] indxq, org.netlib.util.doubleW rho, int cutpnt, double[] qstore, int[] qptr, int[] prmptr, int[] perm, int[] givptr, int[] givcol, double[] givnum, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED7 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and optionally eigenvectors of a dense symmetric matrix
that has been reduced to tridiagonal form. DLAED1 handles
the case in which all eigenvalues and eigenvectors of a symmetric
tridiagonal matrix are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLAED8.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine DLAED4 (as called by DLAED9).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= CURLVL <= TLVLS.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (output) INTEGER array, dimension (N)
The permutation which will reintegrate the subproblem just
solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
will be in ascending order.
RHO (input) DOUBLE PRECISION
The subdiagonal element used to create the rank-1
modification.
CUTPNT (input) INTEGER
Contains the location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
Stores eigenvectors of submatrices encountered during
divide and conquer, packed together. QPTR points to
beginning of the submatrices.
QPTR (input/output) INTEGER array, dimension (N+2)
List of indices pointing to beginning of submatrices stored
in QSTORE. The submatrices are numbered starting at the
bottom left of the divide and conquer tree, from left to
right and bottom to top.
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and also the size of
the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed7(int icompq, int n, int qsiz, int tlvls, int curlvl, int curpbm, double[] d, int _d_offset, double[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.doubleW rho, int cutpnt, double[] qstore, int _qstore_offset, int[] qptr, int _qptr_offset, int[] prmptr, int _prmptr_offset, int[] perm, int _perm_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, double[] givnum, int _givnum_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED7 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and optionally eigenvectors of a dense symmetric matrix
that has been reduced to tridiagonal form. DLAED1 handles
the case in which all eigenvalues and eigenvectors of a symmetric
tridiagonal matrix are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLAED8.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine DLAED4 (as called by DLAED9).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= CURLVL <= TLVLS.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (output) INTEGER array, dimension (N)
The permutation which will reintegrate the subproblem just
solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
will be in ascending order.
RHO (input) DOUBLE PRECISION
The subdiagonal element used to create the rank-1
modification.
CUTPNT (input) INTEGER
Contains the location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
Stores eigenvectors of submatrices encountered during
divide and conquer, packed together. QPTR points to
beginning of the submatrices.
QPTR (input/output) INTEGER array, dimension (N+2)
List of indices pointing to beginning of submatrices stored
in QSTORE. The submatrices are numbered starting at the
bottom left of the divide and conquer tree, from left to
right and bottom to top.
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and also the size of
the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed8(int icompq, org.netlib.util.intW k, int n, int qsiz, double[] d, double[] q, int ldq, int[] indxq, org.netlib.util.doubleW rho, int cutpnt, double[] z, double[] dlamda, double[] q2, int ldq2, double[] w, int[] perm, org.netlib.util.intW givptr, int[] givcol, double[] givnum, int[] indxp, int[] indx, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED8 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny element in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the eigenvalues of the two submatrices to be
combined. On exit, the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
If ICOMPQ = 0, Q is not referenced. Otherwise,
on entry, Q contains the eigenvectors of the partially solved
system which has been previously updated in matrix
multiplies with other partially solved eigensystems.
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have CUTPNT added to
their values in order to be accurate.
RHO (input/output) DOUBLE PRECISION
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
DLAED3.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
Z (input) DOUBLE PRECISION array, dimension (N)
On entry, Z contains the updating vector (the last row of
the first sub-eigenvector matrix and the first row of the
second sub-eigenvector matrix).
On exit, the contents of Z are destroyed by the updating
process.
DLAMDA (output) DOUBLE PRECISION array, dimension (N)
A copy of the first K eigenvalues which will be used by
DLAED3 to form the secular equation.
Q2 (output) DOUBLE PRECISION array, dimension (LDQ2,N)
If ICOMPQ = 0, Q2 is not referenced. Otherwise,
a copy of the first K eigenvectors which will be used by
DLAED7 in a matrix multiply (DGEMM) to update the new
eigenvectors.
LDQ2 (input) INTEGER
The leading dimension of the array Q2. LDQ2 >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
The first k values of the final deflation-altered z-vector and
will be passed to DLAED3.
PERM (output) INTEGER array, dimension (N)
The permutations (from deflation and sorting) to be applied
to each eigenblock.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (output) INTEGER array, dimension (2, N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (output) DOUBLE PRECISION array, dimension (2, N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of D into ascending
order.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed8(int icompq, org.netlib.util.intW k, int n, int qsiz, double[] d, int _d_offset, double[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.doubleW rho, int cutpnt, double[] z, int _z_offset, double[] dlamda, int _dlamda_offset, double[] q2, int _q2_offset, int ldq2, double[] w, int _w_offset, int[] perm, int _perm_offset, org.netlib.util.intW givptr, int[] givcol, int _givcol_offset, double[] givnum, int _givnum_offset, int[] indxp, int _indxp_offset, int[] indx, int _indx_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED8 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny element in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the eigenvalues of the two submatrices to be
combined. On exit, the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
If ICOMPQ = 0, Q is not referenced. Otherwise,
on entry, Q contains the eigenvectors of the partially solved
system which has been previously updated in matrix
multiplies with other partially solved eigensystems.
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have CUTPNT added to
their values in order to be accurate.
RHO (input/output) DOUBLE PRECISION
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
DLAED3.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
Z (input) DOUBLE PRECISION array, dimension (N)
On entry, Z contains the updating vector (the last row of
the first sub-eigenvector matrix and the first row of the
second sub-eigenvector matrix).
On exit, the contents of Z are destroyed by the updating
process.
DLAMDA (output) DOUBLE PRECISION array, dimension (N)
A copy of the first K eigenvalues which will be used by
DLAED3 to form the secular equation.
Q2 (output) DOUBLE PRECISION array, dimension (LDQ2,N)
If ICOMPQ = 0, Q2 is not referenced. Otherwise,
a copy of the first K eigenvectors which will be used by
DLAED7 in a matrix multiply (DGEMM) to update the new
eigenvectors.
LDQ2 (input) INTEGER
The leading dimension of the array Q2. LDQ2 >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
The first k values of the final deflation-altered z-vector and
will be passed to DLAED3.
PERM (output) INTEGER array, dimension (N)
The permutations (from deflation and sorting) to be applied
to each eigenblock.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (output) INTEGER array, dimension (2, N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (output) DOUBLE PRECISION array, dimension (2, N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of D into ascending
order.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaed9(int k, int kstart, int kstop, int n, double[] d, double[] q, int ldq, double rho, double[] dlamda, double[] w, double[] s, int lds, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED9 finds the roots of the secular equation, as defined by the
values in D, Z, and RHO, between KSTART and KSTOP. It makes the
appropriate calls to DLAED4 and then stores the new matrix of
eigenvectors for use in calculating the next level of Z vectors.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
DLAED4. K >= 0.
KSTART (input) INTEGER
KSTOP (input) INTEGER
The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
are to be computed. 1 <= KSTART <= KSTOP <= K.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (delation may result in N > K).
D (output) DOUBLE PRECISION array, dimension (N)
D(I) contains the updated eigenvalues
for KSTART <= I <= KSTOP.
Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max( 1, N ).
RHO (input) DOUBLE PRECISION
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
W (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector.
S (output) DOUBLE PRECISION array, dimension (LDS, K)
Will contain the eigenvectors of the repaired matrix which
will be stored for subsequent Z vector calculation and
multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max( 1, K ).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void dlaed9(int k, int kstart, int kstop, int n, double[] d, int _d_offset, double[] q, int _q_offset, int ldq, double rho, double[] dlamda, int _dlamda_offset, double[] w, int _w_offset, double[] s, int _s_offset, int lds, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAED9 finds the roots of the secular equation, as defined by the
values in D, Z, and RHO, between KSTART and KSTOP. It makes the
appropriate calls to DLAED4 and then stores the new matrix of
eigenvectors for use in calculating the next level of Z vectors.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
DLAED4. K >= 0.
KSTART (input) INTEGER
KSTOP (input) INTEGER
The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
are to be computed. 1 <= KSTART <= KSTOP <= K.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (delation may result in N > K).
D (output) DOUBLE PRECISION array, dimension (N)
D(I) contains the updated eigenvalues
for KSTART <= I <= KSTOP.
Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max( 1, N ).
RHO (input) DOUBLE PRECISION
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
W (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector.
S (output) DOUBLE PRECISION array, dimension (LDS, K)
Will contain the eigenvectors of the repaired matrix which
will be stored for subsequent Z vector calculation and
multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max( 1, K ).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void dlaeda(int n, int tlvls, int curlvl, int curpbm, int[] prmptr, int[] perm, int[] givptr, int[] givcol, double[] givnum, double[] q, int[] qptr, double[] z, double[] ztemp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEDA computes the Z vector corresponding to the merge step in the
CURLVLth step of the merge process with TLVLS steps for the CURPBMth
problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= curlvl <= tlvls.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and incidentally the
size of the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
Q (input) DOUBLE PRECISION array, dimension (N**2)
Contains the square eigenblocks from previous levels, the
starting positions for blocks are given by QPTR.
QPTR (input) INTEGER array, dimension (N+2)
Contains a list of pointers which indicate where in Q an
eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
the size of the block.
Z (output) DOUBLE PRECISION array, dimension (N)
On output this vector contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
ZTEMP (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaeda(int n, int tlvls, int curlvl, int curpbm, int[] prmptr, int _prmptr_offset, int[] perm, int _perm_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, double[] givnum, int _givnum_offset, double[] q, int _q_offset, int[] qptr, int _qptr_offset, double[] z, int _z_offset, double[] ztemp, int _ztemp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEDA computes the Z vector corresponding to the merge step in the
CURLVLth step of the merge process with TLVLS steps for the CURPBMth
problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= curlvl <= tlvls.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and incidentally the
size of the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
Q (input) DOUBLE PRECISION array, dimension (N**2)
Contains the square eigenblocks from previous levels, the
starting positions for blocks are given by QPTR.
QPTR (input) INTEGER array, dimension (N+2)
Contains a list of pointers which indicate where in Q an
eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
the size of the block.
Z (output) DOUBLE PRECISION array, dimension (N)
On output this vector contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
ZTEMP (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaein(boolean rightv, boolean noinit, int n, double[] h, int ldh, double wr, double wi, double[] vr, double[] vi, double[] b, int ldb, double[] work, double eps3, double smlnum, double bignum, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEIN uses inverse iteration to find a right or left eigenvector
corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
matrix H.
Arguments
=========
RIGHTV (input) LOGICAL
= .TRUE. : compute right eigenvector;
= .FALSE.: compute left eigenvector.
NOINIT (input) LOGICAL
= .TRUE. : no initial vector supplied in (VR,VI).
= .FALSE.: initial vector supplied in (VR,VI).
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) DOUBLE PRECISION array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input) DOUBLE PRECISION
WI (input) DOUBLE PRECISION
The real and imaginary parts of the eigenvalue of H whose
corresponding right or left eigenvector is to be computed.
VR (input/output) DOUBLE PRECISION array, dimension (N)
VI (input/output) DOUBLE PRECISION array, dimension (N)
On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
a real starting vector for inverse iteration using the real
eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
must contain the real and imaginary parts of a complex
starting vector for inverse iteration using the complex
eigenvalue (WR,WI); otherwise VR and VI need not be set.
On exit, if WI = 0.0 (real eigenvalue), VR contains the
computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
VR and VI contain the real and imaginary parts of the
computed complex eigenvector. The eigenvector is normalized
so that the component of largest magnitude has magnitude 1;
here the magnitude of a complex number (x,y) is taken to be
|x| + |y|.
VI is not referenced if WI = 0.0.
B (workspace) DOUBLE PRECISION array, dimension (LDB,N)
LDB (input) INTEGER
The leading dimension of the array B. LDB >= N+1.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
EPS3 (input) DOUBLE PRECISION
A small machine-dependent value which is used to perturb
close eigenvalues, and to replace zero pivots.
SMLNUM (input) DOUBLE PRECISION
A machine-dependent value close to the underflow threshold.
BIGNUM (input) DOUBLE PRECISION
A machine-dependent value close to the overflow threshold.
INFO (output) INTEGER
= 0: successful exit
= 1: inverse iteration did not converge; VR is set to the
last iterate, and so is VI if WI.ne.0.0.
=====================================================================
.. Parameters ..
public void dlaein(boolean rightv, boolean noinit, int n, double[] h, int _h_offset, int ldh, double wr, double wi, double[] vr, int _vr_offset, double[] vi, int _vi_offset, double[] b, int _b_offset, int ldb, double[] work, int _work_offset, double eps3, double smlnum, double bignum, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEIN uses inverse iteration to find a right or left eigenvector
corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
matrix H.
Arguments
=========
RIGHTV (input) LOGICAL
= .TRUE. : compute right eigenvector;
= .FALSE.: compute left eigenvector.
NOINIT (input) LOGICAL
= .TRUE. : no initial vector supplied in (VR,VI).
= .FALSE.: initial vector supplied in (VR,VI).
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) DOUBLE PRECISION array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input) DOUBLE PRECISION
WI (input) DOUBLE PRECISION
The real and imaginary parts of the eigenvalue of H whose
corresponding right or left eigenvector is to be computed.
VR (input/output) DOUBLE PRECISION array, dimension (N)
VI (input/output) DOUBLE PRECISION array, dimension (N)
On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
a real starting vector for inverse iteration using the real
eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
must contain the real and imaginary parts of a complex
starting vector for inverse iteration using the complex
eigenvalue (WR,WI); otherwise VR and VI need not be set.
On exit, if WI = 0.0 (real eigenvalue), VR contains the
computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
VR and VI contain the real and imaginary parts of the
computed complex eigenvector. The eigenvector is normalized
so that the component of largest magnitude has magnitude 1;
here the magnitude of a complex number (x,y) is taken to be
|x| + |y|.
VI is not referenced if WI = 0.0.
B (workspace) DOUBLE PRECISION array, dimension (LDB,N)
LDB (input) INTEGER
The leading dimension of the array B. LDB >= N+1.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
EPS3 (input) DOUBLE PRECISION
A small machine-dependent value which is used to perturb
close eigenvalues, and to replace zero pivots.
SMLNUM (input) DOUBLE PRECISION
A machine-dependent value close to the underflow threshold.
BIGNUM (input) DOUBLE PRECISION
A machine-dependent value close to the overflow threshold.
INFO (output) INTEGER
= 0: successful exit
= 1: inverse iteration did not converge; VR is set to the
last iterate, and so is VI if WI.ne.0.0.
=====================================================================
.. Parameters ..
public void dlaev2(double a, double b, double c, org.netlib.util.doubleW rt1, org.netlib.util.doubleW rt2, org.netlib.util.doubleW cs1, org.netlib.util.doubleW sn1)
LAPACK
..
Purpose
=======
DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
[ A B ]
[ B C ].
On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
eigenvector for RT1, giving the decomposition
[ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
[-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
Arguments
=========
A (input) DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
B (input) DOUBLE PRECISION
The (1,2) element and the conjugate of the (2,1) element of
the 2-by-2 matrix.
C (input) DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
RT1 (output) DOUBLE PRECISION
The eigenvalue of larger absolute value.
RT2 (output) DOUBLE PRECISION
The eigenvalue of smaller absolute value.
CS1 (output) DOUBLE PRECISION
SN1 (output) DOUBLE PRECISION
The vector (CS1, SN1) is a unit right eigenvector for RT1.
Further Details
===============
RT1 is accurate to a few ulps barring over/underflow.
RT2 may be inaccurate if there is massive cancellation in the
determinant A*C-B*B; higher precision or correctly rounded or
correctly truncated arithmetic would be needed to compute RT2
accurately in all cases.
CS1 and SN1 are accurate to a few ulps barring over/underflow.
Overflow is possible only if RT1 is within a factor of 5 of overflow.
Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.
=====================================================================
.. Parameters ..
public void dlaexc(boolean wantq, int n, double[] t, int ldt, double[] q, int ldq, int j1, int n1, int n2, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
an upper quasi-triangular matrix T by an orthogonal similarity
transformation.
T must be in Schur canonical form, that is, block upper triangular
with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
has its diagonal elemnts equal and its off-diagonal elements of
opposite sign.
Arguments
=========
WANTQ (input) LOGICAL
= .TRUE. : accumulate the transformation in the matrix Q;
= .FALSE.: do not accumulate the transformation.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, the updated matrix T, again in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
On exit, if WANTQ is .TRUE., the updated matrix Q.
If WANTQ is .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
J1 (input) INTEGER
The index of the first row of the first block T11.
N1 (input) INTEGER
The order of the first block T11. N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block T22. N2 = 0, 1 or 2.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
= 1: the transformed matrix T would be too far from Schur
form; the blocks are not swapped and T and Q are
unchanged.
=====================================================================
.. Parameters ..
public void dlaexc(boolean wantq, int n, double[] t, int _t_offset, int ldt, double[] q, int _q_offset, int ldq, int j1, int n1, int n2, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
an upper quasi-triangular matrix T by an orthogonal similarity
transformation.
T must be in Schur canonical form, that is, block upper triangular
with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
has its diagonal elemnts equal and its off-diagonal elements of
opposite sign.
Arguments
=========
WANTQ (input) LOGICAL
= .TRUE. : accumulate the transformation in the matrix Q;
= .FALSE.: do not accumulate the transformation.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, the updated matrix T, again in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
On exit, if WANTQ is .TRUE., the updated matrix Q.
If WANTQ is .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
J1 (input) INTEGER
The index of the first row of the first block T11.
N1 (input) INTEGER
The order of the first block T11. N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block T22. N2 = 0, 1 or 2.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
= 1: the transformed matrix T would be too far from Schur
form; the blocks are not swapped and T and Q are
unchanged.
=====================================================================
.. Parameters ..
public void dlag2(double[] a, int lda, double[] b, int ldb, double safmin, org.netlib.util.doubleW scale1, org.netlib.util.doubleW scale2, org.netlib.util.doubleW wr1, org.netlib.util.doubleW wr2, org.netlib.util.doubleW wi)
LAPACK
..
Purpose
=======
DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
problem A - w B, with scaling as necessary to avoid over-/underflow.
The scaling factor "s" results in a modified eigenvalue equation
s A - w B
where s is a non-negative scaling factor chosen so that w, w B,
and s A do not overflow and, if possible, do not underflow, either.
Arguments
=========
A (input) DOUBLE PRECISION array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
is less than 1/SAFMIN. Entries less than
sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= 2.
B (input) DOUBLE PRECISION array, dimension (LDB, 2)
On entry, the 2 x 2 upper triangular matrix B. It is
assumed that the one-norm of B is less than 1/SAFMIN. The
diagonals should be at least sqrt(SAFMIN) times the largest
element of B (in absolute value); if a diagonal is smaller
than that, then +/- sqrt(SAFMIN) will be used instead of
that diagonal.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= 2.
SAFMIN (input) DOUBLE PRECISION
The smallest positive number s.t. 1/SAFMIN does not
overflow. (This should always be DLAMCH('S') -- it is an
argument in order to avoid having to call DLAMCH frequently.)
SCALE1 (output) DOUBLE PRECISION
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the first eigenvalue. If
the eigenvalues are complex, then the eigenvalues are
( WR1 +/- WI i ) / SCALE1 (which may lie outside the
exponent range of the machine), SCALE1=SCALE2, and SCALE1
will always be positive. If the eigenvalues are real, then
the first (real) eigenvalue is WR1 / SCALE1 , but this may
overflow or underflow, and in fact, SCALE1 may be zero or
less than the underflow threshhold if the exact eigenvalue
is sufficiently large.
SCALE2 (output) DOUBLE PRECISION
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the second eigenvalue. If
the eigenvalues are complex, then SCALE2=SCALE1. If the
eigenvalues are real, then the second (real) eigenvalue is
WR2 / SCALE2 , but this may overflow or underflow, and in
fact, SCALE2 may be zero or less than the underflow
threshhold if the exact eigenvalue is sufficiently large.
WR1 (output) DOUBLE PRECISION
If the eigenvalue is real, then WR1 is SCALE1 times the
eigenvalue closest to the (2,2) element of A B**(-1). If the
eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
part of the eigenvalues.
WR2 (output) DOUBLE PRECISION
If the eigenvalue is real, then WR2 is SCALE2 times the
other eigenvalue. If the eigenvalue is complex, then
WR1=WR2 is SCALE1 times the real part of the eigenvalues.
WI (output) DOUBLE PRECISION
If the eigenvalue is real, then WI is zero. If the
eigenvalue is complex, then WI is SCALE1 times the imaginary
part of the eigenvalues. WI will always be non-negative.
=====================================================================
.. Parameters ..
public void dlag2(double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double safmin, org.netlib.util.doubleW scale1, org.netlib.util.doubleW scale2, org.netlib.util.doubleW wr1, org.netlib.util.doubleW wr2, org.netlib.util.doubleW wi)
LAPACK
..
Purpose
=======
DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
problem A - w B, with scaling as necessary to avoid over-/underflow.
The scaling factor "s" results in a modified eigenvalue equation
s A - w B
where s is a non-negative scaling factor chosen so that w, w B,
and s A do not overflow and, if possible, do not underflow, either.
Arguments
=========
A (input) DOUBLE PRECISION array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
is less than 1/SAFMIN. Entries less than
sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= 2.
B (input) DOUBLE PRECISION array, dimension (LDB, 2)
On entry, the 2 x 2 upper triangular matrix B. It is
assumed that the one-norm of B is less than 1/SAFMIN. The
diagonals should be at least sqrt(SAFMIN) times the largest
element of B (in absolute value); if a diagonal is smaller
than that, then +/- sqrt(SAFMIN) will be used instead of
that diagonal.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= 2.
SAFMIN (input) DOUBLE PRECISION
The smallest positive number s.t. 1/SAFMIN does not
overflow. (This should always be DLAMCH('S') -- it is an
argument in order to avoid having to call DLAMCH frequently.)
SCALE1 (output) DOUBLE PRECISION
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the first eigenvalue. If
the eigenvalues are complex, then the eigenvalues are
( WR1 +/- WI i ) / SCALE1 (which may lie outside the
exponent range of the machine), SCALE1=SCALE2, and SCALE1
will always be positive. If the eigenvalues are real, then
the first (real) eigenvalue is WR1 / SCALE1 , but this may
overflow or underflow, and in fact, SCALE1 may be zero or
less than the underflow threshhold if the exact eigenvalue
is sufficiently large.
SCALE2 (output) DOUBLE PRECISION
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the second eigenvalue. If
the eigenvalues are complex, then SCALE2=SCALE1. If the
eigenvalues are real, then the second (real) eigenvalue is
WR2 / SCALE2 , but this may overflow or underflow, and in
fact, SCALE2 may be zero or less than the underflow
threshhold if the exact eigenvalue is sufficiently large.
WR1 (output) DOUBLE PRECISION
If the eigenvalue is real, then WR1 is SCALE1 times the
eigenvalue closest to the (2,2) element of A B**(-1). If the
eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
part of the eigenvalues.
WR2 (output) DOUBLE PRECISION
If the eigenvalue is real, then WR2 is SCALE2 times the
other eigenvalue. If the eigenvalue is complex, then
WR1=WR2 is SCALE1 times the real part of the eigenvalues.
WI (output) DOUBLE PRECISION
If the eigenvalue is real, then WI is zero. If the
eigenvalue is complex, then WI is SCALE1 times the imaginary
part of the eigenvalues. WI will always be non-negative.
=====================================================================
.. Parameters ..
public void dlag2s(int m, int n, double[] a, int lda, float[] sa, int ldsa, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAG2S converts a DOUBLE PRECISION matrix, SA, to a SINGLE
PRECISION matrix, A.
RMAX is the overflow for the SINGLE PRECISION arithmetic
DLAG2S checks that all the entries of A are between -RMAX and
RMAX. If not the convertion is aborted and a flag is raised.
This is a helper routine so there is no argument checking.
Arguments
=========
M (input) INTEGER
The number of lines of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N coefficient matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
SA (output) REAL array, dimension (LDSA,N)
On exit, if INFO=0, the M-by-N coefficient matrix SA.
LDSA (input) INTEGER
The leading dimension of the array SA. LDSA >= max(1,M).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, the (i,j) entry of the matrix A has
overflowed when moving from DOUBLE PRECISION to SINGLE
k is given by k = (i-1)*LDA+j
=========
.. Local Scalars ..
public void dlag2s(int m, int n, double[] a, int _a_offset, int lda, float[] sa, int _sa_offset, int ldsa, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAG2S converts a DOUBLE PRECISION matrix, SA, to a SINGLE
PRECISION matrix, A.
RMAX is the overflow for the SINGLE PRECISION arithmetic
DLAG2S checks that all the entries of A are between -RMAX and
RMAX. If not the convertion is aborted and a flag is raised.
This is a helper routine so there is no argument checking.
Arguments
=========
M (input) INTEGER
The number of lines of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N coefficient matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
SA (output) REAL array, dimension (LDSA,N)
On exit, if INFO=0, the M-by-N coefficient matrix SA.
LDSA (input) INTEGER
The leading dimension of the array SA. LDSA >= max(1,M).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, the (i,j) entry of the matrix A has
overflowed when moving from DOUBLE PRECISION to SINGLE
k is given by k = (i-1)*LDA+j
=========
.. Local Scalars ..
public void dlags2(boolean upper, double a1, double a2, double a3, double b1, double b2, double b3, org.netlib.util.doubleW csu, org.netlib.util.doubleW snu, org.netlib.util.doubleW csv, org.netlib.util.doubleW snv, org.netlib.util.doubleW csq, org.netlib.util.doubleW snq)
LAPACK
..
Purpose
=======
DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
U'*A*Q = U'*( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V'*B*Q = V'*( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U'*A*Q = U'*( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V'*B*Q = V'*( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ )
( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )
Z' denotes the transpose of Z.
Arguments
=========
UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A1 (input) DOUBLE PRECISION
A2 (input) DOUBLE PRECISION
A3 (input) DOUBLE PRECISION
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
B1 (input) DOUBLE PRECISION
B2 (input) DOUBLE PRECISION
B3 (input) DOUBLE PRECISION
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
CSU (output) DOUBLE PRECISION
SNU (output) DOUBLE PRECISION
The desired orthogonal matrix U.
CSV (output) DOUBLE PRECISION
SNV (output) DOUBLE PRECISION
The desired orthogonal matrix V.
CSQ (output) DOUBLE PRECISION
SNQ (output) DOUBLE PRECISION
The desired orthogonal matrix Q.
=====================================================================
.. Parameters ..
public void dlagtf(int n, double[] a, double lambda, double[] b, double[] c, double tol, double[] d, int[] in, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
tridiagonal matrix and lambda is a scalar, as
T - lambda*I = PLU,
where P is a permutation matrix, L is a unit lower tridiagonal matrix
with at most one non-zero sub-diagonal elements per column and U is
an upper triangular matrix with at most two non-zero super-diagonal
elements per column.
The factorization is obtained by Gaussian elimination with partial
pivoting and implicit row scaling.
The parameter LAMBDA is included in the routine so that DLAGTF may
be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
inverse iteration.
Arguments
=========
N (input) INTEGER
The order of the matrix T.
A (input/output) DOUBLE PRECISION array, dimension (N)
On entry, A must contain the diagonal elements of T.
On exit, A is overwritten by the n diagonal elements of the
upper triangular matrix U of the factorization of T.
LAMBDA (input) DOUBLE PRECISION
On entry, the scalar lambda.
B (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, B must contain the (n-1) super-diagonal elements of
T.
On exit, B is overwritten by the (n-1) super-diagonal
elements of the matrix U of the factorization of T.
C (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, C must contain the (n-1) sub-diagonal elements of
T.
On exit, C is overwritten by the (n-1) sub-diagonal elements
of the matrix L of the factorization of T.
TOL (input) DOUBLE PRECISION
On entry, a relative tolerance used to indicate whether or
not the matrix (T - lambda*I) is nearly singular. TOL should
normally be chose as approximately the largest relative error
in the elements of T. For example, if the elements of T are
correct to about 4 significant figures, then TOL should be
set to about 5*10**(-4). If TOL is supplied as less than eps,
where eps is the relative machine precision, then the value
eps is used in place of TOL.
D (output) DOUBLE PRECISION array, dimension (N-2)
On exit, D is overwritten by the (n-2) second super-diagonal
elements of the matrix U of the factorization of T.
IN (output) INTEGER array, dimension (N)
On exit, IN contains details of the permutation matrix P. If
an interchange occurred at the kth step of the elimination,
then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
returns the smallest positive integer j such that
abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
where norm( A(j) ) denotes the sum of the absolute values of
the jth row of the matrix A. If no such j exists then IN(n)
is returned as zero. If IN(n) is returned as positive, then a
diagonal element of U is small, indicating that
(T - lambda*I) is singular or nearly singular,
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -k, the kth argument had an illegal value
=====================================================================
.. Parameters ..
public void dlagtf(int n, double[] a, int _a_offset, double lambda, double[] b, int _b_offset, double[] c, int _c_offset, double tol, double[] d, int _d_offset, int[] in, int _in_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
tridiagonal matrix and lambda is a scalar, as
T - lambda*I = PLU,
where P is a permutation matrix, L is a unit lower tridiagonal matrix
with at most one non-zero sub-diagonal elements per column and U is
an upper triangular matrix with at most two non-zero super-diagonal
elements per column.
The factorization is obtained by Gaussian elimination with partial
pivoting and implicit row scaling.
The parameter LAMBDA is included in the routine so that DLAGTF may
be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
inverse iteration.
Arguments
=========
N (input) INTEGER
The order of the matrix T.
A (input/output) DOUBLE PRECISION array, dimension (N)
On entry, A must contain the diagonal elements of T.
On exit, A is overwritten by the n diagonal elements of the
upper triangular matrix U of the factorization of T.
LAMBDA (input) DOUBLE PRECISION
On entry, the scalar lambda.
B (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, B must contain the (n-1) super-diagonal elements of
T.
On exit, B is overwritten by the (n-1) super-diagonal
elements of the matrix U of the factorization of T.
C (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, C must contain the (n-1) sub-diagonal elements of
T.
On exit, C is overwritten by the (n-1) sub-diagonal elements
of the matrix L of the factorization of T.
TOL (input) DOUBLE PRECISION
On entry, a relative tolerance used to indicate whether or
not the matrix (T - lambda*I) is nearly singular. TOL should
normally be chose as approximately the largest relative error
in the elements of T. For example, if the elements of T are
correct to about 4 significant figures, then TOL should be
set to about 5*10**(-4). If TOL is supplied as less than eps,
where eps is the relative machine precision, then the value
eps is used in place of TOL.
D (output) DOUBLE PRECISION array, dimension (N-2)
On exit, D is overwritten by the (n-2) second super-diagonal
elements of the matrix U of the factorization of T.
IN (output) INTEGER array, dimension (N)
On exit, IN contains details of the permutation matrix P. If
an interchange occurred at the kth step of the elimination,
then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
returns the smallest positive integer j such that
abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
where norm( A(j) ) denotes the sum of the absolute values of
the jth row of the matrix A. If no such j exists then IN(n)
is returned as zero. If IN(n) is returned as positive, then a
diagonal element of U is small, indicating that
(T - lambda*I) is singular or nearly singular,
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -k, the kth argument had an illegal value
=====================================================================
.. Parameters ..
public void dlagtm(String trans, int n, int nrhs, double alpha, double[] dl, double[] d, double[] du, double[] x, int ldx, double beta, double[] b, int ldb)
LAPACK
..
Purpose
=======
DLAGTM performs a matrix-vector product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta * B
= 'C': Conjugate transpose = Transpose
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA (input) DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of T.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA (input) DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(N,1).
=====================================================================
.. Parameters ..
public void dlagtm(String trans, int n, int nrhs, double alpha, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset, double[] x, int _x_offset, int ldx, double beta, double[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
DLAGTM performs a matrix-vector product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta * B
= 'C': Conjugate transpose = Transpose
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA (input) DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of T.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA (input) DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(N,1).
=====================================================================
.. Parameters ..
public void dlagts(int job, int n, double[] a, double[] b, double[] c, double[] d, int[] in, double[] y, org.netlib.util.doubleW tol, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAGTS may be used to solve one of the systems of equations
(T - lambda*I)*x = y or (T - lambda*I)'*x = y,
where T is an n by n tridiagonal matrix, for x, following the
factorization of (T - lambda*I) as
(T - lambda*I) = P*L*U ,
by routine DLAGTF. The choice of equation to be solved is
controlled by the argument JOB, and in each case there is an option
to perturb zero or very small diagonal elements of U, this option
being intended for use in applications such as inverse iteration.
Arguments
=========
JOB (input) INTEGER
Specifies the job to be performed by DLAGTS as follows:
= 1: The equations (T - lambda*I)x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -1: The equations (T - lambda*I)x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
= 2: The equations (T - lambda*I)'x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -2: The equations (T - lambda*I)'x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
N (input) INTEGER
The order of the matrix T.
A (input) DOUBLE PRECISION array, dimension (N)
On entry, A must contain the diagonal elements of U as
returned from DLAGTF.
B (input) DOUBLE PRECISION array, dimension (N-1)
On entry, B must contain the first super-diagonal elements of
U as returned from DLAGTF.
C (input) DOUBLE PRECISION array, dimension (N-1)
On entry, C must contain the sub-diagonal elements of L as
returned from DLAGTF.
D (input) DOUBLE PRECISION array, dimension (N-2)
On entry, D must contain the second super-diagonal elements
of U as returned from DLAGTF.
IN (input) INTEGER array, dimension (N)
On entry, IN must contain details of the matrix P as returned
from DLAGTF.
Y (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side vector y.
On exit, Y is overwritten by the solution vector x.
TOL (input/output) DOUBLE PRECISION
On entry, with JOB .lt. 0, TOL should be the minimum
perturbation to be made to very small diagonal elements of U.
TOL should normally be chosen as about eps*norm(U), where eps
is the relative machine precision, but if TOL is supplied as
non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
If JOB .gt. 0 then TOL is not referenced.
On exit, TOL is changed as described above, only if TOL is
non-positive on entry. Otherwise TOL is unchanged.
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -i, the i-th argument had an illegal value
.gt. 0: overflow would occur when computing the INFO(th)
element of the solution vector x. This can only occur
when JOB is supplied as positive and either means
that a diagonal element of U is very small, or that
the elements of the right-hand side vector y are very
large.
=====================================================================
.. Parameters ..
public void dlagts(int job, int n, double[] a, int _a_offset, double[] b, int _b_offset, double[] c, int _c_offset, double[] d, int _d_offset, int[] in, int _in_offset, double[] y, int _y_offset, org.netlib.util.doubleW tol, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAGTS may be used to solve one of the systems of equations
(T - lambda*I)*x = y or (T - lambda*I)'*x = y,
where T is an n by n tridiagonal matrix, for x, following the
factorization of (T - lambda*I) as
(T - lambda*I) = P*L*U ,
by routine DLAGTF. The choice of equation to be solved is
controlled by the argument JOB, and in each case there is an option
to perturb zero or very small diagonal elements of U, this option
being intended for use in applications such as inverse iteration.
Arguments
=========
JOB (input) INTEGER
Specifies the job to be performed by DLAGTS as follows:
= 1: The equations (T - lambda*I)x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -1: The equations (T - lambda*I)x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
= 2: The equations (T - lambda*I)'x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -2: The equations (T - lambda*I)'x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
N (input) INTEGER
The order of the matrix T.
A (input) DOUBLE PRECISION array, dimension (N)
On entry, A must contain the diagonal elements of U as
returned from DLAGTF.
B (input) DOUBLE PRECISION array, dimension (N-1)
On entry, B must contain the first super-diagonal elements of
U as returned from DLAGTF.
C (input) DOUBLE PRECISION array, dimension (N-1)
On entry, C must contain the sub-diagonal elements of L as
returned from DLAGTF.
D (input) DOUBLE PRECISION array, dimension (N-2)
On entry, D must contain the second super-diagonal elements
of U as returned from DLAGTF.
IN (input) INTEGER array, dimension (N)
On entry, IN must contain details of the matrix P as returned
from DLAGTF.
Y (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side vector y.
On exit, Y is overwritten by the solution vector x.
TOL (input/output) DOUBLE PRECISION
On entry, with JOB .lt. 0, TOL should be the minimum
perturbation to be made to very small diagonal elements of U.
TOL should normally be chosen as about eps*norm(U), where eps
is the relative machine precision, but if TOL is supplied as
non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
If JOB .gt. 0 then TOL is not referenced.
On exit, TOL is changed as described above, only if TOL is
non-positive on entry. Otherwise TOL is unchanged.
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -i, the i-th argument had an illegal value
.gt. 0: overflow would occur when computing the INFO(th)
element of the solution vector x. This can only occur
when JOB is supplied as positive and either means
that a diagonal element of U is very small, or that
the elements of the right-hand side vector y are very
large.
=====================================================================
.. Parameters ..
public void dlagv2(double[] a, int lda, double[] b, int ldb, double[] alphar, double[] alphai, double[] beta, org.netlib.util.doubleW csl, org.netlib.util.doubleW snl, org.netlib.util.doubleW csr, org.netlib.util.doubleW snr)
LAPACK
..
Purpose
=======
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0.
Arguments
=========
A (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A.
On exit, A is overwritten by the ``A-part'' of the
generalized Schur form.
LDA (input) INTEGER
THe leading dimension of the array A. LDA >= 2.
B (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
On entry, the upper triangular 2 x 2 matrix B.
On exit, B is overwritten by the ``B-part'' of the
generalized Schur form.
LDB (input) INTEGER
THe leading dimension of the array B. LDB >= 2.
ALPHAR (output) DOUBLE PRECISION array, dimension (2)
ALPHAI (output) DOUBLE PRECISION array, dimension (2)
BETA (output) DOUBLE PRECISION array, dimension (2)
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
be zero.
CSL (output) DOUBLE PRECISION
The cosine of the left rotation matrix.
SNL (output) DOUBLE PRECISION
The sine of the left rotation matrix.
CSR (output) DOUBLE PRECISION
The cosine of the right rotation matrix.
SNR (output) DOUBLE PRECISION
The sine of the right rotation matrix.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dlagv2(double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, org.netlib.util.doubleW csl, org.netlib.util.doubleW snl, org.netlib.util.doubleW csr, org.netlib.util.doubleW snr)
LAPACK
..
Purpose
=======
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0.
Arguments
=========
A (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A.
On exit, A is overwritten by the ``A-part'' of the
generalized Schur form.
LDA (input) INTEGER
THe leading dimension of the array A. LDA >= 2.
B (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
On entry, the upper triangular 2 x 2 matrix B.
On exit, B is overwritten by the ``B-part'' of the
generalized Schur form.
LDB (input) INTEGER
THe leading dimension of the array B. LDB >= 2.
ALPHAR (output) DOUBLE PRECISION array, dimension (2)
ALPHAI (output) DOUBLE PRECISION array, dimension (2)
BETA (output) DOUBLE PRECISION array, dimension (2)
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
be zero.
CSL (output) DOUBLE PRECISION
The cosine of the left rotation matrix.
SNL (output) DOUBLE PRECISION
The sine of the left rotation matrix.
CSR (output) DOUBLE PRECISION
The cosine of the right rotation matrix.
SNR (output) DOUBLE PRECISION
The sine of the right rotation matrix.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dlahqr(boolean wantt, boolean wantz, int n, int ilo, int ihi, double[] h, int ldh, double[] wr, double[] wi, int iloz, int ihiz, double[] z, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAHQR is an auxiliary routine called by DHSEQR to update the
eigenvalues and Schur decomposition already computed by DHSEQR, by
dealing with the Hessenberg submatrix in rows and columns ILO to
IHI.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper quasi-triangular in
rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
ILO = 1). DLAHQR works primarily with the Hessenberg
submatrix in rows and columns ILO to IHI, but applies
transformations to all of H if WANTT is .TRUE..
1 <= ILO <= max(1,IHI); IHI <= N.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO is zero and if WANTT is .TRUE., H is upper
quasi-triangular in rows and columns ILO:IHI, with any
2-by-2 diagonal blocks in standard form. If INFO is zero
and WANTT is .FALSE., the contents of H are unspecified on
exit. The output state of H if INFO is nonzero is given
below under the description of INFO.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues ILO to IHI are stored in the corresponding
elements of WR and WI. If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
eigenvalues are stored in the same order as on the diagonal
of the Schur form returned in H, with WR(i) = H(i,i), and, if
H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
If WANTZ is .TRUE., on entry Z must contain the current
matrix Z of transformations accumulated by DHSEQR, and on
exit Z has been updated; transformations are applied only to
the submatrix Z(ILOZ:IHIZ,ILO:IHI).
If WANTZ is .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
.GT. 0: If INFO = i, DLAHQR failed to compute all the
eigenvalues ILO to IHI in a total of 30 iterations
per eigenvalue; elements i+1:ihi of WR and WI
contain those eigenvalues which have been
successfully computed.
If INFO .GT. 0 and WANTT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the
eigenvalues of the upper Hessenberg matrix rows
and columns ILO thorugh INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthognal matrix. The final
value of H is upper Hessenberg and triangular in
rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*)
(regardless of the value of WANTT.)
Further Details
===============
02-96 Based on modifications by
David Day, Sandia National Laboratory, USA
12-04 Further modifications by
Ralph Byers, University of Kansas, USA
This is a modified version of DLAHQR from LAPACK version 3.0.
It is (1) more robust against overflow and underflow and
(2) adopts the more conservative Ahues & Tisseur stopping
criterion (LAWN 122, 1997).
=========================================================
.. Parameters ..
public void dlahqr(boolean wantt, boolean wantz, int n, int ilo, int ihi, double[] h, int _h_offset, int ldh, double[] wr, int _wr_offset, double[] wi, int _wi_offset, int iloz, int ihiz, double[] z, int _z_offset, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAHQR is an auxiliary routine called by DHSEQR to update the
eigenvalues and Schur decomposition already computed by DHSEQR, by
dealing with the Hessenberg submatrix in rows and columns ILO to
IHI.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper quasi-triangular in
rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
ILO = 1). DLAHQR works primarily with the Hessenberg
submatrix in rows and columns ILO to IHI, but applies
transformations to all of H if WANTT is .TRUE..
1 <= ILO <= max(1,IHI); IHI <= N.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO is zero and if WANTT is .TRUE., H is upper
quasi-triangular in rows and columns ILO:IHI, with any
2-by-2 diagonal blocks in standard form. If INFO is zero
and WANTT is .FALSE., the contents of H are unspecified on
exit. The output state of H if INFO is nonzero is given
below under the description of INFO.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues ILO to IHI are stored in the corresponding
elements of WR and WI. If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
eigenvalues are stored in the same order as on the diagonal
of the Schur form returned in H, with WR(i) = H(i,i), and, if
H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
If WANTZ is .TRUE., on entry Z must contain the current
matrix Z of transformations accumulated by DHSEQR, and on
exit Z has been updated; transformations are applied only to
the submatrix Z(ILOZ:IHIZ,ILO:IHI).
If WANTZ is .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
.GT. 0: If INFO = i, DLAHQR failed to compute all the
eigenvalues ILO to IHI in a total of 30 iterations
per eigenvalue; elements i+1:ihi of WR and WI
contain those eigenvalues which have been
successfully computed.
If INFO .GT. 0 and WANTT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the
eigenvalues of the upper Hessenberg matrix rows
and columns ILO thorugh INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthognal matrix. The final
value of H is upper Hessenberg and triangular in
rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*)
(regardless of the value of WANTT.)
Further Details
===============
02-96 Based on modifications by
David Day, Sandia National Laboratory, USA
12-04 Further modifications by
Ralph Byers, University of Kansas, USA
This is a modified version of DLAHQR from LAPACK version 3.0.
It is (1) more robust against overflow and underflow and
(2) adopts the more conservative Ahues & Tisseur stopping
criterion (LAWN 122, 1997).
=========================================================
.. Parameters ..
public void dlahr2(int n, int k, int nb, double[] a, int lda, double[] tau, double[] t, int ldt, double[] y, int ldy)
LAPACK
..
Purpose
=======
DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an auxiliary routine called by DGEHRD.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
K < N.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) DOUBLE PRECISION array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a a a a a )
( a a a a a )
( a a a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's DLAHRD
incorporating improvements proposed by Quintana-Orti and Van de
Gejin. Note that the entries of A(1:K,2:NB) differ from those
returned by the original LAPACK routine. This function is
not backward compatible with LAPACK3.0.
=====================================================================
.. Parameters ..
public void dlahr2(int n, int k, int nb, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] t, int _t_offset, int ldt, double[] y, int _y_offset, int ldy)
LAPACK
..
Purpose
=======
DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an auxiliary routine called by DGEHRD.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
K < N.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) DOUBLE PRECISION array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a a a a a )
( a a a a a )
( a a a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's DLAHRD
incorporating improvements proposed by Quintana-Orti and Van de
Gejin. Note that the entries of A(1:K,2:NB) differ from those
returned by the original LAPACK routine. This function is
not backward compatible with LAPACK3.0.
=====================================================================
.. Parameters ..
public void dlahrd(int n, int k, int nb, double[] a, int lda, double[] tau, double[] t, int ldt, double[] y, int ldy)
LAPACK
..
Purpose
=======
DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an OBSOLETE auxiliary routine.
This routine will be 'deprecated' in a future release.
Please use the new routine DLAHR2 instead.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) DOUBLE PRECISION array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a h a a a )
( a h a a a )
( a h a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dlahrd(int n, int k, int nb, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] t, int _t_offset, int ldt, double[] y, int _y_offset, int ldy)
LAPACK
..
Purpose
=======
DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an OBSOLETE auxiliary routine.
This routine will be 'deprecated' in a future release.
Please use the new routine DLAHR2 instead.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) DOUBLE PRECISION array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) DOUBLE PRECISION array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a h a a a )
( a h a a a )
( a h a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dlaic1(int job, int j, double[] x, double sest, double[] w, double gamma, org.netlib.util.doubleW sestpr, org.netlib.util.doubleW s, org.netlib.util.doubleW c)
LAPACK
..
Purpose
=======
DLAIC1 applies one step of incremental condition estimation in
its simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then DLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w' gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular
value is computed.
Note that [s c]' and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x'*w.
Arguments
=========
JOB (input) INTEGER
= 1: an estimate for the largest singular value is computed.
= 2: an estimate for the smallest singular value is computed.
J (input) INTEGER
Length of X and W
X (input) DOUBLE PRECISION array, dimension (J)
The j-vector x.
SEST (input) DOUBLE PRECISION
Estimated singular value of j by j matrix L
W (input) DOUBLE PRECISION array, dimension (J)
The j-vector w.
GAMMA (input) DOUBLE PRECISION
The diagonal element gamma.
SESTPR (output) DOUBLE PRECISION
Estimated singular value of (j+1) by (j+1) matrix Lhat.
S (output) DOUBLE PRECISION
Sine needed in forming xhat.
C (output) DOUBLE PRECISION
Cosine needed in forming xhat.
=====================================================================
.. Parameters ..
public void dlaic1(int job, int j, double[] x, int _x_offset, double sest, double[] w, int _w_offset, double gamma, org.netlib.util.doubleW sestpr, org.netlib.util.doubleW s, org.netlib.util.doubleW c)
LAPACK
..
Purpose
=======
DLAIC1 applies one step of incremental condition estimation in
its simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then DLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w' gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular
value is computed.
Note that [s c]' and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x'*w.
Arguments
=========
JOB (input) INTEGER
= 1: an estimate for the largest singular value is computed.
= 2: an estimate for the smallest singular value is computed.
J (input) INTEGER
Length of X and W
X (input) DOUBLE PRECISION array, dimension (J)
The j-vector x.
SEST (input) DOUBLE PRECISION
Estimated singular value of j by j matrix L
W (input) DOUBLE PRECISION array, dimension (J)
The j-vector w.
GAMMA (input) DOUBLE PRECISION
The diagonal element gamma.
SESTPR (output) DOUBLE PRECISION
Estimated singular value of (j+1) by (j+1) matrix Lhat.
S (output) DOUBLE PRECISION
Sine needed in forming xhat.
C (output) DOUBLE PRECISION
Cosine needed in forming xhat.
=====================================================================
.. Parameters ..
public boolean dlaisnan(double din1, double din2)
LAPACK
..
Purpose
=======
This routine is not for general use. It exists solely to avoid
over-optimization in DISNAN.
DLAISNAN checks for NaNs by comparing its two arguments for
inequality. NaN is the only floating-point value where NaN != NaN
returns .TRUE. To check for NaNs, pass the same variable as both
arguments.
Strictly speaking, Fortran does not allow aliasing of function
arguments. So a compiler must assume that the two arguments are
not the same variable, and the test will not be optimized away.
Interprocedural or whole-program optimization may delete this
test. The ISNAN functions will be replaced by the correct
Fortran 03 intrinsic once the intrinsic is widely available.
Arguments
=========
DIN1 (input) DOUBLE PRECISION
DIN2 (input) DOUBLE PRECISION
Two numbers to compare for inequality.
=====================================================================
.. Executable Statements ..
public void dlaln2(boolean ltrans, int na, int nw, double smin, double ca, double[] a, int lda, double d1, double d2, double[] b, int ldb, double wr, double wi, double[] x, int ldx, org.netlib.util.doubleW scale, org.netlib.util.doubleW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALN2 solves a system of the form (ca A - w D ) X = s B
or (ca A' - w D) X = s B with possible scaling ("s") and
perturbation of A. (A' means A-transpose.)
A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
real diagonal matrix, w is a real or complex value, and X and B are
NA x 1 matrices -- real if w is real, complex if w is complex. NA
may be 1 or 2.
If w is complex, X and B are represented as NA x 2 matrices,
the first column of each being the real part and the second
being the imaginary part.
"s" is a scaling factor (.LE. 1), computed by DLALN2, which is
so chosen that X can be computed without overflow. X is further
scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
than overflow.
If both singular values of (ca A - w D) are less than SMIN,
SMIN*identity will be used instead of (ca A - w D). If only one
singular value is less than SMIN, one element of (ca A - w D) will be
perturbed enough to make the smallest singular value roughly SMIN.
If both singular values are at least SMIN, (ca A - w D) will not be
perturbed. In any case, the perturbation will be at most some small
multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values
are computed by infinity-norm approximations, and thus will only be
correct to a factor of 2 or so.
Note: all input quantities are assumed to be smaller than overflow
by a reasonable factor. (See BIGNUM.)
Arguments
==========
LTRANS (input) LOGICAL
=.TRUE.: A-transpose will be used.
=.FALSE.: A will be used (not transposed.)
NA (input) INTEGER
The size of the matrix A. It may (only) be 1 or 2.
NW (input) INTEGER
1 if "w" is real, 2 if "w" is complex. It may only be 1
or 2.
SMIN (input) DOUBLE PRECISION
The desired lower bound on the singular values of A. This
should be a safe distance away from underflow or overflow,
say, between (underflow/machine precision) and (machine
precision * overflow ). (See BIGNUM and ULP.)
CA (input) DOUBLE PRECISION
The coefficient c, which A is multiplied by.
A (input) DOUBLE PRECISION array, dimension (LDA,NA)
The NA x NA matrix A.
LDA (input) INTEGER
The leading dimension of A. It must be at least NA.
D1 (input) DOUBLE PRECISION
The 1,1 element in the diagonal matrix D.
D2 (input) DOUBLE PRECISION
The 2,2 element in the diagonal matrix D. Not used if NW=1.
B (input) DOUBLE PRECISION array, dimension (LDB,NW)
The NA x NW matrix B (right-hand side). If NW=2 ("w" is
complex), column 1 contains the real part of B and column 2
contains the imaginary part.
LDB (input) INTEGER
The leading dimension of B. It must be at least NA.
WR (input) DOUBLE PRECISION
The real part of the scalar "w".
WI (input) DOUBLE PRECISION
The imaginary part of the scalar "w". Not used if NW=1.
X (output) DOUBLE PRECISION array, dimension (LDX,NW)
The NA x NW matrix X (unknowns), as computed by DLALN2.
If NW=2 ("w" is complex), on exit, column 1 will contain
the real part of X and column 2 will contain the imaginary
part.
LDX (input) INTEGER
The leading dimension of X. It must be at least NA.
SCALE (output) DOUBLE PRECISION
The scale factor that B must be multiplied by to insure
that overflow does not occur when computing X. Thus,
(ca A - w D) X will be SCALE*B, not B (ignoring
perturbations of A.) It will be at most 1.
XNORM (output) DOUBLE PRECISION
The infinity-norm of X, when X is regarded as an NA x NW
real matrix.
INFO (output) INTEGER
An error flag. It will be set to zero if no error occurs,
a negative number if an argument is in error, or a positive
number if ca A - w D had to be perturbed.
The possible values are:
= 0: No error occurred, and (ca A - w D) did not have to be
perturbed.
= 1: (ca A - w D) had to be perturbed to make its smallest
(or only) singular value greater than SMIN.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void dlaln2(boolean ltrans, int na, int nw, double smin, double ca, double[] a, int _a_offset, int lda, double d1, double d2, double[] b, int _b_offset, int ldb, double wr, double wi, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW scale, org.netlib.util.doubleW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALN2 solves a system of the form (ca A - w D ) X = s B
or (ca A' - w D) X = s B with possible scaling ("s") and
perturbation of A. (A' means A-transpose.)
A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
real diagonal matrix, w is a real or complex value, and X and B are
NA x 1 matrices -- real if w is real, complex if w is complex. NA
may be 1 or 2.
If w is complex, X and B are represented as NA x 2 matrices,
the first column of each being the real part and the second
being the imaginary part.
"s" is a scaling factor (.LE. 1), computed by DLALN2, which is
so chosen that X can be computed without overflow. X is further
scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
than overflow.
If both singular values of (ca A - w D) are less than SMIN,
SMIN*identity will be used instead of (ca A - w D). If only one
singular value is less than SMIN, one element of (ca A - w D) will be
perturbed enough to make the smallest singular value roughly SMIN.
If both singular values are at least SMIN, (ca A - w D) will not be
perturbed. In any case, the perturbation will be at most some small
multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values
are computed by infinity-norm approximations, and thus will only be
correct to a factor of 2 or so.
Note: all input quantities are assumed to be smaller than overflow
by a reasonable factor. (See BIGNUM.)
Arguments
==========
LTRANS (input) LOGICAL
=.TRUE.: A-transpose will be used.
=.FALSE.: A will be used (not transposed.)
NA (input) INTEGER
The size of the matrix A. It may (only) be 1 or 2.
NW (input) INTEGER
1 if "w" is real, 2 if "w" is complex. It may only be 1
or 2.
SMIN (input) DOUBLE PRECISION
The desired lower bound on the singular values of A. This
should be a safe distance away from underflow or overflow,
say, between (underflow/machine precision) and (machine
precision * overflow ). (See BIGNUM and ULP.)
CA (input) DOUBLE PRECISION
The coefficient c, which A is multiplied by.
A (input) DOUBLE PRECISION array, dimension (LDA,NA)
The NA x NA matrix A.
LDA (input) INTEGER
The leading dimension of A. It must be at least NA.
D1 (input) DOUBLE PRECISION
The 1,1 element in the diagonal matrix D.
D2 (input) DOUBLE PRECISION
The 2,2 element in the diagonal matrix D. Not used if NW=1.
B (input) DOUBLE PRECISION array, dimension (LDB,NW)
The NA x NW matrix B (right-hand side). If NW=2 ("w" is
complex), column 1 contains the real part of B and column 2
contains the imaginary part.
LDB (input) INTEGER
The leading dimension of B. It must be at least NA.
WR (input) DOUBLE PRECISION
The real part of the scalar "w".
WI (input) DOUBLE PRECISION
The imaginary part of the scalar "w". Not used if NW=1.
X (output) DOUBLE PRECISION array, dimension (LDX,NW)
The NA x NW matrix X (unknowns), as computed by DLALN2.
If NW=2 ("w" is complex), on exit, column 1 will contain
the real part of X and column 2 will contain the imaginary
part.
LDX (input) INTEGER
The leading dimension of X. It must be at least NA.
SCALE (output) DOUBLE PRECISION
The scale factor that B must be multiplied by to insure
that overflow does not occur when computing X. Thus,
(ca A - w D) X will be SCALE*B, not B (ignoring
perturbations of A.) It will be at most 1.
XNORM (output) DOUBLE PRECISION
The infinity-norm of X, when X is regarded as an NA x NW
real matrix.
INFO (output) INTEGER
An error flag. It will be set to zero if no error occurs,
a negative number if an argument is in error, or a positive
number if ca A - w D had to be perturbed.
The possible values are:
= 0: No error occurred, and (ca A - w D) did not have to be
perturbed.
= 1: (ca A - w D) had to be perturbed to make its smallest
(or only) singular value greater than SMIN.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void dlals0(int icompq, int nl, int nr, int sqre, int nrhs, double[] b, int ldb, double[] bx, int ldbx, int[] perm, int givptr, int[] givcol, int ldgcol, double[] givnum, int ldgnum, double[] poles, double[] difl, double[] difr, double[] z, int k, double c, double s, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALS0 applies back the multiplying factors of either the left or the
right singular vector matrix of a diagonal matrix appended by a row
to the right hand side matrix B in solving the least squares problem
using the divide-and-conquer SVD approach.
For the left singular vector matrix, three types of orthogonal
matrices are involved:
(1L) Givens rotations: the number of such rotations is GIVPTR; the
pairs of columns/rows they were applied to are stored in GIVCOL;
and the C- and S-values of these rotations are stored in GIVNUM.
(2L) Permutation. The (NL+1)-st row of B is to be moved to the first
row, and for J=2:N, PERM(J)-th row of B is to be moved to the
J-th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal
matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
(2R) If SQRE = 1, one extra Givens rotation to generate the right
null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Left singular vector matrix.
= 1: Right singular vector matrix.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B. LDB must be at least
max(1,MAX( M, N ) ).
BX (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
LDBX (input) INTEGER
The leading dimension of BX.
PERM (input) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) applied
to the two blocks.
GIVPTR (input) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of rows/columns
involved in a Givens rotation.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value used in the
corresponding Givens rotation.
LDGNUM (input) INTEGER
The leading dimension of arrays DIFR, POLES and
GIVNUM, must be at least K.
POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
On entry, POLES(1:K, 1) contains the new singular
values obtained from solving the secular equation, and
POLES(1:K, 2) is an array containing the poles in the secular
equation.
DIFL (input) DOUBLE PRECISION array, dimension ( K ).
On entry, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
On entry, DIFR(I, 1) contains the distances between I-th
updated (undeflated) singular value and the I+1-th
(undeflated) old singular value. And DIFR(I, 2) is the
normalizing factor for the I-th right singular vector.
Z (input) DOUBLE PRECISION array, dimension ( K )
Contain the components of the deflation-adjusted updating row
vector.
K (input) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (input) DOUBLE PRECISION
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (input) DOUBLE PRECISION
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) DOUBLE PRECISION array, dimension ( K )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dlals0(int icompq, int nl, int nr, int sqre, int nrhs, double[] b, int _b_offset, int ldb, double[] bx, int _bx_offset, int ldbx, int[] perm, int _perm_offset, int givptr, int[] givcol, int _givcol_offset, int ldgcol, double[] givnum, int _givnum_offset, int ldgnum, double[] poles, int _poles_offset, double[] difl, int _difl_offset, double[] difr, int _difr_offset, double[] z, int _z_offset, int k, double c, double s, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALS0 applies back the multiplying factors of either the left or the
right singular vector matrix of a diagonal matrix appended by a row
to the right hand side matrix B in solving the least squares problem
using the divide-and-conquer SVD approach.
For the left singular vector matrix, three types of orthogonal
matrices are involved:
(1L) Givens rotations: the number of such rotations is GIVPTR; the
pairs of columns/rows they were applied to are stored in GIVCOL;
and the C- and S-values of these rotations are stored in GIVNUM.
(2L) Permutation. The (NL+1)-st row of B is to be moved to the first
row, and for J=2:N, PERM(J)-th row of B is to be moved to the
J-th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal
matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
(2R) If SQRE = 1, one extra Givens rotation to generate the right
null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Left singular vector matrix.
= 1: Right singular vector matrix.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B. LDB must be at least
max(1,MAX( M, N ) ).
BX (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
LDBX (input) INTEGER
The leading dimension of BX.
PERM (input) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) applied
to the two blocks.
GIVPTR (input) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of rows/columns
involved in a Givens rotation.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value used in the
corresponding Givens rotation.
LDGNUM (input) INTEGER
The leading dimension of arrays DIFR, POLES and
GIVNUM, must be at least K.
POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
On entry, POLES(1:K, 1) contains the new singular
values obtained from solving the secular equation, and
POLES(1:K, 2) is an array containing the poles in the secular
equation.
DIFL (input) DOUBLE PRECISION array, dimension ( K ).
On entry, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
On entry, DIFR(I, 1) contains the distances between I-th
updated (undeflated) singular value and the I+1-th
(undeflated) old singular value. And DIFR(I, 2) is the
normalizing factor for the I-th right singular vector.
Z (input) DOUBLE PRECISION array, dimension ( K )
Contain the components of the deflation-adjusted updating row
vector.
K (input) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (input) DOUBLE PRECISION
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (input) DOUBLE PRECISION
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) DOUBLE PRECISION array, dimension ( K )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dlalsa(int icompq, int smlsiz, int n, int nrhs, double[] b, int ldb, double[] bx, int ldbx, double[] u, int ldu, double[] vt, int[] k, double[] difl, double[] difr, double[] z, double[] poles, int[] givptr, int[] givcol, int ldgcol, int[] perm, double[] givnum, double[] c, double[] s, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).
If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by DLALSA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row and column dimensions of the upper bidiagonal matrix.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M.
On output, B contains the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
LDBX (input) INTEGER
The leading dimension of BX.
U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT' contains the right singular vector matrices of
all subproblems at the bottom level.
K (input) INTEGER array, dimension ( N ).
DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.
GIVPTR (input) INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.
GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
C (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) DOUBLE PRECISION array.
The dimension must be at least N.
IWORK (workspace) INTEGER array.
The dimension must be at least 3 * N
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dlalsa(int icompq, int smlsiz, int n, int nrhs, double[] b, int _b_offset, int ldb, double[] bx, int _bx_offset, int ldbx, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int[] k, int _k_offset, double[] difl, int _difl_offset, double[] difr, int _difr_offset, double[] z, int _z_offset, double[] poles, int _poles_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, int ldgcol, int[] perm, int _perm_offset, double[] givnum, int _givnum_offset, double[] c, int _c_offset, double[] s, int _s_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).
If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by DLALSA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row and column dimensions of the upper bidiagonal matrix.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M.
On output, B contains the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
LDBX (input) INTEGER
The leading dimension of BX.
U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT' contains the right singular vector matrices of
all subproblems at the bottom level.
K (input) INTEGER array, dimension ( N ).
DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.
GIVPTR (input) INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.
GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
C (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) DOUBLE PRECISION array.
The dimension must be at least N.
IWORK (workspace) INTEGER array.
The dimension must be at least 3 * N
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dlalsd(String uplo, int smlsiz, int n, int nrhs, double[] d, double[] e, double[] b, int ldb, double rcond, org.netlib.util.intW rank, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALSD uses the singular value decomposition of A to solve the least
squares problem of finding X to minimize the Euclidean norm of each
column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
are N-by-NRHS. The solution X overwrites B.
The singular values of A smaller than RCOND times the largest
singular value are treated as zero in solving the least squares
problem; in this case a minimum norm solution is returned.
The actual singular values are returned in D in ascending order.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': D and E define an upper bidiagonal matrix.
= 'L': D and E define a lower bidiagonal matrix.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The dimension of the bidiagonal matrix. N >= 0.
NRHS (input) INTEGER
The number of columns of B. NRHS must be at least 1.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix. On exit, if INFO = 0, D contains its singular values.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
Contains the super-diagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On input, B contains the right hand sides of the least
squares problem. On output, B contains the solution X.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,N).
RCOND (input) DOUBLE PRECISION
The singular values of A less than or equal to RCOND times
the largest singular value are treated as zero in solving
the least squares problem. If RCOND is negative,
machine precision is used instead.
For example, if diag(S)*X=B were the least squares problem,
where diag(S) is a diagonal matrix of singular values, the
solution would be X(i) = B(i) / S(i) if S(i) is greater than
RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
RCOND*max(S).
RANK (output) INTEGER
The number of singular values of A greater than RCOND times
the largest singular value.
WORK (workspace) DOUBLE PRECISION array, dimension at least
(9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
IWORK (workspace) INTEGER array, dimension at least
(3*N*NLVL + 11*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value while
working on the submatrix lying in rows and columns
INFO/(N+1) through MOD(INFO,N+1).
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dlalsd(String uplo, int smlsiz, int n, int nrhs, double[] d, int _d_offset, double[] e, int _e_offset, double[] b, int _b_offset, int ldb, double rcond, org.netlib.util.intW rank, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLALSD uses the singular value decomposition of A to solve the least
squares problem of finding X to minimize the Euclidean norm of each
column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
are N-by-NRHS. The solution X overwrites B.
The singular values of A smaller than RCOND times the largest
singular value are treated as zero in solving the least squares
problem; in this case a minimum norm solution is returned.
The actual singular values are returned in D in ascending order.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': D and E define an upper bidiagonal matrix.
= 'L': D and E define a lower bidiagonal matrix.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The dimension of the bidiagonal matrix. N >= 0.
NRHS (input) INTEGER
The number of columns of B. NRHS must be at least 1.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix. On exit, if INFO = 0, D contains its singular values.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
Contains the super-diagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On input, B contains the right hand sides of the least
squares problem. On output, B contains the solution X.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,N).
RCOND (input) DOUBLE PRECISION
The singular values of A less than or equal to RCOND times
the largest singular value are treated as zero in solving
the least squares problem. If RCOND is negative,
machine precision is used instead.
For example, if diag(S)*X=B were the least squares problem,
where diag(S) is a diagonal matrix of singular values, the
solution would be X(i) = B(i) / S(i) if S(i) is greater than
RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
RCOND*max(S).
RANK (output) INTEGER
The number of singular values of A greater than RCOND times
the largest singular value.
WORK (workspace) DOUBLE PRECISION array, dimension at least
(9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
IWORK (workspace) INTEGER array, dimension at least
(3*N*NLVL + 11*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value while
working on the submatrix lying in rows and columns
INFO/(N+1) through MOD(INFO,N+1).
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void dlamrg(int n1, int n2, double[] a, int dtrd1, int dtrd2, int[] index)
LAPACK
..
Purpose
=======
DLAMRG will create a permutation list which will merge the elements
of A (which is composed of two independently sorted sets) into a
single set which is sorted in ascending order.
Arguments
=========
N1 (input) INTEGER
N2 (input) INTEGER
These arguements contain the respective lengths of the two
sorted lists to be merged.
A (input) DOUBLE PRECISION array, dimension (N1+N2)
The first N1 elements of A contain a list of numbers which
are sorted in either ascending or descending order. Likewise
for the final N2 elements.
DTRD1 (input) INTEGER
DTRD2 (input) INTEGER
These are the strides to be taken through the array A.
Allowable strides are 1 and -1. They indicate whether a
subset of A is sorted in ascending (DTRDx = 1) or descending
(DTRDx = -1) order.
INDEX (output) INTEGER array, dimension (N1+N2)
On exit this array will contain a permutation such that
if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be
sorted in ascending order.
=====================================================================
.. Local Scalars ..
public void dlamrg(int n1, int n2, double[] a, int _a_offset, int dtrd1, int dtrd2, int[] index, int _index_offset)
LAPACK
..
Purpose
=======
DLAMRG will create a permutation list which will merge the elements
of A (which is composed of two independently sorted sets) into a
single set which is sorted in ascending order.
Arguments
=========
N1 (input) INTEGER
N2 (input) INTEGER
These arguements contain the respective lengths of the two
sorted lists to be merged.
A (input) DOUBLE PRECISION array, dimension (N1+N2)
The first N1 elements of A contain a list of numbers which
are sorted in either ascending or descending order. Likewise
for the final N2 elements.
DTRD1 (input) INTEGER
DTRD2 (input) INTEGER
These are the strides to be taken through the array A.
Allowable strides are 1 and -1. They indicate whether a
subset of A is sorted in ascending (DTRDx = 1) or descending
(DTRDx = -1) order.
INDEX (output) INTEGER array, dimension (N1+N2)
On exit this array will contain a permutation such that
if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be
sorted in ascending order.
=====================================================================
.. Local Scalars ..
public int dlaneg(int n, double[] d, double[] lld, double sigma, double pivmin, int r)
LAPACK
..
Purpose
=======
DLANEG computes the Sturm count, the number of negative pivots
encountered while factoring tridiagonal T - sigma I = L D L^T.
This implementation works directly on the factors without forming
the tridiagonal matrix T. The Sturm count is also the number of
eigenvalues of T less than sigma.
This routine is called from DLARRB.
The current routine does not use the PIVMIN parameter but rather
requires IEEE-754 propagation of Infinities and NaNs. This
routine also has no input range restrictions but does require
default exception handling such that x/0 produces Inf when x is
non-zero, and Inf/Inf produces NaN. For more information, see:
Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
(Tech report version in LAWN 172 with the same title.)
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
SIGMA (input) DOUBLE PRECISION
Shift amount in T - sigma I = L D L^T.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence. May be used
when zero pivots are encountered on non-IEEE-754
architectures.
R (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
Further Details
===============
Based on contributions by
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Jason Riedy, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public int dlaneg(int n, double[] d, int _d_offset, double[] lld, int _lld_offset, double sigma, double pivmin, int r)
LAPACK
..
Purpose
=======
DLANEG computes the Sturm count, the number of negative pivots
encountered while factoring tridiagonal T - sigma I = L D L^T.
This implementation works directly on the factors without forming
the tridiagonal matrix T. The Sturm count is also the number of
eigenvalues of T less than sigma.
This routine is called from DLARRB.
The current routine does not use the PIVMIN parameter but rather
requires IEEE-754 propagation of Infinities and NaNs. This
routine also has no input range restrictions but does require
default exception handling such that x/0 produces Inf when x is
non-zero, and Inf/Inf produces NaN. For more information, see:
Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
(Tech report version in LAWN 172 with the same title.)
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
SIGMA (input) DOUBLE PRECISION
Shift amount in T - sigma I = L D L^T.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence. May be used
when zero pivots are encountered on non-IEEE-754
architectures.
R (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
Further Details
===============
Based on contributions by
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Jason Riedy, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public double dlangb(String norm, int n, int kl, int ku, double[] ab, int ldab, double[] work)
LAPACK
..
Purpose
=======
DLANGB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
Description
===========
DLANGB returns the value
DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANGB as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANGB is
set to zero.
KL (input) INTEGER
The number of sub-diagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of super-diagonals of the matrix A. KU >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlangb(String norm, int n, int kl, int ku, double[] ab, int _ab_offset, int ldab, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANGB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
Description
===========
DLANGB returns the value
DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANGB as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANGB is
set to zero.
KL (input) INTEGER
The number of sub-diagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of super-diagonals of the matrix A. KU >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlange(String norm, int m, int n, double[] a, int lda, double[] work)
LAPACK
..
Purpose
=======
DLANGE returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real matrix A.
Description
===========
DLANGE returns the value
DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANGE as described
above.
M (input) INTEGER
The number of rows of the matrix A. M >= 0. When M = 0,
DLANGE is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0. When N = 0,
DLANGE is set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The m by n matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlange(String norm, int m, int n, double[] a, int _a_offset, int lda, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANGE returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real matrix A.
Description
===========
DLANGE returns the value
DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANGE as described
above.
M (input) INTEGER
The number of rows of the matrix A. M >= 0. When M = 0,
DLANGE is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0. When N = 0,
DLANGE is set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The m by n matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlangt(String norm, int n, double[] dl, double[] d, double[] du)
LAPACK
..
Purpose
=======
DLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real tridiagonal matrix A.
Description
===========
DLANGT returns the value
DLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANGT as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANGT is
set to zero.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal elements of A.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) super-diagonal elements of A.
=====================================================================
.. Parameters ..
public double dlangt(String norm, int n, double[] dl, int _dl_offset, double[] d, int _d_offset, double[] du, int _du_offset)
LAPACK
..
Purpose
=======
DLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real tridiagonal matrix A.
Description
===========
DLANGT returns the value
DLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANGT as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANGT is
set to zero.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal elements of A.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) super-diagonal elements of A.
=====================================================================
.. Parameters ..
public double dlanhs(String norm, int n, double[] a, int lda, double[] work)
LAPACK
..
Purpose
=======
DLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.
Description
===========
DLANHS returns the value
DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANHS as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANHS is
set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlanhs(String norm, int n, double[] a, int _a_offset, int lda, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.
Description
===========
DLANHS returns the value
DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANHS as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANHS is
set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlansb(String norm, String uplo, int n, int k, double[] ab, int ldab, double[] work)
LAPACK
..
Purpose
=======
DLANSB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n symmetric band matrix A, with k super-diagonals.
Description
===========
DLANSB returns the value
DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
band matrix A is supplied.
= 'U': Upper triangular part is supplied
= 'L': Lower triangular part is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSB is
set to zero.
K (input) INTEGER
The number of super-diagonals or sub-diagonals of the
band matrix A. K >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first K+1 rows of AB. The j-th column of A is
stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public double dlansb(String norm, String uplo, int n, int k, double[] ab, int _ab_offset, int ldab, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANSB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n symmetric band matrix A, with k super-diagonals.
Description
===========
DLANSB returns the value
DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
band matrix A is supplied.
= 'U': Upper triangular part is supplied
= 'L': Lower triangular part is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSB is
set to zero.
K (input) INTEGER
The number of super-diagonals or sub-diagonals of the
band matrix A. K >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first K+1 rows of AB. The j-th column of A is
stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public double dlansp(String norm, String uplo, int n, double[] ap, double[] work)
LAPACK
..
Purpose
=======
DLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.
Description
===========
DLANSP returns the value
DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSP is
set to zero.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public double dlansp(String norm, String uplo, int n, double[] ap, int _ap_offset, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.
Description
===========
DLANSP returns the value
DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSP is
set to zero.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public double dlanst(String norm, int n, double[] d, double[] e)
LAPACK
..
Purpose
=======
DLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.
Description
===========
DLANST returns the value
DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANST as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANST is
set to zero.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
=====================================================================
.. Parameters ..
public double dlanst(String norm, int n, double[] d, int _d_offset, double[] e, int _e_offset)
LAPACK
..
Purpose
=======
DLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.
Description
===========
DLANST returns the value
DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANST as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANST is
set to zero.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
=====================================================================
.. Parameters ..
public double dlansy(String norm, String uplo, int n, double[] a, int lda, double[] work)
LAPACK
..
Purpose
=======
DLANSY returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A.
Description
===========
DLANSY returns the value
DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSY as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced
= 'L': Lower triangular part of A is referenced
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSY is
set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading n by n
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public double dlansy(String norm, String uplo, int n, double[] a, int _a_offset, int lda, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANSY returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A.
Description
===========
DLANSY returns the value
DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSY as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced
= 'L': Lower triangular part of A is referenced
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSY is
set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading n by n
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public double dlantb(String norm, String uplo, String diag, int n, int k, double[] ab, int ldab, double[] work)
LAPACK
..
Purpose
=======
DLANTB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n triangular band matrix A, with ( k + 1 ) diagonals.
Description
===========
DLANTB returns the value
DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANTB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANTB is
set to zero.
K (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals of the matrix A if UPLO = 'L'.
K >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first k+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
Note that when DIAG = 'U', the elements of the array AB
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlantb(String norm, String uplo, String diag, int n, int k, double[] ab, int _ab_offset, int ldab, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANTB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n triangular band matrix A, with ( k + 1 ) diagonals.
Description
===========
DLANTB returns the value
DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANTB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANTB is
set to zero.
K (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals of the matrix A if UPLO = 'L'.
K >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first k+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
Note that when DIAG = 'U', the elements of the array AB
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlantp(String norm, String uplo, String diag, int n, double[] ap, double[] work)
LAPACK
..
Purpose
=======
DLANTP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
triangular matrix A, supplied in packed form.
Description
===========
DLANTP returns the value
DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANTP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANTP is
set to zero.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
Note that when DIAG = 'U', the elements of the array AP
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlantp(String norm, String uplo, String diag, int n, double[] ap, int _ap_offset, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANTP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
triangular matrix A, supplied in packed form.
Description
===========
DLANTP returns the value
DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANTP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANTP is
set to zero.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
Note that when DIAG = 'U', the elements of the array AP
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlantr(String norm, String uplo, String diag, int m, int n, double[] a, int lda, double[] work)
LAPACK
..
Purpose
=======
DLANTR returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
trapezoidal or triangular matrix A.
Description
===========
DLANTR returns the value
DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANTR as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower trapezoidal.
= 'U': Upper trapezoidal
= 'L': Lower trapezoidal
Note that A is triangular instead of trapezoidal if M = N.
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal
M (input) INTEGER
The number of rows of the matrix A. M >= 0, and if
UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0, and if
UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The trapezoidal matrix A (A is triangular if M = N).
If UPLO = 'U', the leading m by n upper trapezoidal part of
the array A contains the upper trapezoidal matrix, and the
strictly lower triangular part of A is not referenced.
If UPLO = 'L', the leading m by n lower trapezoidal part of
the array A contains the lower trapezoidal matrix, and the
strictly upper triangular part of A is not referenced. Note
that when DIAG = 'U', the diagonal elements of A are not
referenced and are assumed to be one.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public double dlantr(String norm, String uplo, String diag, int m, int n, double[] a, int _a_offset, int lda, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLANTR returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
trapezoidal or triangular matrix A.
Description
===========
DLANTR returns the value
DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANTR as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower trapezoidal.
= 'U': Upper trapezoidal
= 'L': Lower trapezoidal
Note that A is triangular instead of trapezoidal if M = N.
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal
M (input) INTEGER
The number of rows of the matrix A. M >= 0, and if
UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0, and if
UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The trapezoidal matrix A (A is triangular if M = N).
If UPLO = 'U', the leading m by n upper trapezoidal part of
the array A contains the upper trapezoidal matrix, and the
strictly lower triangular part of A is not referenced.
If UPLO = 'L', the leading m by n lower trapezoidal part of
the array A contains the lower trapezoidal matrix, and the
strictly upper triangular part of A is not referenced. Note
that when DIAG = 'U', the diagonal elements of A are not
referenced and are assumed to be one.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public void dlanv2(org.netlib.util.doubleW a, org.netlib.util.doubleW b, org.netlib.util.doubleW c, org.netlib.util.doubleW d, org.netlib.util.doubleW rt1r, org.netlib.util.doubleW rt1i, org.netlib.util.doubleW rt2r, org.netlib.util.doubleW rt2i, org.netlib.util.doubleW cs, org.netlib.util.doubleW sn)
LAPACK
..
Purpose
=======
DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
conjugate eigenvalues.
Arguments
=========
A (input/output) DOUBLE PRECISION
B (input/output) DOUBLE PRECISION
C (input/output) DOUBLE PRECISION
D (input/output) DOUBLE PRECISION
On entry, the elements of the input matrix.
On exit, they are overwritten by the elements of the
standardised Schur form.
RT1R (output) DOUBLE PRECISION
RT1I (output) DOUBLE PRECISION
RT2R (output) DOUBLE PRECISION
RT2I (output) DOUBLE PRECISION
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair, RT1I > 0.
CS (output) DOUBLE PRECISION
SN (output) DOUBLE PRECISION
Parameters of the rotation matrix.
Further Details
===============
Modified by V. Sima, Research Institute for Informatics, Bucharest,
Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possible, that
abs(RT1R) >= abs(RT2R).
=====================================================================
.. Parameters ..
public void dlapll(int n, double[] x, int incx, double[] y, int incy, org.netlib.util.doubleW ssmin)
LAPACK
..
Purpose
=======
Given two column vectors X and Y, let
A = ( X Y ).
The subroutine first computes the QR factorization of A = Q*R,
and then computes the SVD of the 2-by-2 upper triangular matrix R.
The smaller singular value of R is returned in SSMIN, which is used
as the measurement of the linear dependency of the vectors X and Y.
Arguments
=========
N (input) INTEGER
The length of the vectors X and Y.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
On entry, X contains the N-vector X.
On exit, X is overwritten.
INCX (input) INTEGER
The increment between successive elements of X. INCX > 0.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCY)
On entry, Y contains the N-vector Y.
On exit, Y is overwritten.
INCY (input) INTEGER
The increment between successive elements of Y. INCY > 0.
SSMIN (output) DOUBLE PRECISION
The smallest singular value of the N-by-2 matrix A = ( X Y ).
=====================================================================
.. Parameters ..
public void dlapll(int n, double[] x, int _x_offset, int incx, double[] y, int _y_offset, int incy, org.netlib.util.doubleW ssmin)
LAPACK
..
Purpose
=======
Given two column vectors X and Y, let
A = ( X Y ).
The subroutine first computes the QR factorization of A = Q*R,
and then computes the SVD of the 2-by-2 upper triangular matrix R.
The smaller singular value of R is returned in SSMIN, which is used
as the measurement of the linear dependency of the vectors X and Y.
Arguments
=========
N (input) INTEGER
The length of the vectors X and Y.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
On entry, X contains the N-vector X.
On exit, X is overwritten.
INCX (input) INTEGER
The increment between successive elements of X. INCX > 0.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCY)
On entry, Y contains the N-vector Y.
On exit, Y is overwritten.
INCY (input) INTEGER
The increment between successive elements of Y. INCY > 0.
SSMIN (output) DOUBLE PRECISION
The smallest singular value of the N-by-2 matrix A = ( X Y ).
=====================================================================
.. Parameters ..
public void dlapmt(boolean forwrd, int m, int n, double[] x, int ldx, int[] k)
LAPACK
..
Purpose
=======
DLAPMT rearranges the columns of the M by N matrix X as specified
by the permutation K(1),K(2),...,K(N) of the integers 1,...,N.
If FORWRD = .TRUE., forward permutation:
X(*,K(J)) is moved X(*,J) for J = 1,2,...,N.
If FORWRD = .FALSE., backward permutation:
X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N.
Arguments
=========
FORWRD (input) LOGICAL
= .TRUE., forward permutation
= .FALSE., backward permutation
M (input) INTEGER
The number of rows of the matrix X. M >= 0.
N (input) INTEGER
The number of columns of the matrix X. N >= 0.
X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
On entry, the M by N matrix X.
On exit, X contains the permuted matrix X.
LDX (input) INTEGER
The leading dimension of the array X, LDX >= MAX(1,M).
K (input/output) INTEGER array, dimension (N)
On entry, K contains the permutation vector. K is used as
internal workspace, but reset to its original value on
output.
=====================================================================
.. Local Scalars ..
public void dlapmt(boolean forwrd, int m, int n, double[] x, int _x_offset, int ldx, int[] k, int _k_offset)
LAPACK
..
Purpose
=======
DLAPMT rearranges the columns of the M by N matrix X as specified
by the permutation K(1),K(2),...,K(N) of the integers 1,...,N.
If FORWRD = .TRUE., forward permutation:
X(*,K(J)) is moved X(*,J) for J = 1,2,...,N.
If FORWRD = .FALSE., backward permutation:
X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N.
Arguments
=========
FORWRD (input) LOGICAL
= .TRUE., forward permutation
= .FALSE., backward permutation
M (input) INTEGER
The number of rows of the matrix X. M >= 0.
N (input) INTEGER
The number of columns of the matrix X. N >= 0.
X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
On entry, the M by N matrix X.
On exit, X contains the permuted matrix X.
LDX (input) INTEGER
The leading dimension of the array X, LDX >= MAX(1,M).
K (input/output) INTEGER array, dimension (N)
On entry, K contains the permutation vector. K is used as
internal workspace, but reset to its original value on
output.
=====================================================================
.. Local Scalars ..
public double dlapy2(double x, double y)
LAPACK
..
Purpose
=======
DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
overflow.
Arguments
=========
X (input) DOUBLE PRECISION
Y (input) DOUBLE PRECISION
X and Y specify the values x and y.
=====================================================================
.. Parameters ..
public double dlapy3(double x, double y, double z)
LAPACK
..
Purpose
=======
DLAPY3 returns sqrt(x**2+y**2+z**2), taking care not to cause
unnecessary overflow.
Arguments
=========
X (input) DOUBLE PRECISION
Y (input) DOUBLE PRECISION
Z (input) DOUBLE PRECISION
X, Y and Z specify the values x, y and z.
=====================================================================
.. Parameters ..
public void dlaqgb(int m, int n, int kl, int ku, double[] ab, int ldab, double[] r, double[] c, double rowcnd, double colcnd, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQGB equilibrates a general M by N band matrix A with KL
subdiagonals and KU superdiagonals using the row and scaling factors
in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, the equilibrated matrix, in the same storage format
as A. See EQUED for the form of the equilibrated matrix.
LDAB (input) INTEGER
The leading dimension of the array AB. LDA >= KL+KU+1.
R (input) DOUBLE PRECISION array, dimension (M)
The row scale factors for A.
C (input) DOUBLE PRECISION array, dimension (N)
The column scale factors for A.
ROWCND (input) DOUBLE PRECISION
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) DOUBLE PRECISION
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void dlaqgb(int m, int n, int kl, int ku, double[] ab, int _ab_offset, int ldab, double[] r, int _r_offset, double[] c, int _c_offset, double rowcnd, double colcnd, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQGB equilibrates a general M by N band matrix A with KL
subdiagonals and KU superdiagonals using the row and scaling factors
in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, the equilibrated matrix, in the same storage format
as A. See EQUED for the form of the equilibrated matrix.
LDAB (input) INTEGER
The leading dimension of the array AB. LDA >= KL+KU+1.
R (input) DOUBLE PRECISION array, dimension (M)
The row scale factors for A.
C (input) DOUBLE PRECISION array, dimension (N)
The column scale factors for A.
ROWCND (input) DOUBLE PRECISION
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) DOUBLE PRECISION
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void dlaqge(int m, int n, double[] a, int lda, double[] r, double[] c, double rowcnd, double colcnd, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQGE equilibrates a general M by N matrix A using the row and
column scaling factors in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M by N matrix A.
On exit, the equilibrated matrix. See EQUED for the form of
the equilibrated matrix.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
R (input) DOUBLE PRECISION array, dimension (M)
The row scale factors for A.
C (input) DOUBLE PRECISION array, dimension (N)
The column scale factors for A.
ROWCND (input) DOUBLE PRECISION
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) DOUBLE PRECISION
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void dlaqge(int m, int n, double[] a, int _a_offset, int lda, double[] r, int _r_offset, double[] c, int _c_offset, double rowcnd, double colcnd, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQGE equilibrates a general M by N matrix A using the row and
column scaling factors in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M by N matrix A.
On exit, the equilibrated matrix. See EQUED for the form of
the equilibrated matrix.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
R (input) DOUBLE PRECISION array, dimension (M)
The row scale factors for A.
C (input) DOUBLE PRECISION array, dimension (N)
The column scale factors for A.
ROWCND (input) DOUBLE PRECISION
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) DOUBLE PRECISION
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void dlaqp2(int m, int n, int offset, double[] a, int lda, int[] jpvt, double[] tau, double[] vn1, double[] vn2, double[] work)
LAPACK
..
Purpose
=======
DLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
OFFSET (input) INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
VN1 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void dlaqp2(int m, int n, int offset, double[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, double[] tau, int _tau_offset, double[] vn1, int _vn1_offset, double[] vn2, int _vn2_offset, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
OFFSET (input) INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
VN1 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void dlaqps(int m, int n, int offset, int nb, org.netlib.util.intW kb, double[] a, int lda, int[] jpvt, double[] tau, double[] vn1, double[] vn2, double[] auxv, double[] f, int ldf)
LAPACK
..
Purpose
=======
DLAQPS computes a step of QR factorization with column pivoting
of a real M-by-N matrix A by using Blas-3. It tries to factorize
NB columns from A starting from the row OFFSET+1, and updates all
of the matrix with Blas-3 xGEMM.
In some cases, due to catastrophic cancellations, it cannot
factorize NB columns. Hence, the actual number of factorized
columns is returned in KB.
Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
OFFSET (input) INTEGER
The number of rows of A that have been factorized in
previous steps.
NB (input) INTEGER
The number of columns to factorize.
KB (output) INTEGER
The number of columns actually factorized.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, block A(OFFSET+1:M,1:KB) is the triangular
factor obtained and block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
been updated.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
JPVT(I) = K <==> Column K of the full matrix A has been
permuted into position I in AP.
TAU (output) DOUBLE PRECISION array, dimension (KB)
The scalar factors of the elementary reflectors.
VN1 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.
AUXV (input/output) DOUBLE PRECISION array, dimension (NB)
Auxiliar vector.
F (input/output) DOUBLE PRECISION array, dimension (LDF,NB)
Matrix F' = L*Y'*A.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1,N).
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void dlaqps(int m, int n, int offset, int nb, org.netlib.util.intW kb, double[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, double[] tau, int _tau_offset, double[] vn1, int _vn1_offset, double[] vn2, int _vn2_offset, double[] auxv, int _auxv_offset, double[] f, int _f_offset, int ldf)
LAPACK
..
Purpose
=======
DLAQPS computes a step of QR factorization with column pivoting
of a real M-by-N matrix A by using Blas-3. It tries to factorize
NB columns from A starting from the row OFFSET+1, and updates all
of the matrix with Blas-3 xGEMM.
In some cases, due to catastrophic cancellations, it cannot
factorize NB columns. Hence, the actual number of factorized
columns is returned in KB.
Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
OFFSET (input) INTEGER
The number of rows of A that have been factorized in
previous steps.
NB (input) INTEGER
The number of columns to factorize.
KB (output) INTEGER
The number of columns actually factorized.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, block A(OFFSET+1:M,1:KB) is the triangular
factor obtained and block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
been updated.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
JPVT(I) = K <==> Column K of the full matrix A has been
permuted into position I in AP.
TAU (output) DOUBLE PRECISION array, dimension (KB)
The scalar factors of the elementary reflectors.
VN1 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.
AUXV (input/output) DOUBLE PRECISION array, dimension (NB)
Auxiliar vector.
F (input/output) DOUBLE PRECISION array, dimension (LDF,NB)
Matrix F' = L*Y'*A.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1,N).
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void dlaqr0(boolean wantt, boolean wantz, int n, int ilo, int ihi, double[] h, int ldh, double[] wr, double[] wi, int iloz, int ihiz, double[] z, int ldz, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAQR0 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to DGEBAL, and then passed to DGEHRD when the
matrix output by DGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) DOUBLE PRECISION array, dimension (IHI)
WI (output) DOUBLE PRECISION array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then DLAQR0 does a workspace query.
In this case, DLAQR0 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, DLAQR0 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. DLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void dlaqr0(boolean wantt, boolean wantz, int n, int ilo, int ihi, double[] h, int _h_offset, int ldh, double[] wr, int _wr_offset, double[] wi, int _wi_offset, int iloz, int ihiz, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAQR0 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to DGEBAL, and then passed to DGEHRD when the
matrix output by DGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) DOUBLE PRECISION array, dimension (IHI)
WI (output) DOUBLE PRECISION array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then DLAQR0 does a workspace query.
In this case, DLAQR0 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, DLAQR0 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. DLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void dlaqr1(int n, double[] h, int ldh, double sr1, double si1, double sr2, double si2, double[] v)
LAPACK
..
Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
scaling to avoid overflows and most underflows. It
is assumed that either
1) sr1 = sr2 and si1 = -si2
or
2) si1 = si2 = 0.
This is useful for starting double implicit shift bulges
in the QR algorithm.
N (input) integer
Order of the matrix H. N must be either 2 or 3.
H (input) DOUBLE PRECISION array of dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).
LDH (input) integer
The leading dimension of H as declared in
the calling procedure. LDH.GE.N
SR1 (input) DOUBLE PRECISION
SI1 The shifts in (*).
SR2
SI2
V (output) DOUBLE PRECISION array of dimension N
A scalar multiple of the first column of the
matrix K in (*).
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
.. Parameters ..
public void dlaqr1(int n, double[] h, int _h_offset, int ldh, double sr1, double si1, double sr2, double si2, double[] v, int _v_offset)
LAPACK
..
Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
scaling to avoid overflows and most underflows. It
is assumed that either
1) sr1 = sr2 and si1 = -si2
or
2) si1 = si2 = 0.
This is useful for starting double implicit shift bulges
in the QR algorithm.
N (input) integer
Order of the matrix H. N must be either 2 or 3.
H (input) DOUBLE PRECISION array of dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).
LDH (input) integer
The leading dimension of H as declared in
the calling procedure. LDH.GE.N
SR1 (input) DOUBLE PRECISION
SI1 The shifts in (*).
SR2
SI2
V (output) DOUBLE PRECISION array of dimension N
A scalar multiple of the first column of the
matrix K in (*).
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
.. Parameters ..
public void dlaqr2(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, double[] h, int ldh, int iloz, int ihiz, double[] z, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, double[] sr, double[] si, double[] v, int ldv, int nh, double[] t, int ldt, int nv, double[] wv, int ldwv, double[] work, int lwork)
LAPACK
..
This subroutine is identical to DLAQR3 except that it avoids
recursion by calling DLAHQR instead of DLAQR4.
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) DOUBLE PRECISION array, dimension KBOT
SI (output) DOUBLE PRECISION array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) DOUBLE PRECISION array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; DLAQR2
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
.. Parameters ..
public void dlaqr2(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, double[] h, int _h_offset, int ldh, int iloz, int ihiz, double[] z, int _z_offset, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, double[] sr, int _sr_offset, double[] si, int _si_offset, double[] v, int _v_offset, int ldv, int nh, double[] t, int _t_offset, int ldt, int nv, double[] wv, int _wv_offset, int ldwv, double[] work, int _work_offset, int lwork)
LAPACK
..
This subroutine is identical to DLAQR3 except that it avoids
recursion by calling DLAHQR instead of DLAQR4.
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) DOUBLE PRECISION array, dimension KBOT
SI (output) DOUBLE PRECISION array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) DOUBLE PRECISION array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; DLAQR2
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
.. Parameters ..
public void dlaqr3(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, double[] h, int ldh, int iloz, int ihiz, double[] z, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, double[] sr, double[] si, double[] v, int ldv, int nh, double[] t, int ldt, int nv, double[] wv, int ldwv, double[] work, int lwork)
LAPACK
..
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) DOUBLE PRECISION array, dimension KBOT
SI (output) DOUBLE PRECISION array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) DOUBLE PRECISION array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; DLAQR3
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
==================================================================
.. Parameters ..
public void dlaqr3(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, double[] h, int _h_offset, int ldh, int iloz, int ihiz, double[] z, int _z_offset, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, double[] sr, int _sr_offset, double[] si, int _si_offset, double[] v, int _v_offset, int ldv, int nh, double[] t, int _t_offset, int ldt, int nv, double[] wv, int _wv_offset, int ldwv, double[] work, int _work_offset, int lwork)
LAPACK
..
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) DOUBLE PRECISION array, dimension KBOT
SI (output) DOUBLE PRECISION array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) DOUBLE PRECISION array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; DLAQR3
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
==================================================================
.. Parameters ..
public void dlaqr4(boolean wantt, boolean wantz, int n, int ilo, int ihi, double[] h, int ldh, double[] wr, double[] wi, int iloz, int ihiz, double[] z, int ldz, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
This subroutine implements one level of recursion for DLAQR0.
It is a complete implementation of the small bulge multi-shift
QR algorithm. It may be called by DLAQR0 and, for large enough
deflation window size, it may be called by DLAQR3. This
subroutine is identical to DLAQR0 except that it calls DLAQR2
instead of DLAQR3.
Purpose
=======
DLAQR4 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to DGEBAL, and then passed to DGEHRD when the
matrix output by DGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) DOUBLE PRECISION array, dimension (IHI)
WI (output) DOUBLE PRECISION array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then DLAQR4 does a workspace query.
In this case, DLAQR4 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, DLAQR4 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. DLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void dlaqr4(boolean wantt, boolean wantz, int n, int ilo, int ihi, double[] h, int _h_offset, int ldh, double[] wr, int _wr_offset, double[] wi, int _wi_offset, int iloz, int ihiz, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
This subroutine implements one level of recursion for DLAQR0.
It is a complete implementation of the small bulge multi-shift
QR algorithm. It may be called by DLAQR0 and, for large enough
deflation window size, it may be called by DLAQR3. This
subroutine is identical to DLAQR0 except that it calls DLAQR2
instead of DLAQR3.
Purpose
=======
DLAQR4 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to DGEBAL, and then passed to DGEHRD when the
matrix output by DGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) DOUBLE PRECISION array, dimension (IHI)
WI (output) DOUBLE PRECISION array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then DLAQR4 does a workspace query.
In this case, DLAQR4 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, DLAQR4 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. DLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void dlaqr5(boolean wantt, boolean wantz, int kacc22, int n, int ktop, int kbot, int nshfts, double[] sr, double[] si, double[] h, int ldh, int iloz, int ihiz, double[] z, int ldz, double[] v, int ldv, double[] u, int ldu, int nv, double[] wv, int ldwv, int nh, double[] wh, int ldwh)
LAPACK
..
This auxiliary subroutine called by DLAQR0 performs a
single small-bulge multi-shift QR sweep.
WANTT (input) logical scalar
WANTT = .true. if the quasi-triangular Schur factor
is being computed. WANTT is set to .false. otherwise.
WANTZ (input) logical scalar
WANTZ = .true. if the orthogonal Schur factor is being
computed. WANTZ is set to .false. otherwise.
KACC22 (input) integer with value 0, 1, or 2.
Specifies the computation mode of far-from-diagonal
orthogonal updates.
= 0: DLAQR5 does not accumulate reflections and does not
use matrix-matrix multiply to update far-from-diagonal
matrix entries.
= 1: DLAQR5 accumulates reflections and uses matrix-matrix
multiply to update the far-from-diagonal matrix entries.
= 2: DLAQR5 accumulates reflections, uses matrix-matrix
multiply to update the far-from-diagonal matrix entries,
and takes advantage of 2-by-2 block structure during
matrix multiplies.
N (input) integer scalar
N is the order of the Hessenberg matrix H upon which this
subroutine operates.
KTOP (input) integer scalar
KBOT (input) integer scalar
These are the first and last rows and columns of an
isolated diagonal block upon which the QR sweep is to be
applied. It is assumed without a check that
either KTOP = 1 or H(KTOP,KTOP-1) = 0
and
either KBOT = N or H(KBOT+1,KBOT) = 0.
NSHFTS (input) integer scalar
NSHFTS gives the number of simultaneous shifts. NSHFTS
must be positive and even.
SR (input) DOUBLE PRECISION array of size (NSHFTS)
SI (input) DOUBLE PRECISION array of size (NSHFTS)
SR contains the real parts and SI contains the imaginary
parts of the NSHFTS shifts of origin that define the
multi-shift QR sweep.
H (input/output) DOUBLE PRECISION array of size (LDH,N)
On input H contains a Hessenberg matrix. On output a
multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
to the isolated diagonal block in rows and columns KTOP
through KBOT.
LDH (input) integer scalar
LDH is the leading dimension of H just as declared in the
calling procedure. LDH.GE.MAX(1,N).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
Z (input/output) DOUBLE PRECISION array of size (LDZ,IHI)
If WANTZ = .TRUE., then the QR Sweep orthogonal
similarity transformation is accumulated into
Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ = .FALSE., then Z is unreferenced.
LDZ (input) integer scalar
LDA is the leading dimension of Z just as declared in
the calling procedure. LDZ.GE.N.
V (workspace) DOUBLE PRECISION array of size (LDV,NSHFTS/2)
LDV (input) integer scalar
LDV is the leading dimension of V as declared in the
calling procedure. LDV.GE.3.
U (workspace) DOUBLE PRECISION array of size
(LDU,3*NSHFTS-3)
LDU (input) integer scalar
LDU is the leading dimension of U just as declared in the
in the calling subroutine. LDU.GE.3*NSHFTS-3.
NH (input) integer scalar
NH is the number of columns in array WH available for
workspace. NH.GE.1.
WH (workspace) DOUBLE PRECISION array of size (LDWH,NH)
LDWH (input) integer scalar
Leading dimension of WH just as declared in the
calling procedure. LDWH.GE.3*NSHFTS-3.
NV (input) integer scalar
NV is the number of rows in WV agailable for workspace.
NV.GE.1.
WV (workspace) DOUBLE PRECISION array of size
(LDWV,3*NSHFTS-3)
LDWV (input) integer scalar
LDWV is the leading dimension of WV as declared in the
in the calling subroutine. LDWV.GE.NV.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
============================================================
Reference:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and
Level 3 Performance, SIAM Journal of Matrix Analysis,
volume 23, pages 929--947, 2002.
============================================================
.. Parameters ..
public void dlaqr5(boolean wantt, boolean wantz, int kacc22, int n, int ktop, int kbot, int nshfts, double[] sr, int _sr_offset, double[] si, int _si_offset, double[] h, int _h_offset, int ldh, int iloz, int ihiz, double[] z, int _z_offset, int ldz, double[] v, int _v_offset, int ldv, double[] u, int _u_offset, int ldu, int nv, double[] wv, int _wv_offset, int ldwv, int nh, double[] wh, int _wh_offset, int ldwh)
LAPACK
..
This auxiliary subroutine called by DLAQR0 performs a
single small-bulge multi-shift QR sweep.
WANTT (input) logical scalar
WANTT = .true. if the quasi-triangular Schur factor
is being computed. WANTT is set to .false. otherwise.
WANTZ (input) logical scalar
WANTZ = .true. if the orthogonal Schur factor is being
computed. WANTZ is set to .false. otherwise.
KACC22 (input) integer with value 0, 1, or 2.
Specifies the computation mode of far-from-diagonal
orthogonal updates.
= 0: DLAQR5 does not accumulate reflections and does not
use matrix-matrix multiply to update far-from-diagonal
matrix entries.
= 1: DLAQR5 accumulates reflections and uses matrix-matrix
multiply to update the far-from-diagonal matrix entries.
= 2: DLAQR5 accumulates reflections, uses matrix-matrix
multiply to update the far-from-diagonal matrix entries,
and takes advantage of 2-by-2 block structure during
matrix multiplies.
N (input) integer scalar
N is the order of the Hessenberg matrix H upon which this
subroutine operates.
KTOP (input) integer scalar
KBOT (input) integer scalar
These are the first and last rows and columns of an
isolated diagonal block upon which the QR sweep is to be
applied. It is assumed without a check that
either KTOP = 1 or H(KTOP,KTOP-1) = 0
and
either KBOT = N or H(KBOT+1,KBOT) = 0.
NSHFTS (input) integer scalar
NSHFTS gives the number of simultaneous shifts. NSHFTS
must be positive and even.
SR (input) DOUBLE PRECISION array of size (NSHFTS)
SI (input) DOUBLE PRECISION array of size (NSHFTS)
SR contains the real parts and SI contains the imaginary
parts of the NSHFTS shifts of origin that define the
multi-shift QR sweep.
H (input/output) DOUBLE PRECISION array of size (LDH,N)
On input H contains a Hessenberg matrix. On output a
multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
to the isolated diagonal block in rows and columns KTOP
through KBOT.
LDH (input) integer scalar
LDH is the leading dimension of H just as declared in the
calling procedure. LDH.GE.MAX(1,N).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
Z (input/output) DOUBLE PRECISION array of size (LDZ,IHI)
If WANTZ = .TRUE., then the QR Sweep orthogonal
similarity transformation is accumulated into
Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ = .FALSE., then Z is unreferenced.
LDZ (input) integer scalar
LDA is the leading dimension of Z just as declared in
the calling procedure. LDZ.GE.N.
V (workspace) DOUBLE PRECISION array of size (LDV,NSHFTS/2)
LDV (input) integer scalar
LDV is the leading dimension of V as declared in the
calling procedure. LDV.GE.3.
U (workspace) DOUBLE PRECISION array of size
(LDU,3*NSHFTS-3)
LDU (input) integer scalar
LDU is the leading dimension of U just as declared in the
in the calling subroutine. LDU.GE.3*NSHFTS-3.
NH (input) integer scalar
NH is the number of columns in array WH available for
workspace. NH.GE.1.
WH (workspace) DOUBLE PRECISION array of size (LDWH,NH)
LDWH (input) integer scalar
Leading dimension of WH just as declared in the
calling procedure. LDWH.GE.3*NSHFTS-3.
NV (input) integer scalar
NV is the number of rows in WV agailable for workspace.
NV.GE.1.
WV (workspace) DOUBLE PRECISION array of size
(LDWV,3*NSHFTS-3)
LDWV (input) integer scalar
LDWV is the leading dimension of WV as declared in the
in the calling subroutine. LDWV.GE.NV.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
============================================================
Reference:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and
Level 3 Performance, SIAM Journal of Matrix Analysis,
volume 23, pages 929--947, 2002.
============================================================
.. Parameters ..
public void dlaqsb(String uplo, int n, int kd, double[] ab, int ldab, double[] s, double scond, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S (input) DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND (input) DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void dlaqsb(String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, double[] s, int _s_offset, double scond, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S (input) DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND (input) DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void dlaqsp(String uplo, int n, double[] ap, double[] s, double scond, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQSP equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the equilibrated matrix: diag(S) * A * diag(S), in
the same storage format as A.
S (input) DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND (input) DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void dlaqsp(String uplo, int n, double[] ap, int _ap_offset, double[] s, int _s_offset, double scond, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQSP equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the equilibrated matrix: diag(S) * A * diag(S), in
the same storage format as A.
S (input) DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND (input) DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void dlaqsy(String uplo, int n, double[] a, int lda, double[] s, double scond, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
S (input) DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND (input) DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void dlaqsy(String uplo, int n, double[] a, int _a_offset, int lda, double[] s, int _s_offset, double scond, double amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
DLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
S (input) DOUBLE PRECISION array, dimension (N)
The scale factors for A.
SCOND (input) DOUBLE PRECISION
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) DOUBLE PRECISION
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void dlaqtr(boolean ltran, boolean lreal, int n, double[] t, int ldt, double[] b, double w, org.netlib.util.doubleW scale, double[] x, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAQTR solves the real quasi-triangular system
op(T)*p = scale*c, if LREAL = .TRUE.
or the complex quasi-triangular systems
op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE.
in real arithmetic, where T is upper quasi-triangular.
If LREAL = .FALSE., then the first diagonal block of T must be
1 by 1, B is the specially structured matrix
B = [ b(1) b(2) ... b(n) ]
[ w ]
[ w ]
[ . ]
[ w ]
op(A) = A or A', A' denotes the conjugate transpose of
matrix A.
On input, X = [ c ]. On output, X = [ p ].
[ d ] [ q ]
This subroutine is designed for the condition number estimation
in routine DTRSNA.
Arguments
=========
LTRAN (input) LOGICAL
On entry, LTRAN specifies the option of conjugate transpose:
= .FALSE., op(T+i*B) = T+i*B,
= .TRUE., op(T+i*B) = (T+i*B)'.
LREAL (input) LOGICAL
On entry, LREAL specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE., the input is real
N (input) INTEGER
On entry, N specifies the order of T+i*B. N >= 0.
T (input) DOUBLE PRECISION array, dimension (LDT,N)
On entry, T contains a matrix in Schur canonical form.
If LREAL = .FALSE., then the first diagonal block of T mu
be 1 by 1.
LDT (input) INTEGER
The leading dimension of the matrix T. LDT >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (N)
On entry, B contains the elements to form the matrix
B as described above.
If LREAL = .TRUE., B is not referenced.
W (input) DOUBLE PRECISION
On entry, W is the diagonal element of the matrix B.
If LREAL = .TRUE., W is not referenced.
SCALE (output) DOUBLE PRECISION
On exit, SCALE is the scale factor.
X (input/output) DOUBLE PRECISION array, dimension (2*N)
On entry, X contains the right hand side of the system.
On exit, X is overwritten by the solution.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: the some diagonal 1 by 1 block has been perturbed by
a small number SMIN to keep nonsingularity.
2: the some diagonal 2 by 2 block has been perturbed by
a small number in DLALN2 to keep nonsingularity.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void dlaqtr(boolean ltran, boolean lreal, int n, double[] t, int _t_offset, int ldt, double[] b, int _b_offset, double w, org.netlib.util.doubleW scale, double[] x, int _x_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAQTR solves the real quasi-triangular system
op(T)*p = scale*c, if LREAL = .TRUE.
or the complex quasi-triangular systems
op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE.
in real arithmetic, where T is upper quasi-triangular.
If LREAL = .FALSE., then the first diagonal block of T must be
1 by 1, B is the specially structured matrix
B = [ b(1) b(2) ... b(n) ]
[ w ]
[ w ]
[ . ]
[ w ]
op(A) = A or A', A' denotes the conjugate transpose of
matrix A.
On input, X = [ c ]. On output, X = [ p ].
[ d ] [ q ]
This subroutine is designed for the condition number estimation
in routine DTRSNA.
Arguments
=========
LTRAN (input) LOGICAL
On entry, LTRAN specifies the option of conjugate transpose:
= .FALSE., op(T+i*B) = T+i*B,
= .TRUE., op(T+i*B) = (T+i*B)'.
LREAL (input) LOGICAL
On entry, LREAL specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE., the input is real
N (input) INTEGER
On entry, N specifies the order of T+i*B. N >= 0.
T (input) DOUBLE PRECISION array, dimension (LDT,N)
On entry, T contains a matrix in Schur canonical form.
If LREAL = .FALSE., then the first diagonal block of T mu
be 1 by 1.
LDT (input) INTEGER
The leading dimension of the matrix T. LDT >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (N)
On entry, B contains the elements to form the matrix
B as described above.
If LREAL = .TRUE., B is not referenced.
W (input) DOUBLE PRECISION
On entry, W is the diagonal element of the matrix B.
If LREAL = .TRUE., W is not referenced.
SCALE (output) DOUBLE PRECISION
On exit, SCALE is the scale factor.
X (input/output) DOUBLE PRECISION array, dimension (2*N)
On entry, X contains the right hand side of the system.
On exit, X is overwritten by the solution.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: the some diagonal 1 by 1 block has been perturbed by
a small number SMIN to keep nonsingularity.
2: the some diagonal 2 by 2 block has been perturbed by
a small number in DLALN2 to keep nonsingularity.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void dlar1v(int n, int b1, int bn, double lambda, double[] d, double[] l, double[] ld, double[] lld, double pivmin, double gaptol, double[] z, boolean wantnc, org.netlib.util.intW negcnt, org.netlib.util.doubleW ztz, org.netlib.util.doubleW mingma, org.netlib.util.intW r, int[] isuppz, org.netlib.util.doubleW nrminv, org.netlib.util.doubleW resid, org.netlib.util.doubleW rqcorr, double[] work)
LAPACK
..
Purpose
=======
DLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L^T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T,
(b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T,
(c) Computation of the diagonal elements of the inverse of
L D L^T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.
Arguments
=========
N (input) INTEGER
The order of the matrix L D L^T.
B1 (input) INTEGER
First index of the submatrix of L D L^T.
BN (input) INTEGER
Last index of the submatrix of L D L^T.
LAMBDA (input) DOUBLE PRECISION
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L^T.
L (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D.
LD (input) DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*D(i).
LLD (input) DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence.
GAPTOL (input) DOUBLE PRECISION
Tolerance that indicates when eigenvector entries are neglig
w.r.t. their contribution to the residual.
Z (input/output) DOUBLE PRECISION array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.
WANTNC (input) LOGICAL
Specifies whether NEGCNT has to be computed.
NEGCNT (output) INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < piv
in the matrix factorization L D L^T, and NEGCNT = -1 otherw
ZTZ (output) DOUBLE PRECISION
The square of the 2-norm of Z.
MINGMA (output) DOUBLE PRECISION
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L^T - sigma I.
R (input/output) INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L^T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in t
eigenvector.
ISUPPZ (output) INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
NRMINV (output) DOUBLE PRECISION
NRMINV = 1/SQRT( ZTZ )
RESID (output) DOUBLE PRECISION
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )
RQCORR (output) DOUBLE PRECISION
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlar1v(int n, int b1, int bn, double lambda, double[] d, int _d_offset, double[] l, int _l_offset, double[] ld, int _ld_offset, double[] lld, int _lld_offset, double pivmin, double gaptol, double[] z, int _z_offset, boolean wantnc, org.netlib.util.intW negcnt, org.netlib.util.doubleW ztz, org.netlib.util.doubleW mingma, org.netlib.util.intW r, int[] isuppz, int _isuppz_offset, org.netlib.util.doubleW nrminv, org.netlib.util.doubleW resid, org.netlib.util.doubleW rqcorr, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L^T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T,
(b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T,
(c) Computation of the diagonal elements of the inverse of
L D L^T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.
Arguments
=========
N (input) INTEGER
The order of the matrix L D L^T.
B1 (input) INTEGER
First index of the submatrix of L D L^T.
BN (input) INTEGER
Last index of the submatrix of L D L^T.
LAMBDA (input) DOUBLE PRECISION
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L^T.
L (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D.
LD (input) DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*D(i).
LLD (input) DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence.
GAPTOL (input) DOUBLE PRECISION
Tolerance that indicates when eigenvector entries are neglig
w.r.t. their contribution to the residual.
Z (input/output) DOUBLE PRECISION array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.
WANTNC (input) LOGICAL
Specifies whether NEGCNT has to be computed.
NEGCNT (output) INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < piv
in the matrix factorization L D L^T, and NEGCNT = -1 otherw
ZTZ (output) DOUBLE PRECISION
The square of the 2-norm of Z.
MINGMA (output) DOUBLE PRECISION
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L^T - sigma I.
R (input/output) INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L^T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in t
eigenvector.
ISUPPZ (output) INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
NRMINV (output) DOUBLE PRECISION
NRMINV = 1/SQRT( ZTZ )
RESID (output) DOUBLE PRECISION
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )
RQCORR (output) DOUBLE PRECISION
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlar2v(int n, double[] x, double[] y, double[] z, int incx, double[] c, double[] s, int incc)
LAPACK
..
Purpose
=======
DLAR2V applies a vector of real plane rotations from both sides to
a sequence of 2-by-2 real symmetric matrices, defined by the elements
of the vectors x, y and z. For i = 1,2,...,n
( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) )
( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector x.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector y.
Z (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector z.
INCX (input) INTEGER
The increment between elements of X, Y and Z. INCX > 0.
C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void dlar2v(int n, double[] x, int _x_offset, double[] y, int _y_offset, double[] z, int _z_offset, int incx, double[] c, int _c_offset, double[] s, int _s_offset, int incc)
LAPACK
..
Purpose
=======
DLAR2V applies a vector of real plane rotations from both sides to
a sequence of 2-by-2 real symmetric matrices, defined by the elements
of the vectors x, y and z. For i = 1,2,...,n
( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) )
( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector x.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector y.
Z (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector z.
INCX (input) INTEGER
The increment between elements of X, Y and Z. INCX > 0.
C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void dlarf(String side, int m, int n, double[] v, int incv, double tau, double[] c, int Ldc, double[] work)
LAPACK
..
Purpose
=======
DLARF applies a real elementary reflector H to a real m by n matrix
C, from either the left or the right. H is represented in the form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) DOUBLE PRECISION array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) DOUBLE PRECISION
The value tau in the representation of H.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void dlarf(String side, int m, int n, double[] v, int _v_offset, int incv, double tau, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLARF applies a real elementary reflector H to a real m by n matrix
C, from either the left or the right. H is represented in the form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) DOUBLE PRECISION array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) DOUBLE PRECISION
The value tau in the representation of H.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void dlarfb(String side, String trans, String direct, String storev, int m, int n, int k, double[] v, int ldv, double[] t, int ldt, double[] c, int Ldc, double[] work, int ldwork)
LAPACK
..
Purpose
=======
DLARFB applies a real block reflector H or its transpose H' to a
real m by n matrix C, from either the left or the right.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'T': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
V (input) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.
T (input) DOUBLE PRECISION array, dimension (LDT,K)
The triangular k by k matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
=====================================================================
.. Parameters ..
public void dlarfb(String side, String trans, String direct, String storev, int m, int n, int k, double[] v, int _v_offset, int ldv, double[] t, int _t_offset, int ldt, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int ldwork)
LAPACK
..
Purpose
=======
DLARFB applies a real block reflector H or its transpose H' to a
real m by n matrix C, from either the left or the right.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'T': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
V (input) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.
T (input) DOUBLE PRECISION array, dimension (LDT,K)
The triangular k by k matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
=====================================================================
.. Parameters ..
public void dlarfg(int n, org.netlib.util.doubleW alpha, double[] x, int incx, org.netlib.util.doubleW tau)
LAPACK
..
Purpose
=======
DLARFG generates a real elementary reflector H of order n, such
that
H * ( alpha ) = ( beta ), H' * H = I.
( x ) ( 0 )
where alpha and beta are scalars, and x is an (n-1)-element real
vector. H is represented in the form
H = I - tau * ( 1 ) * ( 1 v' ) ,
( v )
where tau is a real scalar and v is a real (n-1)-element
vector.
If the elements of x are all zero, then tau = 0 and H is taken to be
the unit matrix.
Otherwise 1 <= tau <= 2.
Arguments
=========
N (input) INTEGER
The order of the elementary reflector.
ALPHA (input/output) DOUBLE PRECISION
On entry, the value alpha.
On exit, it is overwritten with the value beta.
X (input/output) DOUBLE PRECISION array, dimension
(1+(N-2)*abs(INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
TAU (output) DOUBLE PRECISION
The value tau.
=====================================================================
.. Parameters ..
public void dlarfg(int n, org.netlib.util.doubleW alpha, double[] x, int _x_offset, int incx, org.netlib.util.doubleW tau)
LAPACK
..
Purpose
=======
DLARFG generates a real elementary reflector H of order n, such
that
H * ( alpha ) = ( beta ), H' * H = I.
( x ) ( 0 )
where alpha and beta are scalars, and x is an (n-1)-element real
vector. H is represented in the form
H = I - tau * ( 1 ) * ( 1 v' ) ,
( v )
where tau is a real scalar and v is a real (n-1)-element
vector.
If the elements of x are all zero, then tau = 0 and H is taken to be
the unit matrix.
Otherwise 1 <= tau <= 2.
Arguments
=========
N (input) INTEGER
The order of the elementary reflector.
ALPHA (input/output) DOUBLE PRECISION
On entry, the value alpha.
On exit, it is overwritten with the value beta.
X (input/output) DOUBLE PRECISION array, dimension
(1+(N-2)*abs(INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
TAU (output) DOUBLE PRECISION
The value tau.
=====================================================================
.. Parameters ..
public void dlarft(String direct, String storev, int n, int k, double[] v, int ldv, double[] tau, double[] t, int ldt)
LAPACK
..
Purpose
=======
DLARFT forms the triangular factor T of a real block reflector H
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
=====================================================================
.. Parameters ..
public void dlarft(String direct, String storev, int n, int k, double[] v, int _v_offset, int ldv, double[] tau, int _tau_offset, double[] t, int _t_offset, int ldt)
LAPACK
..
Purpose
=======
DLARFT forms the triangular factor T of a real block reflector H
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
=====================================================================
.. Parameters ..
public void dlarfx(String side, int m, int n, double[] v, double tau, double[] c, int Ldc, double[] work)
LAPACK
..
Purpose
=======
DLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.
TAU (input) DOUBLE PRECISION
The value tau in the representation of H.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= (1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.
=====================================================================
.. Parameters ..
public void dlarfx(String side, int m, int n, double[] v, int _v_offset, double tau, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.
TAU (input) DOUBLE PRECISION
The value tau in the representation of H.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= (1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.
=====================================================================
.. Parameters ..
public void dlargv(int n, double[] x, int incx, double[] y, int incy, double[] c, int incc)
LAPACK
..
Purpose
=======
DLARGV generates a vector of real plane rotations, determined by
elements of the real vectors x and y. For i = 1,2,...,n
( c(i) s(i) ) ( x(i) ) = ( a(i) )
( -s(i) c(i) ) ( y(i) ) = ( 0 )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be generated.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
On entry, the vector x.
On exit, x(i) is overwritten by a(i), for i = 1,...,n.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCY)
On entry, the vector y.
On exit, the sines of the plane rotations.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (output) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C. INCC > 0.
=====================================================================
.. Parameters ..
public void dlargv(int n, double[] x, int _x_offset, int incx, double[] y, int _y_offset, int incy, double[] c, int _c_offset, int incc)
LAPACK
..
Purpose
=======
DLARGV generates a vector of real plane rotations, determined by
elements of the real vectors x and y. For i = 1,2,...,n
( c(i) s(i) ) ( x(i) ) = ( a(i) )
( -s(i) c(i) ) ( y(i) ) = ( 0 )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be generated.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
On entry, the vector x.
On exit, x(i) is overwritten by a(i), for i = 1,...,n.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCY)
On entry, the vector y.
On exit, the sines of the plane rotations.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (output) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C. INCC > 0.
=====================================================================
.. Parameters ..
public void dlarnv(int idist, int[] iseed, int n, double[] x)
LAPACK
..
Purpose
=======
DLARNV returns a vector of n random real numbers from a uniform or
normal distribution.
Arguments
=========
IDIST (input) INTEGER
Specifies the distribution of the random numbers:
= 1: uniform (0,1)
= 2: uniform (-1,1)
= 3: normal (0,1)
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated.
X (output) DOUBLE PRECISION array, dimension (N)
The generated random numbers.
Further Details
===============
This routine calls the auxiliary routine DLARUV to generate random
real numbers from a uniform (0,1) distribution, in batches of up to
128 using vectorisable code. The Box-Muller method is used to
transform numbers from a uniform to a normal distribution.
=====================================================================
.. Parameters ..
public void dlarnv(int idist, int[] iseed, int _iseed_offset, int n, double[] x, int _x_offset)
LAPACK
..
Purpose
=======
DLARNV returns a vector of n random real numbers from a uniform or
normal distribution.
Arguments
=========
IDIST (input) INTEGER
Specifies the distribution of the random numbers:
= 1: uniform (0,1)
= 2: uniform (-1,1)
= 3: normal (0,1)
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated.
X (output) DOUBLE PRECISION array, dimension (N)
The generated random numbers.
Further Details
===============
This routine calls the auxiliary routine DLARUV to generate random
real numbers from a uniform (0,1) distribution, in batches of up to
128 using vectorisable code. The Box-Muller method is used to
transform numbers from a uniform to a normal distribution.
=====================================================================
.. Parameters ..
public void dlarra(int n, double[] d, double[] e, double[] e2, double spltol, double tnrm, org.netlib.util.intW nsplit, int[] isplit, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Compute the splitting points with threshold SPLTOL.
DLARRA sets any "small" off-diagonal elements to zero.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT,
are set to zero, the other entries of E are untouched.
E2 (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
SPLTOL (input) DOUBLE PRECISION
The threshold for splitting. Two criteria can be used:
SPLTOL<0 : criterion based on absolute off-diagonal value
SPLTOL>0 : criterion that preserves relative accuracy
TNRM (input) DOUBLE PRECISION
The norm of the matrix.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
INFO (output) INTEGER
= 0: successful exit
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarra(int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] e2, int _e2_offset, double spltol, double tnrm, org.netlib.util.intW nsplit, int[] isplit, int _isplit_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Compute the splitting points with threshold SPLTOL.
DLARRA sets any "small" off-diagonal elements to zero.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT,
are set to zero, the other entries of E are untouched.
E2 (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
SPLTOL (input) DOUBLE PRECISION
The threshold for splitting. Two criteria can be used:
SPLTOL<0 : criterion based on absolute off-diagonal value
SPLTOL>0 : criterion that preserves relative accuracy
TNRM (input) DOUBLE PRECISION
The norm of the matrix.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
INFO (output) INTEGER
= 0: successful exit
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrb(int n, double[] d, double[] lld, int ifirst, int ilast, double rtol1, double rtol2, int offset, double[] w, double[] wgap, double[] werr, double[] work, int[] iwork, double pivmin, double spdiam, int twist, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the relatively robust representation(RRR) L D L^T, DLARRB
does "limited" bisection to refine the eigenvalues of L D L^T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses and their gaps are input in WERR
and WGAP, respectively. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL1 (input) DOUBLE PRECISION
RTOL2 (input) DOUBLE PRECISION
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
where GAP is the (estimated) distance to the nearest
eigenvalue.
OFFSET (input) INTEGER
Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFS
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) DOUBLE PRECISION array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WGAP (input/output) DOUBLE PRECISION array, dimension (N-1)
On input, the (estimated) gaps between consecutive
eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap betwe
eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
then WGAP(IFIRST-OFFSET) must be set to ZERO.
On output, these gaps are refined.
WERR (input/output) DOUBLE PRECISION array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of the matrix.
TWIST (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L
TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U
TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrb(int n, double[] d, int _d_offset, double[] lld, int _lld_offset, int ifirst, int ilast, double rtol1, double rtol2, int offset, double[] w, int _w_offset, double[] wgap, int _wgap_offset, double[] werr, int _werr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, double pivmin, double spdiam, int twist, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the relatively robust representation(RRR) L D L^T, DLARRB
does "limited" bisection to refine the eigenvalues of L D L^T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses and their gaps are input in WERR
and WGAP, respectively. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL1 (input) DOUBLE PRECISION
RTOL2 (input) DOUBLE PRECISION
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
where GAP is the (estimated) distance to the nearest
eigenvalue.
OFFSET (input) INTEGER
Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFS
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) DOUBLE PRECISION array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WGAP (input/output) DOUBLE PRECISION array, dimension (N-1)
On input, the (estimated) gaps between consecutive
eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap betwe
eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
then WGAP(IFIRST-OFFSET) must be set to ZERO.
On output, these gaps are refined.
WERR (input/output) DOUBLE PRECISION array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of the matrix.
TWIST (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L
TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U
TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrc(String jobt, int n, double vl, double vu, double[] d, double[] e, double pivmin, org.netlib.util.intW eigcnt, org.netlib.util.intW lcnt, org.netlib.util.intW rcnt, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Find the number of eigenvalues of the symmetric tridiagonal matrix T
that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
if JOBT = 'L'.
Arguments
=========
JOBT (input) CHARACTER*1
= 'T': Compute Sturm count for matrix T.
= 'L': Compute Sturm count for matrix L D L^T.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
The lower and upper bounds for the eigenvalues.
D (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N diagonal elements of the tridiagonal matrix
JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
EIGCNT (output) INTEGER
The number of eigenvalues of the symmetric tridiagonal matrix
that are in the interval (VL,VU]
LCNT (output) INTEGER
RCNT (output) INTEGER
The left and right negcounts of the interval.
INFO (output) INTEGER
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrc(String jobt, int n, double vl, double vu, double[] d, int _d_offset, double[] e, int _e_offset, double pivmin, org.netlib.util.intW eigcnt, org.netlib.util.intW lcnt, org.netlib.util.intW rcnt, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Find the number of eigenvalues of the symmetric tridiagonal matrix T
that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
if JOBT = 'L'.
Arguments
=========
JOBT (input) CHARACTER*1
= 'T': Compute Sturm count for matrix T.
= 'L': Compute Sturm count for matrix L D L^T.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
The lower and upper bounds for the eigenvalues.
D (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N diagonal elements of the tridiagonal matrix
JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
EIGCNT (output) INTEGER
The number of eigenvalues of the symmetric tridiagonal matrix
that are in the interval (VL,VU]
LCNT (output) INTEGER
RCNT (output) INTEGER
The left and right negcounts of the interval.
INFO (output) INTEGER
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrd(String range, String order, int n, double vl, double vu, int il, int iu, double[] gers, double reltol, double[] d, double[] e, double[] e2, double pivmin, int nsplit, int[] isplit, org.netlib.util.intW m, double[] w, double[] werr, org.netlib.util.doubleW wl, org.netlib.util.doubleW wu, int[] iblock, int[] indexw, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLARRD computes the eigenvalues of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from DSTEMR.
The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
GERS (input) DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
RELTOL (input) DOUBLE PRECISION
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
E2 (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence for T.
NSPLIT (input) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
W (output) DOUBLE PRECISION array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalue approximations. DLARRD computes an interval
I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue
approximation is given as the interval midpoint
W(j)= ( a_j + b_j)/2. The corresponding error is bounded by
WERR(j) = abs( a_j - b_j)/2
WERR (output) DOUBLE PRECISION array, dimension (N)
The error bound on the corresponding eigenvalue approximation
in W.
WL (output) DOUBLE PRECISION
WU (output) DOUBLE PRECISION
The interval (WL, WU] contains all the wanted eigenvalues.
If RANGE='V', then WL=VL and WU=VU.
If RANGE='A', then WL and WU are the global Gerschgorin bound
on the spectrum.
If RANGE='I', then WL and WU are computed by DLAEBZ from the
index range specified.
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (DLARRD may use the remaining N-M elements as
workspace.)
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= j and IBLOCK(i)=k imply that the
i-th eigenvalue W(i) is the j-th eigenvalue in block k.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
FUDGE DOUBLE PRECISION, default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
Based on contributions by
W. Kahan, University of California, Berkeley, USA
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrd(String range, String order, int n, double vl, double vu, int il, int iu, double[] gers, int _gers_offset, double reltol, double[] d, int _d_offset, double[] e, int _e_offset, double[] e2, int _e2_offset, double pivmin, int nsplit, int[] isplit, int _isplit_offset, org.netlib.util.intW m, double[] w, int _w_offset, double[] werr, int _werr_offset, org.netlib.util.doubleW wl, org.netlib.util.doubleW wu, int[] iblock, int _iblock_offset, int[] indexw, int _indexw_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLARRD computes the eigenvalues of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from DSTEMR.
The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
GERS (input) DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
RELTOL (input) DOUBLE PRECISION
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
E2 (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence for T.
NSPLIT (input) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
W (output) DOUBLE PRECISION array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalue approximations. DLARRD computes an interval
I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue
approximation is given as the interval midpoint
W(j)= ( a_j + b_j)/2. The corresponding error is bounded by
WERR(j) = abs( a_j - b_j)/2
WERR (output) DOUBLE PRECISION array, dimension (N)
The error bound on the corresponding eigenvalue approximation
in W.
WL (output) DOUBLE PRECISION
WU (output) DOUBLE PRECISION
The interval (WL, WU] contains all the wanted eigenvalues.
If RANGE='V', then WL=VL and WU=VU.
If RANGE='A', then WL and WU are the global Gerschgorin bound
on the spectrum.
If RANGE='I', then WL and WU are computed by DLAEBZ from the
index range specified.
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (DLARRD may use the remaining N-M elements as
workspace.)
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= j and IBLOCK(i)=k imply that the
i-th eigenvalue W(i) is the j-th eigenvalue in block k.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
FUDGE DOUBLE PRECISION, default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
Based on contributions by
W. Kahan, University of California, Berkeley, USA
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarre(String range, int n, org.netlib.util.doubleW vl, org.netlib.util.doubleW vu, int il, int iu, double[] d, double[] e, double[] e2, double rtol1, double rtol2, double spltol, org.netlib.util.intW nsplit, int[] isplit, org.netlib.util.intW m, double[] w, double[] werr, double[] wgap, int[] iblock, int[] indexw, double[] gers, org.netlib.util.doubleW pivmin, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
To find the desired eigenvalues of a given real symmetric
tridiagonal matrix T, DLARRE sets any "small" off-diagonal
elements to zero, and for each unreduced block T_i, it finds
(a) a suitable shift at one end of the block's spectrum,
(b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
(c) eigenvalues of each L_i D_i L_i^T.
The representations and eigenvalues found are then used by
DSTEMR to compute the eigenvectors of T.
The accuracy varies depending on whether bisection is used to
find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to
conpute all and then discard any unwanted one.
As an added benefit, DLARRE also outputs the n
Gerschgorin intervals for the matrices L_i D_i L_i^T.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input/output) DOUBLE PRECISION
VU (input/output) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds for the eigenvalues.
Eigenvalues less than or equal to VL, or greater than VU,
will not be returned. VL < VU.
If RANGE='I' or ='A', DLARRE computes bounds on the desired
part of the spectrum.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
On exit, the N diagonal elements of the diagonal
matrices D_i.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, E contains the subdiagonal elements of the unit
bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
1 <= I <= NSPLIT, contain the base points sigma_i on output.
E2 (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
RTOL1 (input) DOUBLE PRECISION
RTOL2 (input) DOUBLE PRECISION
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
SPLTOL (input) DOUBLE PRECISION
The threshold for splitting.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
M (output) INTEGER
The total number of eigenvalues (of all L_i D_i L_i^T)
found.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the eigenvalues. The
eigenvalues of each of the blocks, L_i D_i L_i^T, are
sorted in ascending order ( DLARRE may use the
remaining N-M elements as workspace).
WERR (output) DOUBLE PRECISION array, dimension (N)
The error bound on the corresponding eigenvalue in W.
WGAP (output) DOUBLE PRECISION array, dimension (N)
The separation from the right neighbor eigenvalue in W.
The gap is only with respect to the eigenvalues of the same b
as each block has its own representation tree.
Exception: at the right end of a block we store the left gap
IBLOCK (output) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
GERS (output) DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
PIVMIN (output) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (5*N)
Workspace.
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in DLARRE.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in DLARRD.
= 2: No base representation could be found in MAXTRY iterati
Increasing MAXTRY and recompilation might be a remedy.
=-3: Problem in DLARRB when computing the refined root
representation for DLASQ2.
=-4: Problem in DLARRB when preforming bisection on the
desired part of the spectrum.
=-5: Problem in DLASQ2.
=-6: Problem in DLASQ2.
Further Details
The base representations are required to suffer very little
element growth and consequently define all their eigenvalues to
high relative accuracy.
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarre(String range, int n, org.netlib.util.doubleW vl, org.netlib.util.doubleW vu, int il, int iu, double[] d, int _d_offset, double[] e, int _e_offset, double[] e2, int _e2_offset, double rtol1, double rtol2, double spltol, org.netlib.util.intW nsplit, int[] isplit, int _isplit_offset, org.netlib.util.intW m, double[] w, int _w_offset, double[] werr, int _werr_offset, double[] wgap, int _wgap_offset, int[] iblock, int _iblock_offset, int[] indexw, int _indexw_offset, double[] gers, int _gers_offset, org.netlib.util.doubleW pivmin, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
To find the desired eigenvalues of a given real symmetric
tridiagonal matrix T, DLARRE sets any "small" off-diagonal
elements to zero, and for each unreduced block T_i, it finds
(a) a suitable shift at one end of the block's spectrum,
(b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
(c) eigenvalues of each L_i D_i L_i^T.
The representations and eigenvalues found are then used by
DSTEMR to compute the eigenvectors of T.
The accuracy varies depending on whether bisection is used to
find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to
conpute all and then discard any unwanted one.
As an added benefit, DLARRE also outputs the n
Gerschgorin intervals for the matrices L_i D_i L_i^T.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input/output) DOUBLE PRECISION
VU (input/output) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds for the eigenvalues.
Eigenvalues less than or equal to VL, or greater than VU,
will not be returned. VL < VU.
If RANGE='I' or ='A', DLARRE computes bounds on the desired
part of the spectrum.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
On exit, the N diagonal elements of the diagonal
matrices D_i.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, E contains the subdiagonal elements of the unit
bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
1 <= I <= NSPLIT, contain the base points sigma_i on output.
E2 (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
RTOL1 (input) DOUBLE PRECISION
RTOL2 (input) DOUBLE PRECISION
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
SPLTOL (input) DOUBLE PRECISION
The threshold for splitting.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
M (output) INTEGER
The total number of eigenvalues (of all L_i D_i L_i^T)
found.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the eigenvalues. The
eigenvalues of each of the blocks, L_i D_i L_i^T, are
sorted in ascending order ( DLARRE may use the
remaining N-M elements as workspace).
WERR (output) DOUBLE PRECISION array, dimension (N)
The error bound on the corresponding eigenvalue in W.
WGAP (output) DOUBLE PRECISION array, dimension (N)
The separation from the right neighbor eigenvalue in W.
The gap is only with respect to the eigenvalues of the same b
as each block has its own representation tree.
Exception: at the right end of a block we store the left gap
IBLOCK (output) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
GERS (output) DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
PIVMIN (output) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (5*N)
Workspace.
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in DLARRE.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in DLARRD.
= 2: No base representation could be found in MAXTRY iterati
Increasing MAXTRY and recompilation might be a remedy.
=-3: Problem in DLARRB when computing the refined root
representation for DLASQ2.
=-4: Problem in DLARRB when preforming bisection on the
desired part of the spectrum.
=-5: Problem in DLASQ2.
=-6: Problem in DLASQ2.
Further Details
The base representations are required to suffer very little
element growth and consequently define all their eigenvalues to
high relative accuracy.
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrf(int n, double[] d, double[] l, double[] ld, int clstrt, int clend, double[] w, double[] wgap, double[] werr, double spdiam, double clgapl, double clgapr, double pivmin, org.netlib.util.doubleW sigma, double[] dplus, double[] lplus, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial representation L D L^T and its cluster of close
eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
W( CLEND ), DLARRF finds a new relatively robust representation
L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
Arguments
=========
N (input) INTEGER
The order of the matrix (subblock, if the matrix splitted).
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D.
L (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) subdiagonal elements of the unit bidiagonal
matrix L.
LD (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) elements L(i)*D(i).
CLSTRT (input) INTEGER
The index of the first eigenvalue in the cluster.
CLEND (input) INTEGER
The index of the last eigenvalue in the cluster.
W (input) DOUBLE PRECISION array, dimension >= (CLEND-CLSTRT+1
The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
W( CLSTRT ) through W( CLEND ) form the cluster of relatively
close eigenalues.
WGAP (input/output) DOUBLE PRECISION array, dimension >= (CLEND-C
The separation from the right neighbor eigenvalue in W.
WERR (input) DOUBLE PRECISION array, dimension >= (CLEND-CLSTRT+1
WERR contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue APPROXIMATION in W
SPDIAM (input) estimate of the spectral diameter obtained from the
Gerschgorin intervals
CLGAPL, CLGAPR (input) absolute gap on each end of the cluster.
Set by the calling routine to protect against shifts too clos
to eigenvalues outside the cluster.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
SIGMA (output) DOUBLE PRECISION
The shift used to form L(+) D(+) L(+)^T.
DPLUS (output) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D(+).
LPLUS (output) DOUBLE PRECISION array, dimension (N-1)
The first (N-1) elements of LPLUS contain the subdiagonal
elements of the unit bidiagonal matrix L(+).
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
Workspace.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrf(int n, double[] d, int _d_offset, double[] l, int _l_offset, double[] ld, int _ld_offset, int clstrt, int clend, double[] w, int _w_offset, double[] wgap, int _wgap_offset, double[] werr, int _werr_offset, double spdiam, double clgapl, double clgapr, double pivmin, org.netlib.util.doubleW sigma, double[] dplus, int _dplus_offset, double[] lplus, int _lplus_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial representation L D L^T and its cluster of close
eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
W( CLEND ), DLARRF finds a new relatively robust representation
L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
Arguments
=========
N (input) INTEGER
The order of the matrix (subblock, if the matrix splitted).
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D.
L (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) subdiagonal elements of the unit bidiagonal
matrix L.
LD (input) DOUBLE PRECISION array, dimension (N-1)
The (N-1) elements L(i)*D(i).
CLSTRT (input) INTEGER
The index of the first eigenvalue in the cluster.
CLEND (input) INTEGER
The index of the last eigenvalue in the cluster.
W (input) DOUBLE PRECISION array, dimension >= (CLEND-CLSTRT+1
The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
W( CLSTRT ) through W( CLEND ) form the cluster of relatively
close eigenalues.
WGAP (input/output) DOUBLE PRECISION array, dimension >= (CLEND-C
The separation from the right neighbor eigenvalue in W.
WERR (input) DOUBLE PRECISION array, dimension >= (CLEND-CLSTRT+1
WERR contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue APPROXIMATION in W
SPDIAM (input) estimate of the spectral diameter obtained from the
Gerschgorin intervals
CLGAPL, CLGAPR (input) absolute gap on each end of the cluster.
Set by the calling routine to protect against shifts too clos
to eigenvalues outside the cluster.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
SIGMA (output) DOUBLE PRECISION
The shift used to form L(+) D(+) L(+)^T.
DPLUS (output) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the diagonal matrix D(+).
LPLUS (output) DOUBLE PRECISION array, dimension (N-1)
The first (N-1) elements of LPLUS contain the subdiagonal
elements of the unit bidiagonal matrix L(+).
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
Workspace.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrj(int n, double[] d, double[] e2, int ifirst, int ilast, double rtol, int offset, double[] w, double[] werr, double[] work, int[] iwork, double pivmin, double spdiam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial eigenvalue approximations of T, DLARRJ
does bisection to refine the eigenvalues of T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses in WERR. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of T.
E2 (input) DOUBLE PRECISION array, dimension (N-1)
The Squares of the (N-1) subdiagonal elements of T.
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL (input) DOUBLE PRECISION
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
OFFSET (input) INTEGER
Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) DOUBLE PRECISION array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WERR (input/output) DOUBLE PRECISION array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of T.
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrj(int n, double[] d, int _d_offset, double[] e2, int _e2_offset, int ifirst, int ilast, double rtol, int offset, double[] w, int _w_offset, double[] werr, int _werr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, double pivmin, double spdiam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial eigenvalue approximations of T, DLARRJ
does bisection to refine the eigenvalues of T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses in WERR. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of T.
E2 (input) DOUBLE PRECISION array, dimension (N-1)
The Squares of the (N-1) subdiagonal elements of T.
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL (input) DOUBLE PRECISION
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
OFFSET (input) INTEGER
Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) DOUBLE PRECISION array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WERR (input/output) DOUBLE PRECISION array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of T.
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrk(int n, int iw, double gl, double gu, double[] d, double[] e2, double pivmin, double reltol, org.netlib.util.doubleW w, org.netlib.util.doubleW werr, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLARRK computes one eigenvalue of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from DSTEMR.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
IW (input) INTEGER
The index of the eigenvalues to be returned.
GL (input) DOUBLE PRECISION
GU (input) DOUBLE PRECISION
An upper and a lower bound on the eigenvalue.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E2 (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence for T.
RELTOL (input) DOUBLE PRECISION
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
W (output) DOUBLE PRECISION
WERR (output) DOUBLE PRECISION
The error bound on the corresponding eigenvalue approximation
in W.
INFO (output) INTEGER
= 0: Eigenvalue converged
= -1: Eigenvalue did NOT converge
Internal Parameters
===================
FUDGE DOUBLE PRECISION, default = 2
A "fudge factor" to widen the Gershgorin intervals.
=====================================================================
.. Parameters ..
public void dlarrk(int n, int iw, double gl, double gu, double[] d, int _d_offset, double[] e2, int _e2_offset, double pivmin, double reltol, org.netlib.util.doubleW w, org.netlib.util.doubleW werr, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLARRK computes one eigenvalue of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from DSTEMR.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
IW (input) INTEGER
The index of the eigenvalues to be returned.
GL (input) DOUBLE PRECISION
GU (input) DOUBLE PRECISION
An upper and a lower bound on the eigenvalue.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E2 (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence for T.
RELTOL (input) DOUBLE PRECISION
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
W (output) DOUBLE PRECISION
WERR (output) DOUBLE PRECISION
The error bound on the corresponding eigenvalue approximation
in W.
INFO (output) INTEGER
= 0: Eigenvalue converged
= -1: Eigenvalue did NOT converge
Internal Parameters
===================
FUDGE DOUBLE PRECISION, default = 2
A "fudge factor" to widen the Gershgorin intervals.
=====================================================================
.. Parameters ..
public void dlarrr(int n, double[] d, double[] e, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Perform tests to decide whether the symmetric tridiagonal matrix T
warrants expensive computations which guarantee high relative accurac
in the eigenvalues.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the tridiagonal matrix T.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) is set to ZERO.
INFO (output) INTEGER
INFO = 0(default) : the matrix warrants computations preservi
relative accuracy.
INFO = 1 : the matrix warrants computations guarante
only absolute accuracy.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrr(int n, double[] d, int _d_offset, double[] e, int _e_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Perform tests to decide whether the symmetric tridiagonal matrix T
warrants expensive computations which guarantee high relative accurac
in the eigenvalues.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the tridiagonal matrix T.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) is set to ZERO.
INFO (output) INTEGER
INFO = 0(default) : the matrix warrants computations preservi
relative accuracy.
INFO = 1 : the matrix warrants computations guarante
only absolute accuracy.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrv(int n, double vl, double vu, double[] d, double[] l, double pivmin, int[] isplit, int m, int dol, int dou, double minrgp, org.netlib.util.doubleW rtol1, org.netlib.util.doubleW rtol2, double[] w, double[] werr, double[] wgap, int[] iblock, int[] indexw, double[] gers, double[] z, int ldz, int[] isuppz, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLARRV computes the eigenvectors of the tridiagonal matrix
T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L
The input eigenvalues should have been computed by DLARRE.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
Lower and upper bounds of the interval that contains the desi
eigenvalues. VL < VU. Needed to compute gaps on the left or r
end of the extremal eigenvalues in the desired RANGE.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the diagonal matrix D.
On exit, D may be overwritten.
L (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the unit
bidiagonal matrix L are in elements 1 to N-1 of L
(if the matrix is not splitted.) At the end of each block
is stored the corresponding shift as given by DLARRE.
On exit, L is overwritten.
PIVMIN (in) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
M (input) INTEGER
The total number of input eigenvalues. 0 <= M <= N.
DOL (input) INTEGER
DOU (input) INTEGER
If the user wants to compute only selected eigenvectors from
the eigenvalues supplied, he can specify an index range DOL:D
Or else the setting DOL=1, DOU=M should be applied.
Note that DOL and DOU refer to the order in which the eigenva
are stored in W.
If the user wants to compute only selected eigenpairs, then
the columns DOL-1 to DOU+1 of the eigenvector space Z contain
computed eigenvectors. All other columns of Z are set to zero
MINRGP (input) DOUBLE PRECISION
RTOL1 (input) DOUBLE PRECISION
RTOL2 (input) DOUBLE PRECISION
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
W (input/output) DOUBLE PRECISION array, dimension (N)
The first M elements of W contain the APPROXIMATE eigenvalues
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block ( The output array
W from DLARRE is expected here ). Furthermore, they are with
respect to the shift of the corresponding root representation
for their block. On exit, W holds the eigenvalues of the
UNshifted matrix.
WERR (input/output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue in W
WGAP (input/output) DOUBLE PRECISION array, dimension (N)
The separation from the right neighbor eigenvalue in W.
IBLOCK (input) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (input) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in the second bl
GERS (input) DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
be computed from the original UNshifted matrix.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If INFO = 0, the first M columns of Z contain the
orthonormal eigenvectors of the matrix T
corresponding to the input eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The I-th eigenvector
is nonzero only in elements ISUPPZ( 2*I-1 ) through
ISUPPZ( 2*I ).
WORK (workspace) DOUBLE PRECISION array, dimension (12*N)
IWORK (workspace) INTEGER array, dimension (7*N)
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in DLARRV.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in DLARRB when refining a child's eigenvalues.
=-2: Problem in DLARRF when computing the RRR of a child.
When a child is inside a tight cluster, it can be diffi
to find an RRR. A partial remedy from the user's point
view is to make the parameter MINRGP smaller and recomp
However, as the orthogonality of the computed vectors i
proportional to 1/MINRGP, the user should be aware that
he might be trading in precision when he decreases MINR
=-3: Problem in DLARRB when refining a single eigenvalue
after the Rayleigh correction was rejected.
= 5: The Rayleigh Quotient Iteration failed to converge to
full accuracy in MAXITR steps.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlarrv(int n, double vl, double vu, double[] d, int _d_offset, double[] l, int _l_offset, double pivmin, int[] isplit, int _isplit_offset, int m, int dol, int dou, double minrgp, org.netlib.util.doubleW rtol1, org.netlib.util.doubleW rtol2, double[] w, int _w_offset, double[] werr, int _werr_offset, double[] wgap, int _wgap_offset, int[] iblock, int _iblock_offset, int[] indexw, int _indexw_offset, double[] gers, int _gers_offset, double[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLARRV computes the eigenvectors of the tridiagonal matrix
T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L
The input eigenvalues should have been computed by DLARRE.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
Lower and upper bounds of the interval that contains the desi
eigenvalues. VL < VU. Needed to compute gaps on the left or r
end of the extremal eigenvalues in the desired RANGE.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the diagonal matrix D.
On exit, D may be overwritten.
L (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the unit
bidiagonal matrix L are in elements 1 to N-1 of L
(if the matrix is not splitted.) At the end of each block
is stored the corresponding shift as given by DLARRE.
On exit, L is overwritten.
PIVMIN (in) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
M (input) INTEGER
The total number of input eigenvalues. 0 <= M <= N.
DOL (input) INTEGER
DOU (input) INTEGER
If the user wants to compute only selected eigenvectors from
the eigenvalues supplied, he can specify an index range DOL:D
Or else the setting DOL=1, DOU=M should be applied.
Note that DOL and DOU refer to the order in which the eigenva
are stored in W.
If the user wants to compute only selected eigenpairs, then
the columns DOL-1 to DOU+1 of the eigenvector space Z contain
computed eigenvectors. All other columns of Z are set to zero
MINRGP (input) DOUBLE PRECISION
RTOL1 (input) DOUBLE PRECISION
RTOL2 (input) DOUBLE PRECISION
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
W (input/output) DOUBLE PRECISION array, dimension (N)
The first M elements of W contain the APPROXIMATE eigenvalues
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block ( The output array
W from DLARRE is expected here ). Furthermore, they are with
respect to the shift of the corresponding root representation
for their block. On exit, W holds the eigenvalues of the
UNshifted matrix.
WERR (input/output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue in W
WGAP (input/output) DOUBLE PRECISION array, dimension (N)
The separation from the right neighbor eigenvalue in W.
IBLOCK (input) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (input) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in the second bl
GERS (input) DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
be computed from the original UNshifted matrix.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If INFO = 0, the first M columns of Z contain the
orthonormal eigenvectors of the matrix T
corresponding to the input eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The I-th eigenvector
is nonzero only in elements ISUPPZ( 2*I-1 ) through
ISUPPZ( 2*I ).
WORK (workspace) DOUBLE PRECISION array, dimension (12*N)
IWORK (workspace) INTEGER array, dimension (7*N)
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in DLARRV.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in DLARRB when refining a child's eigenvalues.
=-2: Problem in DLARRF when computing the RRR of a child.
When a child is inside a tight cluster, it can be diffi
to find an RRR. A partial remedy from the user's point
view is to make the parameter MINRGP smaller and recomp
However, as the orthogonality of the computed vectors i
proportional to 1/MINRGP, the user should be aware that
he might be trading in precision when he decreases MINR
=-3: Problem in DLARRB when refining a single eigenvalue
after the Rayleigh correction was rejected.
= 5: The Rayleigh Quotient Iteration failed to converge to
full accuracy in MAXITR steps.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dlartg(double f, double g, org.netlib.util.doubleW cs, org.netlib.util.doubleW sn, org.netlib.util.doubleW r)
LAPACK
..
Purpose
=======
DLARTG generate a plane rotation so that
[ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
[ -SN CS ] [ G ] [ 0 ]
This is a slower, more accurate version of the BLAS1 routine DROTG,
with the following other differences:
F and G are unchanged on return.
If G=0, then CS=1 and SN=0.
If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
floating point operations (saves work in DBDSQR when
there are zeros on the diagonal).
If F exceeds G in magnitude, CS will be positive.
Arguments
=========
F (input) DOUBLE PRECISION
The first component of vector to be rotated.
G (input) DOUBLE PRECISION
The second component of vector to be rotated.
CS (output) DOUBLE PRECISION
The cosine of the rotation.
SN (output) DOUBLE PRECISION
The sine of the rotation.
R (output) DOUBLE PRECISION
The nonzero component of the rotated vector.
This version has a few statements commented out for thread safety
(machine parameters are computed on each entry). 10 feb 03, SJH.
=====================================================================
.. Parameters ..
public void dlartv(int n, double[] x, int incx, double[] y, int incy, double[] c, double[] s, int incc)
LAPACK
..
Purpose
=======
DLARTV applies a vector of real plane rotations to elements of the
real vectors x and y. For i = 1,2,...,n
( x(i) ) := ( c(i) s(i) ) ( x(i) )
( y(i) ) ( -s(i) c(i) ) ( y(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector x.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCY)
The vector y.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void dlartv(int n, double[] x, int _x_offset, int incx, double[] y, int _y_offset, int incy, double[] c, int _c_offset, double[] s, int _s_offset, int incc)
LAPACK
..
Purpose
=======
DLARTV applies a vector of real plane rotations to elements of the
real vectors x and y. For i = 1,2,...,n
( x(i) ) := ( c(i) s(i) ) ( x(i) )
( y(i) ) ( -s(i) c(i) ) ( y(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector x.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) DOUBLE PRECISION array,
dimension (1+(N-1)*INCY)
The vector y.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void dlaruv(int[] iseed, int n, double[] x)
LAPACK
..
Purpose
=======
DLARUV returns a vector of n random real numbers from a uniform (0,1)
distribution (n <= 128).
This is an auxiliary routine called by DLARNV and ZLARNV.
Arguments
=========
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated. N <= 128.
X (output) DOUBLE PRECISION array, dimension (N)
The generated random numbers.
Further Details
===============
This routine uses a multiplicative congruential method with modulus
2**48 and multiplier 33952834046453 (see G.S.Fishman,
'Multiplicative congruential random number generators with modulus
2**b: an exhaustive analysis for b = 32 and a partial analysis for
b = 48', Math. Comp. 189, pp 331-344, 1990).
48-bit integers are stored in 4 integer array elements with 12 bits
per element. Hence the routine is portable across machines with
integers of 32 bits or more.
=====================================================================
.. Parameters ..
public void dlaruv(int[] iseed, int _iseed_offset, int n, double[] x, int _x_offset)
LAPACK
..
Purpose
=======
DLARUV returns a vector of n random real numbers from a uniform (0,1)
distribution (n <= 128).
This is an auxiliary routine called by DLARNV and ZLARNV.
Arguments
=========
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated. N <= 128.
X (output) DOUBLE PRECISION array, dimension (N)
The generated random numbers.
Further Details
===============
This routine uses a multiplicative congruential method with modulus
2**48 and multiplier 33952834046453 (see G.S.Fishman,
'Multiplicative congruential random number generators with modulus
2**b: an exhaustive analysis for b = 32 and a partial analysis for
b = 48', Math. Comp. 189, pp 331-344, 1990).
48-bit integers are stored in 4 integer array elements with 12 bits
per element. Hence the routine is portable across machines with
integers of 32 bits or more.
=====================================================================
.. Parameters ..
public void dlarz(String side, int m, int n, int l, double[] v, int incv, double tau, double[] c, int Ldc, double[] work)
LAPACK
..
Purpose
=======
DLARZ applies a real elementary reflector H to a real M-by-N
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
H is a product of k elementary reflectors as returned by DTZRZF.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
L (input) INTEGER
The number of entries of the vector V containing
the meaningful part of the Householder vectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) DOUBLE PRECISION array, dimension (1+(L-1)*abs(INCV))
The vector v in the representation of H as returned by
DTZRZF. V is not used if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) DOUBLE PRECISION
The value tau in the representation of H.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void dlarz(String side, int m, int n, int l, double[] v, int _v_offset, int incv, double tau, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLARZ applies a real elementary reflector H to a real M-by-N
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
H is a product of k elementary reflectors as returned by DTZRZF.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
L (input) INTEGER
The number of entries of the vector V containing
the meaningful part of the Householder vectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) DOUBLE PRECISION array, dimension (1+(L-1)*abs(INCV))
The vector v in the representation of H as returned by
DTZRZF. V is not used if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) DOUBLE PRECISION
The value tau in the representation of H.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void dlarzb(String side, String trans, String direct, String storev, int m, int n, int k, int l, double[] v, int ldv, double[] t, int ldt, double[] c, int Ldc, double[] work, int ldwork)
LAPACK
..
Purpose
=======
DLARZB applies a real block reflector H or its transpose H**T to
a real distributed M-by-N C from the left or the right.
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise (not supported yet)
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
L (input) INTEGER
The number of columns of the matrix V containing the
meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) DOUBLE PRECISION array, dimension (LDV,NV).
If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
T (input) DOUBLE PRECISION array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void dlarzb(String side, String trans, String direct, String storev, int m, int n, int k, int l, double[] v, int _v_offset, int ldv, double[] t, int _t_offset, int ldt, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int ldwork)
LAPACK
..
Purpose
=======
DLARZB applies a real block reflector H or its transpose H**T to
a real distributed M-by-N C from the left or the right.
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise (not supported yet)
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
L (input) INTEGER
The number of columns of the matrix V containing the
meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) DOUBLE PRECISION array, dimension (LDV,NV).
If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
T (input) DOUBLE PRECISION array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void dlarzt(String direct, String storev, int n, int k, double[] v, int ldv, double[] tau, double[] t, int ldt)
LAPACK
..
Purpose
=======
DLARZT forms the triangular factor T of a real block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
=====================================================================
.. Parameters ..
public void dlarzt(String direct, String storev, int n, int k, double[] v, int _v_offset, int ldv, double[] tau, int _tau_offset, double[] t, int _t_offset, int ldt)
LAPACK
..
Purpose
=======
DLARZT forms the triangular factor T of a real block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
=====================================================================
.. Parameters ..
public void dlas2(double f, double g, double h, org.netlib.util.doubleW ssmin, org.netlib.util.doubleW ssmax)
LAPACK
..
Purpose
=======
DLAS2 computes the singular values of the 2-by-2 matrix
[ F G ]
[ 0 H ].
On return, SSMIN is the smaller singular value and SSMAX is the
larger singular value.
Arguments
=========
F (input) DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
G (input) DOUBLE PRECISION
The (1,2) element of the 2-by-2 matrix.
H (input) DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
SSMIN (output) DOUBLE PRECISION
The smaller singular value.
SSMAX (output) DOUBLE PRECISION
The larger singular value.
Further Details
===============
Barring over/underflow, all output quantities are correct to within
a few units in the last place (ulps), even in the absence of a guard
digit in addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself
overflows, or is within a few ulps of overflow. (On machines with
partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results
may correspond to a matrix modified by perturbations of size near
the underflow threshold.
====================================================================
.. Parameters ..
public void dlascl(String type, int kl, int ku, double cfrom, double cto, int m, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASCL multiplies the M by N real matrix A by the real scalar
CTO/CFROM. This is done without over/underflow as long as the final
result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
A may be full, upper triangular, lower triangular, upper Hessenberg,
or banded.
Arguments
=========
TYPE (input) CHARACTER*1
TYPE indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the lower
half stored.
= 'Q': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the upper
half stored.
= 'Z': A is a band matrix with lower bandwidth KL and upper
bandwidth KU.
KL (input) INTEGER
The lower bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
KU (input) INTEGER
The upper bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
CFROM (input) DOUBLE PRECISION
CTO (input) DOUBLE PRECISION
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
without over/underflow if the final result CTO*A(I,J)/CFROM
can be represented without over/underflow. CFROM must be
nonzero.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
The matrix to be multiplied by CTO/CFROM. See TYPE for the
storage type.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
0 - successful exit
<0 - if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dlascl(String type, int kl, int ku, double cfrom, double cto, int m, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASCL multiplies the M by N real matrix A by the real scalar
CTO/CFROM. This is done without over/underflow as long as the final
result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
A may be full, upper triangular, lower triangular, upper Hessenberg,
or banded.
Arguments
=========
TYPE (input) CHARACTER*1
TYPE indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the lower
half stored.
= 'Q': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the upper
half stored.
= 'Z': A is a band matrix with lower bandwidth KL and upper
bandwidth KU.
KL (input) INTEGER
The lower bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
KU (input) INTEGER
The upper bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
CFROM (input) DOUBLE PRECISION
CTO (input) DOUBLE PRECISION
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
without over/underflow if the final result CTO*A(I,J)/CFROM
can be represented without over/underflow. CFROM must be
nonzero.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
The matrix to be multiplied by CTO/CFROM. See TYPE for the
storage type.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
0 - successful exit
<0 - if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dlasd0(int n, int sqre, double[] d, double[] e, double[] u, int ldu, double[] vt, int ldvt, int smlsiz, int[] iwork, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, DLASD0 computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M
matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
The algorithm computes orthogonal matrices U and VT such that
B = U * S * VT. The singular values S are overwritten on D.
A related subroutine, DLASDA, computes only the singular values,
and optionally, the singular vectors in compact form.
Arguments
=========
N (input) INTEGER
On entry, the row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N+1;
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix.
On exit D, if INFO = 0, contains its singular values.
E (input) DOUBLE PRECISION array, dimension (M-1)
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
On exit, U contains the left singular vectors.
LDU (input) INTEGER
On entry, leading dimension of U.
VT (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
On exit, VT' contains the right singular vectors.
LDVT (input) INTEGER
On entry, leading dimension of VT.
SMLSIZ (input) INTEGER
On entry, maximum size of the subproblems at the
bottom of the computation tree.
IWORK (workspace) INTEGER work array.
Dimension must be at least (8 * N)
WORK (workspace) DOUBLE PRECISION work array.
Dimension must be at least (3 * M**2 + 2 * M)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void dlasd0(int n, int sqre, double[] d, int _d_offset, double[] e, int _e_offset, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int ldvt, int smlsiz, int[] iwork, int _iwork_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, DLASD0 computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M
matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
The algorithm computes orthogonal matrices U and VT such that
B = U * S * VT. The singular values S are overwritten on D.
A related subroutine, DLASDA, computes only the singular values,
and optionally, the singular vectors in compact form.
Arguments
=========
N (input) INTEGER
On entry, the row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N+1;
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix.
On exit D, if INFO = 0, contains its singular values.
E (input) DOUBLE PRECISION array, dimension (M-1)
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
On exit, U contains the left singular vectors.
LDU (input) INTEGER
On entry, leading dimension of U.
VT (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
On exit, VT' contains the right singular vectors.
LDVT (input) INTEGER
On entry, leading dimension of VT.
SMLSIZ (input) INTEGER
On entry, maximum size of the subproblems at the
bottom of the computation tree.
IWORK (workspace) INTEGER work array.
Dimension must be at least (8 * N)
WORK (workspace) DOUBLE PRECISION work array.
Dimension must be at least (3 * M**2 + 2 * M)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void dlasd1(int nl, int nr, int sqre, double[] d, org.netlib.util.doubleW alpha, org.netlib.util.doubleW beta, double[] u, int ldu, double[] vt, int ldvt, int[] idxq, int[] iwork, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
A related subroutine DLASD7 handles the case in which the singular
values (and the singular vectors in factored form) are desired.
DLASD1 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The left singular vectors of the original matrix are stored in U, and
the transpose of the right singular vectors are stored in VT, and the
singular values are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or when there are zeros in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLASD2.
The second stage consists of calculating the updated
singular values. This is done by finding the square roots of the
roots of the secular equation via the routine DLASD4 (as called
by DLASD3). This routine also calculates the singular vectors of
the current problem.
The final stage consists of computing the updated singular vectors
directly using the updated singular values. The singular vectors
for the current problem are multiplied with the singular vectors
from the overall problem.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) DOUBLE PRECISION array,
dimension (N = NL+NR+1).
On entry D(1:NL,1:NL) contains the singular values of the
upper block; and D(NL+2:N) contains the singular values of
the lower block. On exit D(1:N) contains the singular values
of the modified matrix.
ALPHA (input/output) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input/output) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
On entry U(1:NL, 1:NL) contains the left singular vectors of
the upper block; U(NL+2:N, NL+2:N) contains the left singular
vectors of the lower block. On exit U contains the left
singular vectors of the bidiagonal matrix.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max( 1, N ).
VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
where M = N + SQRE.
On entry VT(1:NL+1, 1:NL+1)' contains the right singular
vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
the right singular vectors of the lower block. On exit
VT' contains the right singular vectors of the
bidiagonal matrix.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= max( 1, M ).
IDXQ (output) INTEGER array, dimension(N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
IWORK (workspace) INTEGER array, dimension( 4 * N )
WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd1(int nl, int nr, int sqre, double[] d, int _d_offset, org.netlib.util.doubleW alpha, org.netlib.util.doubleW beta, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int ldvt, int[] idxq, int _idxq_offset, int[] iwork, int _iwork_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
A related subroutine DLASD7 handles the case in which the singular
values (and the singular vectors in factored form) are desired.
DLASD1 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The left singular vectors of the original matrix are stored in U, and
the transpose of the right singular vectors are stored in VT, and the
singular values are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or when there are zeros in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLASD2.
The second stage consists of calculating the updated
singular values. This is done by finding the square roots of the
roots of the secular equation via the routine DLASD4 (as called
by DLASD3). This routine also calculates the singular vectors of
the current problem.
The final stage consists of computing the updated singular vectors
directly using the updated singular values. The singular vectors
for the current problem are multiplied with the singular vectors
from the overall problem.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) DOUBLE PRECISION array,
dimension (N = NL+NR+1).
On entry D(1:NL,1:NL) contains the singular values of the
upper block; and D(NL+2:N) contains the singular values of
the lower block. On exit D(1:N) contains the singular values
of the modified matrix.
ALPHA (input/output) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input/output) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
On entry U(1:NL, 1:NL) contains the left singular vectors of
the upper block; U(NL+2:N, NL+2:N) contains the left singular
vectors of the lower block. On exit U contains the left
singular vectors of the bidiagonal matrix.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max( 1, N ).
VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
where M = N + SQRE.
On entry VT(1:NL+1, 1:NL+1)' contains the right singular
vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
the right singular vectors of the lower block. On exit
VT' contains the right singular vectors of the
bidiagonal matrix.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= max( 1, M ).
IDXQ (output) INTEGER array, dimension(N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
IWORK (workspace) INTEGER array, dimension( 4 * N )
WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd2(int nl, int nr, int sqre, org.netlib.util.intW k, double[] d, double[] z, double alpha, double beta, double[] u, int ldu, double[] vt, int ldvt, double[] dsigma, double[] u2, int ldu2, double[] vt2, int ldvt2, int[] idxp, int[] idx, int[] idxc, int[] idxq, int[] coltyp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD2 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
singular values are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
DLASD2 is called from DLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
D (input/output) DOUBLE PRECISION array, dimension(N)
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) DOUBLE PRECISION array, dimension(N)
On exit Z contains the updating row vector in the secular
equation.
ALPHA (input) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
On entry U contains the left singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL, NL), and (NL+2, NL+2), (N,N).
On exit U contains the trailing (N-K) updated left singular
vectors (those which were deflated) in its last N-K columns.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
On entry VT' contains the right singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL+1, NL+1), and (NL+2, NL+2), (M,M).
On exit VT' contains the trailing (N-K) updated right singular
vectors (those which were deflated) in its last N-K columns.
In case SQRE =1, the last row of VT spans the right null
space.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= M.
DSIGMA (output) DOUBLE PRECISION array, dimension (N)
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
U2 (output) DOUBLE PRECISION array, dimension(LDU2,N)
Contains a copy of the first K-1 left singular vectors which
will be used by DLASD3 in a matrix multiply (DGEMM) to solve
for the new left singular vectors. U2 is arranged into four
blocks. The first block contains a column with 1 at NL+1 and
zero everywhere else; the second block contains non-zero
entries only at and above NL; the third contains non-zero
entries only below NL+1; and the fourth is dense.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT2 (output) DOUBLE PRECISION array, dimension(LDVT2,N)
VT2' contains a copy of the first K right singular vectors
which will be used by DLASD3 in a matrix multiply (DGEMM) to
solve for the new right singular vectors. VT2 is arranged into
three blocks. The first block contains a row that corresponds
to the special 0 diagonal element in SIGMA; the second block
contains non-zeros only at and before NL +1; the third block
contains non-zeros only at and after NL +2.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= M.
IDXP (workspace) INTEGER array dimension(N)
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDX (workspace) INTEGER array dimension(N)
This will contain the permutation used to sort the contents of
D into ascending order.
IDXC (output) INTEGER array dimension(N)
This will contain the permutation used to arrange the columns
of the deflated U matrix into three groups: the first group
contains non-zero entries only at and above NL, the second
contains non-zero entries only below NL+2, and the third is
dense.
IDXQ (input/output) INTEGER array dimension(N)
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first hlaf of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
COLTYP (workspace/output) INTEGER array dimension(N)
As workspace, this will contain a label which will indicate
which of the following types a column in the U2 matrix or a
row in the VT2 matrix is:
1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated
On exit, it is an array of dimension 4, with COLTYP(I) being
the dimension of the I-th type columns.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd2(int nl, int nr, int sqre, org.netlib.util.intW k, double[] d, int _d_offset, double[] z, int _z_offset, double alpha, double beta, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int ldvt, double[] dsigma, int _dsigma_offset, double[] u2, int _u2_offset, int ldu2, double[] vt2, int _vt2_offset, int ldvt2, int[] idxp, int _idxp_offset, int[] idx, int _idx_offset, int[] idxc, int _idxc_offset, int[] idxq, int _idxq_offset, int[] coltyp, int _coltyp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD2 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
singular values are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
DLASD2 is called from DLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
D (input/output) DOUBLE PRECISION array, dimension(N)
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) DOUBLE PRECISION array, dimension(N)
On exit Z contains the updating row vector in the secular
equation.
ALPHA (input) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
On entry U contains the left singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL, NL), and (NL+2, NL+2), (N,N).
On exit U contains the trailing (N-K) updated left singular
vectors (those which were deflated) in its last N-K columns.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
On entry VT' contains the right singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL+1, NL+1), and (NL+2, NL+2), (M,M).
On exit VT' contains the trailing (N-K) updated right singular
vectors (those which were deflated) in its last N-K columns.
In case SQRE =1, the last row of VT spans the right null
space.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= M.
DSIGMA (output) DOUBLE PRECISION array, dimension (N)
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
U2 (output) DOUBLE PRECISION array, dimension(LDU2,N)
Contains a copy of the first K-1 left singular vectors which
will be used by DLASD3 in a matrix multiply (DGEMM) to solve
for the new left singular vectors. U2 is arranged into four
blocks. The first block contains a column with 1 at NL+1 and
zero everywhere else; the second block contains non-zero
entries only at and above NL; the third contains non-zero
entries only below NL+1; and the fourth is dense.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT2 (output) DOUBLE PRECISION array, dimension(LDVT2,N)
VT2' contains a copy of the first K right singular vectors
which will be used by DLASD3 in a matrix multiply (DGEMM) to
solve for the new right singular vectors. VT2 is arranged into
three blocks. The first block contains a row that corresponds
to the special 0 diagonal element in SIGMA; the second block
contains non-zeros only at and before NL +1; the third block
contains non-zeros only at and after NL +2.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= M.
IDXP (workspace) INTEGER array dimension(N)
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDX (workspace) INTEGER array dimension(N)
This will contain the permutation used to sort the contents of
D into ascending order.
IDXC (output) INTEGER array dimension(N)
This will contain the permutation used to arrange the columns
of the deflated U matrix into three groups: the first group
contains non-zero entries only at and above NL, the second
contains non-zero entries only below NL+2, and the third is
dense.
IDXQ (input/output) INTEGER array dimension(N)
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first hlaf of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
COLTYP (workspace/output) INTEGER array dimension(N)
As workspace, this will contain a label which will indicate
which of the following types a column in the U2 matrix or a
row in the VT2 matrix is:
1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated
On exit, it is an array of dimension 4, with COLTYP(I) being
the dimension of the I-th type columns.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd3(int nl, int nr, int sqre, int k, double[] d, double[] q, int ldq, double[] dsigma, double[] u, int ldu, double[] u2, int ldu2, double[] vt, int ldvt, double[] vt2, int ldvt2, int[] idxc, int[] ctot, double[] z, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD3 finds all the square roots of the roots of the secular
equation, as defined by the values in D and Z. It makes the
appropriate calls to DLASD4 and then updates the singular
vectors by matrix multiplication.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
DLASD3 is called from DLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (input) INTEGER
The size of the secular equation, 1 =< K = < N.
D (output) DOUBLE PRECISION array, dimension(K)
On exit the square roots of the roots of the secular equation,
in ascending order.
Q (workspace) DOUBLE PRECISION array,
dimension at least (LDQ,K).
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= K.
DSIGMA (input) DOUBLE PRECISION array, dimension(K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
U (output) DOUBLE PRECISION array, dimension (LDU, N)
The last N - K columns of this matrix contain the deflated
left singular vectors.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
U2 (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
The first K columns of this matrix contain the non-deflated
left singular vectors for the split problem.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT (output) DOUBLE PRECISION array, dimension (LDVT, M)
The last M - K columns of VT' contain the deflated
right singular vectors.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= N.
VT2 (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
The first K columns of VT2' contain the non-deflated
right singular vectors for the split problem.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= N.
IDXC (input) INTEGER array, dimension ( N )
The permutation used to arrange the columns of U (and rows of
VT) into three groups: the first group contains non-zero
entries only at and above (or before) NL +1; the second
contains non-zero entries only at and below (or after) NL+2;
and the third is dense. The first column of U and the row of
VT are treated separately, however.
The rows of the singular vectors found by DLASD4
must be likewise permuted before the matrix multiplies can
take place.
CTOT (input) INTEGER array, dimension ( 4 )
A count of the total number of the various types of columns
in U (or rows in VT), as described in IDXC. The fourth column
type is any column which has been deflated.
Z (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd3(int nl, int nr, int sqre, int k, double[] d, int _d_offset, double[] q, int _q_offset, int ldq, double[] dsigma, int _dsigma_offset, double[] u, int _u_offset, int ldu, double[] u2, int _u2_offset, int ldu2, double[] vt, int _vt_offset, int ldvt, double[] vt2, int _vt2_offset, int ldvt2, int[] idxc, int _idxc_offset, int[] ctot, int _ctot_offset, double[] z, int _z_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD3 finds all the square roots of the roots of the secular
equation, as defined by the values in D and Z. It makes the
appropriate calls to DLASD4 and then updates the singular
vectors by matrix multiplication.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
DLASD3 is called from DLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (input) INTEGER
The size of the secular equation, 1 =< K = < N.
D (output) DOUBLE PRECISION array, dimension(K)
On exit the square roots of the roots of the secular equation,
in ascending order.
Q (workspace) DOUBLE PRECISION array,
dimension at least (LDQ,K).
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= K.
DSIGMA (input) DOUBLE PRECISION array, dimension(K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
U (output) DOUBLE PRECISION array, dimension (LDU, N)
The last N - K columns of this matrix contain the deflated
left singular vectors.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
U2 (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
The first K columns of this matrix contain the non-deflated
left singular vectors for the split problem.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT (output) DOUBLE PRECISION array, dimension (LDVT, M)
The last M - K columns of VT' contain the deflated
right singular vectors.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= N.
VT2 (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
The first K columns of VT2' contain the non-deflated
right singular vectors for the split problem.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= N.
IDXC (input) INTEGER array, dimension ( N )
The permutation used to arrange the columns of U (and rows of
VT) into three groups: the first group contains non-zero
entries only at and above (or before) NL +1; the second
contains non-zero entries only at and below (or after) NL+2;
and the third is dense. The first column of U and the row of
VT are treated separately, however.
The rows of the singular vectors found by DLASD4
must be likewise permuted before the matrix multiplies can
take place.
CTOT (input) INTEGER array, dimension ( 4 )
A count of the total number of the various types of columns
in U (or rows in VT), as described in IDXC. The fourth column
type is any column which has been deflated.
Z (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd4(int n, int i, double[] d, double[] z, double[] delta, double rho, org.netlib.util.doubleW sigma, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th updated
eigenvalue of a positive symmetric rank-one modification to
a positive diagonal matrix whose entries are given as the squares
of the corresponding entries in the array d, and that
0 <= D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) DOUBLE PRECISION array, dimension ( N )
The original eigenvalues. It is assumed that they are in
order, 0 <= D(I) < D(J) for I < J.
Z (input) DOUBLE PRECISION array, dimension ( N )
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
component. If N = 1, then DELTA(1) = 1. The vector DELTA
contains the information necessary to construct the
(singular) eigenvectors.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
SIGMA (output) DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
component. If N = 1, then WORK( 1 ) = 1.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd4(int n, int i, double[] d, int _d_offset, double[] z, int _z_offset, double[] delta, int _delta_offset, double rho, org.netlib.util.doubleW sigma, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th updated
eigenvalue of a positive symmetric rank-one modification to
a positive diagonal matrix whose entries are given as the squares
of the corresponding entries in the array d, and that
0 <= D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) DOUBLE PRECISION array, dimension ( N )
The original eigenvalues. It is assumed that they are in
order, 0 <= D(I) < D(J) for I < J.
Z (input) DOUBLE PRECISION array, dimension ( N )
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
component. If N = 1, then DELTA(1) = 1. The vector DELTA
contains the information necessary to construct the
(singular) eigenvectors.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
SIGMA (output) DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
component. If N = 1, then WORK( 1 ) = 1.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd5(int i, double[] d, double[] z, double[] delta, double rho, org.netlib.util.doubleW dsigma, double[] work)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) DOUBLE PRECISION array, dimension ( 2 )
The original eigenvalues. We assume 0 <= D(1) < D(2).
Z (input) DOUBLE PRECISION array, dimension ( 2 )
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension ( 2 )
Contains (D(j) - sigma_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
DSIGMA (output) DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) DOUBLE PRECISION array, dimension ( 2 )
WORK contains (D(j) + sigma_I) in its j-th component.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd5(int i, double[] d, int _d_offset, double[] z, int _z_offset, double[] delta, int _delta_offset, double rho, org.netlib.util.doubleW dsigma, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) DOUBLE PRECISION array, dimension ( 2 )
The original eigenvalues. We assume 0 <= D(1) < D(2).
Z (input) DOUBLE PRECISION array, dimension ( 2 )
The components of the updating vector.
DELTA (output) DOUBLE PRECISION array, dimension ( 2 )
Contains (D(j) - sigma_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.
DSIGMA (output) DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) DOUBLE PRECISION array, dimension ( 2 )
WORK contains (D(j) + sigma_I) in its j-th component.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd6(int icompq, int nl, int nr, int sqre, double[] d, double[] vf, double[] vl, org.netlib.util.doubleW alpha, org.netlib.util.doubleW beta, int[] idxq, int[] perm, org.netlib.util.intW givptr, int[] givcol, int ldgcol, double[] givnum, int ldgnum, double[] poles, double[] difl, double[] difr, double[] z, org.netlib.util.intW k, org.netlib.util.doubleW c, org.netlib.util.doubleW s, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD6 computes the SVD of an updated upper bidiagonal matrix B
obtained by merging two smaller ones by appending a row. This
routine is used only for the problem which requires all singular
values and optionally singular vector matrices in factored form.
B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
A related subroutine, DLASD1, handles the case in which all singular
values and singular vectors of the bidiagonal matrix are desired.
DLASD6 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The singular values of B can be computed using D1, D2, the first
components of all the right singular vectors of the lower block, and
the last components of all the right singular vectors of the upper
block. These components are stored and updated in VF and VL,
respectively, in DLASD6. Hence U and VT are not explicitly
referenced.
The singular values are stored in D. The algorithm consists of two
stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or if there is a zero
in the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLASD7.
The second stage consists of calculating the updated
singular values. This is done by finding the roots of the
secular equation via the routine DLASD4 (as called by DLASD8).
This routine also updates VF and VL and computes the distances
between the updated singular values and the old singular
values.
DLASD6 is called from DLASDA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).
On entry D(1:NL,1:NL) contains the singular values of the
upper block, and D(NL+2:N) contains the singular values
of the lower block. On exit D(1:N) contains the singular
values of the modified matrix.
VF (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VL (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors of
the lower block. On exit, VL contains the last components of
all right singular vectors of the bidiagonal matrix.
ALPHA (input/output) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input/output) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
IDXQ (output) INTEGER array, dimension ( N )
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
leading dimension of GIVCOL, must be at least N.
GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM and POLES, must be at least N.
POLES (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
On exit, POLES(1,*) is an array containing the new singular
values obtained from solving the secular equation, and
POLES(2,*) is an array containing the poles in the secular
equation. Not referenced if ICOMPQ = 0.
DIFL (output) DOUBLE PRECISION array, dimension ( N )
On exit, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (output) DOUBLE PRECISION array,
dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
On exit, DIFR(I, 1) is the distance between I-th updated
(undeflated) singular value and the I+1-th (undeflated) old
singular value.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
See DLASD8 for details on DIFL and DIFR.
Z (output) DOUBLE PRECISION array, dimension ( M )
The first elements of this array contain the components
of the deflation-adjusted updating row vector.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (output) DOUBLE PRECISION
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) DOUBLE PRECISION
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) DOUBLE PRECISION array, dimension ( 4 * M )
IWORK (workspace) INTEGER array, dimension ( 3 * N )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd6(int icompq, int nl, int nr, int sqre, double[] d, int _d_offset, double[] vf, int _vf_offset, double[] vl, int _vl_offset, org.netlib.util.doubleW alpha, org.netlib.util.doubleW beta, int[] idxq, int _idxq_offset, int[] perm, int _perm_offset, org.netlib.util.intW givptr, int[] givcol, int _givcol_offset, int ldgcol, double[] givnum, int _givnum_offset, int ldgnum, double[] poles, int _poles_offset, double[] difl, int _difl_offset, double[] difr, int _difr_offset, double[] z, int _z_offset, org.netlib.util.intW k, org.netlib.util.doubleW c, org.netlib.util.doubleW s, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD6 computes the SVD of an updated upper bidiagonal matrix B
obtained by merging two smaller ones by appending a row. This
routine is used only for the problem which requires all singular
values and optionally singular vector matrices in factored form.
B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
A related subroutine, DLASD1, handles the case in which all singular
values and singular vectors of the bidiagonal matrix are desired.
DLASD6 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The singular values of B can be computed using D1, D2, the first
components of all the right singular vectors of the lower block, and
the last components of all the right singular vectors of the upper
block. These components are stored and updated in VF and VL,
respectively, in DLASD6. Hence U and VT are not explicitly
referenced.
The singular values are stored in D. The algorithm consists of two
stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or if there is a zero
in the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine DLASD7.
The second stage consists of calculating the updated
singular values. This is done by finding the roots of the
secular equation via the routine DLASD4 (as called by DLASD8).
This routine also updates VF and VL and computes the distances
between the updated singular values and the old singular
values.
DLASD6 is called from DLASDA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).
On entry D(1:NL,1:NL) contains the singular values of the
upper block, and D(NL+2:N) contains the singular values
of the lower block. On exit D(1:N) contains the singular
values of the modified matrix.
VF (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VL (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors of
the lower block. On exit, VL contains the last components of
all right singular vectors of the bidiagonal matrix.
ALPHA (input/output) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input/output) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
IDXQ (output) INTEGER array, dimension ( N )
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
leading dimension of GIVCOL, must be at least N.
GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM and POLES, must be at least N.
POLES (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
On exit, POLES(1,*) is an array containing the new singular
values obtained from solving the secular equation, and
POLES(2,*) is an array containing the poles in the secular
equation. Not referenced if ICOMPQ = 0.
DIFL (output) DOUBLE PRECISION array, dimension ( N )
On exit, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (output) DOUBLE PRECISION array,
dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
On exit, DIFR(I, 1) is the distance between I-th updated
(undeflated) singular value and the I+1-th (undeflated) old
singular value.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
See DLASD8 for details on DIFL and DIFR.
Z (output) DOUBLE PRECISION array, dimension ( M )
The first elements of this array contain the components
of the deflation-adjusted updating row vector.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (output) DOUBLE PRECISION
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) DOUBLE PRECISION
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) DOUBLE PRECISION array, dimension ( 4 * M )
IWORK (workspace) INTEGER array, dimension ( 3 * N )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd7(int icompq, int nl, int nr, int sqre, org.netlib.util.intW k, double[] d, double[] z, double[] zw, double[] vf, double[] vfw, double[] vl, double[] vlw, double alpha, double beta, double[] dsigma, int[] idx, int[] idxp, int[] idxq, int[] perm, org.netlib.util.intW givptr, int[] givcol, int ldgcol, double[] givnum, int ldgnum, org.netlib.util.doubleW c, org.netlib.util.doubleW s, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD7 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem. There
are two ways in which deflation can occur: when two or more singular
values are close together or if there is a tiny entry in the Z
vector. For each such occurrence the order of the related
secular equation problem is reduced by one.
DLASD7 is called from DLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper
bidiagonal matrix in compact form.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix, this is
the order of the related secular equation. 1 <= K <=N.
D (input/output) DOUBLE PRECISION array, dimension ( N )
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) DOUBLE PRECISION array, dimension ( M )
On exit Z contains the updating row vector in the secular
equation.
ZW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for Z.
VF (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VFW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for VF.
VL (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors
of the lower block. On exit, VL contains the last components
of all right singular vectors of the bidiagonal matrix.
VLW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for VL.
ALPHA (input) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
IDX (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to sort the contents of
D into ascending order.
IDXP (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDXQ (input) INTEGER array, dimension ( N )
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first half of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each singular block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM, must be at least N.
C (output) DOUBLE PRECISION
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) DOUBLE PRECISION
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd7(int icompq, int nl, int nr, int sqre, org.netlib.util.intW k, double[] d, int _d_offset, double[] z, int _z_offset, double[] zw, int _zw_offset, double[] vf, int _vf_offset, double[] vfw, int _vfw_offset, double[] vl, int _vl_offset, double[] vlw, int _vlw_offset, double alpha, double beta, double[] dsigma, int _dsigma_offset, int[] idx, int _idx_offset, int[] idxp, int _idxp_offset, int[] idxq, int _idxq_offset, int[] perm, int _perm_offset, org.netlib.util.intW givptr, int[] givcol, int _givcol_offset, int ldgcol, double[] givnum, int _givnum_offset, int ldgnum, org.netlib.util.doubleW c, org.netlib.util.doubleW s, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD7 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem. There
are two ways in which deflation can occur: when two or more singular
values are close together or if there is a tiny entry in the Z
vector. For each such occurrence the order of the related
secular equation problem is reduced by one.
DLASD7 is called from DLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper
bidiagonal matrix in compact form.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix, this is
the order of the related secular equation. 1 <= K <=N.
D (input/output) DOUBLE PRECISION array, dimension ( N )
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) DOUBLE PRECISION array, dimension ( M )
On exit Z contains the updating row vector in the secular
equation.
ZW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for Z.
VF (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VFW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for VF.
VL (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors
of the lower block. On exit, VL contains the last components
of all right singular vectors of the bidiagonal matrix.
VLW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for VL.
ALPHA (input) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
BETA (input) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
IDX (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to sort the contents of
D into ascending order.
IDXP (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDXQ (input) INTEGER array, dimension ( N )
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first half of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each singular block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM, must be at least N.
C (output) DOUBLE PRECISION
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) DOUBLE PRECISION
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd8(int icompq, int k, double[] d, double[] z, double[] vf, double[] vl, double[] difl, double[] difr, int lddifr, double[] dsigma, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD8 finds the square roots of the roots of the secular equation,
as defined by the values in DSIGMA and Z. It makes the appropriate
calls to DLASD4, and stores, for each element in D, the distance
to its two nearest poles (elements in DSIGMA). It also updates
the arrays VF and VL, the first and last components of all the
right singular vectors of the original bidiagonal matrix.
DLASD8 is called from DLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form in the calling routine:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
K (input) INTEGER
The number of terms in the rational function to be solved
by DLASD4. K >= 1.
D (output) DOUBLE PRECISION array, dimension ( K )
On output, D contains the updated singular values.
Z (input) DOUBLE PRECISION array, dimension ( K )
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
VF (input/output) DOUBLE PRECISION array, dimension ( K )
On entry, VF contains information passed through DBEDE8.
On exit, VF contains the first K components of the first
components of all right singular vectors of the bidiagonal
matrix.
VL (input/output) DOUBLE PRECISION array, dimension ( K )
On entry, VL contains information passed through DBEDE8.
On exit, VL contains the first K components of the last
components of all right singular vectors of the bidiagonal
matrix.
DIFL (output) DOUBLE PRECISION array, dimension ( K )
On exit, DIFL(I) = D(I) - DSIGMA(I).
DIFR (output) DOUBLE PRECISION array,
dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
dimension ( K ) if ICOMPQ = 0.
On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
defined and will not be referenced.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
LDDIFR (input) INTEGER
The leading dimension of DIFR, must be at least K.
DSIGMA (input) DOUBLE PRECISION array, dimension ( K )
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
WORK (workspace) DOUBLE PRECISION array, dimension at least 3 * K
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasd8(int icompq, int k, double[] d, int _d_offset, double[] z, int _z_offset, double[] vf, int _vf_offset, double[] vl, int _vl_offset, double[] difl, int _difl_offset, double[] difr, int _difr_offset, int lddifr, double[] dsigma, int _dsigma_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASD8 finds the square roots of the roots of the secular equation,
as defined by the values in DSIGMA and Z. It makes the appropriate
calls to DLASD4, and stores, for each element in D, the distance
to its two nearest poles (elements in DSIGMA). It also updates
the arrays VF and VL, the first and last components of all the
right singular vectors of the original bidiagonal matrix.
DLASD8 is called from DLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form in the calling routine:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
K (input) INTEGER
The number of terms in the rational function to be solved
by DLASD4. K >= 1.
D (output) DOUBLE PRECISION array, dimension ( K )
On output, D contains the updated singular values.
Z (input) DOUBLE PRECISION array, dimension ( K )
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
VF (input/output) DOUBLE PRECISION array, dimension ( K )
On entry, VF contains information passed through DBEDE8.
On exit, VF contains the first K components of the first
components of all right singular vectors of the bidiagonal
matrix.
VL (input/output) DOUBLE PRECISION array, dimension ( K )
On entry, VL contains information passed through DBEDE8.
On exit, VL contains the first K components of the last
components of all right singular vectors of the bidiagonal
matrix.
DIFL (output) DOUBLE PRECISION array, dimension ( K )
On exit, DIFL(I) = D(I) - DSIGMA(I).
DIFR (output) DOUBLE PRECISION array,
dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
dimension ( K ) if ICOMPQ = 0.
On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
defined and will not be referenced.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
LDDIFR (input) INTEGER
The leading dimension of DIFR, must be at least K.
DSIGMA (input) DOUBLE PRECISION array, dimension ( K )
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
WORK (workspace) DOUBLE PRECISION array, dimension at least 3 * K
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasda(int icompq, int smlsiz, int n, int sqre, double[] d, double[] e, double[] u, int ldu, double[] vt, int[] k, double[] difl, double[] difr, double[] z, double[] poles, int[] givptr, int[] givcol, int ldgcol, int[] perm, double[] givnum, double[] c, double[] s, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, DLASDA computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
B with diagonal D and offdiagonal E, where M = N + SQRE. The
algorithm computes the singular values in the SVD B = U * S * VT.
The orthogonal matrices U and VT are optionally computed in
compact form.
A related subroutine, DLASD0, computes the singular values and
the singular vectors in explicit form.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal
matrix in compact form.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row dimension of the upper bidiagonal matrix. This is
also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N + 1.
D (input/output) DOUBLE PRECISION array, dimension ( N )
On entry D contains the main diagonal of the bidiagonal
matrix. On exit D, if INFO = 0, contains its singular values.
E (input) DOUBLE PRECISION array, dimension ( M-1 )
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
singular vector matrices of all subproblems at the bottom
level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
GIVNUM, and Z.
VT (output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
singular vector matrices of all subproblems at the bottom
level.
K (output) INTEGER array,
dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
secular equation on the computation tree.
DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
where NLVL = floor(log_2 (N/SMLSIZ))).
DIFR (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
record distances between singular values on the I-th
level and singular values on the (I -1)-th level, and
DIFR(1:N, 2 * I ) contains the normalizing factors for
the right singular vector matrix. See DLASD8 for details.
Z (output) DOUBLE PRECISION array,
dimension ( LDU, NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
The first K elements of Z(1, I) contain the components of
the deflation-adjusted updating row vector for subproblems
on the I-th level.
POLES (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
POLES(1, 2*I) contain the new and old singular values
involved in the secular equations on the I-th level.
GIVPTR (output) INTEGER array,
dimension ( N ) if ICOMPQ = 1, and not referenced if
ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
the number of Givens rotations performed on the I-th
problem on the computation tree.
GIVCOL (output) INTEGER array,
dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
of Givens rotations performed on the I-th level on the
computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (output) INTEGER array,
dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
permutations done on the I-th level of the computation tree.
GIVNUM (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
values of Givens rotations performed on the I-th level on
the computation tree.
C (output) DOUBLE PRECISION array,
dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (output) DOUBLE PRECISION array, dimension ( N ) if
ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
and the I-th subproblem is not square, on exit, S( I )
contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) DOUBLE PRECISION array, dimension
(6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
IWORK (workspace) INTEGER array.
Dimension must be at least (7 * N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasda(int icompq, int smlsiz, int n, int sqre, double[] d, int _d_offset, double[] e, int _e_offset, double[] u, int _u_offset, int ldu, double[] vt, int _vt_offset, int[] k, int _k_offset, double[] difl, int _difl_offset, double[] difr, int _difr_offset, double[] z, int _z_offset, double[] poles, int _poles_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, int ldgcol, int[] perm, int _perm_offset, double[] givnum, int _givnum_offset, double[] c, int _c_offset, double[] s, int _s_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, DLASDA computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
B with diagonal D and offdiagonal E, where M = N + SQRE. The
algorithm computes the singular values in the SVD B = U * S * VT.
The orthogonal matrices U and VT are optionally computed in
compact form.
A related subroutine, DLASD0, computes the singular values and
the singular vectors in explicit form.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal
matrix in compact form.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row dimension of the upper bidiagonal matrix. This is
also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N + 1.
D (input/output) DOUBLE PRECISION array, dimension ( N )
On entry D contains the main diagonal of the bidiagonal
matrix. On exit D, if INFO = 0, contains its singular values.
E (input) DOUBLE PRECISION array, dimension ( M-1 )
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
singular vector matrices of all subproblems at the bottom
level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
GIVNUM, and Z.
VT (output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
singular vector matrices of all subproblems at the bottom
level.
K (output) INTEGER array,
dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
secular equation on the computation tree.
DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
where NLVL = floor(log_2 (N/SMLSIZ))).
DIFR (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
record distances between singular values on the I-th
level and singular values on the (I -1)-th level, and
DIFR(1:N, 2 * I ) contains the normalizing factors for
the right singular vector matrix. See DLASD8 for details.
Z (output) DOUBLE PRECISION array,
dimension ( LDU, NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
The first K elements of Z(1, I) contain the components of
the deflation-adjusted updating row vector for subproblems
on the I-th level.
POLES (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
POLES(1, 2*I) contain the new and old singular values
involved in the secular equations on the I-th level.
GIVPTR (output) INTEGER array,
dimension ( N ) if ICOMPQ = 1, and not referenced if
ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
the number of Givens rotations performed on the I-th
problem on the computation tree.
GIVCOL (output) INTEGER array,
dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
of Givens rotations performed on the I-th level on the
computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (output) INTEGER array,
dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
permutations done on the I-th level of the computation tree.
GIVNUM (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
values of Givens rotations performed on the I-th level on
the computation tree.
C (output) DOUBLE PRECISION array,
dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (output) DOUBLE PRECISION array, dimension ( N ) if
ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
and the I-th subproblem is not square, on exit, S( I )
contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) DOUBLE PRECISION array, dimension
(6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
IWORK (workspace) INTEGER array.
Dimension must be at least (7 * N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasdq(String uplo, int sqre, int n, int ncvt, int nru, int ncc, double[] d, double[] e, double[] vt, int ldvt, double[] u, int ldu, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASDQ computes the singular value decomposition (SVD) of a real
(upper or lower) bidiagonal matrix with diagonal D and offdiagonal
E, accumulating the transformations if desired. Letting B denote
the input bidiagonal matrix, the algorithm computes orthogonal
matrices Q and P such that B = Q * S * P' (P' denotes the transpose
of P). The singular values S are overwritten on D.
The input matrix U is changed to U * Q if desired.
The input matrix VT is changed to P' * VT if desired.
The input matrix C is changed to Q' * C if desired.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3, for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
On entry, UPLO specifies whether the input bidiagonal matrix
is upper or lower bidiagonal, and wether it is square are
not.
UPLO = 'U' or 'u' B is upper bidiagonal.
UPLO = 'L' or 'l' B is lower bidiagonal.
SQRE (input) INTEGER
= 0: then the input matrix is N-by-N.
= 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
(N+1)-by-N if UPLU = 'L'.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
N (input) INTEGER
On entry, N specifies the number of rows and columns
in the matrix. N must be at least 0.
NCVT (input) INTEGER
On entry, NCVT specifies the number of columns of
the matrix VT. NCVT must be at least 0.
NRU (input) INTEGER
On entry, NRU specifies the number of rows of
the matrix U. NRU must be at least 0.
NCC (input) INTEGER
On entry, NCC specifies the number of columns of
the matrix C. NCC must be at least 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D contains the diagonal entries of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in ascending order.
E (input/output) DOUBLE PRECISION array.
dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
On entry, the entries of E contain the offdiagonal entries
of the bidiagonal matrix whose SVD is desired. On normal
exit, E will contain 0. If the algorithm does not converge,
D and E will contain the diagonal and superdiagonal entries
of a bidiagonal matrix orthogonally equivalent to the one
given as input.
VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
On entry, contains a matrix which on exit has been
premultiplied by P', dimension N-by-NCVT if SQRE = 0
and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
LDVT (input) INTEGER
On entry, LDVT specifies the leading dimension of VT as
declared in the calling (sub) program. LDVT must be at
least 1. If NCVT is nonzero LDVT must also be at least N.
U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
On entry, contains a matrix which on exit has been
postmultiplied by Q, dimension NRU-by-N if SQRE = 0
and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
LDU (input) INTEGER
On entry, LDU specifies the leading dimension of U as
declared in the calling (sub) program. LDU must be at
least max( 1, NRU ) .
C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
On entry, contains an N-by-NCC matrix which on exit
has been premultiplied by Q' dimension N-by-NCC if SQRE = 0
and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
LDC (input) INTEGER
On entry, LDC specifies the leading dimension of C as
declared in the calling (sub) program. LDC must be at
least 1. If NCC is nonzero, LDC must also be at least N.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
Workspace. Only referenced if one of NCVT, NRU, or NCC is
nonzero, and if N is at least 2.
INFO (output) INTEGER
On exit, a value of 0 indicates a successful exit.
If INFO < 0, argument number -INFO is illegal.
If INFO > 0, the algorithm did not converge, and INFO
specifies how many superdiagonals did not converge.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasdq(String uplo, int sqre, int n, int ncvt, int nru, int ncc, double[] d, int _d_offset, double[] e, int _e_offset, double[] vt, int _vt_offset, int ldvt, double[] u, int _u_offset, int ldu, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASDQ computes the singular value decomposition (SVD) of a real
(upper or lower) bidiagonal matrix with diagonal D and offdiagonal
E, accumulating the transformations if desired. Letting B denote
the input bidiagonal matrix, the algorithm computes orthogonal
matrices Q and P such that B = Q * S * P' (P' denotes the transpose
of P). The singular values S are overwritten on D.
The input matrix U is changed to U * Q if desired.
The input matrix VT is changed to P' * VT if desired.
The input matrix C is changed to Q' * C if desired.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3, for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
On entry, UPLO specifies whether the input bidiagonal matrix
is upper or lower bidiagonal, and wether it is square are
not.
UPLO = 'U' or 'u' B is upper bidiagonal.
UPLO = 'L' or 'l' B is lower bidiagonal.
SQRE (input) INTEGER
= 0: then the input matrix is N-by-N.
= 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
(N+1)-by-N if UPLU = 'L'.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
N (input) INTEGER
On entry, N specifies the number of rows and columns
in the matrix. N must be at least 0.
NCVT (input) INTEGER
On entry, NCVT specifies the number of columns of
the matrix VT. NCVT must be at least 0.
NRU (input) INTEGER
On entry, NRU specifies the number of rows of
the matrix U. NRU must be at least 0.
NCC (input) INTEGER
On entry, NCC specifies the number of columns of
the matrix C. NCC must be at least 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D contains the diagonal entries of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in ascending order.
E (input/output) DOUBLE PRECISION array.
dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
On entry, the entries of E contain the offdiagonal entries
of the bidiagonal matrix whose SVD is desired. On normal
exit, E will contain 0. If the algorithm does not converge,
D and E will contain the diagonal and superdiagonal entries
of a bidiagonal matrix orthogonally equivalent to the one
given as input.
VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
On entry, contains a matrix which on exit has been
premultiplied by P', dimension N-by-NCVT if SQRE = 0
and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
LDVT (input) INTEGER
On entry, LDVT specifies the leading dimension of VT as
declared in the calling (sub) program. LDVT must be at
least 1. If NCVT is nonzero LDVT must also be at least N.
U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
On entry, contains a matrix which on exit has been
postmultiplied by Q, dimension NRU-by-N if SQRE = 0
and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
LDU (input) INTEGER
On entry, LDU specifies the leading dimension of U as
declared in the calling (sub) program. LDU must be at
least max( 1, NRU ) .
C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
On entry, contains an N-by-NCC matrix which on exit
has been premultiplied by Q' dimension N-by-NCC if SQRE = 0
and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
LDC (input) INTEGER
On entry, LDC specifies the leading dimension of C as
declared in the calling (sub) program. LDC must be at
least 1. If NCC is nonzero, LDC must also be at least N.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
Workspace. Only referenced if one of NCVT, NRU, or NCC is
nonzero, and if N is at least 2.
INFO (output) INTEGER
On exit, a value of 0 indicates a successful exit.
If INFO < 0, argument number -INFO is illegal.
If INFO > 0, the algorithm did not converge, and INFO
specifies how many superdiagonals did not converge.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasdt(int n, org.netlib.util.intW lvl, org.netlib.util.intW nd, int[] inode, int[] ndiml, int[] ndimr, int msub)
LAPACK
..
Purpose
=======
DLASDT creates a tree of subproblems for bidiagonal divide and
conquer.
Arguments
=========
N (input) INTEGER
On entry, the number of diagonal elements of the
bidiagonal matrix.
LVL (output) INTEGER
On exit, the number of levels on the computation tree.
ND (output) INTEGER
On exit, the number of nodes on the tree.
INODE (output) INTEGER array, dimension ( N )
On exit, centers of subproblems.
NDIML (output) INTEGER array, dimension ( N )
On exit, row dimensions of left children.
NDIMR (output) INTEGER array, dimension ( N )
On exit, row dimensions of right children.
MSUB (input) INTEGER.
On entry, the maximum row dimension each subproblem at the
bottom of the tree can be of.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlasdt(int n, org.netlib.util.intW lvl, org.netlib.util.intW nd, int[] inode, int _inode_offset, int[] ndiml, int _ndiml_offset, int[] ndimr, int _ndimr_offset, int msub)
LAPACK
..
Purpose
=======
DLASDT creates a tree of subproblems for bidiagonal divide and
conquer.
Arguments
=========
N (input) INTEGER
On entry, the number of diagonal elements of the
bidiagonal matrix.
LVL (output) INTEGER
On exit, the number of levels on the computation tree.
ND (output) INTEGER
On exit, the number of nodes on the tree.
INODE (output) INTEGER array, dimension ( N )
On exit, centers of subproblems.
NDIML (output) INTEGER array, dimension ( N )
On exit, row dimensions of left children.
NDIMR (output) INTEGER array, dimension ( N )
On exit, row dimensions of right children.
MSUB (input) INTEGER.
On entry, the maximum row dimension each subproblem at the
bottom of the tree can be of.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dlaset(String uplo, int m, int n, double alpha, double beta, double[] a, int lda)
LAPACK
..
Purpose
=======
DLASET initializes an m-by-n matrix A to BETA on the diagonal and
ALPHA on the offdiagonals.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be set.
= 'U': Upper triangular part is set; the strictly lower
triangular part of A is not changed.
= 'L': Lower triangular part is set; the strictly upper
triangular part of A is not changed.
Otherwise: All of the matrix A is set.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
ALPHA (input) DOUBLE PRECISION
The constant to which the offdiagonal elements are to be set.
BETA (input) DOUBLE PRECISION
The constant to which the diagonal elements are to be set.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On exit, the leading m-by-n submatrix of A is set as follows:
if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Local Scalars ..
public void dlaset(String uplo, int m, int n, double alpha, double beta, double[] a, int _a_offset, int lda)
LAPACK
..
Purpose
=======
DLASET initializes an m-by-n matrix A to BETA on the diagonal and
ALPHA on the offdiagonals.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be set.
= 'U': Upper triangular part is set; the strictly lower
triangular part of A is not changed.
= 'L': Lower triangular part is set; the strictly upper
triangular part of A is not changed.
Otherwise: All of the matrix A is set.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
ALPHA (input) DOUBLE PRECISION
The constant to which the offdiagonal elements are to be set.
BETA (input) DOUBLE PRECISION
The constant to which the diagonal elements are to be set.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On exit, the leading m-by-n submatrix of A is set as follows:
if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Local Scalars ..
public void dlasq1(int n, double[] d, double[] e, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASQ1 computes the singular values of a real N-by-N bidiagonal
matrix with diagonal D and off-diagonal E. The singular values
are computed to high relative accuracy, in the absence of
denormalization, underflow and overflow. The algorithm was first
presented in
"Accurate singular values and differential qd algorithms" by K. V.
Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
1994,
and the present implementation is described in "An implementation of
the dqds Algorithm (Positive Case)", LAPACK Working Note.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D contains the diagonal elements of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in decreasing order.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, elements E(1:N-1) contain the off-diagonal elements
of the bidiagonal matrix whose SVD is desired.
On exit, E is overwritten.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
=====================================================================
.. Parameters ..
public void dlasq1(int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASQ1 computes the singular values of a real N-by-N bidiagonal
matrix with diagonal D and off-diagonal E. The singular values
are computed to high relative accuracy, in the absence of
denormalization, underflow and overflow. The algorithm was first
presented in
"Accurate singular values and differential qd algorithms" by K. V.
Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
1994,
and the present implementation is described in "An implementation of
the dqds Algorithm (Positive Case)", LAPACK Working Note.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D contains the diagonal elements of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in decreasing order.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, elements E(1:N-1) contain the off-diagonal elements
of the bidiagonal matrix whose SVD is desired.
On exit, E is overwritten.
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
=====================================================================
.. Parameters ..
public void dlasq2(int n, double[] z, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASQ2 computes all the eigenvalues of the symmetric positive
definite tridiagonal matrix associated with the qd array Z to high
relative accuracy are computed to high relative accuracy, in the
absence of denormalization, underflow and overflow.
To see the relation of Z to the tridiagonal matrix, let L be a
unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
let U be an upper bidiagonal matrix with 1's above and diagonal
Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
symmetric tridiagonal to which it is similar.
Note : DLASQ2 defines a logical variable, IEEE, which is true
on machines which follow ieee-754 floating-point standard in their
handling of infinities and NaNs, and false otherwise. This variable
is passed to DLAZQ3.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
Z (workspace) DOUBLE PRECISION array, dimension ( 4*N )
On entry Z holds the qd array. On exit, entries 1 to N hold
the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
shifts that failed.
INFO (output) INTEGER
= 0: successful exit
< 0: if the i-th argument is a scalar and had an illegal
value, then INFO = -i, if the i-th argument is an
array and the j-entry had an illegal value, then
INFO = -(i*100+j)
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
Further Details
===============
Local Variables: I0:N0 defines a current unreduced segment of Z.
The shifts are accumulated in SIGMA. Iteration count is in ITER.
Ping-pong is controlled by PP (alternates between 0 and 1).
=====================================================================
.. Parameters ..
public void dlasq2(int n, double[] z, int _z_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASQ2 computes all the eigenvalues of the symmetric positive
definite tridiagonal matrix associated with the qd array Z to high
relative accuracy are computed to high relative accuracy, in the
absence of denormalization, underflow and overflow.
To see the relation of Z to the tridiagonal matrix, let L be a
unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
let U be an upper bidiagonal matrix with 1's above and diagonal
Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
symmetric tridiagonal to which it is similar.
Note : DLASQ2 defines a logical variable, IEEE, which is true
on machines which follow ieee-754 floating-point standard in their
handling of infinities and NaNs, and false otherwise. This variable
is passed to DLAZQ3.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
Z (workspace) DOUBLE PRECISION array, dimension ( 4*N )
On entry Z holds the qd array. On exit, entries 1 to N hold
the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
shifts that failed.
INFO (output) INTEGER
= 0: successful exit
< 0: if the i-th argument is a scalar and had an illegal
value, then INFO = -i, if the i-th argument is an
array and the j-entry had an illegal value, then
INFO = -(i*100+j)
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
Further Details
===============
Local Variables: I0:N0 defines a current unreduced segment of Z.
The shifts are accumulated in SIGMA. Iteration count is in ITER.
Ping-pong is controlled by PP (alternates between 0 and 1).
=====================================================================
.. Parameters ..
public void dlasq3(int i0, org.netlib.util.intW n0, double[] z, int pp, org.netlib.util.doubleW dmin, org.netlib.util.doubleW sigma, org.netlib.util.doubleW desig, org.netlib.util.doubleW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee)
LAPACK
..
Purpose
=======
DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
SIGMA (output) DOUBLE PRECISION
Sum of shifts used in current segment.
DESIG (input/output) DOUBLE PRECISION
Lower order part of SIGMA
QMAX (input) DOUBLE PRECISION
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
TTYPE (output) INTEGER
Shift type.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
=====================================================================
.. Parameters ..
public void dlasq3(int i0, org.netlib.util.intW n0, double[] z, int _z_offset, int pp, org.netlib.util.doubleW dmin, org.netlib.util.doubleW sigma, org.netlib.util.doubleW desig, org.netlib.util.doubleW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee)
LAPACK
..
Purpose
=======
DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
SIGMA (output) DOUBLE PRECISION
Sum of shifts used in current segment.
DESIG (input/output) DOUBLE PRECISION
Lower order part of SIGMA
QMAX (input) DOUBLE PRECISION
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
TTYPE (output) INTEGER
Shift type.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
=====================================================================
.. Parameters ..
public void dlasq4(int i0, int n0, double[] z, int pp, int n0in, double dmin, double dmin1, double dmin2, double dn, double dn1, double dn2, org.netlib.util.doubleW tau, org.netlib.util.intW ttype)
LAPACK
..
Purpose
=======
DLASQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) DOUBLE PRECISION
Minimum value of d.
DMIN1 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) DOUBLE PRECISION
d(N)
DN1 (input) DOUBLE PRECISION
d(N-1)
DN2 (input) DOUBLE PRECISION
d(N-2)
TAU (output) DOUBLE PRECISION
This is the shift.
TTYPE (output) INTEGER
Shift type.
Further Details
===============
CNST1 = 9/16
=====================================================================
.. Parameters ..
public void dlasq4(int i0, int n0, double[] z, int _z_offset, int pp, int n0in, double dmin, double dmin1, double dmin2, double dn, double dn1, double dn2, org.netlib.util.doubleW tau, org.netlib.util.intW ttype)
LAPACK
..
Purpose
=======
DLASQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) DOUBLE PRECISION
Minimum value of d.
DMIN1 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) DOUBLE PRECISION
d(N)
DN1 (input) DOUBLE PRECISION
d(N-1)
DN2 (input) DOUBLE PRECISION
d(N-2)
TAU (output) DOUBLE PRECISION
This is the shift.
TTYPE (output) INTEGER
Shift type.
Further Details
===============
CNST1 = 9/16
=====================================================================
.. Parameters ..
public void dlasq5(int i0, int n0, double[] z, int pp, double tau, org.netlib.util.doubleW dmin, org.netlib.util.doubleW dmin1, org.netlib.util.doubleW dmin2, org.netlib.util.doubleW dn, org.netlib.util.doubleW dnm1, org.netlib.util.doubleW dnm2, boolean ieee)
LAPACK
..
Purpose
=======
DLASQ5 computes one dqds transform in ping-pong form, one
version for IEEE machines another for non IEEE machines.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
TAU (input) DOUBLE PRECISION
This is the shift.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
DMIN1 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) DOUBLE PRECISION
d(N0), the last value of d.
DNM1 (output) DOUBLE PRECISION
d(N0-1).
DNM2 (output) DOUBLE PRECISION
d(N0-2).
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic.
=====================================================================
.. Parameter ..
public void dlasq5(int i0, int n0, double[] z, int _z_offset, int pp, double tau, org.netlib.util.doubleW dmin, org.netlib.util.doubleW dmin1, org.netlib.util.doubleW dmin2, org.netlib.util.doubleW dn, org.netlib.util.doubleW dnm1, org.netlib.util.doubleW dnm2, boolean ieee)
LAPACK
..
Purpose
=======
DLASQ5 computes one dqds transform in ping-pong form, one
version for IEEE machines another for non IEEE machines.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
TAU (input) DOUBLE PRECISION
This is the shift.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
DMIN1 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) DOUBLE PRECISION
d(N0), the last value of d.
DNM1 (output) DOUBLE PRECISION
d(N0-1).
DNM2 (output) DOUBLE PRECISION
d(N0-2).
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic.
=====================================================================
.. Parameter ..
public void dlasq6(int i0, int n0, double[] z, int pp, org.netlib.util.doubleW dmin, org.netlib.util.doubleW dmin1, org.netlib.util.doubleW dmin2, org.netlib.util.doubleW dn, org.netlib.util.doubleW dnm1, org.netlib.util.doubleW dnm2)
LAPACK
..
Purpose
=======
DLASQ6 computes one dqd (shift equal to zero) transform in
ping-pong form, with protection against underflow and overflow.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
DMIN1 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) DOUBLE PRECISION
d(N0), the last value of d.
DNM1 (output) DOUBLE PRECISION
d(N0-1).
DNM2 (output) DOUBLE PRECISION
d(N0-2).
=====================================================================
.. Parameter ..
public void dlasq6(int i0, int n0, double[] z, int _z_offset, int pp, org.netlib.util.doubleW dmin, org.netlib.util.doubleW dmin1, org.netlib.util.doubleW dmin2, org.netlib.util.doubleW dn, org.netlib.util.doubleW dnm1, org.netlib.util.doubleW dnm2)
LAPACK
..
Purpose
=======
DLASQ6 computes one dqd (shift equal to zero) transform in
ping-pong form, with protection against underflow and overflow.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
DMIN1 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (output) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) DOUBLE PRECISION
d(N0), the last value of d.
DNM1 (output) DOUBLE PRECISION
d(N0-1).
DNM2 (output) DOUBLE PRECISION
d(N0-2).
=====================================================================
.. Parameter ..
public void dlasr(String side, String pivot, String direct, int m, int n, double[] c, double[] s, double[] a, int lda)
LAPACK
..
Purpose
=======
DLASR applies a sequence of plane rotations to a real matrix A,
from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.
Arguments
=========
SIDE (input) CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T
PIVOT (input) CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)
DIRECT (input) CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)
M (input) INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.
N (input) INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.
C (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.
S (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P**T if SIDE = 'L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Parameters ..
public void dlasr(String side, String pivot, String direct, int m, int n, double[] c, int _c_offset, double[] s, int _s_offset, double[] a, int _a_offset, int lda)
LAPACK
..
Purpose
=======
DLASR applies a sequence of plane rotations to a real matrix A,
from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.
Arguments
=========
SIDE (input) CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T
PIVOT (input) CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)
DIRECT (input) CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)
M (input) INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.
N (input) INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.
C (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.
S (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P**T if SIDE = 'L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Parameters ..
public void dlasrt(String id, int n, double[] d, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Sort the numbers in D in increasing order (if ID = 'I') or
in decreasing order (if ID = 'D' ).
Use Quick Sort, reverting to Insertion sort on arrays of
size <= 20. Dimension of STACK limits N to about 2**32.
Arguments
=========
ID (input) CHARACTER*1
= 'I': sort D in increasing order;
= 'D': sort D in decreasing order.
N (input) INTEGER
The length of the array D.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the array to be sorted.
On exit, D has been sorted into increasing order
(D(1) <= ... <= D(N) ) or into decreasing order
(D(1) >= ... >= D(N) ), depending on ID.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dlasrt(String id, int n, double[] d, int _d_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Sort the numbers in D in increasing order (if ID = 'I') or
in decreasing order (if ID = 'D' ).
Use Quick Sort, reverting to Insertion sort on arrays of
size <= 20. Dimension of STACK limits N to about 2**32.
Arguments
=========
ID (input) CHARACTER*1
= 'I': sort D in increasing order;
= 'D': sort D in decreasing order.
N (input) INTEGER
The length of the array D.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the array to be sorted.
On exit, D has been sorted into increasing order
(D(1) <= ... <= D(N) ) or into decreasing order
(D(1) >= ... >= D(N) ), depending on ID.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dlassq(int n, double[] x, int incx, org.netlib.util.doubleW scale, org.netlib.util.doubleW sumsq)
LAPACK
..
Purpose
=======
DLASSQ returns the values scl and smsq such that
( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
assumed to be non-negative and scl returns the value
scl = max( scale, abs( x( i ) ) ).
scale and sumsq must be supplied in SCALE and SUMSQ and
scl and smsq are overwritten on SCALE and SUMSQ respectively.
The routine makes only one pass through the vector x.
Arguments
=========
N (input) INTEGER
The number of elements to be used from the vector X.
X (input) DOUBLE PRECISION array, dimension (N)
The vector for which a scaled sum of squares is computed.
x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
INCX (input) INTEGER
The increment between successive values of the vector X.
INCX > 0.
SCALE (input/output) DOUBLE PRECISION
On entry, the value scale in the equation above.
On exit, SCALE is overwritten with scl , the scaling factor
for the sum of squares.
SUMSQ (input/output) DOUBLE PRECISION
On entry, the value sumsq in the equation above.
On exit, SUMSQ is overwritten with smsq , the basic sum of
squares from which scl has been factored out.
=====================================================================
.. Parameters ..
public void dlassq(int n, double[] x, int _x_offset, int incx, org.netlib.util.doubleW scale, org.netlib.util.doubleW sumsq)
LAPACK
..
Purpose
=======
DLASSQ returns the values scl and smsq such that
( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
assumed to be non-negative and scl returns the value
scl = max( scale, abs( x( i ) ) ).
scale and sumsq must be supplied in SCALE and SUMSQ and
scl and smsq are overwritten on SCALE and SUMSQ respectively.
The routine makes only one pass through the vector x.
Arguments
=========
N (input) INTEGER
The number of elements to be used from the vector X.
X (input) DOUBLE PRECISION array, dimension (N)
The vector for which a scaled sum of squares is computed.
x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
INCX (input) INTEGER
The increment between successive values of the vector X.
INCX > 0.
SCALE (input/output) DOUBLE PRECISION
On entry, the value scale in the equation above.
On exit, SCALE is overwritten with scl , the scaling factor
for the sum of squares.
SUMSQ (input/output) DOUBLE PRECISION
On entry, the value sumsq in the equation above.
On exit, SUMSQ is overwritten with smsq , the basic sum of
squares from which scl has been factored out.
=====================================================================
.. Parameters ..
public void dlasv2(double f, double g, double h, org.netlib.util.doubleW ssmin, org.netlib.util.doubleW ssmax, org.netlib.util.doubleW snr, org.netlib.util.doubleW csr, org.netlib.util.doubleW snl, org.netlib.util.doubleW csl)
LAPACK
..
Purpose
=======
DLASV2 computes the singular value decomposition of a 2-by-2
triangular matrix
[ F G ]
[ 0 H ].
On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
right singular vectors for abs(SSMAX), giving the decomposition
[ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
[-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
Arguments
=========
F (input) DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
G (input) DOUBLE PRECISION
The (1,2) element of the 2-by-2 matrix.
H (input) DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
SSMIN (output) DOUBLE PRECISION
abs(SSMIN) is the smaller singular value.
SSMAX (output) DOUBLE PRECISION
abs(SSMAX) is the larger singular value.
SNL (output) DOUBLE PRECISION
CSL (output) DOUBLE PRECISION
The vector (CSL, SNL) is a unit left singular vector for the
singular value abs(SSMAX).
SNR (output) DOUBLE PRECISION
CSR (output) DOUBLE PRECISION
The vector (CSR, SNR) is a unit right singular vector for the
singular value abs(SSMAX).
Further Details
===============
Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all
output quantities are correct to within a few units in the last
place (ulps).
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself
overflows or is within a few ulps of overflow. (On machines with
partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results
may correspond to a matrix modified by perturbations of size near
the underflow threshold.
=====================================================================
.. Parameters ..
public void dlaswp(int n, double[] a, int lda, int k1, int k2, int[] ipiv, int incx)
LAPACK
..
Purpose
=======
DLASWP performs a series of row interchanges on the matrix A.
One row interchange is initiated for each of rows K1 through K2 of A.
Arguments
=========
N (input) INTEGER
The number of columns of the matrix A.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix of column dimension N to which the row
interchanges will be applied.
On exit, the permuted matrix.
LDA (input) INTEGER
The leading dimension of the array A.
K1 (input) INTEGER
The first element of IPIV for which a row interchange will
be done.
K2 (input) INTEGER
The last element of IPIV for which a row interchange will
be done.
IPIV (input) INTEGER array, dimension (K2*abs(INCX))
The vector of pivot indices. Only the elements in positions
K1 through K2 of IPIV are accessed.
IPIV(K) = L implies rows K and L are to be interchanged.
INCX (input) INTEGER
The increment between successive values of IPIV. If IPIV
is negative, the pivots are applied in reverse order.
Further Details
===============
Modified by
R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void dlaswp(int n, double[] a, int _a_offset, int lda, int k1, int k2, int[] ipiv, int _ipiv_offset, int incx)
LAPACK
..
Purpose
=======
DLASWP performs a series of row interchanges on the matrix A.
One row interchange is initiated for each of rows K1 through K2 of A.
Arguments
=========
N (input) INTEGER
The number of columns of the matrix A.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix of column dimension N to which the row
interchanges will be applied.
On exit, the permuted matrix.
LDA (input) INTEGER
The leading dimension of the array A.
K1 (input) INTEGER
The first element of IPIV for which a row interchange will
be done.
K2 (input) INTEGER
The last element of IPIV for which a row interchange will
be done.
IPIV (input) INTEGER array, dimension (K2*abs(INCX))
The vector of pivot indices. Only the elements in positions
K1 through K2 of IPIV are accessed.
IPIV(K) = L implies rows K and L are to be interchanged.
INCX (input) INTEGER
The increment between successive values of IPIV. If IPIV
is negative, the pivots are applied in reverse order.
Further Details
===============
Modified by
R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void dlasy2(boolean ltranl, boolean ltranr, int isgn, int n1, int n2, double[] tl, int ldtl, double[] tr, int ldtr, double[] b, int ldb, org.netlib.util.doubleW scale, double[] x, int ldx, org.netlib.util.doubleW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
op(TL)*X + ISGN*X*op(TR) = SCALE*B,
where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
-1. op(T) = T or T', where T' denotes the transpose of T.
Arguments
=========
LTRANL (input) LOGICAL
On entry, LTRANL specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE., op(TL) = TL'.
LTRANR (input) LOGICAL
On entry, LTRANR specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE., op(TR) = TR'.
ISGN (input) INTEGER
On entry, ISGN specifies the sign of the equation
as described before. ISGN may only be 1 or -1.
N1 (input) INTEGER
On entry, N1 specifies the order of matrix TL.
N1 may only be 0, 1 or 2.
N2 (input) INTEGER
On entry, N2 specifies the order of matrix TR.
N2 may only be 0, 1 or 2.
TL (input) DOUBLE PRECISION array, dimension (LDTL,2)
On entry, TL contains an N1 by N1 matrix.
LDTL (input) INTEGER
The leading dimension of the matrix TL. LDTL >= max(1,N1).
TR (input) DOUBLE PRECISION array, dimension (LDTR,2)
On entry, TR contains an N2 by N2 matrix.
LDTR (input) INTEGER
The leading dimension of the matrix TR. LDTR >= max(1,N2).
B (input) DOUBLE PRECISION array, dimension (LDB,2)
On entry, the N1 by N2 matrix B contains the right-hand
side of the equation.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1,N1).
SCALE (output) DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen
less than or equal to 1 to prevent the solution overflowing.
X (output) DOUBLE PRECISION array, dimension (LDX,2)
On exit, X contains the N1 by N2 solution.
LDX (input) INTEGER
The leading dimension of the matrix X. LDX >= max(1,N1).
XNORM (output) DOUBLE PRECISION
On exit, XNORM is the infinity-norm of the solution.
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: TL and TR have too close eigenvalues, so TL or
TR is perturbed to get a nonsingular equation.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void dlasy2(boolean ltranl, boolean ltranr, int isgn, int n1, int n2, double[] tl, int _tl_offset, int ldtl, double[] tr, int _tr_offset, int ldtr, double[] b, int _b_offset, int ldb, org.netlib.util.doubleW scale, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
op(TL)*X + ISGN*X*op(TR) = SCALE*B,
where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
-1. op(T) = T or T', where T' denotes the transpose of T.
Arguments
=========
LTRANL (input) LOGICAL
On entry, LTRANL specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE., op(TL) = TL'.
LTRANR (input) LOGICAL
On entry, LTRANR specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE., op(TR) = TR'.
ISGN (input) INTEGER
On entry, ISGN specifies the sign of the equation
as described before. ISGN may only be 1 or -1.
N1 (input) INTEGER
On entry, N1 specifies the order of matrix TL.
N1 may only be 0, 1 or 2.
N2 (input) INTEGER
On entry, N2 specifies the order of matrix TR.
N2 may only be 0, 1 or 2.
TL (input) DOUBLE PRECISION array, dimension (LDTL,2)
On entry, TL contains an N1 by N1 matrix.
LDTL (input) INTEGER
The leading dimension of the matrix TL. LDTL >= max(1,N1).
TR (input) DOUBLE PRECISION array, dimension (LDTR,2)
On entry, TR contains an N2 by N2 matrix.
LDTR (input) INTEGER
The leading dimension of the matrix TR. LDTR >= max(1,N2).
B (input) DOUBLE PRECISION array, dimension (LDB,2)
On entry, the N1 by N2 matrix B contains the right-hand
side of the equation.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1,N1).
SCALE (output) DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen
less than or equal to 1 to prevent the solution overflowing.
X (output) DOUBLE PRECISION array, dimension (LDX,2)
On exit, X contains the N1 by N2 solution.
LDX (input) INTEGER
The leading dimension of the matrix X. LDX >= max(1,N1).
XNORM (output) DOUBLE PRECISION
On exit, XNORM is the infinity-norm of the solution.
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: TL and TR have too close eigenvalues, so TL or
TR is perturbed to get a nonsingular equation.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void dlasyf(String uplo, int n, int nb, org.netlib.util.intW kb, double[] a, int lda, int[] ipiv, double[] w, int ldw, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASYF computes a partial factorization of a real symmetric matrix A
using the Bunch-Kaufman diagonal pivoting method. The partial
factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12' U22' )
A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
(calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
A22 (if UPLO = 'L').
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
NB (input) INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB (output) INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U', only the last KB elements of IPIV are set;
if UPLO = 'L', only the first KB elements are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W (workspace) DOUBLE PRECISION array, dimension (LDW,NB)
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
=====================================================================
.. Parameters ..
public void dlasyf(String uplo, int n, int nb, org.netlib.util.intW kb, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] w, int _w_offset, int ldw, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLASYF computes a partial factorization of a real symmetric matrix A
using the Bunch-Kaufman diagonal pivoting method. The partial
factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12' U22' )
A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
(calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
A22 (if UPLO = 'L').
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
NB (input) INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB (output) INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U', only the last KB elements of IPIV are set;
if UPLO = 'L', only the first KB elements are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W (workspace) DOUBLE PRECISION array, dimension (LDW,NB)
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
=====================================================================
.. Parameters ..
public void dlatbs(String uplo, String trans, String diag, String normin, int n, int kd, double[] ab, int ldab, double[] x, org.netlib.util.doubleW scale, double[] cnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLATBS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular band matrix. Here A' denotes the transpose of A, x and b
are n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine DTBSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of subdiagonals or superdiagonals in the
triangular matrix A. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first KD+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, DTBSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTBSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTBSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void dlatbs(String uplo, String trans, String diag, String normin, int n, int kd, double[] ab, int _ab_offset, int ldab, double[] x, int _x_offset, org.netlib.util.doubleW scale, double[] cnorm, int _cnorm_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLATBS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular band matrix. Here A' denotes the transpose of A, x and b
are n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine DTBSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of subdiagonals or superdiagonals in the
triangular matrix A. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first KD+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, DTBSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTBSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTBSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void dlatdf(int ijob, int n, double[] z, int ldz, double[] rhs, org.netlib.util.doubleW rdsum, org.netlib.util.doubleW rdscal, int[] ipiv, int[] jpiv)
LAPACK
..
Purpose
=======
DLATDF uses the LU factorization of the n-by-n matrix Z computed by
DGETC2 and computes a contribution to the reciprocal Dif-estimate
by solving Z * x = b for x, and choosing the r.h.s. b such that
the norm of x is as large as possible. On entry RHS = b holds the
contribution from earlier solved sub-systems, and on return RHS = x.
The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
where P and Q are permutation matrices. L is lower triangular with
unit diagonal elements and U is upper triangular.
Arguments
=========
IJOB (input) INTEGER
IJOB = 2: First compute an approximative null-vector e
of Z using DGECON, e is normalized and solve for
Zx = +-e - f with the sign giving the greater value
of 2-norm(x). About 5 times as expensive as Default.
IJOB .ne. 2: Local look ahead strategy where all entries of
the r.h.s. b is choosen as either +1 or -1 (Default).
N (input) INTEGER
The number of columns of the matrix Z.
Z (input) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, the LU part of the factorization of the n-by-n
matrix Z computed by DGETC2: Z = P * L * U * Q
LDZ (input) INTEGER
The leading dimension of the array Z. LDA >= max(1, N).
RHS (input/output) DOUBLE PRECISION array, dimension N.
On entry, RHS contains contributions from other subsystems.
On exit, RHS contains the solution of the subsystem with
entries acoording to the value of IJOB (see above).
RDSUM (input/output) DOUBLE PRECISION
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by DTGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
RDSCAL (input/output) DOUBLE PRECISION
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when DTGSY2 is called by
DTGSYL.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
This routine is a further developed implementation of algorithm
BSOLVE in [1] using complete pivoting in the LU factorization.
[1] Bo Kagstrom and Lars Westin,
Generalized Schur Methods with Condition Estimators for
Solving the Generalized Sylvester Equation, IEEE Transactions
on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
[2] Peter Poromaa,
On Efficient and Robust Estimators for the Separation
between two Regular Matrix Pairs with Applications in
Condition Estimation. Report IMINF-95.05, Departement of
Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
=====================================================================
.. Parameters ..
public void dlatdf(int ijob, int n, double[] z, int _z_offset, int ldz, double[] rhs, int _rhs_offset, org.netlib.util.doubleW rdsum, org.netlib.util.doubleW rdscal, int[] ipiv, int _ipiv_offset, int[] jpiv, int _jpiv_offset)
LAPACK
..
Purpose
=======
DLATDF uses the LU factorization of the n-by-n matrix Z computed by
DGETC2 and computes a contribution to the reciprocal Dif-estimate
by solving Z * x = b for x, and choosing the r.h.s. b such that
the norm of x is as large as possible. On entry RHS = b holds the
contribution from earlier solved sub-systems, and on return RHS = x.
The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
where P and Q are permutation matrices. L is lower triangular with
unit diagonal elements and U is upper triangular.
Arguments
=========
IJOB (input) INTEGER
IJOB = 2: First compute an approximative null-vector e
of Z using DGECON, e is normalized and solve for
Zx = +-e - f with the sign giving the greater value
of 2-norm(x). About 5 times as expensive as Default.
IJOB .ne. 2: Local look ahead strategy where all entries of
the r.h.s. b is choosen as either +1 or -1 (Default).
N (input) INTEGER
The number of columns of the matrix Z.
Z (input) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, the LU part of the factorization of the n-by-n
matrix Z computed by DGETC2: Z = P * L * U * Q
LDZ (input) INTEGER
The leading dimension of the array Z. LDA >= max(1, N).
RHS (input/output) DOUBLE PRECISION array, dimension N.
On entry, RHS contains contributions from other subsystems.
On exit, RHS contains the solution of the subsystem with
entries acoording to the value of IJOB (see above).
RDSUM (input/output) DOUBLE PRECISION
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by DTGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
RDSCAL (input/output) DOUBLE PRECISION
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when DTGSY2 is called by
DTGSYL.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
This routine is a further developed implementation of algorithm
BSOLVE in [1] using complete pivoting in the LU factorization.
[1] Bo Kagstrom and Lars Westin,
Generalized Schur Methods with Condition Estimators for
Solving the Generalized Sylvester Equation, IEEE Transactions
on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
[2] Peter Poromaa,
On Efficient and Robust Estimators for the Separation
between two Regular Matrix Pairs with Applications in
Condition Estimation. Report IMINF-95.05, Departement of
Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
=====================================================================
.. Parameters ..
public void dlatps(String uplo, String trans, String diag, String normin, int n, double[] ap, double[] x, org.netlib.util.doubleW scale, double[] cnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLATPS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular matrix stored in packed form. Here A' denotes the
transpose of A, x and b are n-element vectors, and s is a scaling
factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the
unscaled problem will not cause overflow, the Level 2 BLAS routine
DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, DTPSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void dlatps(String uplo, String trans, String diag, String normin, int n, double[] ap, int _ap_offset, double[] x, int _x_offset, org.netlib.util.doubleW scale, double[] cnorm, int _cnorm_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLATPS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular matrix stored in packed form. Here A' denotes the
transpose of A, x and b are n-element vectors, and s is a scaling
factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the
unscaled problem will not cause overflow, the Level 2 BLAS routine
DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, DTPSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void dlatrd(String uplo, int n, int nb, double[] a, int lda, double[] e, double[] tau, double[] w, int ldw)
LAPACK
..
Purpose
=======
DLATRD reduces NB rows and columns of a real symmetric matrix A to
symmetric tridiagonal form by an orthogonal similarity
transformation Q' * A * Q, and returns the matrices V and W which are
needed to apply the transformation to the unreduced part of A.
If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
matrix, of which the upper triangle is supplied;
if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
matrix, of which the lower triangle is supplied.
This is an auxiliary routine called by DSYTRD.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A.
NB (input) INTEGER
The number of rows and columns to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit:
if UPLO = 'U', the last NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements above the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors;
if UPLO = 'L', the first NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements below the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= (1,N).
E (output) DOUBLE PRECISION array, dimension (N-1)
If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
elements of the last NB columns of the reduced matrix;
if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
the first NB columns of the reduced matrix.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors, stored in
TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
See Further Details.
W (output) DOUBLE PRECISION array, dimension (LDW,NB)
The n-by-nb matrix W required to update the unreduced part
of A.
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n) H(n-1) . . . H(n-nb+1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
and tau in TAU(i-1).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and tau in TAU(i).
The elements of the vectors v together form the n-by-nb matrix V
which is needed, with W, to apply the transformation to the unreduced
part of the matrix, using a symmetric rank-2k update of the form:
A := A - V*W' - W*V'.
The contents of A on exit are illustrated by the following examples
with n = 5 and nb = 2:
if UPLO = 'U': if UPLO = 'L':
( a a a v4 v5 ) ( d )
( a a v4 v5 ) ( 1 d )
( a 1 v5 ) ( v1 1 a )
( d 1 ) ( v1 v2 a a )
( d ) ( v1 v2 a a a )
where d denotes a diagonal element of the reduced matrix, a denotes
an element of the original matrix that is unchanged, and vi denotes
an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dlatrd(String uplo, int n, int nb, double[] a, int _a_offset, int lda, double[] e, int _e_offset, double[] tau, int _tau_offset, double[] w, int _w_offset, int ldw)
LAPACK
..
Purpose
=======
DLATRD reduces NB rows and columns of a real symmetric matrix A to
symmetric tridiagonal form by an orthogonal similarity
transformation Q' * A * Q, and returns the matrices V and W which are
needed to apply the transformation to the unreduced part of A.
If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
matrix, of which the upper triangle is supplied;
if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
matrix, of which the lower triangle is supplied.
This is an auxiliary routine called by DSYTRD.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A.
NB (input) INTEGER
The number of rows and columns to be reduced.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit:
if UPLO = 'U', the last NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements above the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors;
if UPLO = 'L', the first NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements below the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= (1,N).
E (output) DOUBLE PRECISION array, dimension (N-1)
If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
elements of the last NB columns of the reduced matrix;
if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
the first NB columns of the reduced matrix.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors, stored in
TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
See Further Details.
W (output) DOUBLE PRECISION array, dimension (LDW,NB)
The n-by-nb matrix W required to update the unreduced part
of A.
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n) H(n-1) . . . H(n-nb+1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
and tau in TAU(i-1).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and tau in TAU(i).
The elements of the vectors v together form the n-by-nb matrix V
which is needed, with W, to apply the transformation to the unreduced
part of the matrix, using a symmetric rank-2k update of the form:
A := A - V*W' - W*V'.
The contents of A on exit are illustrated by the following examples
with n = 5 and nb = 2:
if UPLO = 'U': if UPLO = 'L':
( a a a v4 v5 ) ( d )
( a a v4 v5 ) ( 1 d )
( a 1 v5 ) ( v1 1 a )
( d 1 ) ( v1 v2 a a )
( d ) ( v1 v2 a a a )
where d denotes a diagonal element of the reduced matrix, a denotes
an element of the original matrix that is unchanged, and vi denotes
an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dlatrs(String uplo, String trans, String diag, String normin, int n, double[] a, int lda, double[] x, org.netlib.util.doubleW scale, double[] cnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLATRS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A' denotes the transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max (1,N).
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, DTRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void dlatrs(String uplo, String trans, String diag, String normin, int n, double[] a, int _a_offset, int lda, double[] x, int _x_offset, org.netlib.util.doubleW scale, double[] cnorm, int _cnorm_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLATRS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A' denotes the transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max (1,N).
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, DTRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void dlatrz(int m, int n, int l, double[] a, int lda, double[] tau, double[] work)
LAPACK
..
Purpose
=======
DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
[ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means
of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal
matrix and, R and A1 are M-by-M upper triangular matrices.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
L (input) INTEGER
The number of columns of the matrix A containing the
meaningful part of the Householder vectors. N-M >= L >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements N-L+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace) DOUBLE PRECISION array, dimension (M)
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an l element vector. tau and z( k )
are chosen to annihilate the elements of the kth row of A2.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A2, such that the elements of z( k ) are
in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A1.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void dlatrz(int m, int n, int l, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
[ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means
of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal
matrix and, R and A1 are M-by-M upper triangular matrices.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
L (input) INTEGER
The number of columns of the matrix A containing the
meaningful part of the Householder vectors. N-M >= L >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements N-L+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace) DOUBLE PRECISION array, dimension (M)
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an l element vector. tau and z( k )
are chosen to annihilate the elements of the kth row of A2.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A2, such that the elements of z( k ) are
in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A1.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void dlatzm(String side, int m, int n, double[] v, int incv, double tau, double[] c1, double[] c2, int Ldc, double[] work)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DORMRZ.
DLATZM applies a Householder matrix generated by DTZRQF to a matrix.
Let P = I - tau*u*u', u = ( 1 ),
( v )
where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
SIDE = 'R'.
If SIDE equals 'L', let
C = [ C1 ] 1
[ C2 ] m-1
n
Then C is overwritten by P*C.
If SIDE equals 'R', let
C = [ C1, C2 ] m
1 n-1
Then C is overwritten by C*P.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form P * C
= 'R': form C * P
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) DOUBLE PRECISION array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
(1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of P. V is not used
if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0
TAU (input) DOUBLE PRECISION
The value tau in the representation of P.
C1 (input/output) DOUBLE PRECISION array, dimension
(LDC,N) if SIDE = 'L'
(M,1) if SIDE = 'R'
On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
if SIDE = 'R'.
On exit, the first row of P*C if SIDE = 'L', or the first
column of C*P if SIDE = 'R'.
C2 (input/output) DOUBLE PRECISION array, dimension
(LDC, N) if SIDE = 'L'
(LDC, N-1) if SIDE = 'R'
On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
m x (n - 1) matrix C2 if SIDE = 'R'.
On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the arrays C1 and C2. LDC >= (1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void dlatzm(String side, int m, int n, double[] v, int _v_offset, int incv, double tau, double[] c1, int _c1_offset, double[] c2, int _c2_offset, int Ldc, double[] work, int _work_offset)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DORMRZ.
DLATZM applies a Householder matrix generated by DTZRQF to a matrix.
Let P = I - tau*u*u', u = ( 1 ),
( v )
where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
SIDE = 'R'.
If SIDE equals 'L', let
C = [ C1 ] 1
[ C2 ] m-1
n
Then C is overwritten by P*C.
If SIDE equals 'R', let
C = [ C1, C2 ] m
1 n-1
Then C is overwritten by C*P.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form P * C
= 'R': form C * P
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) DOUBLE PRECISION array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
(1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of P. V is not used
if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0
TAU (input) DOUBLE PRECISION
The value tau in the representation of P.
C1 (input/output) DOUBLE PRECISION array, dimension
(LDC,N) if SIDE = 'L'
(M,1) if SIDE = 'R'
On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
if SIDE = 'R'.
On exit, the first row of P*C if SIDE = 'L', or the first
column of C*P if SIDE = 'R'.
C2 (input/output) DOUBLE PRECISION array, dimension
(LDC, N) if SIDE = 'L'
(LDC, N-1) if SIDE = 'R'
On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
m x (n - 1) matrix C2 if SIDE = 'R'.
On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the arrays C1 and C2. LDC >= (1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void dlauu2(String uplo, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAUU2 computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the unblocked form of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dlauu2(String uplo, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAUU2 computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the unblocked form of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dlauum(String uplo, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAUUM computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the blocked form of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dlauum(String uplo, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DLAUUM computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the blocked form of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dlazq3(int i0, org.netlib.util.intW n0, double[] z, int pp, org.netlib.util.doubleW dmin, org.netlib.util.doubleW sigma, org.netlib.util.doubleW desig, org.netlib.util.doubleW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee, org.netlib.util.intW ttype, org.netlib.util.doubleW dmin1, org.netlib.util.doubleW dmin2, org.netlib.util.doubleW dn, org.netlib.util.doubleW dn1, org.netlib.util.doubleW dn2, org.netlib.util.doubleW tau)
LAPACK
..
Purpose
=======
DLAZQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
SIGMA (output) DOUBLE PRECISION
Sum of shifts used in current segment.
DESIG (input/output) DOUBLE PRECISION
Lower order part of SIGMA
QMAX (input) DOUBLE PRECISION
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
TTYPE (input/output) INTEGER
Shift type. TTYPE is passed as an argument in order to save
its value between calls to DLAZQ3
DMIN1 (input/output) REAL
DMIN2 (input/output) REAL
DN (input/output) REAL
DN1 (input/output) REAL
DN2 (input/output) REAL
TAU (input/output) REAL
These are passed as arguments in order to save their values
between calls to DLAZQ3
This is a thread safe version of DLASQ3, which passes TTYPE, DMIN1,
DMIN2, DN, DN1. DN2 and TAU through the argument list in place of
declaring them in a SAVE statment.
=====================================================================
.. Parameters ..
public void dlazq3(int i0, org.netlib.util.intW n0, double[] z, int _z_offset, int pp, org.netlib.util.doubleW dmin, org.netlib.util.doubleW sigma, org.netlib.util.doubleW desig, org.netlib.util.doubleW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee, org.netlib.util.intW ttype, org.netlib.util.doubleW dmin1, org.netlib.util.doubleW dmin2, org.netlib.util.doubleW dn, org.netlib.util.doubleW dn1, org.netlib.util.doubleW dn2, org.netlib.util.doubleW tau)
LAPACK
..
Purpose
=======
DLAZQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) DOUBLE PRECISION
Minimum value of d.
SIGMA (output) DOUBLE PRECISION
Sum of shifts used in current segment.
DESIG (input/output) DOUBLE PRECISION
Lower order part of SIGMA
QMAX (input) DOUBLE PRECISION
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
TTYPE (input/output) INTEGER
Shift type. TTYPE is passed as an argument in order to save
its value between calls to DLAZQ3
DMIN1 (input/output) REAL
DMIN2 (input/output) REAL
DN (input/output) REAL
DN1 (input/output) REAL
DN2 (input/output) REAL
TAU (input/output) REAL
These are passed as arguments in order to save their values
between calls to DLAZQ3
This is a thread safe version of DLASQ3, which passes TTYPE, DMIN1,
DMIN2, DN, DN1. DN2 and TAU through the argument list in place of
declaring them in a SAVE statment.
=====================================================================
.. Parameters ..
public void dlazq4(int i0, int n0, double[] z, int pp, int n0in, double dmin, double dmin1, double dmin2, double dn, double dn1, double dn2, org.netlib.util.doubleW tau, org.netlib.util.intW ttype, org.netlib.util.doubleW g)
LAPACK
..
Purpose
=======
DLAZQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) DOUBLE PRECISION
Minimum value of d.
DMIN1 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) DOUBLE PRECISION
d(N)
DN1 (input) DOUBLE PRECISION
d(N-1)
DN2 (input) DOUBLE PRECISION
d(N-2)
TAU (output) DOUBLE PRECISION
This is the shift.
TTYPE (output) INTEGER
Shift type.
G (input/output) DOUBLE PRECISION
G is passed as an argument in order to save its value between
calls to DLAZQ4
Further Details
===============
CNST1 = 9/16
This is a thread safe version of DLASQ4, which passes G through the
argument list in place of declaring G in a SAVE statment.
=====================================================================
.. Parameters ..
public void dlazq4(int i0, int n0, double[] z, int _z_offset, int pp, int n0in, double dmin, double dmin1, double dmin2, double dn, double dn1, double dn2, org.netlib.util.doubleW tau, org.netlib.util.intW ttype, org.netlib.util.doubleW g)
LAPACK
..
Purpose
=======
DLAZQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) DOUBLE PRECISION array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) DOUBLE PRECISION
Minimum value of d.
DMIN1 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ).
DMIN2 (input) DOUBLE PRECISION
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) DOUBLE PRECISION
d(N)
DN1 (input) DOUBLE PRECISION
d(N-1)
DN2 (input) DOUBLE PRECISION
d(N-2)
TAU (output) DOUBLE PRECISION
This is the shift.
TTYPE (output) INTEGER
Shift type.
G (input/output) DOUBLE PRECISION
G is passed as an argument in order to save its value between
calls to DLAZQ4
Further Details
===============
CNST1 = 9/16
This is a thread safe version of DLASQ4, which passes G through the
argument list in place of declaring G in a SAVE statment.
=====================================================================
.. Parameters ..
public void dopgtr(String uplo, int n, double[] ap, double[] tau, double[] q, int ldq, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DOPGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors H(i) of order n, as returned by
DSPTRD using packed storage:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to DSPTRD;
= 'L': Lower triangular packed storage used in previous
call to DSPTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The vectors which define the elementary reflectors, as
returned by DSPTRD.
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSPTRD.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
The N-by-N orthogonal matrix Q.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (N-1)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dopgtr(String uplo, int n, double[] ap, int _ap_offset, double[] tau, int _tau_offset, double[] q, int _q_offset, int ldq, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DOPGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors H(i) of order n, as returned by
DSPTRD using packed storage:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to DSPTRD;
= 'L': Lower triangular packed storage used in previous
call to DSPTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The vectors which define the elementary reflectors, as
returned by DSPTRD.
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSPTRD.
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
The N-by-N orthogonal matrix Q.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (N-1)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dopmtr(String side, String uplo, String trans, int m, int n, double[] ap, double[] tau, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DOPMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by DSPTRD using packed
storage:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to DSPTRD;
= 'L': Lower triangular packed storage used in previous
call to DSPTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
AP (input) DOUBLE PRECISION array, dimension
(M*(M+1)/2) if SIDE = 'L'
(N*(N+1)/2) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DSPTRD. AP is modified by the routine but
restored on exit.
TAU (input) DOUBLE PRECISION array, dimension (M-1) if SIDE = 'L'
or (N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSPTRD.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dopmtr(String side, String uplo, String trans, int m, int n, double[] ap, int _ap_offset, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DOPMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by DSPTRD using packed
storage:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to DSPTRD;
= 'L': Lower triangular packed storage used in previous
call to DSPTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
AP (input) DOUBLE PRECISION array, dimension
(M*(M+1)/2) if SIDE = 'L'
(N*(N+1)/2) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DSPTRD. AP is modified by the routine but
restored on exit.
TAU (input) DOUBLE PRECISION array, dimension (M-1) if SIDE = 'L'
or (N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSPTRD.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorg2l(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORG2L generates an m by n real matrix Q with orthonormal columns,
which is defined as the last n columns of a product of k elementary
reflectors of order m
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQLF in the last k columns of its array
argument A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorg2l(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORG2L generates an m by n real matrix Q with orthonormal columns,
which is defined as the last n columns of a product of k elementary
reflectors of order m
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQLF in the last k columns of its array
argument A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorg2r(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORG2R generates an m by n real matrix Q with orthonormal columns,
which is defined as the first n columns of a product of k elementary
reflectors of order m
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQRF in the first k columns of its array
argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorg2r(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORG2R generates an m by n real matrix Q with orthonormal columns,
which is defined as the first n columns of a product of k elementary
reflectors of order m
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQRF in the first k columns of its array
argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgbr(String vect, int m, int n, int k, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGBR generates one of the real orthogonal matrices Q or P**T
determined by DGEBRD when reducing a real matrix A to bidiagonal
form: A = Q * B * P**T. Q and P**T are defined as products of
elementary reflectors H(i) or G(i) respectively.
If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
is of order M:
if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
columns of Q, where m >= n >= k;
if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
M-by-M matrix.
If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
is of order N:
if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
rows of P**T, where n >= m >= k;
if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
an N-by-N matrix.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether the matrix Q or the matrix P**T is
required, as defined in the transformation applied by DGEBRD:
= 'Q': generate Q;
= 'P': generate P**T.
M (input) INTEGER
The number of rows of the matrix Q or P**T to be returned.
M >= 0.
N (input) INTEGER
The number of columns of the matrix Q or P**T to be returned.
N >= 0.
If VECT = 'Q', M >= N >= min(M,K);
if VECT = 'P', N >= M >= min(N,K).
K (input) INTEGER
If VECT = 'Q', the number of columns in the original M-by-K
matrix reduced by DGEBRD.
If VECT = 'P', the number of rows in the original K-by-N
matrix reduced by DGEBRD.
K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DGEBRD.
On exit, the M-by-N matrix Q or P**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension
(min(M,K)) if VECT = 'Q'
(min(N,K)) if VECT = 'P'
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P**T, as
returned by DGEBRD in its array argument TAUQ or TAUP.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,min(M,N)).
For optimum performance LWORK >= min(M,N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorgbr(String vect, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGBR generates one of the real orthogonal matrices Q or P**T
determined by DGEBRD when reducing a real matrix A to bidiagonal
form: A = Q * B * P**T. Q and P**T are defined as products of
elementary reflectors H(i) or G(i) respectively.
If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
is of order M:
if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
columns of Q, where m >= n >= k;
if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
M-by-M matrix.
If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
is of order N:
if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
rows of P**T, where n >= m >= k;
if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
an N-by-N matrix.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether the matrix Q or the matrix P**T is
required, as defined in the transformation applied by DGEBRD:
= 'Q': generate Q;
= 'P': generate P**T.
M (input) INTEGER
The number of rows of the matrix Q or P**T to be returned.
M >= 0.
N (input) INTEGER
The number of columns of the matrix Q or P**T to be returned.
N >= 0.
If VECT = 'Q', M >= N >= min(M,K);
if VECT = 'P', N >= M >= min(N,K).
K (input) INTEGER
If VECT = 'Q', the number of columns in the original M-by-K
matrix reduced by DGEBRD.
If VECT = 'P', the number of rows in the original K-by-N
matrix reduced by DGEBRD.
K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DGEBRD.
On exit, the M-by-N matrix Q or P**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension
(min(M,K)) if VECT = 'Q'
(min(N,K)) if VECT = 'P'
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P**T, as
returned by DGEBRD in its array argument TAUQ or TAUP.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,min(M,N)).
For optimum performance LWORK >= min(M,N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorghr(int n, int ilo, int ihi, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGHR generates a real orthogonal matrix Q which is defined as the
product of IHI-ILO elementary reflectors of order N, as returned by
DGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
N (input) INTEGER
The order of the matrix Q. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of DGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DGEHRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEHRD.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= IHI-ILO.
For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorghr(int n, int ilo, int ihi, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGHR generates a real orthogonal matrix Q which is defined as the
product of IHI-ILO elementary reflectors of order N, as returned by
DGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
N (input) INTEGER
The order of the matrix Q. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of DGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DGEHRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEHRD.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= IHI-ILO.
For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorgl2(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGL2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the first m rows of a product of k elementary
reflectors of order n
Q = H(k) . . . H(2) H(1)
as returned by DGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by DGELQF in the first k rows of its array argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgl2(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGL2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the first m rows of a product of k elementary
reflectors of order n
Q = H(k) . . . H(2) H(1)
as returned by DGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by DGELQF in the first k rows of its array argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorglq(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the first M rows of a product of K elementary
reflectors of order N
Q = H(k) . . . H(2) H(1)
as returned by DGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by DGELQF in the first k rows of its array argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorglq(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the first M rows of a product of K elementary
reflectors of order N
Q = H(k) . . . H(2) H(1)
as returned by DGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by DGELQF in the first k rows of its array argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgql(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGQL generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the last N columns of a product of K elementary
reflectors of order M
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQLF in the last k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgql(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGQL generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the last N columns of a product of K elementary
reflectors of order M
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQLF in the last k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgqr(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGQR generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the first N columns of a product of K elementary
reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQRF in the first k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgqr(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGQR generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the first N columns of a product of K elementary
reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQRF in the first k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgr2(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGR2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the last m rows of a product of k elementary
reflectors of order n
Q = H(1) H(2) . . . H(k)
as returned by DGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGERQF in the last k rows of its array argument
A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgr2(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGR2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the last m rows of a product of k elementary
reflectors of order n
Q = H(1) H(2) . . . H(k)
as returned by DGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGERQF in the last k rows of its array argument
A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgrq(int m, int n, int k, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the last M rows of a product of K elementary
reflectors of order N
Q = H(1) H(2) . . . H(k)
as returned by DGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGERQF in the last k rows of its array argument
A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgrq(int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the last M rows of a product of K elementary
reflectors of order N
Q = H(1) H(2) . . . H(k)
as returned by DGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGERQF in the last k rows of its array argument
A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void dorgtr(String uplo, int n, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors of order N, as returned by
DSYTRD:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from DSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from DSYTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DSYTRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSYTRD.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N-1).
For optimum performance LWORK >= (N-1)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorgtr(String uplo, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors of order N, as returned by
DSYTRD:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from DSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from DSYTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DSYTRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSYTRD.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N-1).
For optimum performance LWORK >= (N-1)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorm2l(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORM2L overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorm2l(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORM2L overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorm2r(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORM2R overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorm2r(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORM2R overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormbr(String vect, String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'T': P**T * C C * P**T
Here Q and P**T are the orthogonal matrices determined by DGEBRD when
reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
P**T are defined as products of elementary reflectors H(i) and G(i)
respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
order of the orthogonal matrix Q or P**T that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).
Arguments
=========
VECT (input) CHARACTER*1
= 'Q': apply Q or Q**T;
= 'P': apply P or P**T.
SIDE (input) CHARACTER*1
= 'L': apply Q, Q**T, P or P**T from the Left;
= 'R': apply Q, Q**T, P or P**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q or P;
= 'T': Transpose, apply Q**T or P**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
If VECT = 'Q', the number of columns in the original
matrix reduced by DGEBRD.
If VECT = 'P', the number of rows in the original
matrix reduced by DGEBRD.
K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,min(nq,K)) if VECT = 'Q'
(LDA,nq) if VECT = 'P'
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by DGEBRD.
LDA (input) INTEGER
The leading dimension of the array A.
If VECT = 'Q', LDA >= max(1,nq);
if VECT = 'P', LDA >= max(1,min(nq,K)).
TAU (input) DOUBLE PRECISION array, dimension (min(nq,K))
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i) which determines Q or P, as returned
by DGEBRD in the array argument TAUQ or TAUP.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
or P*C or P**T*C or C*P or C*P**T.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dormbr(String vect, String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'T': P**T * C C * P**T
Here Q and P**T are the orthogonal matrices determined by DGEBRD when
reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
P**T are defined as products of elementary reflectors H(i) and G(i)
respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
order of the orthogonal matrix Q or P**T that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).
Arguments
=========
VECT (input) CHARACTER*1
= 'Q': apply Q or Q**T;
= 'P': apply P or P**T.
SIDE (input) CHARACTER*1
= 'L': apply Q, Q**T, P or P**T from the Left;
= 'R': apply Q, Q**T, P or P**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q or P;
= 'T': Transpose, apply Q**T or P**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
If VECT = 'Q', the number of columns in the original
matrix reduced by DGEBRD.
If VECT = 'P', the number of rows in the original
matrix reduced by DGEBRD.
K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,min(nq,K)) if VECT = 'Q'
(LDA,nq) if VECT = 'P'
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by DGEBRD.
LDA (input) INTEGER
The leading dimension of the array A.
If VECT = 'Q', LDA >= max(1,nq);
if VECT = 'P', LDA >= max(1,min(nq,K)).
TAU (input) DOUBLE PRECISION array, dimension (min(nq,K))
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i) which determines Q or P, as returned
by DGEBRD in the array argument TAUQ or TAUP.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
or P*C or P**T*C or C*P or C*P**T.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dormhr(String side, String trans, int m, int n, int ilo, int ihi, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMHR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
IHI-ILO elementary reflectors, as returned by DGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of DGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
ILO = 1 and IHI = 0, if M = 0;
if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
ILO = 1 and IHI = 0, if N = 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DGEHRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEHRD.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dormhr(String side, String trans, int m, int n, int ilo, int ihi, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMHR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
IHI-ILO elementary reflectors, as returned by DGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of DGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
ILO = 1 and IHI = 0, if M = 0;
if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
ILO = 1 and IHI = 0, if N = 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DGEHRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEHRD.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dorml2(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORML2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dorml2(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORML2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormlq(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormlq(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormql(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMQL overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormql(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMQL overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQLF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormqr(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormqr(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormr2(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMR2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormr2(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMR2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormr3(String side, String trans, int m, int n, int k, int l, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMR3 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DTZRZF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DTZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DTZRZF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m-by-n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void dormr3(String side, String trans, int m, int n, int k, int l, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMR3 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DTZRZF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DTZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DTZRZF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m-by-n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void dormrq(String side, String trans, int m, int n, int k, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMRQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormrq(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMRQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dormrz(String side, String trans, int m, int n, int k, int l, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMRZ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DTZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DTZRZF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void dormrz(String side, String trans, int m, int n, int k, int l, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMRZ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DTZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DTZRZF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void dormtr(String side, String uplo, String trans, int m, int n, double[] a, int lda, double[] tau, double[] c, int Ldc, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by DSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from DSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from DSYTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DSYTRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSYTRD.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dormtr(String side, String uplo, String trans, int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] c, int _c_offset, int Ldc, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by DSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from DSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from DSYTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DSYTRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSYTRD.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dpbcon(String uplo, int n, int kd, double[] ab, int ldab, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite band matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
ANORM (input) DOUBLE PRECISION
The 1-norm (or infinity-norm) of the symmetric band matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dpbcon(String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite band matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
ANORM (input) DOUBLE PRECISION
The 1-norm (or infinity-norm) of the symmetric band matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dpbequ(String uplo, int n, int kd, double[] ab, int ldab, double[] s, org.netlib.util.doubleW scond, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBEQU computes row and column scalings intended to equilibrate a
symmetric positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void dpbequ(String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, double[] s, int _s_offset, org.netlib.util.doubleW scond, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBEQU computes row and column scalings intended to equilibrate a
symmetric positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void dpbrfs(String uplo, int n, int kd, int nrhs, double[] ab, int ldab, double[] afb, int ldafb, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and banded, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A as computed by
DPBTRF, in the same storage format as A (see AB).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dpbrfs(String uplo, int n, int kd, int nrhs, double[] ab, int _ab_offset, int ldab, double[] afb, int _afb_offset, int ldafb, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and banded, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A as computed by
DPBTRF, in the same storage format as A (see AB).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dpbstf(String uplo, int n, int kd, double[] ab, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBSTF computes a split Cholesky factorization of a real
symmetric positive definite band matrix A.
This routine is designed to be used in conjunction with DSBGST.
The factorization has the form A = S**T*S where S is a band matrix
of the same bandwidth as A and the following structure:
S = ( U )
( M L )
where U is upper triangular of order m = (n+kd)/2, and L is lower
triangular of order n-m.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first kd+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the factor S from the split Cholesky
factorization A = S**T*S. See Further Details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the factorization could not be completed,
because the updated element a(i,i) was negative; the
matrix A is not positive definite.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 7, KD = 2:
S = ( s11 s12 s13 )
( s22 s23 s24 )
( s33 s34 )
( s44 )
( s53 s54 s55 )
( s64 s65 s66 )
( s75 s76 s77 )
If UPLO = 'U', the array AB holds:
on entry: on exit:
* * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75
* a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
If UPLO = 'L', the array AB holds:
on entry: on exit:
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 *
a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void dpbstf(String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBSTF computes a split Cholesky factorization of a real
symmetric positive definite band matrix A.
This routine is designed to be used in conjunction with DSBGST.
The factorization has the form A = S**T*S where S is a band matrix
of the same bandwidth as A and the following structure:
S = ( U )
( M L )
where U is upper triangular of order m = (n+kd)/2, and L is lower
triangular of order n-m.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first kd+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the factor S from the split Cholesky
factorization A = S**T*S. See Further Details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the factorization could not be completed,
because the updated element a(i,i) was negative; the
matrix A is not positive definite.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 7, KD = 2:
S = ( s11 s12 s13 )
( s22 s23 s24 )
( s33 s34 )
( s44 )
( s53 s54 s55 )
( s64 s65 s66 )
( s75 s76 s77 )
If UPLO = 'U', the array AB holds:
on entry: on exit:
* * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75
* a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
If UPLO = 'L', the array AB holds:
on entry: on exit:
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 *
a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void dpbsv(String uplo, int n, int kd, int nrhs, double[] ab, int ldab, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. External Functions ..
public void dpbsv(String uplo, int n, int kd, int nrhs, double[] ab, int _ab_offset, int ldab, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. External Functions ..
public void dpbsvx(String fact, String uplo, int n, int kd, int nrhs, double[] ab, int ldab, double[] afb, int ldafb, org.netlib.util.StringW equed, double[] s, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AB and AFB will not
be modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right-hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array, except
if FACT = 'F' and EQUED = 'Y', then A must contain the
equilibrated matrix diag(S)*A*diag(S). The j-th column of A
is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the band matrix
A, in the same storage format as A (see AB). If EQUED = 'Y',
then AFB is the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
If FACT = 'E', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) DOUBLE PRECISION array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 a46
a55 a56
(aij=conjg(aji)) a66
Band storage of the upper triangle of A:
* * a13 a24 a35 a46
* a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
Similarly, if UPLO = 'L' the format of A is as follows:
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void dpbsvx(String fact, String uplo, int n, int kd, int nrhs, double[] ab, int _ab_offset, int ldab, double[] afb, int _afb_offset, int ldafb, org.netlib.util.StringW equed, double[] s, int _s_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AB and AFB will not
be modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right-hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array, except
if FACT = 'F' and EQUED = 'Y', then A must contain the
equilibrated matrix diag(S)*A*diag(S). The j-th column of A
is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the band matrix
A, in the same storage format as A (see AB). If EQUED = 'Y',
then AFB is the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
If FACT = 'E', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) DOUBLE PRECISION array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 a46
a55 a56
(aij=conjg(aji)) a66
Band storage of the upper triangle of A:
* * a13 a24 a35 a46
* a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
Similarly, if UPLO = 'L' the format of A is as follows:
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void dpbtf2(String uplo, int n, int kd, double[] ab, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBTF2 computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix, U' is the transpose of U, and
L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void dpbtf2(String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBTF2 computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix, U' is the transpose of U, and
L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void dpbtrf(String uplo, int n, int kd, double[] ab, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBTRF computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
Contributed by
Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
=====================================================================
.. Parameters ..
public void dpbtrf(String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBTRF computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
Contributed by
Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
=====================================================================
.. Parameters ..
public void dpbtrs(String uplo, int n, int kd, int nrhs, double[] ab, int ldab, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBTRS solves a system of linear equations A*X = B with a symmetric
positive definite band matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPBTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dpbtrs(String uplo, int n, int kd, int nrhs, double[] ab, int _ab_offset, int ldab, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPBTRS solves a system of linear equations A*X = B with a symmetric
positive definite band matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPBTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dpocon(String uplo, int n, double[] a, int lda, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) DOUBLE PRECISION
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dpocon(String uplo, int n, double[] a, int _a_offset, int lda, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) DOUBLE PRECISION
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dpoequ(int n, double[] a, int lda, double[] s, org.netlib.util.doubleW scond, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The N-by-N symmetric positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void dpoequ(int n, double[] a, int _a_offset, int lda, double[] s, int _s_offset, org.netlib.util.doubleW scond, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The N-by-N symmetric positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void dporfs(String uplo, int n, int nrhs, double[] a, int lda, double[] af, int ldaf, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite,
and provides error bounds and backward error estimates for the
solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPOTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dporfs(String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, double[] af, int _af_offset, int ldaf, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite,
and provides error bounds and backward error estimates for the
solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPOTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dposv(String uplo, int n, int nrhs, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
=====================================================================
.. External Functions ..
public void dposv(String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
=====================================================================
.. External Functions ..
public void dposvx(String fact, String uplo, int n, int nrhs, double[] a, int lda, double[] af, int ldaf, org.netlib.util.StringW equed, double[] s, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. A and AF will not
be modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A, except if FACT = 'F' and
EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A. If EQUED .ne. 'N', then AF is the factored form
of the equilibrated matrix diag(S)*A*diag(S).
If FACT = 'N', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the original
matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) DOUBLE PRECISION array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dposvx(String fact, String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, double[] af, int _af_offset, int ldaf, org.netlib.util.StringW equed, double[] s, int _s_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. A and AF will not
be modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A, except if FACT = 'F' and
EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A. If EQUED .ne. 'N', then AF is the factored form
of the equilibrated matrix diag(S)*A*diag(S).
If FACT = 'N', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the original
matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) DOUBLE PRECISION array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dpotf2(String uplo, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTF2 computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U'*U or A = L*L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void dpotf2(String uplo, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTF2 computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U'*U or A = L*L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void dpotrf(String uplo, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the block version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void dpotrf(String uplo, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the block version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void dpotri(String uplo, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by DPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, as computed by
DPOTRF.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. External Functions ..
public void dpotri(String uplo, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by DPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, as computed by
DPOTRF.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. External Functions ..
public void dpotrs(String uplo, int n, int nrhs, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dpotrs(String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPOTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dppcon(String uplo, int n, double[] ap, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite packed matrix using
the Cholesky factorization A = U**T*U or A = L*L**T computed by
DPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM (input) DOUBLE PRECISION
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dppcon(String uplo, int n, double[] ap, int _ap_offset, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite packed matrix using
the Cholesky factorization A = U**T*U or A = L*L**T computed by
DPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM (input) DOUBLE PRECISION
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dppequ(String uplo, int n, double[] ap, double[] s, org.netlib.util.doubleW scond, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void dppequ(String uplo, int n, double[] ap, int _ap_offset, double[] s, int _s_offset, org.netlib.util.doubleW scond, org.netlib.util.doubleW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void dpprfs(String uplo, int n, int nrhs, double[] ap, double[] afp, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF,
packed columnwise in a linear array in the same format as A
(see AP).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dpprfs(String uplo, int n, int nrhs, double[] ap, int _ap_offset, double[] afp, int _afp_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF,
packed columnwise in a linear array in the same format as A
(see AP).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dppsv(String uplo, int n, int nrhs, double[] ap, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void dppsv(String uplo, int n, int nrhs, double[] ap, int _ap_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void dppsvx(String fact, String uplo, int n, int nrhs, double[] ap, double[] afp, org.netlib.util.StringW equed, double[] s, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFP contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AP and AFP will not
be modified.
= 'N': The matrix A will be copied to AFP and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array, except if FACT = 'F'
and EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). The j-th column of A is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
AFP (input or output) DOUBLE PRECISION array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L', in the same storage
format as A. If EQUED .ne. 'N', then AFP is the factored
form of the equilibrated matrix A.
If FACT = 'N', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the original matrix A.
If FACT = 'E', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the equilibrated
matrix A (see the description of AP for the form of the
equilibrated matrix).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) DOUBLE PRECISION array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void dppsvx(String fact, String uplo, int n, int nrhs, double[] ap, int _ap_offset, double[] afp, int _afp_offset, org.netlib.util.StringW equed, double[] s, int _s_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFP contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AP and AFP will not
be modified.
= 'N': The matrix A will be copied to AFP and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array, except if FACT = 'F'
and EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). The j-th column of A is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
AFP (input or output) DOUBLE PRECISION array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L', in the same storage
format as A. If EQUED .ne. 'N', then AFP is the factored
form of the equilibrated matrix A.
If FACT = 'N', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the original matrix A.
If FACT = 'E', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the equilibrated
matrix A (see the description of AP for the form of the
equilibrated matrix).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) DOUBLE PRECISION array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void dpptrf(String uplo, int n, double[] ap, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A stored in packed format.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
======= =======
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void dpptrf(String uplo, int n, double[] ap, int _ap_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A stored in packed format.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
======= =======
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void dpptri(String uplo, int n, double[] ap, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by DPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor is stored in AP;
= 'L': Lower triangular factor is stored in AP.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, packed columnwise as
a linear array. The j-th column of U or L is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. Parameters ..
public void dpptri(String uplo, int n, double[] ap, int _ap_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by DPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor is stored in AP;
= 'L': Lower triangular factor is stored in AP.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, packed columnwise as
a linear array. The j-th column of U or L is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. Parameters ..
public void dpptrs(String uplo, int n, int nrhs, double[] ap, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A in packed storage using the Cholesky
factorization A = U**T*U or A = L*L**T computed by DPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dpptrs(String uplo, int n, int nrhs, double[] ap, int _ap_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPPTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A in packed storage using the Cholesky
factorization A = U**T*U or A = L*L**T computed by DPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dptcon(int n, double[] d, double[] e, double anorm, org.netlib.util.doubleW rcond, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTCON computes the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite tridiagonal matrix
using the factorization A = L*D*L**T or A = U**T*D*U computed by
DPTTRF.
Norm(inv(A)) is computed by a direct method, and the reciprocal of
the condition number is computed as
RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization of A, as computed by DPTTRF.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal factor
U or L from the factorization of A, as computed by DPTTRF.
ANORM (input) DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The method used is described in Nicholas J. Higham, "Efficient
Algorithms for Computing the Condition Number of a Tridiagonal
Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
=====================================================================
.. Parameters ..
public void dptcon(int n, double[] d, int _d_offset, double[] e, int _e_offset, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTCON computes the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite tridiagonal matrix
using the factorization A = L*D*L**T or A = U**T*D*U computed by
DPTTRF.
Norm(inv(A)) is computed by a direct method, and the reciprocal of
the condition number is computed as
RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization of A, as computed by DPTTRF.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal factor
U or L from the factorization of A, as computed by DPTTRF.
ANORM (input) DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The method used is described in Nicholas J. Higham, "Efficient
Algorithms for Computing the Condition Number of a Tridiagonal
Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
=====================================================================
.. Parameters ..
public void dpteqr(String compz, int n, double[] d, double[] e, double[] z, int ldz, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric positive definite tridiagonal matrix by first factoring the
matrix using DPTTRF, and then calling DBDSQR to compute the singular
values of the bidiagonal factor.
This routine computes the eigenvalues of the positive definite
tridiagonal matrix to high relative accuracy. This means that if the
eigenvalues range over many orders of magnitude in size, then the
small eigenvalues and corresponding eigenvectors will be computed
more accurately than, for example, with the standard QR method.
The eigenvectors of a full or band symmetric positive definite matrix
can also be found if DSYTRD, DSPTRD, or DSBTRD has been used to
reduce this matrix to tridiagonal form. (The reduction to tridiagonal
form, however, may preclude the possibility of obtaining high
relative accuracy in the small eigenvalues of the original matrix, if
these eigenvalues range over many orders of magnitude.)
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvectors of original symmetric
matrix also. Array Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
= 'I': Compute eigenvectors of tridiagonal matrix also.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal
matrix.
On normal exit, D contains the eigenvalues, in descending
order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix used in the
reduction to tridiagonal form.
On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
original symmetric matrix;
if COMPZ = 'I', the orthonormal eigenvectors of the
tridiagonal matrix.
If INFO > 0 on exit, Z contains the eigenvectors associated
with only the stored eigenvalues.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
COMPZ = 'V' or 'I', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is:
<= N the Cholesky factorization of the matrix could
not be performed because the i-th principal minor
was not positive definite.
> N the SVD algorithm failed to converge;
if INFO = N+i, i off-diagonal elements of the
bidiagonal factor did not converge to zero.
=====================================================================
.. Parameters ..
public void dpteqr(String compz, int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric positive definite tridiagonal matrix by first factoring the
matrix using DPTTRF, and then calling DBDSQR to compute the singular
values of the bidiagonal factor.
This routine computes the eigenvalues of the positive definite
tridiagonal matrix to high relative accuracy. This means that if the
eigenvalues range over many orders of magnitude in size, then the
small eigenvalues and corresponding eigenvectors will be computed
more accurately than, for example, with the standard QR method.
The eigenvectors of a full or band symmetric positive definite matrix
can also be found if DSYTRD, DSPTRD, or DSBTRD has been used to
reduce this matrix to tridiagonal form. (The reduction to tridiagonal
form, however, may preclude the possibility of obtaining high
relative accuracy in the small eigenvalues of the original matrix, if
these eigenvalues range over many orders of magnitude.)
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvectors of original symmetric
matrix also. Array Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
= 'I': Compute eigenvectors of tridiagonal matrix also.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal
matrix.
On normal exit, D contains the eigenvalues, in descending
order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix used in the
reduction to tridiagonal form.
On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
original symmetric matrix;
if COMPZ = 'I', the orthonormal eigenvectors of the
tridiagonal matrix.
If INFO > 0 on exit, Z contains the eigenvectors associated
with only the stored eigenvalues.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
COMPZ = 'V' or 'I', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is:
<= N the Cholesky factorization of the matrix could
not be performed because the i-th principal minor
was not positive definite.
> N the SVD algorithm failed to converge;
if INFO = N+i, i off-diagonal elements of the
bidiagonal factor did not converge to zero.
=====================================================================
.. Parameters ..
public void dptrfs(int n, int nrhs, double[] d, double[] e, double[] df, double[] ef, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by DPTTRF.
EF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by DPTTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dptrfs(int n, int nrhs, double[] d, int _d_offset, double[] e, int _e_offset, double[] df, int _df_offset, double[] ef, int _ef_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by DPTTRF.
EF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by DPTTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dptsv(int n, int nrhs, double[] d, double[] e, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTSV computes the solution to a real system of linear equations
A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**T, and the factored form of A is then
used to solve the system of equations.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**T.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**T factorization of
A. (E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**T*D*U factorization of A.)
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the solution has not been
computed. The factorization has not been completed
unless i = N.
=====================================================================
.. External Subroutines ..
public void dptsv(int n, int nrhs, double[] d, int _d_offset, double[] e, int _e_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTSV computes the solution to a real system of linear equations
A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**T, and the factored form of A is then
used to solve the system of equations.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**T.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**T factorization of
A. (E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**T*D*U factorization of A.)
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the solution has not been
computed. The factorization has not been completed
unless i = N.
=====================================================================
.. External Subroutines ..
public void dptsvx(String fact, int n, int nrhs, double[] d, double[] e, double[] df, double[] ef, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTSVX uses the factorization A = L*D*L**T to compute the solution
to a real system of linear equations A*X = B, where A is an N-by-N
symmetric positive definite tridiagonal matrix and X and B are
N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
is a unit lower bidiagonal matrix and D is diagonal. The
factorization can also be regarded as having the form
A = U**T*D*U.
2. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, DF and EF contain the factored form of A.
D, E, DF, and EF will not be modified.
= 'N': The matrix A will be copied to DF and EF and
factored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input or output) DOUBLE PRECISION array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
EF (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then EF is an input argument and on entry
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
If FACT = 'N', then EF is an output argument and on exit
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The reciprocal condition number of the matrix A. If RCOND
is less than the machine precision (in particular, if
RCOND = 0), the matrix is singular to working precision.
This condition is indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in any
element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dptsvx(String fact, int n, int nrhs, double[] d, int _d_offset, double[] e, int _e_offset, double[] df, int _df_offset, double[] ef, int _ef_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTSVX uses the factorization A = L*D*L**T to compute the solution
to a real system of linear equations A*X = B, where A is an N-by-N
symmetric positive definite tridiagonal matrix and X and B are
N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
is a unit lower bidiagonal matrix and D is diagonal. The
factorization can also be regarded as having the form
A = U**T*D*U.
2. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, DF and EF contain the factored form of A.
D, E, DF, and EF will not be modified.
= 'N': The matrix A will be copied to DF and EF and
factored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input or output) DOUBLE PRECISION array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
EF (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then EF is an input argument and on entry
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
If FACT = 'N', then EF is an output argument and on exit
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The reciprocal condition number of the matrix A. If RCOND
is less than the machine precision (in particular, if
RCOND = 0), the matrix is singular to working precision.
This condition is indicated by a return code of INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in any
element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dpttrf(int n, double[] d, double[] e, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTTRF computes the L*D*L' factorization of a real symmetric
positive definite tridiagonal matrix A. The factorization may also
be regarded as having the form A = U'*D*U.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the L*D*L' factorization of A.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L' factorization of A.
E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U'*D*U factorization of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite; if k < N, the factorization could not
be completed, while if k = N, the factorization was
completed, but D(N) <= 0.
=====================================================================
.. Parameters ..
public void dpttrf(int n, double[] d, int _d_offset, double[] e, int _e_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTTRF computes the L*D*L' factorization of a real symmetric
positive definite tridiagonal matrix A. The factorization may also
be regarded as having the form A = U'*D*U.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the L*D*L' factorization of A.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L' factorization of A.
E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U'*D*U factorization of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite; if k < N, the factorization could not
be completed, while if k = N, the factorization was
completed, but D(N) <= 0.
=====================================================================
.. Parameters ..
public void dpttrs(int n, int nrhs, double[] d, double[] e, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTTRS solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by DPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dpttrs(int n, int nrhs, double[] d, int _d_offset, double[] e, int _e_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DPTTRS solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by DPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void dptts2(int n, int nrhs, double[] d, double[] e, double[] b, int ldb)
LAPACK
..
Purpose
=======
DPTTS2 solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by DPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void dptts2(int n, int nrhs, double[] d, int _d_offset, double[] e, int _e_offset, double[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
DPTTS2 solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by DPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void drscl(int n, double sa, double[] sx, int incx)
LAPACK
..
Purpose
=======
DRSCL multiplies an n-element real vector x by the real scalar 1/a.
This is done without overflow or underflow as long as
the final result x/a does not overflow or underflow.
Arguments
=========
N (input) INTEGER
The number of components of the vector x.
SA (input) DOUBLE PRECISION
The scalar a which is used to divide each component of x.
SA must be >= 0, or the subroutine will divide by zero.
SX (input/output) DOUBLE PRECISION array, dimension
(1+(N-1)*abs(INCX))
The n-element vector x.
INCX (input) INTEGER
The increment between successive values of the vector SX.
> 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
=====================================================================
.. Parameters ..
public void drscl(int n, double sa, double[] sx, int _sx_offset, int incx)
LAPACK
..
Purpose
=======
DRSCL multiplies an n-element real vector x by the real scalar 1/a.
This is done without overflow or underflow as long as
the final result x/a does not overflow or underflow.
Arguments
=========
N (input) INTEGER
The number of components of the vector x.
SA (input) DOUBLE PRECISION
The scalar a which is used to divide each component of x.
SA must be >= 0, or the subroutine will divide by zero.
SX (input/output) DOUBLE PRECISION array, dimension
(1+(N-1)*abs(INCX))
The n-element vector x.
INCX (input) INTEGER
The increment between successive values of the vector SX.
> 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
=====================================================================
.. Parameters ..
public void dsbev(String jobz, String uplo, int n, int kd, double[] ab, int ldab, double[] w, double[] z, int ldz, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBEV computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dsbev(String jobz, String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBEV computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dsbevd(String jobz, String uplo, int n, int kd, double[] ab, int ldab, double[] w, double[] z, int ldz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A. If eigenvectors are desired, it uses
a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
IF N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 2, LWORK must be at least
( 1 + 5*N + 2*N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array LIWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dsbevd(String jobz, String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A. If eigenvectors are desired, it uses
a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
IF N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 2, LWORK must be at least
( 1 + 5*N + 2*N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array LIWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dsbevx(String jobz, String range, String uplo, int n, int kd, double[] ab, int ldab, double[] q, int ldq, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, double[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric band matrix A. Eigenvalues and eigenvectors can
be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
Q (output) DOUBLE PRECISION array, dimension (LDQ, N)
If JOBZ = 'V', the N-by-N orthogonal matrix used in the
reduction to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'V', then
LDQ >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AB to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (7*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dsbevx(String jobz, String range, String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, double[] q, int _q_offset, int ldq, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric band matrix A. Eigenvalues and eigenvectors can
be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
Q (output) DOUBLE PRECISION array, dimension (LDQ, N)
If JOBZ = 'V', the N-by-N orthogonal matrix used in the
reduction to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'V', then
LDQ >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AB to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (7*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dsbgst(String vect, String uplo, int n, int ka, int kb, double[] ab, int ldab, double[] bb, int ldbb, double[] x, int ldx, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGST reduces a real symmetric-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by DPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**T*A*X, where
X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the
bandwidth of A.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**T*A*X, stored in the same
format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input) DOUBLE PRECISION array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by DPBSTF, stored in the first KB+1 rows of
the array.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
X (output) DOUBLE PRECISION array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.
LDX (input) INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dsbgst(String vect, String uplo, int n, int ka, int kb, double[] ab, int _ab_offset, int ldab, double[] bb, int _bb_offset, int ldbb, double[] x, int _x_offset, int ldx, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGST reduces a real symmetric-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by DPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**T*A*X, where
X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the
bandwidth of A.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**T*A*X, stored in the same
format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input) DOUBLE PRECISION array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by DPBSTF, stored in the first KB+1 rows of
the array.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
X (output) DOUBLE PRECISION array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.
LDX (input) INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dsbgv(String jobz, String uplo, int n, int ka, int kb, double[] ab, int ldab, double[] bb, int ldbb, double[] w, double[] z, int ldz, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by DPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so that Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= N.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then DPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void dsbgv(String jobz, String uplo, int n, int ka, int kb, double[] ab, int _ab_offset, int ldab, double[] bb, int _bb_offset, int ldbb, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by DPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so that Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= N.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then DPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void dsbgvd(String jobz, String uplo, int n, int ka, int kb, double[] ab, int ldab, double[] bb, int ldbb, double[] w, double[] z, int ldz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the
form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and
banded, and B is also positive definite. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by DPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 3*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then DPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dsbgvd(String jobz, String uplo, int n, int ka, int kb, double[] ab, int _ab_offset, int ldab, double[] bb, int _bb_offset, int ldbb, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the
form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and
banded, and B is also positive definite. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by DPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 3*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then DPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dsbgvx(String jobz, String range, String uplo, int n, int ka, int kb, double[] ab, int ldab, double[] bb, int ldbb, double[] q, int ldq, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, double[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either all eigenvalues,
a range of values or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by DPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
Q (output) DOUBLE PRECISION array, dimension (LDQ, N)
If JOBZ = 'V', the n-by-n matrix used in the reduction of
A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
and consequently C to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'N',
LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (7*N)
IWORK (workspace/output) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (M)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvalues that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0 : successful exit
< 0 : if INFO = -i, the i-th argument had an illegal value
<= N: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in IFAIL.
> N : DPBSTF returned an error code; i.e.,
if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dsbgvx(String jobz, String range, String uplo, int n, int ka, int kb, double[] ab, int _ab_offset, int ldab, double[] bb, int _bb_offset, int ldbb, double[] q, int _q_offset, int ldq, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either all eigenvalues,
a range of values or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by DPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
Q (output) DOUBLE PRECISION array, dimension (LDQ, N)
If JOBZ = 'V', the n-by-n matrix used in the reduction of
A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
and consequently C to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'N',
LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (7*N)
IWORK (workspace/output) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (M)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvalues that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0 : successful exit
< 0 : if INFO = -i, the i-th argument had an illegal value
<= N: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in IFAIL.
> N : DPBSTF returned an error code; i.e.,
if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dsbtrd(String vect, String uplo, int n, int kd, double[] ab, int ldab, double[] d, double[] e, double[] q, int ldq, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Modified by Linda Kaufman, Bell Labs.
=====================================================================
.. Parameters ..
public void dsbtrd(String vect, String uplo, int n, int kd, double[] ab, int _ab_offset, int ldab, double[] d, int _d_offset, double[] e, int _e_offset, double[] q, int _q_offset, int ldq, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Modified by Linda Kaufman, Bell Labs.
=====================================================================
.. Parameters ..
public void dsgesv(int n, int nrhs, double[] a, int lda, int[] ipiv, double[] b, int ldb, double[] x, int ldx, double[] work, float[] swork, org.netlib.util.intW iter, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
DSGESV first attempts to factorize the matrix in SINGLE PRECISION
and use this factorization within an iterative refinement procedure t
produce a solution with DOUBLE PRECISION normwise backward error
quality (see below). If the approach fails the method switches to a
DOUBLE PRECISION factorization and solve.
The iterative refinement is not going to be a winning strategy if
the ratio SINGLE PRECISION performance over DOUBLE PRECISION performa
is too small. A reasonable strategy should take the number of right-h
sides and the size of the matrix into account. This might be done wit
call to ILAENV in the future. Up to now, we always try iterative refi
The iterative refinement process is stopped if
ITER > ITERMAX
or for all the RHS we have:
RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
where
o ITER is the number of the current iteration in the iterative
refinement process
o RNRM is the infinity-norm of the residual
o XNRM is the infinity-norm of the solution
o ANRM is the infinity-operator-norm of the matrix A
o EPS is the machine epsilon returned by DLAMCH('Epsilon')
The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input or input/ouptut) DOUBLE PRECISION array,
dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, if iterative refinement has been successfully used
(INFO.EQ.0 and ITER.GE.0, see description below), then A is
unchanged, if double precision factorization has been used
(INFO.EQ.0 and ITER.LT.0, see description below), then the
array A contains the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
Corresponds either to the single precision factorization
(if INFO.EQ.0 and ITER.GE.0) or the double precision
factorization (if INFO.EQ.0 and ITER.LT.0).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS matrix of right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (N*NRHS)
This array is used to hold the residual vectors.
SWORK (workspace) REAL array, dimension (N*(N+NRHS))
This array is used to use the single precision matrix and the
right-hand sides or solutions in single precision.
ITER (output) INTEGER
< 0: iterative refinement has failed, double precision
factorization has been performed
-1 : taking into account machine parameters, N, NRHS, it
is a priori not worth working in SINGLE PRECISION
-2 : overflow of an entry when moving from double to
SINGLE PRECISION
-3 : failure of SGETRF
-31: stop the iterative refinement after the 30th
iterations
> 0: iterative refinement has been sucessfully used.
Returns the number of iterations
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is
exactly zero. The factorization has been completed,
but the factor U is exactly singular, so the solution
could not be computed.
=========
.. Parameters ..
public void dsgesv(int n, int nrhs, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] work, int _work_offset, float[] swork, int _swork_offset, org.netlib.util.intW iter, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
DSGESV first attempts to factorize the matrix in SINGLE PRECISION
and use this factorization within an iterative refinement procedure t
produce a solution with DOUBLE PRECISION normwise backward error
quality (see below). If the approach fails the method switches to a
DOUBLE PRECISION factorization and solve.
The iterative refinement is not going to be a winning strategy if
the ratio SINGLE PRECISION performance over DOUBLE PRECISION performa
is too small. A reasonable strategy should take the number of right-h
sides and the size of the matrix into account. This might be done wit
call to ILAENV in the future. Up to now, we always try iterative refi
The iterative refinement process is stopped if
ITER > ITERMAX
or for all the RHS we have:
RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
where
o ITER is the number of the current iteration in the iterative
refinement process
o RNRM is the infinity-norm of the residual
o XNRM is the infinity-norm of the solution
o ANRM is the infinity-operator-norm of the matrix A
o EPS is the machine epsilon returned by DLAMCH('Epsilon')
The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input or input/ouptut) DOUBLE PRECISION array,
dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, if iterative refinement has been successfully used
(INFO.EQ.0 and ITER.GE.0, see description below), then A is
unchanged, if double precision factorization has been used
(INFO.EQ.0 and ITER.LT.0, see description below), then the
array A contains the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
Corresponds either to the single precision factorization
(if INFO.EQ.0 and ITER.GE.0) or the double precision
factorization (if INFO.EQ.0 and ITER.LT.0).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS matrix of right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (N*NRHS)
This array is used to hold the residual vectors.
SWORK (workspace) REAL array, dimension (N*(N+NRHS))
This array is used to use the single precision matrix and the
right-hand sides or solutions in single precision.
ITER (output) INTEGER
< 0: iterative refinement has failed, double precision
factorization has been performed
-1 : taking into account machine parameters, N, NRHS, it
is a priori not worth working in SINGLE PRECISION
-2 : overflow of an entry when moving from double to
SINGLE PRECISION
-3 : failure of SGETRF
-31: stop the iterative refinement after the 30th
iterations
> 0: iterative refinement has been sucessfully used.
Returns the number of iterations
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is
exactly zero. The factorization has been completed,
but the factor U is exactly singular, so the solution
could not be computed.
=========
.. Parameters ..
public void dspcon(String uplo, int n, double[] ap, int[] ipiv, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric packed matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
ANORM (input) DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dspcon(String uplo, int n, double[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric packed matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
ANORM (input) DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dspev(String jobz, String uplo, int n, double[] ap, double[] w, double[] z, int ldz, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPEV computes all the eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A in packed storage.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dspev(String jobz, String uplo, int n, double[] ap, int _ap_offset, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPEV computes all the eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A in packed storage.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dspevd(String jobz, String uplo, int n, double[] ap, double[] w, double[] z, int ldz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPEVD computes all the eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dspevd(String jobz, String uplo, int n, double[] ap, int _ap_offset, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPEVD computes all the eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dspevx(String jobz, String range, String uplo, int n, double[] ap, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, double[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. Eigenvalues/vectors
can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AP to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the selected eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dspevx(String jobz, String range, String uplo, int n, double[] ap, int _ap_offset, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. Eigenvalues/vectors
can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AP to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the selected eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dspgst(int itype, String uplo, int n, double[] ap, double[] bp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGST reduces a real symmetric-definite generalized eigenproblem
to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by DPPTRF.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dspgst(int itype, String uplo, int n, double[] ap, int _ap_offset, double[] bp, int _bp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGST reduces a real symmetric-definite generalized eigenproblem
to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by DPPTRF.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dspgv(int itype, String jobz, String uplo, int n, double[] ap, double[] bp, double[] w, double[] z, int ldz, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGV computes all the eigenvalues and, optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric, stored in packed format,
and B is also positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension
(N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPPTRF or DSPEV returned an error code:
<= N: if INFO = i, DSPEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.
> N: if INFO = n + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void dspgv(int itype, String jobz, String uplo, int n, double[] ap, int _ap_offset, double[] bp, int _bp_offset, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGV computes all the eigenvalues and, optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric, stored in packed format,
and B is also positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension
(N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPPTRF or DSPEV returned an error code:
<= N: if INFO = i, DSPEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.
> N: if INFO = n + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void dspgvd(int itype, String jobz, String uplo, int n, double[] ap, double[] bp, double[] w, double[] z, int ldz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPPTRF or DSPEVD returned an error code:
<= N: if INFO = i, DSPEVD failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dspgvd(int itype, String jobz, String uplo, int n, double[] ap, int _ap_offset, double[] bp, int _bp_offset, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPPTRF or DSPEVD returned an error code:
<= N: if INFO = i, DSPEVD failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dspgvx(int itype, String jobz, String range, String uplo, int n, double[] ap, double[] bp, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, double[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric, stored in packed storage, and B
is also positive definite. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPPTRF or DSPEVX returned an error code:
<= N: if INFO = i, DSPEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Local Scalars ..
public void dspgvx(int itype, String jobz, String range, String uplo, int n, double[] ap, int _ap_offset, double[] bp, int _bp_offset, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric, stored in packed storage, and B
is also positive definite. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPPTRF or DSPEVX returned an error code:
<= N: if INFO = i, DSPEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Local Scalars ..
public void dsprfs(String uplo, int n, int nrhs, double[] ap, double[] afp, int[] ipiv, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The factored form of the matrix A. AFP contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by DSPTRF, stored as a packed
triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DSPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dsprfs(String uplo, int n, int nrhs, double[] ap, int _ap_offset, double[] afp, int _afp_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The factored form of the matrix A. AFP contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by DSPTRF, stored as a packed
triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DSPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dspsv(String uplo, int n, int nrhs, double[] ap, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is symmetric and block diagonal with 1-by-1
and 2-by-2 diagonal blocks. The factored form of A is then used to
solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by DSPTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be
computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void dspsv(String uplo, int n, int nrhs, double[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is symmetric and block diagonal with 1-by-1
and 2-by-2 diagonal blocks. The factored form of A is then used to
solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by DSPTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be
computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void dspsvx(String fact, String uplo, int n, int nrhs, double[] ap, double[] afp, int[] ipiv, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
A = L*D*L**T to compute the solution to a real system of linear
equations A * X = B, where A is an N-by-N symmetric matrix stored
in packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AFP and IPIV contain the factored form of
A. AP, AFP and IPIV will not be modified.
= 'N': The matrix A will be copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
AFP (input or output) DOUBLE PRECISION array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
If FACT = 'N', then AFP is an output argument and on exit
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by DSPTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by DSPTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void dspsvx(String fact, String uplo, int n, int nrhs, double[] ap, int _ap_offset, double[] afp, int _afp_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
A = L*D*L**T to compute the solution to a real system of linear
equations A * X = B, where A is an N-by-N symmetric matrix stored
in packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AFP and IPIV contain the factored form of
A. AP, AFP and IPIV will not be modified.
= 'N': The matrix A will be copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
AFP (input or output) DOUBLE PRECISION array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
If FACT = 'N', then AFP is an output argument and on exit
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by DSPTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by DSPTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void dsptrd(String uplo, int n, double[] ap, double[] d, double[] e, double[] tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRD reduces a real symmetric matrix A stored in packed form to
symmetric tridiagonal form T by an orthogonal similarity
transformation: Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
overwriting A(i+2:n,i), and tau is stored in TAU(i).
=====================================================================
.. Parameters ..
public void dsptrd(String uplo, int n, double[] ap, int _ap_offset, double[] d, int _d_offset, double[] e, int _e_offset, double[] tau, int _tau_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRD reduces a real symmetric matrix A stored in packed form to
symmetric tridiagonal form T by an orthogonal similarity
transformation: Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
overwriting A(i+2:n,i), and tau is stored in TAU(i).
=====================================================================
.. Parameters ..
public void dsptrf(String uplo, int n, double[] ap, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRF computes the factorization of a real symmetric matrix A stored
in packed format using the Bunch-Kaufman diagonal pivoting method:
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L, stored as a packed triangular
matrix overwriting A (see below for further details).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
5-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void dsptrf(String uplo, int n, double[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRF computes the factorization of a real symmetric matrix A stored
in packed format using the Bunch-Kaufman diagonal pivoting method:
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L, stored as a packed triangular
matrix overwriting A (see below for further details).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
5-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void dsptri(String uplo, int n, double[] ap, int[] ipiv, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRI computes the inverse of a real symmetric indefinite matrix
A in packed storage using the factorization A = U*D*U**T or
A = L*D*L**T computed by DSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by DSPTRF,
stored as a packed triangular matrix.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix, stored as a packed triangular matrix. The j-th column
of inv(A) is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
if UPLO = 'L',
AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void dsptri(String uplo, int n, double[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRI computes the inverse of a real symmetric indefinite matrix
A in packed storage using the factorization A = U*D*U**T or
A = L*D*L**T computed by DSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by DSPTRF,
stored as a packed triangular matrix.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix, stored as a packed triangular matrix. The j-th column
of inv(A) is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
if UPLO = 'L',
AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void dsptrs(String uplo, int n, int nrhs, double[] ap, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRS solves a system of linear equations A*X = B with a real
symmetric matrix A stored in packed format using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dsptrs(String uplo, int n, int nrhs, double[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSPTRS solves a system of linear equations A*X = B with a real
symmetric matrix A stored in packed format using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dstebz(String range, String order, int n, double vl, double vu, int il, int iu, double abstol, double[] d, double[] e, org.netlib.util.intW m, org.netlib.util.intW nsplit, double[] w, int[] iblock, int[] isplit, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEBZ computes the eigenvalues of a symmetric tridiagonal
matrix T. The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER*1
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER*1
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute tolerance for the eigenvalues. An eigenvalue
(or cluster) is considered to be located if it has been
determined to lie in an interval whose width is ABSTOL or
less. If ABSTOL is less than or equal to zero, then ULP*|T|
will be used, where |T| means the 1-norm of T.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
NSPLIT (output) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
W (output) DOUBLE PRECISION array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalues. (DSTEBZ may use the remaining N-M elements as
workspace.)
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (DSTEBZ may use the remaining N-M elements as
workspace.)
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
RELFAC DOUBLE PRECISION, default = 2.0e0
The relative tolerance. An interval (a,b] lies within
"relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
where "ulp" is the machine precision (distance from 1 to
the next larger floating point number.)
FUDGE DOUBLE PRECISION, default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
=====================================================================
.. Parameters ..
public void dstebz(String range, String order, int n, double vl, double vu, int il, int iu, double abstol, double[] d, int _d_offset, double[] e, int _e_offset, org.netlib.util.intW m, org.netlib.util.intW nsplit, double[] w, int _w_offset, int[] iblock, int _iblock_offset, int[] isplit, int _isplit_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEBZ computes the eigenvalues of a symmetric tridiagonal
matrix T. The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER*1
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER*1
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute tolerance for the eigenvalues. An eigenvalue
(or cluster) is considered to be located if it has been
determined to lie in an interval whose width is ABSTOL or
less. If ABSTOL is less than or equal to zero, then ULP*|T|
will be used, where |T| means the 1-norm of T.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
NSPLIT (output) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
W (output) DOUBLE PRECISION array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalues. (DSTEBZ may use the remaining N-M elements as
workspace.)
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (DSTEBZ may use the remaining N-M elements as
workspace.)
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
RELFAC DOUBLE PRECISION, default = 2.0e0
The relative tolerance. An interval (a,b] lies within
"relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
where "ulp" is the machine precision (distance from 1 to
the next larger floating point number.)
FUDGE DOUBLE PRECISION, default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
=====================================================================
.. Parameters ..
public void dstedc(String compz, int n, double[] d, double[] e, double[] z, int ldz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric matrix can also be
found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
matrix to tridiagonal form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See DLAED3 for details.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'I': Compute eigenvectors of tridiagonal matrix also.
= 'V': Compute eigenvectors of original dense symmetric
matrix also. On entry, Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LWORK must be at least
( 1 + 3*N + 2*N*lg N + 3*N**2 ),
where lg( N ) = smallest integer k such
that 2**k >= N.
If COMPZ = 'I' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LWORK need
only be max(1,2*(N-1)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LIWORK must be at least
( 6 + 6*N + 5*N*lg N ).
If COMPZ = 'I' and N > 1 then LIWORK must be at least
( 3 + 5*N ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LIWORK
need only be 1.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void dstedc(String compz, int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric matrix can also be
found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
matrix to tridiagonal form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See DLAED3 for details.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'I': Compute eigenvectors of tridiagonal matrix also.
= 'V': Compute eigenvectors of original dense symmetric
matrix also. On entry, Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LWORK must be at least
( 1 + 3*N + 2*N*lg N + 3*N**2 ),
where lg( N ) = smallest integer k such
that 2**k >= N.
If COMPZ = 'I' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LWORK need
only be max(1,2*(N-1)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LIWORK must be at least
( 6 + 6*N + 5*N*lg N ).
If COMPZ = 'I' and N > 1 then LIWORK must be at least
( 3 + 5*N ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LIWORK
need only be 1.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void dstegr(String jobz, String range, int n, double[] d, double[] e, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, int[] isuppz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEGR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
DSTEGR is a compatability wrapper around the improved DSTEMR routine.
See DSTEMR for further details.
One important change is that the ABSTOL parameter no longer provides
benefit and hence is no longer used.
Note : DSTEGR and DSTEMR work only on machines which follow
IEEE-754 floating-point standard in their handling of infinities and
NaNs. Normal execution may create these exceptiona values and hence
may abort due to a floating point exception in environments which
do not conform to the IEEE-754 standard.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
Unused. Was the absolute error tolerance for the
eigenvalues/eigenvectors in previous versions.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in DLARRE,
if INFO = 2X, internal error in DLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by DLARRE or
DLARRV, respectively.
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, LBNL/NERSC, USA
=====================================================================
.. Local Scalars ..
public void dstegr(String jobz, String range, int n, double[] d, int _d_offset, double[] e, int _e_offset, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEGR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
DSTEGR is a compatability wrapper around the improved DSTEMR routine.
See DSTEMR for further details.
One important change is that the ABSTOL parameter no longer provides
benefit and hence is no longer used.
Note : DSTEGR and DSTEMR work only on machines which follow
IEEE-754 floating-point standard in their handling of infinities and
NaNs. Normal execution may create these exceptiona values and hence
may abort due to a floating point exception in environments which
do not conform to the IEEE-754 standard.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
Unused. Was the absolute error tolerance for the
eigenvalues/eigenvectors in previous versions.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in DLARRE,
if INFO = 2X, internal error in DLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by DLARRE or
DLARRV, respectively.
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, LBNL/NERSC, USA
=====================================================================
.. Local Scalars ..
public void dstein(int n, double[] d, double[] e, int m, double[] w, int[] iblock, int[] isplit, double[] z, int ldz, double[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEIN computes the eigenvectors of a real symmetric tridiagonal
matrix T corresponding to specified eigenvalues, using inverse
iteration.
The maximum number of iterations allowed for each eigenvector is
specified by an internal parameter MAXITS (currently set to 5).
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix
T, in elements 1 to N-1.
M (input) INTEGER
The number of eigenvectors to be found. 0 <= M <= N.
W (input) DOUBLE PRECISION array, dimension (N)
The first M elements of W contain the eigenvalues for
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block. ( The output array
W from DSTEBZ with ORDER = 'B' is expected here. )
IBLOCK (input) INTEGER array, dimension (N)
The submatrix indices associated with the corresponding
eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
the first submatrix from the top, =2 if W(i) belongs to
the second submatrix, etc. ( The output array IBLOCK
from DSTEBZ is expected here. )
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
( The output array ISPLIT from DSTEBZ is expected here. )
Z (output) DOUBLE PRECISION array, dimension (LDZ, M)
The computed eigenvectors. The eigenvector associated
with the eigenvalue W(i) is stored in the i-th column of
Z. Any vector which fails to converge is set to its current
iterate after MAXITS iterations.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (N)
IFAIL (output) INTEGER array, dimension (M)
On normal exit, all elements of IFAIL are zero.
If one or more eigenvectors fail to converge after
MAXITS iterations, then their indices are stored in
array IFAIL.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge
in MAXITS iterations. Their indices are stored in
array IFAIL.
Internal Parameters
===================
MAXITS INTEGER, default = 5
The maximum number of iterations performed.
EXTRA INTEGER, default = 2
The number of iterations performed after norm growth
criterion is satisfied, should be at least 1.
=====================================================================
.. Parameters ..
public void dstein(int n, double[] d, int _d_offset, double[] e, int _e_offset, int m, double[] w, int _w_offset, int[] iblock, int _iblock_offset, int[] isplit, int _isplit_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEIN computes the eigenvectors of a real symmetric tridiagonal
matrix T corresponding to specified eigenvalues, using inverse
iteration.
The maximum number of iterations allowed for each eigenvector is
specified by an internal parameter MAXITS (currently set to 5).
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix
T, in elements 1 to N-1.
M (input) INTEGER
The number of eigenvectors to be found. 0 <= M <= N.
W (input) DOUBLE PRECISION array, dimension (N)
The first M elements of W contain the eigenvalues for
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block. ( The output array
W from DSTEBZ with ORDER = 'B' is expected here. )
IBLOCK (input) INTEGER array, dimension (N)
The submatrix indices associated with the corresponding
eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
the first submatrix from the top, =2 if W(i) belongs to
the second submatrix, etc. ( The output array IBLOCK
from DSTEBZ is expected here. )
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
( The output array ISPLIT from DSTEBZ is expected here. )
Z (output) DOUBLE PRECISION array, dimension (LDZ, M)
The computed eigenvectors. The eigenvector associated
with the eigenvalue W(i) is stored in the i-th column of
Z. Any vector which fails to converge is set to its current
iterate after MAXITS iterations.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (N)
IFAIL (output) INTEGER array, dimension (M)
On normal exit, all elements of IFAIL are zero.
If one or more eigenvectors fail to converge after
MAXITS iterations, then their indices are stored in
array IFAIL.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge
in MAXITS iterations. Their indices are stored in
array IFAIL.
Internal Parameters
===================
MAXITS INTEGER, default = 5
The maximum number of iterations performed.
EXTRA INTEGER, default = 2
The number of iterations performed after norm growth
criterion is satisfied, should be at least 1.
=====================================================================
.. Parameters ..
public void dstemr(String jobz, String range, int n, double[] d, double[] e, double vl, double vu, int il, int iu, org.netlib.util.intW m, double[] w, double[] z, int ldz, int nzc, int[] isuppz, org.netlib.util.booleanW tryrac, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEMR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
Depending on the number of desired eigenvalues, these are computed ei
by bisection or the dqds algorithm. Numerically orthogonal eigenvecto
computed by the use of various suitable L D L^T factorizations near c
of close eigenvalues (referred to as RRRs, Relatively Robust
Representations). An informal sketch of the algorithm follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
For more details, see:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Notes:
1.DSTEMR works only on machines which follow IEEE-754
floating-point standard in their handling of infinities and NaNs.
This permits the use of efficient inner loops avoiding a check for
zero divisors.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and can be computed with a workspace
query by setting NZC = -1, see below.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
NZC (input) INTEGER
The number of eigenvectors to be held in the array Z.
If RANGE = 'A', then NZC >= max(1,N).
If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,
If RANGE = 'I', then NZC >= IU-IL+1.
If NZC = -1, then a workspace query is assumed; the
routine calculates the number of columns of the array Z that
are needed to hold the eigenvectors.
This value is returned as the first entry of the Z array, and
no error message related to NZC is issued by XERBLA.
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
TRYRAC (input/output) LOGICAL
If TRYRAC.EQ..TRUE., indicates that the code should check whe
the tridiagonal matrix defines its eigenvalues to high relati
accuracy. If so, the code uses relative-accuracy preserving
algorithms that might be (a bit) slower depending on the matr
If the matrix does not define its eigenvalues to high relativ
accuracy, the code can uses possibly faster algorithms.
If TRYRAC.EQ..FALSE., the code is not required to guarantee
relatively accurate eigenvalues and can use the fastest possi
techniques.
On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
does not define its eigenvalues to high relative accuracy.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in DLARRE,
if INFO = 2X, internal error in DLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by DLARRE or
DLARRV, respectively.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dstemr(String jobz, String range, int n, double[] d, int _d_offset, double[] e, int _e_offset, double vl, double vu, int il, int iu, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, int nzc, int[] isuppz, int _isuppz_offset, org.netlib.util.booleanW tryrac, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEMR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
Depending on the number of desired eigenvalues, these are computed ei
by bisection or the dqds algorithm. Numerically orthogonal eigenvecto
computed by the use of various suitable L D L^T factorizations near c
of close eigenvalues (referred to as RRRs, Relatively Robust
Representations). An informal sketch of the algorithm follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
For more details, see:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Notes:
1.DSTEMR works only on machines which follow IEEE-754
floating-point standard in their handling of infinities and NaNs.
This permits the use of efficient inner loops avoiding a check for
zero divisors.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and can be computed with a workspace
query by setting NZC = -1, see below.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
NZC (input) INTEGER
The number of eigenvectors to be held in the array Z.
If RANGE = 'A', then NZC >= max(1,N).
If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,
If RANGE = 'I', then NZC >= IU-IL+1.
If NZC = -1, then a workspace query is assumed; the
routine calculates the number of columns of the array Z that
are needed to hold the eigenvectors.
This value is returned as the first entry of the Z array, and
no error message related to NZC is issued by XERBLA.
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
TRYRAC (input/output) LOGICAL
If TRYRAC.EQ..TRUE., indicates that the code should check whe
the tridiagonal matrix defines its eigenvalues to high relati
accuracy. If so, the code uses relative-accuracy preserving
algorithms that might be (a bit) slower depending on the matr
If the matrix does not define its eigenvalues to high relativ
accuracy, the code can uses possibly faster algorithms.
If TRYRAC.EQ..FALSE., the code is not required to guarantee
relatively accurate eigenvalues and can use the fastest possi
techniques.
On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
does not define its eigenvalues to high relative accuracy.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in DLARRE,
if INFO = 2X, internal error in DLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by DLARRE or
DLARRV, respectively.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void dsteqr(String compz, int n, double[] d, double[] e, double[] z, int ldz, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the implicit QL or QR method.
The eigenvectors of a full or band symmetric matrix can also be found
if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
tridiagonal form.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvalues and eigenvectors of the original
symmetric matrix. On entry, Z must contain the
orthogonal matrix used to reduce the original matrix
to tridiagonal form.
= 'I': Compute eigenvalues and eigenvectors of the
tridiagonal matrix. Z is initialized to the identity
matrix.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If COMPZ = 'N', then WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm has failed to find all the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero; on exit, D
and E contain the elements of a symmetric tridiagonal
matrix which is orthogonally similar to the original
matrix.
=====================================================================
.. Parameters ..
public void dsteqr(String compz, int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the implicit QL or QR method.
The eigenvectors of a full or band symmetric matrix can also be found
if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
tridiagonal form.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvalues and eigenvectors of the original
symmetric matrix. On entry, Z must contain the
orthogonal matrix used to reduce the original matrix
to tridiagonal form.
= 'I': Compute eigenvalues and eigenvectors of the
tridiagonal matrix. Z is initialized to the identity
matrix.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If COMPZ = 'N', then WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm has failed to find all the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero; on exit, D
and E contain the elements of a symmetric tridiagonal
matrix which is orthogonally similar to the original
matrix.
=====================================================================
.. Parameters ..
public void dsterf(int n, double[] d, double[] e, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
using the Pal-Walker-Kahan variant of the QL or QR algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed to find all of the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero.
=====================================================================
.. Parameters ..
public void dsterf(int n, double[] d, int _d_offset, double[] e, int _e_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
using the Pal-Walker-Kahan variant of the QL or QR algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed to find all of the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero.
=====================================================================
.. Parameters ..
public void dstev(String jobz, int n, double[] d, double[] e, double[] z, int ldz, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If JOBZ = 'N', WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void dstev(String jobz, int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If JOBZ = 'N', WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void dstevd(String jobz, int n, double[] d, double[] e, double[] z, int ldz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void dstevd(String jobz, int n, double[] d, int _d_offset, double[] e, int _e_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void dstevr(String jobz, String range, int n, double[] d, double[] e, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, int[] isuppz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Whenever possible, DSTEVR calls DSTEMR to compute the
eigenspectrum using Relatively Robust Representations. DSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows. For the i-th
unreduced block of T,
(a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
is a relatively robust representation,
(b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
relative accuracy by the dqds algorithm,
(c) If there is a cluster of close eigenvalues, "choose" sigma_i
close to the cluster, and go to step (a),
(d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
compute the corresponding eigenvector by forming a
rank-revealing twisted factorization.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
Computer Science Division Technical Report No. UCB//CSD-97-971,
UC Berkeley, May 1997.
Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of DSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
DSTEIN are called
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
DLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal (and
minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,20*N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal (and
minimal) LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dstevr(String jobz, String range, int n, double[] d, int _d_offset, double[] e, int _e_offset, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Whenever possible, DSTEVR calls DSTEMR to compute the
eigenspectrum using Relatively Robust Representations. DSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows. For the i-th
unreduced block of T,
(a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
is a relatively robust representation,
(b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
relative accuracy by the dqds algorithm,
(c) If there is a cluster of close eigenvalues, "choose" sigma_i
close to the cluster, and go to step (a),
(d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
compute the corresponding eigenvector by forming a
rank-revealing twisted factorization.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
Computer Science Division Technical Report No. UCB//CSD-97-971,
UC Berkeley, May 1997.
Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of DSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
DSTEIN are called
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
DLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal (and
minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,20*N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal (and
minimal) LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dstevx(String jobz, String range, int n, double[] d, double[] e, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, double[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix A. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less
than or equal to zero, then EPS*|T| will be used in
its place, where |T| is the 1-norm of the tridiagonal
matrix.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge (INFO > 0), then that
column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in IFAIL. If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dstevx(String jobz, String range, int n, double[] d, int _d_offset, double[] e, int _e_offset, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSTEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix A. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less
than or equal to zero, then EPS*|T| will be used in
its place, where |T| is the 1-norm of the tridiagonal
matrix.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge (INFO > 0), then that
column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in IFAIL. If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dsycon(String uplo, int n, double[] a, int lda, int[] ipiv, double anorm, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
ANORM (input) DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dsycon(String uplo, int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double anorm, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
ANORM (input) DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dsyev(String jobz, String uplo, int n, double[] a, int lda, double[] w, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dsyev(String jobz, String uplo, int n, double[] a, int _a_offset, int lda, double[] w, int _w_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void dsyevd(String jobz, String uplo, int n, double[] a, int lda, double[] w, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A. If eigenvectors are desired, it uses a
divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Because of large use of BLAS of level 3, DSYEVD needs N**2 more
workspace than DSYEVX.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK must be at least 1.
If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i and JOBZ = 'N', then the algorithm failed
to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
if INFO = i and JOBZ = 'V', then the algorithm failed
to compute an eigenvalue while working on the submatrix
lying in rows and columns INFO/(N+1) through
mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
Modified description of INFO. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void dsyevd(String jobz, String uplo, int n, double[] a, int _a_offset, int lda, double[] w, int _w_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A. If eigenvectors are desired, it uses a
divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Because of large use of BLAS of level 3, DSYEVD needs N**2 more
workspace than DSYEVX.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK must be at least 1.
If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i and JOBZ = 'N', then the algorithm failed
to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
if INFO = i and JOBZ = 'V', then the algorithm failed
to compute an eigenvalue while working on the submatrix
lying in rows and columns INFO/(N+1) through
mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
Modified description of INFO. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void dsyevr(String jobz, String range, String uplo, int n, double[] a, int lda, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, int[] isuppz, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
DSYEVR first reduces the matrix A to tridiagonal form T with a call
to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute
the eigenspectrum using Relatively Robust Representations. DSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see DSTEMR's documentation and:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of DSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
DSTEIN are called
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
DLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,26*N).
For optimal efficiency, LWORK >= (NB+6)*N,
where NB is the max of the blocksize for DSYTRD and DORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
Jason Riedy, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dsyevr(String jobz, String range, String uplo, int n, double[] a, int _a_offset, int lda, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
DSYEVR first reduces the matrix A to tridiagonal form T with a call
to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute
the eigenspectrum using Relatively Robust Representations. DSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see DSTEMR's documentation and:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of DSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
DSTEIN are called
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
DLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,26*N).
For optimal efficiency, LWORK >= (NB+6)*N,
where NB is the max of the blocksize for DSYTRD and DORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
Jason Riedy, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void dsyevx(String jobz, String range, String uplo, int n, double[] a, int lda, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, double[] work, int lwork, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= 1, when N <= 1;
otherwise 8*N.
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the max of the blocksize for DSYTRD and DORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dsyevx(String jobz, String range, String uplo, int n, double[] a, int _a_offset, int lda, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= 1, when N <= 1;
otherwise 8*N.
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the max of the blocksize for DSYTRD and DORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void dsygs2(int itype, String uplo, int n, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGS2 reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
B must have been previously factorized as U'*U or L*L' by DPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
= 2 or 3: compute U*A*U' or L'*A*L.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored, and how B has been factorized.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by DPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dsygs2(int itype, String uplo, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGS2 reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
B must have been previously factorized as U'*U or L*L' by DPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
= 2 or 3: compute U*A*U' or L'*A*L.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored, and how B has been factorized.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by DPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void dsygst(int itype, String uplo, int n, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGST reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by DPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dsygst(int itype, String uplo, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGST reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by DPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dsygv(int itype, String jobz, String uplo, int n, double[] a, int lda, double[] b, int ldb, double[] w, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric and B is also
positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the symmetric positive definite matrix B.
If UPLO = 'U', the leading N-by-N upper triangular part of B
contains the upper triangular part of the matrix B.
If UPLO = 'L', the leading N-by-N lower triangular part of B
contains the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPOTRF or DSYEV returned an error code:
<= N: if INFO = i, DSYEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Parameters ..
public void dsygv(int itype, String jobz, String uplo, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] w, int _w_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric and B is also
positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the symmetric positive definite matrix B.
If UPLO = 'U', the leading N-by-N upper triangular part of B
contains the upper triangular part of the matrix B.
If UPLO = 'L', the leading N-by-N lower triangular part of B
contains the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPOTRF or DSYEV returned an error code:
<= N: if INFO = i, DSYEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Parameters ..
public void dsygvd(int itype, String jobz, String uplo, int n, double[] a, int lda, double[] b, int ldb, double[] w, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK >= 1.
If JOBZ = 'N' and N > 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPOTRF or DSYEVD returned an error code:
<= N: if INFO = i and JOBZ = 'N', then the algorithm
failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to
zero;
if INFO = i and JOBZ = 'V', then the algorithm
failed to compute an eigenvalue while working on
the submatrix lying in rows and columns INFO/(N+1)
through mod(INFO,N+1);
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Modified so that no backsubstitution is performed if DSYEVD fails to
converge (NEIG in old code could be greater than N causing out of
bounds reference to A - reported by Ralf Meyer). Also corrected the
description of INFO and the test on ITYPE. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void dsygvd(int itype, String jobz, String uplo, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] w, int _w_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK >= 1.
If JOBZ = 'N' and N > 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPOTRF or DSYEVD returned an error code:
<= N: if INFO = i and JOBZ = 'N', then the algorithm
failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to
zero;
if INFO = i and JOBZ = 'V', then the algorithm
failed to compute an eigenvalue while working on
the submatrix lying in rows and columns INFO/(N+1)
through mod(INFO,N+1);
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Modified so that no backsubstitution is performed if DSYEVD fails to
converge (NEIG in old code could be greater than N causing out of
bounds reference to A - reported by Ralf Meyer). Also corrected the
description of INFO and the test on ITYPE. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void dsygvx(int itype, String jobz, String range, String uplo, int n, double[] a, int lda, double[] b, int ldb, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, double[] z, int ldz, double[] work, int lwork, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,8*N).
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPOTRF or DSYEVX returned an error code:
<= N: if INFO = i, DSYEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dsygvx(int itype, String jobz, String range, String uplo, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double vl, double vu, int il, int iu, double abstol, org.netlib.util.intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,8*N).
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPOTRF or DSYEVX returned an error code:
<= N: if INFO = i, DSYEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void dsyrfs(String uplo, int n, int nrhs, double[] a, int lda, double[] af, int ldaf, int[] ipiv, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite, and
provides error bounds and backward error estimates for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
The factored form of the matrix A. AF contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by DSYTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DSYTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dsyrfs(String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, double[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite, and
provides error bounds and backward error estimates for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
The factored form of the matrix A. AF contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by DSYTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DSYTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void dsysv(String uplo, int n, int nrhs, double[] a, int lda, int[] ipiv, double[] b, int ldb, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
used to solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
DSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by DSYTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
DSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.
=====================================================================
.. Local Scalars ..
public void dsysv(String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
used to solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
DSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by DSYTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
DSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.
=====================================================================
.. Local Scalars ..
public void dsysvx(String fact, String uplo, int n, int nrhs, double[] a, int lda, double[] af, int ldaf, int[] ipiv, double[] b, int ldb, double[] x, int ldx, org.netlib.util.doubleW rcond, double[] ferr, double[] berr, double[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYSVX uses the diagonal pivoting factorization to compute the
solution to a real system of linear equations A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A.
The form of the factorization is
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AF and IPIV contain the factored form of
A. AF and IPIV will not be modified.
= 'N': The matrix A will be copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
If FACT = 'N', then AF is an output argument and on exit
returns the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by DSYTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by DSYTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= max(1,3*N), and for best
performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
NB is the optimal blocksize for DSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dsysvx(String fact, String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, double[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, org.netlib.util.doubleW rcond, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYSVX uses the diagonal pivoting factorization to compute the
solution to a real system of linear equations A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A.
The form of the factorization is
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AF and IPIV contain the factored form of
A. AF and IPIV will not be modified.
= 'N': The matrix A will be copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
If FACT = 'N', then AF is an output argument and on exit
returns the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by DSYTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by DSYTRF.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= max(1,3*N), and for best
performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
NB is the optimal blocksize for DSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void dsytd2(String uplo, int n, double[] a, int lda, double[] d, double[] e, double[] tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
form T by an orthogonal similarity transformation: Q' * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dsytd2(String uplo, int n, double[] a, int _a_offset, int lda, double[] d, int _d_offset, double[] e, int _e_offset, double[] tau, int _tau_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
form T by an orthogonal similarity transformation: Q' * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dsytf2(String uplo, int n, double[] a, int lda, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTF2 computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method:
A = U*D*U' or A = L*D*L'
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, U' is the transpose of U, and D is symmetric and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
09-29-06 - patch from
Bobby Cheng, MathWorks
Replace l.204 and l.372
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
by
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
01-01-96 - Based on modifications by
J. Lewis, Boeing Computer Services Company
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
1-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void dsytf2(String uplo, int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTF2 computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method:
A = U*D*U' or A = L*D*L'
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, U' is the transpose of U, and D is symmetric and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
09-29-06 - patch from
Bobby Cheng, MathWorks
Replace l.204 and l.372
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
by
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
01-01-96 - Based on modifications by
J. Lewis, Boeing Computer Services Company
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
1-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void dsytrd(String uplo, int n, double[] a, int lda, double[] d, double[] e, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRD reduces a real symmetric matrix A to real symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dsytrd(String uplo, int n, double[] a, int _a_offset, int lda, double[] d, int _d_offset, double[] e, int _e_offset, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRD reduces a real symmetric matrix A to real symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void dsytrf(String uplo, int n, double[] a, int lda, int[] ipiv, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRF computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method. The form of the
factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >=1. For best performance
LWORK >= N*NB, where NB is the block size returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Local Scalars ..
public void dsytrf(String uplo, int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRF computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method. The form of the
factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >=1. For best performance
LWORK >= N*NB, where NB is the block size returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Local Scalars ..
public void dsytri(String uplo, int n, double[] a, int lda, int[] ipiv, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRI computes the inverse of a real symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
DSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by DSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void dsytri(String uplo, int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRI computes the inverse of a real symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
DSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by DSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void dsytrs(String uplo, int n, int nrhs, double[] a, int lda, int[] ipiv, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRS solves a system of linear equations A*X = B with a real
symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by DSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dsytrs(String uplo, int n, int nrhs, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DSYTRS solves a system of linear equations A*X = B with a real
symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by DSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtbcon(String norm, String uplo, String diag, int n, int kd, double[] ab, int ldab, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTBCON estimates the reciprocal of the condition number of a
triangular band matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtbcon(String norm, String uplo, String diag, int n, int kd, double[] ab, int _ab_offset, int ldab, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTBCON estimates the reciprocal of the condition number of a
triangular band matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtbrfs(String uplo, String trans, String diag, int n, int kd, int nrhs, double[] ab, int ldab, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTBRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular band
coefficient matrix.
The solution matrix X must be computed by DTBTRS or some other
means before entering this routine. DTBRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtbrfs(String uplo, String trans, String diag, int n, int kd, int nrhs, double[] ab, int _ab_offset, int ldab, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTBRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular band
coefficient matrix.
The solution matrix X must be computed by DTBTRS or some other
means before entering this routine. DTBRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtbtrs(String uplo, String trans, String diag, int n, int kd, int nrhs, double[] ab, int ldab, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTBTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular band matrix of order N, and B is an
N-by NRHS matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void dtbtrs(String uplo, String trans, String diag, int n, int kd, int nrhs, double[] ab, int _ab_offset, int ldab, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTBTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular band matrix of order N, and B is an
N-by NRHS matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void dtgevc(String side, String howmny, boolean[] select, int n, double[] s, int lds, double[] p, int ldp, double[] vl, int ldvl, double[] vr, int ldvr, int mm, org.netlib.util.intW m, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGEVC computes some or all of the right and/or left eigenvectors of
a pair of real matrices (S,P), where S is a quasi-triangular matrix
and P is upper triangular. Matrix pairs of this type are produced by
the generalized Schur factorization of a matrix pair (A,B):
A = Q*S*Z**T, B = Q*P*Z**T
as computed by DGGHRD + DHGEQZ.
The right eigenvector x and the left eigenvector y of (S,P)
corresponding to an eigenvalue w are defined by:
S*x = w*P*x, (y**H)*S = w*(y**H)*P,
where y**H denotes the conjugate tranpose of y.
The eigenvalues are not input to this routine, but are computed
directly from the diagonal blocks of S and P.
This routine returns the matrices X and/or Y of right and left
eigenvectors of (S,P), or the products Z*X and/or Q*Y,
where Z and Q are input matrices.
If Q and Z are the orthogonal factors from the generalized Schur
factorization of a matrix pair (A,B), then Z*X and Q*Y
are the matrices of right and left eigenvectors of (A,B).
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed. If w(j) is a real eigenvalue, the corresponding
real eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector
is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
set to .FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrices S and P. N >= 0.
S (input) DOUBLE PRECISION array, dimension (LDS,N)
The upper quasi-triangular matrix S from a generalized Schur
factorization, as computed by DHGEQZ.
LDS (input) INTEGER
The leading dimension of array S. LDS >= max(1,N).
P (input) DOUBLE PRECISION array, dimension (LDP,N)
The upper triangular matrix P from a generalized Schur
factorization, as computed by DHGEQZ.
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
of S must be in positive diagonal form.
LDP (input) INTEGER
The leading dimension of array P. LDP >= max(1,N).
VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of left Schur vectors returned by DHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
SELECT, stored consecutively in the columns of
VL, in the same order as their eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Z (usually the orthogonal matrix Z
of right Schur vectors returned by DHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
if HOWMNY = 'B' or 'b', the matrix Z*X;
if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
specified by SELECT, stored consecutively in the
columns of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected real eigenvector occupies one
column and each selected complex eigenvector occupies two
columns.
WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the 2-by-2 block (INFO:INFO+1) does not have a complex
eigenvalue.
Further Details
===============
Allocation of workspace:
---------- -- ---------
WORK( j ) = 1-norm of j-th column of A, above the diagonal
WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
WORK( 2*N+1:3*N ) = real part of eigenvector
WORK( 3*N+1:4*N ) = imaginary part of eigenvector
WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
Rowwise vs. columnwise solution methods:
------- -- ---------- -------- -------
Finding a generalized eigenvector consists basically of solving the
singular triangular system
(A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)
Consider finding the i-th right eigenvector (assume all eigenvalues
are real). The equation to be solved is:
n i
0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
k=j k=j
where C = (A - w B) (The components v(i+1:n) are 0.)
The "rowwise" method is:
(1) v(i) := 1
for j = i-1,. . .,1:
i
(2) compute s = - sum C(j,k) v(k) and
k=j+1
(3) v(j) := s / C(j,j)
Step 2 is sometimes called the "dot product" step, since it is an
inner product between the j-th row and the portion of the eigenvector
that has been computed so far.
The "columnwise" method consists basically in doing the sums
for all the rows in parallel. As each v(j) is computed, the
contribution of v(j) times the j-th column of C is added to the
partial sums. Since FORTRAN arrays are stored columnwise, this has
the advantage that at each step, the elements of C that are accessed
are adjacent to one another, whereas with the rowwise method, the
elements accessed at a step are spaced LDS (and LDP) words apart.
When finding left eigenvectors, the matrix in question is the
transpose of the one in storage, so the rowwise method then
actually accesses columns of A and B at each step, and so is the
preferred method.
=====================================================================
.. Parameters ..
public void dtgevc(String side, String howmny, boolean[] select, int _select_offset, int n, double[] s, int _s_offset, int lds, double[] p, int _p_offset, int ldp, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, int mm, org.netlib.util.intW m, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGEVC computes some or all of the right and/or left eigenvectors of
a pair of real matrices (S,P), where S is a quasi-triangular matrix
and P is upper triangular. Matrix pairs of this type are produced by
the generalized Schur factorization of a matrix pair (A,B):
A = Q*S*Z**T, B = Q*P*Z**T
as computed by DGGHRD + DHGEQZ.
The right eigenvector x and the left eigenvector y of (S,P)
corresponding to an eigenvalue w are defined by:
S*x = w*P*x, (y**H)*S = w*(y**H)*P,
where y**H denotes the conjugate tranpose of y.
The eigenvalues are not input to this routine, but are computed
directly from the diagonal blocks of S and P.
This routine returns the matrices X and/or Y of right and left
eigenvectors of (S,P), or the products Z*X and/or Q*Y,
where Z and Q are input matrices.
If Q and Z are the orthogonal factors from the generalized Schur
factorization of a matrix pair (A,B), then Z*X and Q*Y
are the matrices of right and left eigenvectors of (A,B).
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed. If w(j) is a real eigenvalue, the corresponding
real eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector
is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
set to .FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrices S and P. N >= 0.
S (input) DOUBLE PRECISION array, dimension (LDS,N)
The upper quasi-triangular matrix S from a generalized Schur
factorization, as computed by DHGEQZ.
LDS (input) INTEGER
The leading dimension of array S. LDS >= max(1,N).
P (input) DOUBLE PRECISION array, dimension (LDP,N)
The upper triangular matrix P from a generalized Schur
factorization, as computed by DHGEQZ.
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
of S must be in positive diagonal form.
LDP (input) INTEGER
The leading dimension of array P. LDP >= max(1,N).
VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of left Schur vectors returned by DHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
SELECT, stored consecutively in the columns of
VL, in the same order as their eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Z (usually the orthogonal matrix Z
of right Schur vectors returned by DHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
if HOWMNY = 'B' or 'b', the matrix Z*X;
if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
specified by SELECT, stored consecutively in the
columns of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected real eigenvector occupies one
column and each selected complex eigenvector occupies two
columns.
WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the 2-by-2 block (INFO:INFO+1) does not have a complex
eigenvalue.
Further Details
===============
Allocation of workspace:
---------- -- ---------
WORK( j ) = 1-norm of j-th column of A, above the diagonal
WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
WORK( 2*N+1:3*N ) = real part of eigenvector
WORK( 3*N+1:4*N ) = imaginary part of eigenvector
WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
Rowwise vs. columnwise solution methods:
------- -- ---------- -------- -------
Finding a generalized eigenvector consists basically of solving the
singular triangular system
(A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)
Consider finding the i-th right eigenvector (assume all eigenvalues
are real). The equation to be solved is:
n i
0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
k=j k=j
where C = (A - w B) (The components v(i+1:n) are 0.)
The "rowwise" method is:
(1) v(i) := 1
for j = i-1,. . .,1:
i
(2) compute s = - sum C(j,k) v(k) and
k=j+1
(3) v(j) := s / C(j,j)
Step 2 is sometimes called the "dot product" step, since it is an
inner product between the j-th row and the portion of the eigenvector
that has been computed so far.
The "columnwise" method consists basically in doing the sums
for all the rows in parallel. As each v(j) is computed, the
contribution of v(j) times the j-th column of C is added to the
partial sums. Since FORTRAN arrays are stored columnwise, this has
the advantage that at each step, the elements of C that are accessed
are adjacent to one another, whereas with the rowwise method, the
elements accessed at a step are spaced LDS (and LDP) words apart.
When finding left eigenvectors, the matrix in question is the
transpose of the one in storage, so the rowwise method then
actually accesses columns of A and B at each step, and so is the
preferred method.
=====================================================================
.. Parameters ..
public void dtgex2(boolean wantq, boolean wantz, int n, double[] a, int lda, double[] b, int ldb, double[] q, int ldq, double[] z, int ldz, int j1, int n1, int n2, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
(A, B) by an orthogonal equivalence transformation.
(A, B) must be in generalized real Schur canonical form (as returned
by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N)
On entry, the matrix A in the pair (A, B).
On exit, the updated matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N)
On entry, the matrix B in the pair (A, B).
On exit, the updated matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
Not referenced if WANTQ = .FALSE..
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
Not referenced if WANTZ = .FALSE..
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
J1 (input) INTEGER
The index to the first block (A11, B11). 1 <= J1 <= N.
N1 (input) INTEGER
The order of the first block (A11, B11). N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block (A22, B22). N2 = 0, 1 or 2.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
INFO (output) INTEGER
=0: Successful exit
>0: If INFO = 1, the transformed matrix (A, B) would be
too far from generalized Schur form; the blocks are
not swapped and (A, B) and (Q, Z) are unchanged.
The problem of swapping is too ill-conditioned.
<0: If INFO = -16: LWORK is too small. Appropriate value
for LWORK is returned in WORK(1).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
In the current code both weak and strong stability tests are
performed. The user can omit the strong stability test by changing
the internal logical parameter WANDS to .FALSE.. See ref. [2] for
details.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
=====================================================================
Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
loops. Sven Hammarling, 1/5/02.
.. Parameters ..
public void dtgex2(boolean wantq, boolean wantz, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] q, int _q_offset, int ldq, double[] z, int _z_offset, int ldz, int j1, int n1, int n2, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
(A, B) by an orthogonal equivalence transformation.
(A, B) must be in generalized real Schur canonical form (as returned
by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N)
On entry, the matrix A in the pair (A, B).
On exit, the updated matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N)
On entry, the matrix B in the pair (A, B).
On exit, the updated matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
Not referenced if WANTQ = .FALSE..
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
Not referenced if WANTZ = .FALSE..
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
J1 (input) INTEGER
The index to the first block (A11, B11). 1 <= J1 <= N.
N1 (input) INTEGER
The order of the first block (A11, B11). N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block (A22, B22). N2 = 0, 1 or 2.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
INFO (output) INTEGER
=0: Successful exit
>0: If INFO = 1, the transformed matrix (A, B) would be
too far from generalized Schur form; the blocks are
not swapped and (A, B) and (Q, Z) are unchanged.
The problem of swapping is too ill-conditioned.
<0: If INFO = -16: LWORK is too small. Appropriate value
for LWORK is returned in WORK(1).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
In the current code both weak and strong stability tests are
performed. The user can omit the strong stability test by changing
the internal logical parameter WANDS to .FALSE.. See ref. [2] for
details.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
=====================================================================
Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
loops. Sven Hammarling, 1/5/02.
.. Parameters ..
public void dtgexc(boolean wantq, boolean wantz, int n, double[] a, int lda, double[] b, int ldb, double[] q, int ldq, double[] z, int ldz, org.netlib.util.intW ifst, org.netlib.util.intW ilst, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGEXC reorders the generalized real Schur decomposition of a real
matrix pair (A,B) using an orthogonal equivalence transformation
(A, B) = Q * (A, B) * Z',
so that the diagonal block of (A, B) with row index IFST is moved
to row ILST.
(A, B) must be in generalized real Schur canonical form (as returned
by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix A in generalized real Schur canonical
form.
On exit, the updated matrix A, again in generalized
real Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the matrix B in generalized real Schur canonical
form (A,B).
On exit, the updated matrix B, again in generalized
real Schur canonical form (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
On exit, if IFST pointed on entry to the second row of
a 2-by-2 block, it is changed to point to the first row;
ILST always points to the first row of the block in its
final position (which may differ from its input value by
+1 or -1). 1 <= IFST, ILST <= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
=0: successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
=====================================================================
.. Parameters ..
public void dtgexc(boolean wantq, boolean wantz, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] q, int _q_offset, int ldq, double[] z, int _z_offset, int ldz, org.netlib.util.intW ifst, org.netlib.util.intW ilst, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGEXC reorders the generalized real Schur decomposition of a real
matrix pair (A,B) using an orthogonal equivalence transformation
(A, B) = Q * (A, B) * Z',
so that the diagonal block of (A, B) with row index IFST is moved
to row ILST.
(A, B) must be in generalized real Schur canonical form (as returned
by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix A in generalized real Schur canonical
form.
On exit, the updated matrix A, again in generalized
real Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the matrix B in generalized real Schur canonical
form (A,B).
On exit, the updated matrix B, again in generalized
real Schur canonical form (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
On exit, if IFST pointed on entry to the second row of
a 2-by-2 block, it is changed to point to the first row;
ILST always points to the first row of the block in its
final position (which may differ from its input value by
+1 or -1). 1 <= IFST, ILST <= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
=0: successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
=====================================================================
.. Parameters ..
public void dtgsen(int ijob, boolean wantq, boolean wantz, boolean[] select, int n, double[] a, int lda, double[] b, int ldb, double[] alphar, double[] alphai, double[] beta, double[] q, int ldq, double[] z, int ldz, org.netlib.util.intW m, org.netlib.util.doubleW pl, org.netlib.util.doubleW pr, double[] dif, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSEN reorders the generalized real Schur decomposition of a real
matrix pair (A, B) (in terms of an orthonormal equivalence trans-
formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the upper quasi-triangular
matrix A and the upper triangular B. The leading columns of Q and
Z form orthonormal bases of the corresponding left and right eigen-
spaces (deflating subspaces). (A, B) must be in generalized real
Schur canonical form (as returned by DGGES), i.e. A is block upper
triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
triangular.
DTGSEN also computes the generalized eigenvalues
w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
of the reordered matrix pair (A, B).
Optionally, DTGSEN computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of "projections" onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.
Arguments
=========
IJOB (input) INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of "projections" onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster.
To select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension(LDA,N)
On entry, the upper quasi-triangular matrix A, with (A, B) in
generalized real Schur canonical form.
On exit, A is overwritten by the reordered matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension(LDB,N)
On entry, the upper triangular matrix B, with (A, B) in
generalized real Schur canonical form.
On exit, B is overwritten by the reordered matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real generalized Schur form of (A,B) were further reduced
to triangular form using complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1;
and if WANTQ = .TRUE., LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.
M (output) INTEGER
The dimension of the specified pair of left and right eigen-
spaces (deflating subspaces). 0 <= M <= N.
PL (output) DOUBLE PRECISION
PR (output) DOUBLE PRECISION
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of "projections" onto left and right
eigenspaces with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3, PL and PR are not referenced.
DIF (output) DOUBLE PRECISION array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.
WORK (workspace/output) DOUBLE PRECISION array,
dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 4*N+16.
If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
IF IJOB = 0, IWORK is not referenced. Otherwise,
on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+6.
If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.
Further Details
===============
DTGSEN first collects the selected eigenvalues by computing
orthogonal U and W that move them to the top left corner of (A, B).
In other words, the selected eigenvalues are the eigenvalues of
(A11, B11) in:
U'*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U' means the transpose of U. The first n1 columns
of U and W span the specified pair of left and right eigenspaces
(deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
reordered generalized real Schur form of (C, D) is given by
(C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22', In1) ]
[ kron(In2, B11) -kron(B22', In1) ].
Here, Inx is the identity matrix of size nx and A22' is the
transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see DLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
(IJOB = 2 will be used)). See DTGSYL for more details.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
1996.
=====================================================================
.. Parameters ..
public void dtgsen(int ijob, boolean wantq, boolean wantz, boolean[] select, int _select_offset, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] alphar, int _alphar_offset, double[] alphai, int _alphai_offset, double[] beta, int _beta_offset, double[] q, int _q_offset, int ldq, double[] z, int _z_offset, int ldz, org.netlib.util.intW m, org.netlib.util.doubleW pl, org.netlib.util.doubleW pr, double[] dif, int _dif_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSEN reorders the generalized real Schur decomposition of a real
matrix pair (A, B) (in terms of an orthonormal equivalence trans-
formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the upper quasi-triangular
matrix A and the upper triangular B. The leading columns of Q and
Z form orthonormal bases of the corresponding left and right eigen-
spaces (deflating subspaces). (A, B) must be in generalized real
Schur canonical form (as returned by DGGES), i.e. A is block upper
triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
triangular.
DTGSEN also computes the generalized eigenvalues
w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
of the reordered matrix pair (A, B).
Optionally, DTGSEN computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of "projections" onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.
Arguments
=========
IJOB (input) INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of "projections" onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster.
To select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension(LDA,N)
On entry, the upper quasi-triangular matrix A, with (A, B) in
generalized real Schur canonical form.
On exit, A is overwritten by the reordered matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension(LDB,N)
On entry, the upper triangular matrix B, with (A, B) in
generalized real Schur canonical form.
On exit, B is overwritten by the reordered matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real generalized Schur form of (A,B) were further reduced
to triangular form using complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1;
and if WANTQ = .TRUE., LDQ >= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.
M (output) INTEGER
The dimension of the specified pair of left and right eigen-
spaces (deflating subspaces). 0 <= M <= N.
PL (output) DOUBLE PRECISION
PR (output) DOUBLE PRECISION
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of "projections" onto left and right
eigenspaces with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3, PL and PR are not referenced.
DIF (output) DOUBLE PRECISION array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.
WORK (workspace/output) DOUBLE PRECISION array,
dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 4*N+16.
If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
IF IJOB = 0, IWORK is not referenced. Otherwise,
on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+6.
If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.
Further Details
===============
DTGSEN first collects the selected eigenvalues by computing
orthogonal U and W that move them to the top left corner of (A, B).
In other words, the selected eigenvalues are the eigenvalues of
(A11, B11) in:
U'*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U' means the transpose of U. The first n1 columns
of U and W span the specified pair of left and right eigenspaces
(deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
reordered generalized real Schur form of (C, D) is given by
(C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22', In1) ]
[ kron(In2, B11) -kron(B22', In1) ].
Here, Inx is the identity matrix of size nx and A22' is the
transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see DLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
(IJOB = 2 will be used)). See DTGSYL for more details.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
1996.
=====================================================================
.. Parameters ..
public void dtgsja(String jobu, String jobv, String jobq, int m, int p, int n, int k, int l, double[] a, int lda, double[] b, int ldb, double tola, double tolb, double[] alpha, double[] beta, double[] u, int ldu, double[] v, int ldv, double[] q, int ldq, double[] work, org.netlib.util.intW ncycle, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSJA computes the generalized singular value decomposition (GSVD)
of two real upper triangular (or trapezoidal) matrices A and B.
On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine DGGSVP
from a general M-by-N matrix A and P-by-N matrix B:
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
B = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.
On exit,
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
where U, V and Q are orthogonal matrices, Z' denotes the transpose
of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
``diagonal'' matrices, which are of the following structures:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 ) K
L ( 0 0 R22 ) L
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The computation of the orthogonal transformation matrices U, V or Q
is optional. These matrices may either be formed explicitly, or they
may be postmultiplied into input matrices U1, V1, or Q1.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': U must contain an orthogonal matrix U1 on entry, and
the product U1*U is returned;
= 'I': U is initialized to the unit matrix, and the
orthogonal matrix U is returned;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': V must contain an orthogonal matrix V1 on entry, and
the product V1*V is returned;
= 'I': V is initialized to the unit matrix, and the
orthogonal matrix V is returned;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Q must contain an orthogonal matrix Q1 on entry, and
the product Q1*Q is returned;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
K (input) INTEGER
L (input) INTEGER
K and L specify the subblocks in the input matrices A and B:
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
of A and B, whose GSVD is going to be computed by DTGSJA.
See Further details.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
matrix R or part of R. See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
a part of R. See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) DOUBLE PRECISION
TOLB (input) DOUBLE PRECISION
TOLA and TOLB are the convergence criteria for the Jacobi-
Kogbetliantz iteration procedure. Generally, they are the
same as used in the preprocessing step, say
TOLA = max(M,N)*norm(A)*MAZHEPS,
TOLB = max(P,N)*norm(B)*MAZHEPS.
ALPHA (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = diag(C),
BETA(K+1:K+L) = diag(S),
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
Furthermore, if K+L < N,
ALPHA(K+L+1:N) = 0 and
BETA(K+L+1:N) = 0.
U (input/output) DOUBLE PRECISION array, dimension (LDU,M)
On entry, if JOBU = 'U', U must contain a matrix U1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBU = 'I', U contains the orthogonal matrix U;
if JOBU = 'U', U contains the product U1*U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (input/output) DOUBLE PRECISION array, dimension (LDV,P)
On entry, if JOBV = 'V', V must contain a matrix V1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBV = 'I', V contains the orthogonal matrix V;
if JOBV = 'V', V contains the product V1*V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBQ = 'I', Q contains the orthogonal matrix Q;
if JOBQ = 'Q', Q contains the product Q1*Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
NCYCLE (output) INTEGER
The number of cycles required for convergence.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the procedure does not converge after MAXIT cycles.
Internal Parameters
===================
MAXIT INTEGER
MAXIT specifies the total loops that the iterative procedure
may take. If after MAXIT cycles, the routine fails to
converge, we return INFO = 1.
Further Details
===============
DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
matrix B13 to the form:
U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
of Z. C1 and S1 are diagonal matrices satisfying
C1**2 + S1**2 = I,
and R1 is an L-by-L nonsingular upper triangular matrix.
=====================================================================
.. Parameters ..
public void dtgsja(String jobu, String jobv, String jobq, int m, int p, int n, int k, int l, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double tola, double tolb, double[] alpha, int _alpha_offset, double[] beta, int _beta_offset, double[] u, int _u_offset, int ldu, double[] v, int _v_offset, int ldv, double[] q, int _q_offset, int ldq, double[] work, int _work_offset, org.netlib.util.intW ncycle, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSJA computes the generalized singular value decomposition (GSVD)
of two real upper triangular (or trapezoidal) matrices A and B.
On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine DGGSVP
from a general M-by-N matrix A and P-by-N matrix B:
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
B = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.
On exit,
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
where U, V and Q are orthogonal matrices, Z' denotes the transpose
of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
``diagonal'' matrices, which are of the following structures:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 ) K
L ( 0 0 R22 ) L
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The computation of the orthogonal transformation matrices U, V or Q
is optional. These matrices may either be formed explicitly, or they
may be postmultiplied into input matrices U1, V1, or Q1.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': U must contain an orthogonal matrix U1 on entry, and
the product U1*U is returned;
= 'I': U is initialized to the unit matrix, and the
orthogonal matrix U is returned;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': V must contain an orthogonal matrix V1 on entry, and
the product V1*V is returned;
= 'I': V is initialized to the unit matrix, and the
orthogonal matrix V is returned;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Q must contain an orthogonal matrix Q1 on entry, and
the product Q1*Q is returned;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
K (input) INTEGER
L (input) INTEGER
K and L specify the subblocks in the input matrices A and B:
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
of A and B, whose GSVD is going to be computed by DTGSJA.
See Further details.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
matrix R or part of R. See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
a part of R. See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) DOUBLE PRECISION
TOLB (input) DOUBLE PRECISION
TOLA and TOLB are the convergence criteria for the Jacobi-
Kogbetliantz iteration procedure. Generally, they are the
same as used in the preprocessing step, say
TOLA = max(M,N)*norm(A)*MAZHEPS,
TOLB = max(P,N)*norm(B)*MAZHEPS.
ALPHA (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = diag(C),
BETA(K+1:K+L) = diag(S),
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
Furthermore, if K+L < N,
ALPHA(K+L+1:N) = 0 and
BETA(K+L+1:N) = 0.
U (input/output) DOUBLE PRECISION array, dimension (LDU,M)
On entry, if JOBU = 'U', U must contain a matrix U1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBU = 'I', U contains the orthogonal matrix U;
if JOBU = 'U', U contains the product U1*U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (input/output) DOUBLE PRECISION array, dimension (LDV,P)
On entry, if JOBV = 'V', V must contain a matrix V1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBV = 'I', V contains the orthogonal matrix V;
if JOBV = 'V', V contains the product V1*V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBQ = 'I', Q contains the orthogonal matrix Q;
if JOBQ = 'Q', Q contains the product Q1*Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
NCYCLE (output) INTEGER
The number of cycles required for convergence.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the procedure does not converge after MAXIT cycles.
Internal Parameters
===================
MAXIT INTEGER
MAXIT specifies the total loops that the iterative procedure
may take. If after MAXIT cycles, the routine fails to
converge, we return INFO = 1.
Further Details
===============
DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
matrix B13 to the form:
U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
of Z. C1 and S1 are diagonal matrices satisfying
C1**2 + S1**2 = I,
and R1 is an L-by-L nonsingular upper triangular matrix.
=====================================================================
.. Parameters ..
public void dtgsna(String job, String howmny, boolean[] select, int n, double[] a, int lda, double[] b, int ldb, double[] vl, int ldvl, double[] vr, int ldvr, double[] s, double[] dif, int mm, org.netlib.util.intW m, double[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSNA estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a matrix pair (A, B) in
generalized real Schur canonical form (or of any matrix pair
(Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where
Z' denotes the transpose of Z.
(A, B) must be in generalized real Schur form (as returned by DGGES),
i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
blocks. B is upper triangular.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (DIF):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (DIF);
= 'B': for both eigenvalues and eigenvectors (S and DIF).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the square matrix pair (A, B). N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The upper quasi-triangular matrix A in the pair (A,B).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The upper triangular matrix B in the pair (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) DOUBLE PRECISION array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by DTGEVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1.
If JOB = 'E' or 'B', LDVL >= N.
VR (input) DOUBLE PRECISION array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns ov VR, as returned by DTGEVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1.
If JOB = 'E' or 'B', LDVR >= N.
S (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), DIF(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
DIF (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of DIF are set to the same value. If
the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', DIF is not referenced.
MM (input) INTEGER
The number of elements in the arrays S and DIF. MM >= M.
M (output) INTEGER
The number of elements of the arrays S and DIF used to store
the specified condition numbers; for each selected real
eigenvalue one element is used, and for each selected complex
conjugate pair of eigenvalues, two elements are used.
If HOWMNY = 'A', M is set to N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N + 6)
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of a generalized eigenvalue
w = (a, b) is defined as
S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))
where u and v are the left and right eigenvectors of (A, B)
corresponding to w; |z| denotes the absolute value of the complex
number, and norm(u) denotes the 2-norm of the vector u.
The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv)
of the matrix pair (A, B). If both a and b equal zero, then (A B) is
singular and S(I) = -1 is returned.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(A, B) / S(I)
where EPS is the machine precision.
The reciprocal of the condition number DIF(i) of right eigenvector u
and left eigenvector v corresponding to the generalized eigenvalue w
is defined as follows:
a) If the i-th eigenvalue w = (a,b) is real
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1
( 0 S22 ),( 0 T22 ) n-1
1 n-1 1 n-1
Then the reciprocal condition number DIF(i) is
Difl((a, b), (S22, T22)) = sigma-min( Zl ),
where sigma-min(Zl) denotes the smallest singular value of the
2(n-1)-by-2(n-1) matrix
Zl = [ kron(a, In-1) -kron(1, S22) ]
[ kron(b, In-1) -kron(1, T22) ] .
Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
Kronecker product between the matrices X and Y.
Note that if the default method for computing DIF(i) is wanted
(see DLATDF), then the parameter DIFDRI (see below) should be
changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)).
See DTGSYL for more details.
b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2
( 0 S22 ),( 0 T22) n-2
2 n-2 2 n-2
and (S11, T11) corresponds to the complex conjugate eigenvalue
pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
that
U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 )
( 0 s22 ) ( 0 t22 )
where the generalized eigenvalues w = s11/t11 and
conjg(w) = s22/t22.
Then the reciprocal condition number DIF(i) is bounded by
min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
Z1 is the complex 2-by-2 matrix
Z1 = [ s11 -s22 ]
[ t11 -t22 ],
This is done by computing (using real arithmetic) the
roots of the characteristical polynomial det(Z1' * Z1 - lambda I),
where Z1' denotes the conjugate transpose of Z1 and det(X) denotes
the determinant of X.
and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
Z2 = [ kron(S11', In-2) -kron(I2, S22) ]
[ kron(T11', In-2) -kron(I2, T22) ]
Note that if the default method for computing DIF is wanted (see
DLATDF), then the parameter DIFDRI (see below) should be changed
from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL
for more details.
For each eigenvalue/vector specified by SELECT, DIF stores a
Frobenius norm-based estimate of Difl.
An approximate error bound for the i-th computed eigenvector VL(i) or
VR(i) is given by
EPS * norm(A, B) / DIF(i).
See ref. [2-3] for more details and further references.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
=====================================================================
.. Parameters ..
public void dtgsna(String job, String howmny, boolean[] select, int _select_offset, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, double[] s, int _s_offset, double[] dif, int _dif_offset, int mm, org.netlib.util.intW m, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSNA estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a matrix pair (A, B) in
generalized real Schur canonical form (or of any matrix pair
(Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where
Z' denotes the transpose of Z.
(A, B) must be in generalized real Schur form (as returned by DGGES),
i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
blocks. B is upper triangular.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (DIF):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (DIF);
= 'B': for both eigenvalues and eigenvectors (S and DIF).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the square matrix pair (A, B). N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The upper quasi-triangular matrix A in the pair (A,B).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The upper triangular matrix B in the pair (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) DOUBLE PRECISION array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by DTGEVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1.
If JOB = 'E' or 'B', LDVL >= N.
VR (input) DOUBLE PRECISION array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns ov VR, as returned by DTGEVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1.
If JOB = 'E' or 'B', LDVR >= N.
S (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), DIF(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
DIF (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of DIF are set to the same value. If
the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', DIF is not referenced.
MM (input) INTEGER
The number of elements in the arrays S and DIF. MM >= M.
M (output) INTEGER
The number of elements of the arrays S and DIF used to store
the specified condition numbers; for each selected real
eigenvalue one element is used, and for each selected complex
conjugate pair of eigenvalues, two elements are used.
If HOWMNY = 'A', M is set to N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N + 6)
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of a generalized eigenvalue
w = (a, b) is defined as
S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))
where u and v are the left and right eigenvectors of (A, B)
corresponding to w; |z| denotes the absolute value of the complex
number, and norm(u) denotes the 2-norm of the vector u.
The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv)
of the matrix pair (A, B). If both a and b equal zero, then (A B) is
singular and S(I) = -1 is returned.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(A, B) / S(I)
where EPS is the machine precision.
The reciprocal of the condition number DIF(i) of right eigenvector u
and left eigenvector v corresponding to the generalized eigenvalue w
is defined as follows:
a) If the i-th eigenvalue w = (a,b) is real
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1
( 0 S22 ),( 0 T22 ) n-1
1 n-1 1 n-1
Then the reciprocal condition number DIF(i) is
Difl((a, b), (S22, T22)) = sigma-min( Zl ),
where sigma-min(Zl) denotes the smallest singular value of the
2(n-1)-by-2(n-1) matrix
Zl = [ kron(a, In-1) -kron(1, S22) ]
[ kron(b, In-1) -kron(1, T22) ] .
Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
Kronecker product between the matrices X and Y.
Note that if the default method for computing DIF(i) is wanted
(see DLATDF), then the parameter DIFDRI (see below) should be
changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)).
See DTGSYL for more details.
b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2
( 0 S22 ),( 0 T22) n-2
2 n-2 2 n-2
and (S11, T11) corresponds to the complex conjugate eigenvalue
pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
that
U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 )
( 0 s22 ) ( 0 t22 )
where the generalized eigenvalues w = s11/t11 and
conjg(w) = s22/t22.
Then the reciprocal condition number DIF(i) is bounded by
min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
Z1 is the complex 2-by-2 matrix
Z1 = [ s11 -s22 ]
[ t11 -t22 ],
This is done by computing (using real arithmetic) the
roots of the characteristical polynomial det(Z1' * Z1 - lambda I),
where Z1' denotes the conjugate transpose of Z1 and det(X) denotes
the determinant of X.
and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
Z2 = [ kron(S11', In-2) -kron(I2, S22) ]
[ kron(T11', In-2) -kron(I2, T22) ]
Note that if the default method for computing DIF is wanted (see
DLATDF), then the parameter DIFDRI (see below) should be changed
from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL
for more details.
For each eigenvalue/vector specified by SELECT, DIF stores a
Frobenius norm-based estimate of Difl.
An approximate error bound for the i-th computed eigenvector VL(i) or
VR(i) is given by
EPS * norm(A, B) / DIF(i).
See ref. [2-3] for more details and further references.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
=====================================================================
.. Parameters ..
public void dtgsy2(String trans, int ijob, int m, int n, double[] a, int lda, double[] b, int ldb, double[] c, int Ldc, double[] d, int ldd, double[] e, int lde, double[] f, int ldf, org.netlib.util.doubleW scale, org.netlib.util.doubleW rdsum, org.netlib.util.doubleW rdscal, int[] iwork, org.netlib.util.intW pq, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSY2 solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F,
using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
(A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
must be in generalized Schur canonical form, i.e. A, B are upper
quasi triangular and D, E are upper triangular. The solution (R, L)
overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
chosen to avoid overflow.
In matrix notation solving equation (1) corresponds to solve
Z*x = scale*b, where Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ],
Ik is the identity matrix of size k and X' is the transpose of X.
kron(X, Y) is the Kronecker product between the matrices X and Y.
In the process of solving (1), we solve a number of such systems
where Dim(In), Dim(In) = 1 or 2.
If TRANS = 'T', solve the transposed system Z'*y = scale*b for y,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * -F
This case is used to compute an estimate of Dif[(A, D), (B, E)] =
sigma_min(Z) using reverse communicaton with DLACON.
DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL
of an upper bound on the separation between to matrix pairs. Then
the input (A, D), (B, E) are sub-pencils of the matrix pair in
DTGSYL. See DTGSYL for details.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T': solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
= 0: solve (1) only.
= 1: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (look ahead strategy is used).
= 2: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (DGECON on sub-systems is used.)
Not referenced if TRANS = 'T'.
M (input) INTEGER
On entry, M specifies the order of A and D, and the row
dimension of C, F, R and L.
N (input) INTEGER
On entry, N specifies the order of B and E, and the column
dimension of C, F, R and L.
A (input) DOUBLE PRECISION array, dimension (LDA, M)
On entry, A contains an upper quasi triangular matrix.
LDA (input) INTEGER
The leading dimension of the matrix A. LDA >= max(1, M).
B (input) DOUBLE PRECISION array, dimension (LDB, N)
On entry, B contains an upper quasi triangular matrix.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1, N).
C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1).
On exit, if IJOB = 0, C has been overwritten by the
solution R.
LDC (input) INTEGER
The leading dimension of the matrix C. LDC >= max(1, M).
D (input) DOUBLE PRECISION array, dimension (LDD, M)
On entry, D contains an upper triangular matrix.
LDD (input) INTEGER
The leading dimension of the matrix D. LDD >= max(1, M).
E (input) DOUBLE PRECISION array, dimension (LDE, N)
On entry, E contains an upper triangular matrix.
LDE (input) INTEGER
The leading dimension of the matrix E. LDE >= max(1, N).
F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1).
On exit, if IJOB = 0, F has been overwritten by the
solution L.
LDF (input) INTEGER
The leading dimension of the matrix F. LDF >= max(1, M).
SCALE (output) DOUBLE PRECISION
On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
R and L (C and F on entry) will hold the solutions to a
slightly perturbed system but the input matrices A, B, D and
E have not been changed. If SCALE = 0, R and L will hold the
solutions to the homogeneous system with C = F = 0. Normally,
SCALE = 1.
RDSUM (input/output) DOUBLE PRECISION
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by DTGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when DTGSY2 is called by DTGSYL.
RDSCAL (input/output) DOUBLE PRECISION
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when DTGSY2 is called by
DTGSYL.
IWORK (workspace) INTEGER array, dimension (M+N+2)
PQ (output) INTEGER
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
8-by-8) solved by this routine.
INFO (output) INTEGER
On exit, if INFO is set to
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: The matrix pairs (A, D) and (B, E) have common or very
close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
Replaced various illegal calls to DCOPY by calls to DLASET.
Sven Hammarling, 27/5/02.
.. Parameters ..
public void dtgsy2(String trans, int ijob, int m, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] c, int _c_offset, int Ldc, double[] d, int _d_offset, int ldd, double[] e, int _e_offset, int lde, double[] f, int _f_offset, int ldf, org.netlib.util.doubleW scale, org.netlib.util.doubleW rdsum, org.netlib.util.doubleW rdscal, int[] iwork, int _iwork_offset, org.netlib.util.intW pq, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSY2 solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F,
using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
(A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
must be in generalized Schur canonical form, i.e. A, B are upper
quasi triangular and D, E are upper triangular. The solution (R, L)
overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
chosen to avoid overflow.
In matrix notation solving equation (1) corresponds to solve
Z*x = scale*b, where Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ],
Ik is the identity matrix of size k and X' is the transpose of X.
kron(X, Y) is the Kronecker product between the matrices X and Y.
In the process of solving (1), we solve a number of such systems
where Dim(In), Dim(In) = 1 or 2.
If TRANS = 'T', solve the transposed system Z'*y = scale*b for y,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * -F
This case is used to compute an estimate of Dif[(A, D), (B, E)] =
sigma_min(Z) using reverse communicaton with DLACON.
DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL
of an upper bound on the separation between to matrix pairs. Then
the input (A, D), (B, E) are sub-pencils of the matrix pair in
DTGSYL. See DTGSYL for details.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T': solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
= 0: solve (1) only.
= 1: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (look ahead strategy is used).
= 2: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (DGECON on sub-systems is used.)
Not referenced if TRANS = 'T'.
M (input) INTEGER
On entry, M specifies the order of A and D, and the row
dimension of C, F, R and L.
N (input) INTEGER
On entry, N specifies the order of B and E, and the column
dimension of C, F, R and L.
A (input) DOUBLE PRECISION array, dimension (LDA, M)
On entry, A contains an upper quasi triangular matrix.
LDA (input) INTEGER
The leading dimension of the matrix A. LDA >= max(1, M).
B (input) DOUBLE PRECISION array, dimension (LDB, N)
On entry, B contains an upper quasi triangular matrix.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1, N).
C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1).
On exit, if IJOB = 0, C has been overwritten by the
solution R.
LDC (input) INTEGER
The leading dimension of the matrix C. LDC >= max(1, M).
D (input) DOUBLE PRECISION array, dimension (LDD, M)
On entry, D contains an upper triangular matrix.
LDD (input) INTEGER
The leading dimension of the matrix D. LDD >= max(1, M).
E (input) DOUBLE PRECISION array, dimension (LDE, N)
On entry, E contains an upper triangular matrix.
LDE (input) INTEGER
The leading dimension of the matrix E. LDE >= max(1, N).
F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1).
On exit, if IJOB = 0, F has been overwritten by the
solution L.
LDF (input) INTEGER
The leading dimension of the matrix F. LDF >= max(1, M).
SCALE (output) DOUBLE PRECISION
On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
R and L (C and F on entry) will hold the solutions to a
slightly perturbed system but the input matrices A, B, D and
E have not been changed. If SCALE = 0, R and L will hold the
solutions to the homogeneous system with C = F = 0. Normally,
SCALE = 1.
RDSUM (input/output) DOUBLE PRECISION
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by DTGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when DTGSY2 is called by DTGSYL.
RDSCAL (input/output) DOUBLE PRECISION
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when DTGSY2 is called by
DTGSYL.
IWORK (workspace) INTEGER array, dimension (M+N+2)
PQ (output) INTEGER
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
8-by-8) solved by this routine.
INFO (output) INTEGER
On exit, if INFO is set to
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: The matrix pairs (A, D) and (B, E) have common or very
close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
Replaced various illegal calls to DCOPY by calls to DLASET.
Sven Hammarling, 27/5/02.
.. Parameters ..
public void dtgsyl(String trans, int ijob, int m, int n, double[] a, int lda, double[] b, int ldb, double[] c, int Ldc, double[] d, int ldd, double[] e, int lde, double[] f, int ldf, org.netlib.util.doubleW scale, org.netlib.util.doubleW dif, double[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSYL solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F
where R and L are unknown m-by-n matrices, (A, D), (B, E) and
(C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
respectively, with real entries. (A, D) and (B, E) must be in
generalized (real) Schur canonical form, i.e. A, B are upper quasi
triangular and D, E are upper triangular.
The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
scaling factor chosen to avoid overflow.
In matrix notation (1) is equivalent to solve Zx = scale b, where
Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ].
Here Ik is the identity matrix of size k and X' is the transpose of
X. kron(X, Y) is the Kronecker product between the matrices X and Y.
If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * (-F)
This case (TRANS = 'T') is used to compute an one-norm-based estimate
of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
and (B,E), using DLACON.
If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
reciprocal of the smallest singular value of Z. See [1-2] for more
information.
This is a level 3 BLAS algorithm.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T', solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
=0: solve (1) only.
=1: The functionality of 0 and 3.
=2: The functionality of 0 and 4.
=3: Only an estimate of Dif[(A,D), (B,E)] is computed.
(look ahead strategy IJOB = 1 is used).
=4: Only an estimate of Dif[(A,D), (B,E)] is computed.
( DGECON on sub-systems is used ).
Not referenced if TRANS = 'T'.
M (input) INTEGER
The order of the matrices A and D, and the row dimension of
the matrices C, F, R and L.
N (input) INTEGER
The order of the matrices B and E, and the column dimension
of the matrices C, F, R and L.
A (input) DOUBLE PRECISION array, dimension (LDA, M)
The upper quasi triangular matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, M).
B (input) DOUBLE PRECISION array, dimension (LDB, N)
The upper quasi triangular matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1, N).
C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, C has been overwritten by
the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
the solution achieved during the computation of the
Dif-estimate.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1, M).
D (input) DOUBLE PRECISION array, dimension (LDD, M)
The upper triangular matrix D.
LDD (input) INTEGER
The leading dimension of the array D. LDD >= max(1, M).
E (input) DOUBLE PRECISION array, dimension (LDE, N)
The upper triangular matrix E.
LDE (input) INTEGER
The leading dimension of the array E. LDE >= max(1, N).
F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, F has been overwritten by
the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
the solution achieved during the computation of the
Dif-estimate.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1, M).
DIF (output) DOUBLE PRECISION
On exit DIF is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e. DIF is an upper bound of
Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
IF IJOB = 0 or TRANS = 'T', DIF is not touched.
SCALE (output) DOUBLE PRECISION
On exit SCALE is the scaling factor in (1) or (3).
If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
to a slightly perturbed system but the input matrices A, B, D
and E have not been changed. If SCALE = 0, C and F hold the
solutions R and L, respectively, to the homogeneous system
with C = F = 0. Normally, SCALE = 1.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK > = 1.
If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (M+N+6)
INFO (output) INTEGER
=0: successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: (A, D) and (B, E) have common or close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
[2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
Appl., 15(4):1045-1060, 1994
[3] B. Kagstrom and L. Westin, Generalized Schur Methods with
Condition Estimators for Solving the Generalized Sylvester
Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
July 1989, pp 745-751.
=====================================================================
Replaced various illegal calls to DCOPY by calls to DLASET.
Sven Hammarling, 1/5/02.
.. Parameters ..
public void dtgsyl(String trans, int ijob, int m, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] c, int _c_offset, int Ldc, double[] d, int _d_offset, int ldd, double[] e, int _e_offset, int lde, double[] f, int _f_offset, int ldf, org.netlib.util.doubleW scale, org.netlib.util.doubleW dif, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTGSYL solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F
where R and L are unknown m-by-n matrices, (A, D), (B, E) and
(C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
respectively, with real entries. (A, D) and (B, E) must be in
generalized (real) Schur canonical form, i.e. A, B are upper quasi
triangular and D, E are upper triangular.
The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
scaling factor chosen to avoid overflow.
In matrix notation (1) is equivalent to solve Zx = scale b, where
Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ].
Here Ik is the identity matrix of size k and X' is the transpose of
X. kron(X, Y) is the Kronecker product between the matrices X and Y.
If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * (-F)
This case (TRANS = 'T') is used to compute an one-norm-based estimate
of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
and (B,E), using DLACON.
If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
reciprocal of the smallest singular value of Z. See [1-2] for more
information.
This is a level 3 BLAS algorithm.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T', solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
=0: solve (1) only.
=1: The functionality of 0 and 3.
=2: The functionality of 0 and 4.
=3: Only an estimate of Dif[(A,D), (B,E)] is computed.
(look ahead strategy IJOB = 1 is used).
=4: Only an estimate of Dif[(A,D), (B,E)] is computed.
( DGECON on sub-systems is used ).
Not referenced if TRANS = 'T'.
M (input) INTEGER
The order of the matrices A and D, and the row dimension of
the matrices C, F, R and L.
N (input) INTEGER
The order of the matrices B and E, and the column dimension
of the matrices C, F, R and L.
A (input) DOUBLE PRECISION array, dimension (LDA, M)
The upper quasi triangular matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, M).
B (input) DOUBLE PRECISION array, dimension (LDB, N)
The upper quasi triangular matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1, N).
C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, C has been overwritten by
the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
the solution achieved during the computation of the
Dif-estimate.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1, M).
D (input) DOUBLE PRECISION array, dimension (LDD, M)
The upper triangular matrix D.
LDD (input) INTEGER
The leading dimension of the array D. LDD >= max(1, M).
E (input) DOUBLE PRECISION array, dimension (LDE, N)
The upper triangular matrix E.
LDE (input) INTEGER
The leading dimension of the array E. LDE >= max(1, N).
F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, F has been overwritten by
the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
the solution achieved during the computation of the
Dif-estimate.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1, M).
DIF (output) DOUBLE PRECISION
On exit DIF is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e. DIF is an upper bound of
Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
IF IJOB = 0 or TRANS = 'T', DIF is not touched.
SCALE (output) DOUBLE PRECISION
On exit SCALE is the scaling factor in (1) or (3).
If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
to a slightly perturbed system but the input matrices A, B, D
and E have not been changed. If SCALE = 0, C and F hold the
solutions R and L, respectively, to the homogeneous system
with C = F = 0. Normally, SCALE = 1.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK > = 1.
If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (M+N+6)
INFO (output) INTEGER
=0: successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: (A, D) and (B, E) have common or close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
[2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
Appl., 15(4):1045-1060, 1994
[3] B. Kagstrom and L. Westin, Generalized Schur Methods with
Condition Estimators for Solving the Generalized Sylvester
Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
July 1989, pp 745-751.
=====================================================================
Replaced various illegal calls to DCOPY by calls to DLASET.
Sven Hammarling, 1/5/02.
.. Parameters ..
public void dtpcon(String norm, String uplo, String diag, int n, double[] ap, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPCON estimates the reciprocal of the condition number of a packed
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtpcon(String norm, String uplo, String diag, int n, double[] ap, int _ap_offset, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPCON estimates the reciprocal of the condition number of a packed
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtprfs(String uplo, String trans, String diag, int n, int nrhs, double[] ap, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by DTPTRS or some other
means before entering this routine. DTPRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtprfs(String uplo, String trans, String diag, int n, int nrhs, double[] ap, int _ap_offset, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by DTPTRS or some other
means before entering this routine. DTPRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtptri(String uplo, String diag, int n, double[] ap, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPTRI computes the inverse of a real upper or lower triangular
matrix A stored in packed format.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
Further Details
===============
A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE
=====================================================================
.. Parameters ..
public void dtptri(String uplo, String diag, int n, double[] ap, int _ap_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPTRI computes the inverse of a real upper or lower triangular
matrix A stored in packed format.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
Further Details
===============
A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE
=====================================================================
.. Parameters ..
public void dtptrs(String uplo, String trans, String diag, int n, int nrhs, double[] ap, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N stored in packed format,
and B is an N-by-NRHS matrix. A check is made to verify that A is
nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void dtptrs(String uplo, String trans, String diag, int n, int nrhs, double[] ap, int _ap_offset, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTPTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N stored in packed format,
and B is an N-by-NRHS matrix. A check is made to verify that A is
nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void dtrcon(String norm, String uplo, String diag, int n, double[] a, int lda, org.netlib.util.doubleW rcond, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRCON estimates the reciprocal of the condition number of a
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtrcon(String norm, String uplo, String diag, int n, double[] a, int _a_offset, int lda, org.netlib.util.doubleW rcond, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRCON estimates the reciprocal of the condition number of a
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
RCOND (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtrevc(String side, String howmny, boolean[] select, int n, double[] t, int ldt, double[] vl, int ldvl, double[] vr, int ldvr, int mm, org.netlib.util.intW m, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTREVC computes some or all of the right and/or left eigenvectors of
a real upper quasi-triangular matrix T.
Matrices of this type are produced by the Schur factorization of
a real general matrix: A = Q*T*Q**T, as computed by DHSEQR.
The right eigenvector x and the left eigenvector y of T corresponding
to an eigenvalue w are defined by:
T*x = w*x, (y**H)*T = w*(y**H)
where y**H denotes the conjugate transpose of y.
The eigenvalues are not input to this routine, but are read directly
from the diagonal blocks of T.
This routine returns the matrices X and/or Y of right and left
eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
input matrix. If Q is the orthogonal factor that reduces a matrix
A to Schur form T, then Q*X and Q*Y are the matrices of right and
left eigenvectors of A.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
as indicated by the logical array SELECT.
SELECT (input/output) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenvectors to be
computed.
If w(j) is a real eigenvalue, the corresponding real
eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector is
computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
.FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) DOUBLE PRECISION array, dimension (LDT,N)
The upper quasi-triangular matrix T in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by DHSEQR).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VL, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by DHSEQR).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of T;
if HOWMNY = 'B', the matrix Q*X;
if HOWMNY = 'S', the right eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors.
If HOWMNY = 'A' or 'B', M is set to N.
Each selected real eigenvector occupies one column and each
selected complex eigenvector occupies two columns.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The algorithm used in this program is basically backward (forward)
substitution, with scaling to make the the code robust against
possible overflow.
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
=====================================================================
.. Parameters ..
public void dtrevc(String side, String howmny, boolean[] select, int _select_offset, int n, double[] t, int _t_offset, int ldt, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, int mm, org.netlib.util.intW m, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTREVC computes some or all of the right and/or left eigenvectors of
a real upper quasi-triangular matrix T.
Matrices of this type are produced by the Schur factorization of
a real general matrix: A = Q*T*Q**T, as computed by DHSEQR.
The right eigenvector x and the left eigenvector y of T corresponding
to an eigenvalue w are defined by:
T*x = w*x, (y**H)*T = w*(y**H)
where y**H denotes the conjugate transpose of y.
The eigenvalues are not input to this routine, but are read directly
from the diagonal blocks of T.
This routine returns the matrices X and/or Y of right and left
eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
input matrix. If Q is the orthogonal factor that reduces a matrix
A to Schur form T, then Q*X and Q*Y are the matrices of right and
left eigenvectors of A.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
as indicated by the logical array SELECT.
SELECT (input/output) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenvectors to be
computed.
If w(j) is a real eigenvalue, the corresponding real
eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector is
computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
.FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) DOUBLE PRECISION array, dimension (LDT,N)
The upper quasi-triangular matrix T in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by DHSEQR).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VL, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by DHSEQR).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of T;
if HOWMNY = 'B', the matrix Q*X;
if HOWMNY = 'S', the right eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors.
If HOWMNY = 'A' or 'B', M is set to N.
Each selected real eigenvector occupies one column and each
selected complex eigenvector occupies two columns.
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The algorithm used in this program is basically backward (forward)
substitution, with scaling to make the the code robust against
possible overflow.
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
=====================================================================
.. Parameters ..
public void dtrexc(String compq, int n, double[] t, int ldt, double[] q, int ldq, org.netlib.util.intW ifst, org.netlib.util.intW ilst, double[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTREXC reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that the diagonal block of T with row index IFST is
moved to row ILST.
The real Schur form T is reordered by an orthogonal similarity
transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors
is updated by postmultiplying it with Z.
T must be in Schur canonical form (as returned by DHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
Schur canonical form.
On exit, the reordered upper quasi-triangular matrix, again
in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix Z which reorders T.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of T.
The block with row index IFST is moved to row ILST, by a
sequence of transpositions between adjacent blocks.
On exit, if IFST pointed on entry to the second row of a
2-by-2 block, it is changed to point to the first row; ILST
always points to the first row of the block in its final
position (which may differ from its input value by +1 or -1).
1 <= IFST <= N; 1 <= ILST <= N.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: two adjacent blocks were too close to swap (the problem
is very ill-conditioned); T may have been partially
reordered, and ILST points to the first row of the
current position of the block being moved.
=====================================================================
.. Parameters ..
public void dtrexc(String compq, int n, double[] t, int _t_offset, int ldt, double[] q, int _q_offset, int ldq, org.netlib.util.intW ifst, org.netlib.util.intW ilst, double[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTREXC reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that the diagonal block of T with row index IFST is
moved to row ILST.
The real Schur form T is reordered by an orthogonal similarity
transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors
is updated by postmultiplying it with Z.
T must be in Schur canonical form (as returned by DHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
Schur canonical form.
On exit, the reordered upper quasi-triangular matrix, again
in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix Z which reorders T.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of T.
The block with row index IFST is moved to row ILST, by a
sequence of transpositions between adjacent blocks.
On exit, if IFST pointed on entry to the second row of a
2-by-2 block, it is changed to point to the first row; ILST
always points to the first row of the block in its final
position (which may differ from its input value by +1 or -1).
1 <= IFST <= N; 1 <= ILST <= N.
WORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: two adjacent blocks were too close to swap (the problem
is very ill-conditioned); T may have been partially
reordered, and ILST points to the first row of the
current position of the block being moved.
=====================================================================
.. Parameters ..
public void dtrrfs(String uplo, String trans, String diag, int n, int nrhs, double[] a, int lda, double[] b, int ldb, double[] x, int ldx, double[] ferr, double[] berr, double[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular
coefficient matrix.
The solution matrix X must be computed by DTRTRS or some other
means before entering this routine. DTRRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtrrfs(String uplo, String trans, String diag, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] x, int _x_offset, int ldx, double[] ferr, int _ferr_offset, double[] berr, int _berr_offset, double[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular
coefficient matrix.
The solution matrix X must be computed by DTRTRS or some other
means before entering this routine. DTRRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtrsen(String job, String compq, boolean[] select, int n, double[] t, int ldt, double[] q, int ldq, double[] wr, double[] wi, org.netlib.util.intW m, org.netlib.util.doubleW s, org.netlib.util.doubleW sep, double[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRSEN reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
the leading diagonal blocks of the upper quasi-triangular matrix T,
and the leading columns of Q form an orthonormal basis of the
corresponding right invariant subspace.
Optionally the routine computes the reciprocal condition numbers of
the cluster of eigenvalues and/or the invariant subspace.
T must be in Schur canonical form (as returned by DHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elemnts equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for the
cluster of eigenvalues (S) or the invariant subspace (SEP):
= 'N': none;
= 'E': for eigenvalues only (S);
= 'V': for invariant subspace only (SEP);
= 'B': for both eigenvalues and invariant subspace (S and
SEP).
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster. To
select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, T is overwritten by the reordered matrix T, again in
Schur canonical form, with the selected eigenvalues in the
leading diagonal blocks.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix which reorders T; the
leading M columns of Q form an orthonormal basis for the
specified invariant subspace.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the reordered
eigenvalues of T. The eigenvalues are stored in the same
order as on the diagonal of T, with WR(i) = T(i,i) and, if
T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
WI(i+1) = -WI(i). Note that if a complex eigenvalue is
sufficiently ill-conditioned, then its value may differ
significantly from its value before reordering.
M (output) INTEGER
The dimension of the specified invariant subspace.
0 < = M <= N.
S (output) DOUBLE PRECISION
If JOB = 'E' or 'B', S is a lower bound on the reciprocal
condition number for the selected cluster of eigenvalues.
S cannot underestimate the true reciprocal condition number
by more than a factor of sqrt(N). If M = 0 or N, S = 1.
If JOB = 'N' or 'V', S is not referenced.
SEP (output) DOUBLE PRECISION
If JOB = 'V' or 'B', SEP is the estimated reciprocal
condition number of the specified invariant subspace. If
M = 0 or N, SEP = norm(T).
If JOB = 'N' or 'E', SEP is not referenced.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOB = 'N', LWORK >= max(1,N);
if JOB = 'E', LWORK >= max(1,M*(N-M));
if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOB = 'N' or 'E', LIWORK >= 1;
if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: reordering of T failed because some eigenvalues are too
close to separate (the problem is very ill-conditioned);
T may have been partially reordered, and WR and WI
contain the eigenvalues in the same order as in T; S and
SEP (if requested) are set to zero.
Further Details
===============
DTRSEN first collects the selected eigenvalues by computing an
orthogonal transformation Z to move them to the top left corner of T.
In other words, the selected eigenvalues are the eigenvalues of T11
in:
Z'*T*Z = ( T11 T12 ) n1
( 0 T22 ) n2
n1 n2
where N = n1+n2 and Z' means the transpose of Z. The first n1 columns
of Z span the specified invariant subspace of T.
If T has been obtained from the real Schur factorization of a matrix
A = Q*T*Q', then the reordered real Schur factorization of A is given
by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span
the corresponding invariant subspace of A.
The reciprocal condition number of the average of the eigenvalues of
T11 may be returned in S. S lies between 0 (very badly conditioned)
and 1 (very well conditioned). It is computed as follows. First we
compute R so that
P = ( I R ) n1
( 0 0 ) n2
n1 n2
is the projector on the invariant subspace associated with T11.
R is the solution of the Sylvester equation:
T11*R - R*T22 = T12.
Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
the two-norm of M. Then S is computed as the lower bound
(1 + F-norm(R)**2)**(-1/2)
on the reciprocal of 2-norm(P), the true reciprocal condition number.
S cannot underestimate 1 / 2-norm(P) by more than a factor of
sqrt(N).
An approximate error bound for the computed average of the
eigenvalues of T11 is
EPS * norm(T) / S
where EPS is the machine precision.
The reciprocal condition number of the right invariant subspace
spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
SEP is defined as the separation of T11 and T22:
sep( T11, T22 ) = sigma-min( C )
where sigma-min(C) is the smallest singular value of the
n1*n2-by-n1*n2 matrix
C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
I(m) is an m by m identity matrix, and kprod denotes the Kronecker
product. We estimate sigma-min(C) by the reciprocal of an estimate of
the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
When SEP is small, small changes in T can cause large changes in
the invariant subspace. An approximate bound on the maximum angular
error in the computed right invariant subspace is
EPS * norm(T) / SEP
=====================================================================
.. Parameters ..
public void dtrsen(String job, String compq, boolean[] select, int _select_offset, int n, double[] t, int _t_offset, int ldt, double[] q, int _q_offset, int ldq, double[] wr, int _wr_offset, double[] wi, int _wi_offset, org.netlib.util.intW m, org.netlib.util.doubleW s, org.netlib.util.doubleW sep, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRSEN reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
the leading diagonal blocks of the upper quasi-triangular matrix T,
and the leading columns of Q form an orthonormal basis of the
corresponding right invariant subspace.
Optionally the routine computes the reciprocal condition numbers of
the cluster of eigenvalues and/or the invariant subspace.
T must be in Schur canonical form (as returned by DHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elemnts equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for the
cluster of eigenvalues (S) or the invariant subspace (SEP):
= 'N': none;
= 'E': for eigenvalues only (S);
= 'V': for invariant subspace only (SEP);
= 'B': for both eigenvalues and invariant subspace (S and
SEP).
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster. To
select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, T is overwritten by the reordered matrix T, again in
Schur canonical form, with the selected eigenvalues in the
leading diagonal blocks.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix which reorders T; the
leading M columns of Q form an orthonormal basis for the
specified invariant subspace.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the reordered
eigenvalues of T. The eigenvalues are stored in the same
order as on the diagonal of T, with WR(i) = T(i,i) and, if
T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
WI(i+1) = -WI(i). Note that if a complex eigenvalue is
sufficiently ill-conditioned, then its value may differ
significantly from its value before reordering.
M (output) INTEGER
The dimension of the specified invariant subspace.
0 < = M <= N.
S (output) DOUBLE PRECISION
If JOB = 'E' or 'B', S is a lower bound on the reciprocal
condition number for the selected cluster of eigenvalues.
S cannot underestimate the true reciprocal condition number
by more than a factor of sqrt(N). If M = 0 or N, S = 1.
If JOB = 'N' or 'V', S is not referenced.
SEP (output) DOUBLE PRECISION
If JOB = 'V' or 'B', SEP is the estimated reciprocal
condition number of the specified invariant subspace. If
M = 0 or N, SEP = norm(T).
If JOB = 'N' or 'E', SEP is not referenced.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOB = 'N', LWORK >= max(1,N);
if JOB = 'E', LWORK >= max(1,M*(N-M));
if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOB = 'N' or 'E', LIWORK >= 1;
if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: reordering of T failed because some eigenvalues are too
close to separate (the problem is very ill-conditioned);
T may have been partially reordered, and WR and WI
contain the eigenvalues in the same order as in T; S and
SEP (if requested) are set to zero.
Further Details
===============
DTRSEN first collects the selected eigenvalues by computing an
orthogonal transformation Z to move them to the top left corner of T.
In other words, the selected eigenvalues are the eigenvalues of T11
in:
Z'*T*Z = ( T11 T12 ) n1
( 0 T22 ) n2
n1 n2
where N = n1+n2 and Z' means the transpose of Z. The first n1 columns
of Z span the specified invariant subspace of T.
If T has been obtained from the real Schur factorization of a matrix
A = Q*T*Q', then the reordered real Schur factorization of A is given
by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span
the corresponding invariant subspace of A.
The reciprocal condition number of the average of the eigenvalues of
T11 may be returned in S. S lies between 0 (very badly conditioned)
and 1 (very well conditioned). It is computed as follows. First we
compute R so that
P = ( I R ) n1
( 0 0 ) n2
n1 n2
is the projector on the invariant subspace associated with T11.
R is the solution of the Sylvester equation:
T11*R - R*T22 = T12.
Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
the two-norm of M. Then S is computed as the lower bound
(1 + F-norm(R)**2)**(-1/2)
on the reciprocal of 2-norm(P), the true reciprocal condition number.
S cannot underestimate 1 / 2-norm(P) by more than a factor of
sqrt(N).
An approximate error bound for the computed average of the
eigenvalues of T11 is
EPS * norm(T) / S
where EPS is the machine precision.
The reciprocal condition number of the right invariant subspace
spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
SEP is defined as the separation of T11 and T22:
sep( T11, T22 ) = sigma-min( C )
where sigma-min(C) is the smallest singular value of the
n1*n2-by-n1*n2 matrix
C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
I(m) is an m by m identity matrix, and kprod denotes the Kronecker
product. We estimate sigma-min(C) by the reciprocal of an estimate of
the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
When SEP is small, small changes in T can cause large changes in
the invariant subspace. An approximate bound on the maximum angular
error in the computed right invariant subspace is
EPS * norm(T) / SEP
=====================================================================
.. Parameters ..
public void dtrsna(String job, String howmny, boolean[] select, int n, double[] t, int ldt, double[] vl, int ldvl, double[] vr, int ldvr, double[] s, double[] sep, int mm, org.netlib.util.intW m, double[] work, int ldwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRSNA estimates reciprocal condition numbers for specified
eigenvalues and/or right eigenvectors of a real upper
quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
orthogonal).
T must be in Schur canonical form (as returned by DHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (SEP);
= 'B': for both eigenvalues and eigenvectors (S and SEP).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) DOUBLE PRECISION array, dimension (LDT,N)
The upper quasi-triangular matrix T, in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input) DOUBLE PRECISION array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
DHSEIN or DTREVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
VR (input) DOUBLE PRECISION array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
DHSEIN or DTREVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
S (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), SEP(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
SEP (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of SEP are set to the same value. If
the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', SEP is not referenced.
MM (input) INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.
M (output) INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.
WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,N+6)
If JOB = 'E', WORK is not referenced.
LDWORK (input) INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
IWORK (workspace) INTEGER array, dimension (2*(N-1))
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of an eigenvalue lambda is
defined as
S(lambda) = |v'*u| / (norm(u)*norm(v))
where u and v are the right and left eigenvectors of T corresponding
to lambda; v' denotes the conjugate-transpose of v, and norm(u)
denotes the Euclidean norm. These reciprocal condition numbers always
lie between zero (very badly conditioned) and one (very well
conditioned). If n = 1, S(lambda) is defined to be 1.
An approximate error bound for a computed eigenvalue W(i) is given by
EPS * norm(T) / S(i)
where EPS is the machine precision.
The reciprocal of the condition number of the right eigenvector u
corresponding to lambda is defined as follows. Suppose
T = ( lambda c )
( 0 T22 )
Then the reciprocal condition number is
SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
where sigma-min denotes the smallest singular value. We approximate
the smallest singular value by the reciprocal of an estimate of the
one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
defined to be abs(T(1,1)).
An approximate error bound for a computed right eigenvector VR(i)
is given by
EPS * norm(T) / SEP(i)
=====================================================================
.. Parameters ..
public void dtrsna(String job, String howmny, boolean[] select, int _select_offset, int n, double[] t, int _t_offset, int ldt, double[] vl, int _vl_offset, int ldvl, double[] vr, int _vr_offset, int ldvr, double[] s, int _s_offset, double[] sep, int _sep_offset, int mm, org.netlib.util.intW m, double[] work, int _work_offset, int ldwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRSNA estimates reciprocal condition numbers for specified
eigenvalues and/or right eigenvectors of a real upper
quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
orthogonal).
T must be in Schur canonical form (as returned by DHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (SEP);
= 'B': for both eigenvalues and eigenvectors (S and SEP).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) DOUBLE PRECISION array, dimension (LDT,N)
The upper quasi-triangular matrix T, in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input) DOUBLE PRECISION array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
DHSEIN or DTREVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
VR (input) DOUBLE PRECISION array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
DHSEIN or DTREVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
S (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), SEP(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
SEP (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of SEP are set to the same value. If
the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', SEP is not referenced.
MM (input) INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.
M (output) INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.
WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,N+6)
If JOB = 'E', WORK is not referenced.
LDWORK (input) INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
IWORK (workspace) INTEGER array, dimension (2*(N-1))
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of an eigenvalue lambda is
defined as
S(lambda) = |v'*u| / (norm(u)*norm(v))
where u and v are the right and left eigenvectors of T corresponding
to lambda; v' denotes the conjugate-transpose of v, and norm(u)
denotes the Euclidean norm. These reciprocal condition numbers always
lie between zero (very badly conditioned) and one (very well
conditioned). If n = 1, S(lambda) is defined to be 1.
An approximate error bound for a computed eigenvalue W(i) is given by
EPS * norm(T) / S(i)
where EPS is the machine precision.
The reciprocal of the condition number of the right eigenvector u
corresponding to lambda is defined as follows. Suppose
T = ( lambda c )
( 0 T22 )
Then the reciprocal condition number is
SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
where sigma-min denotes the smallest singular value. We approximate
the smallest singular value by the reciprocal of an estimate of the
one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
defined to be abs(T(1,1)).
An approximate error bound for a computed right eigenvector VR(i)
is given by
EPS * norm(T) / SEP(i)
=====================================================================
.. Parameters ..
public void dtrsyl(String trana, String tranb, int isgn, int m, int n, double[] a, int lda, double[] b, int ldb, double[] c, int Ldc, org.netlib.util.doubleW scale, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRSYL solves the real Sylvester matrix equation:
op(A)*X + X*op(B) = scale*C or
op(A)*X - X*op(B) = scale*C,
where op(A) = A or A**T, and A and B are both upper quasi-
triangular. A is M-by-M and B is N-by-N; the right hand side C and
the solution X are M-by-N; and scale is an output scale factor, set
<= 1 to avoid overflow in X.
A and B must be in Schur canonical form (as returned by DHSEQR), that
is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
each 2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
TRANA (input) CHARACTER*1
Specifies the option op(A):
= 'N': op(A) = A (No transpose)
= 'T': op(A) = A**T (Transpose)
= 'C': op(A) = A**H (Conjugate transpose = Transpose)
TRANB (input) CHARACTER*1
Specifies the option op(B):
= 'N': op(B) = B (No transpose)
= 'T': op(B) = B**T (Transpose)
= 'C': op(B) = B**H (Conjugate transpose = Transpose)
ISGN (input) INTEGER
Specifies the sign in the equation:
= +1: solve op(A)*X + X*op(B) = scale*C
= -1: solve op(A)*X - X*op(B) = scale*C
M (input) INTEGER
The order of the matrix A, and the number of rows in the
matrices X and C. M >= 0.
N (input) INTEGER
The order of the matrix B, and the number of columns in the
matrices X and C. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,M)
The upper quasi-triangular matrix A, in Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The upper quasi-triangular matrix B, in Schur canonical form.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N right hand side matrix C.
On exit, C is overwritten by the solution matrix X.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M)
SCALE (output) DOUBLE PRECISION
The scale factor, scale, set <= 1 to avoid overflow in X.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: A and B have common or very close eigenvalues; perturbed
values were used to solve the equation (but the matrices
A and B are unchanged).
=====================================================================
.. Parameters ..
public void dtrsyl(String trana, String tranb, int isgn, int m, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] c, int _c_offset, int Ldc, org.netlib.util.doubleW scale, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRSYL solves the real Sylvester matrix equation:
op(A)*X + X*op(B) = scale*C or
op(A)*X - X*op(B) = scale*C,
where op(A) = A or A**T, and A and B are both upper quasi-
triangular. A is M-by-M and B is N-by-N; the right hand side C and
the solution X are M-by-N; and scale is an output scale factor, set
<= 1 to avoid overflow in X.
A and B must be in Schur canonical form (as returned by DHSEQR), that
is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
each 2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
TRANA (input) CHARACTER*1
Specifies the option op(A):
= 'N': op(A) = A (No transpose)
= 'T': op(A) = A**T (Transpose)
= 'C': op(A) = A**H (Conjugate transpose = Transpose)
TRANB (input) CHARACTER*1
Specifies the option op(B):
= 'N': op(B) = B (No transpose)
= 'T': op(B) = B**T (Transpose)
= 'C': op(B) = B**H (Conjugate transpose = Transpose)
ISGN (input) INTEGER
Specifies the sign in the equation:
= +1: solve op(A)*X + X*op(B) = scale*C
= -1: solve op(A)*X - X*op(B) = scale*C
M (input) INTEGER
The order of the matrix A, and the number of rows in the
matrices X and C. M >= 0.
N (input) INTEGER
The order of the matrix B, and the number of columns in the
matrices X and C. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,M)
The upper quasi-triangular matrix A, in Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input) DOUBLE PRECISION array, dimension (LDB,N)
The upper quasi-triangular matrix B, in Schur canonical form.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N right hand side matrix C.
On exit, C is overwritten by the solution matrix X.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M)
SCALE (output) DOUBLE PRECISION
The scale factor, scale, set <= 1 to avoid overflow in X.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: A and B have common or very close eigenvalues; perturbed
values were used to solve the equation (but the matrices
A and B are unchanged).
=====================================================================
.. Parameters ..
public void dtrti2(String uplo, String diag, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRTI2 computes the inverse of a real upper or lower triangular
matrix.
This is the Level 2 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading n by n upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtrti2(String uplo, String diag, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRTI2 computes the inverse of a real upper or lower triangular
matrix.
This is the Level 2 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading n by n upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void dtrtri(String uplo, String diag, int n, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRTRI computes the inverse of a real upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
=====================================================================
.. Parameters ..
public void dtrtri(String uplo, String diag, int n, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRTRI computes the inverse of a real upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
=====================================================================
.. Parameters ..
public void dtrtrs(String uplo, String trans, String diag, int n, int nrhs, double[] a, int lda, double[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions
X have not been computed.
=====================================================================
.. Parameters ..
public void dtrtrs(String uplo, String trans, String diag, int n, int nrhs, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTRTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions
X have not been computed.
=====================================================================
.. Parameters ..
public void dtzrqf(int m, int n, double[] a, int lda, double[] tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DTZRZF.
DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (M)
The scalar factors of the elementary reflectors.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void dtzrqf(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine DTZRZF.
DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (M)
The scalar factors of the elementary reflectors.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void dtzrzf(int m, int n, double[] a, int lda, double[] tau, double[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void dtzrzf(int m, int n, double[] a, int _a_offset, int lda, double[] tau, int _tau_offset, double[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,L
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public int ieeeck(int ispec, float zero, float one)
LAPACK
..
Purpose
=======
IEEECK is called from the ILAENV to verify that Infinity and
possibly NaN arithmetic is safe (i.e. will not trap).
Arguments
=========
ISPEC (input) INTEGER
Specifies whether to test just for inifinity arithmetic
or whether to test for infinity and NaN arithmetic.
= 0: Verify infinity arithmetic only.
= 1: Verify infinity and NaN arithmetic.
ZERO (input) REAL
Must contain the value 0.0
This is passed to prevent the compiler from optimizing
away this code.
ONE (input) REAL
Must contain the value 1.0
This is passed to prevent the compiler from optimizing
away this code.
RETURN VALUE: INTEGER
= 0: Arithmetic failed to produce the correct answers
= 1: Arithmetic produced the correct answers
.. Local Scalars ..
public int ilaenv(int ispec, String name, String opts, int n1, int n2, int n3, int n4)
LAPACK
..
Purpose
=======
ILAENV is called from the LAPACK routines to choose problem-dependent
parameters for the local environment. See ISPEC for a description of
the parameters.
ILAENV returns an INTEGER
if ILAENV >= 0: ILAENV returns the value of the parameter specified b
if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal valu
This version provides a set of parameters which should give good,
but not optimal, performance on many of the currently available
computers. Users are encouraged to modify this subroutine to set
the tuning parameters for their particular machine using the option
and problem size information in the arguments.
This routine will not function correctly if it is converted to all
lower case. Converting it to all upper case is allowed.
Arguments
=========
ISPEC (input) INTEGER
Specifies the parameter to be returned as the value of
ILAENV.
= 1: the optimal blocksize; if this value is 1, an unblocked
algorithm will give the best performance.
= 2: the minimum block size for which the block routine
should be used; if the usable block size is less than
this value, an unblocked routine should be used.
= 3: the crossover point (in a block routine, for N less
than this value, an unblocked routine should be used)
= 4: the number of shifts, used in the nonsymmetric
eigenvalue routines (DEPRECATED)
= 5: the minimum column dimension for blocking to be used;
rectangular blocks must have dimension at least k by m,
where k is given by ILAENV(2,...) and m by ILAENV(5,...)
= 6: the crossover point for the SVD (when reducing an m by n
matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
this value, a QR factorization is used first to reduce
the matrix to a triangular form.)
= 7: the number of processors
= 8: the crossover point for the multishift QR method
for nonsymmetric eigenvalue problems (DEPRECATED)
= 9: maximum size of the subproblems at the bottom of the
computation tree in the divide-and-conquer algorithm
(used by xGELSD and xGESDD)
=10: ieee NaN arithmetic can be trusted not to trap
=11: infinity arithmetic can be trusted not to trap
12 <= ISPEC <= 16:
xHSEQR or one of its subroutines,
see IPARMQ for detailed explanation
NAME (input) CHARACTER*(*)
The name of the calling subroutine, in either upper case or
lower case.
OPTS (input) CHARACTER*(*)
The character options to the subroutine NAME, concatenated
into a single character string. For example, UPLO = 'U',
TRANS = 'T', and DIAG = 'N' for a triangular routine would
be specified as OPTS = 'UTN'.
N1 (input) INTEGER
N2 (input) INTEGER
N3 (input) INTEGER
N4 (input) INTEGER
Problem dimensions for the subroutine NAME; these may not all
be required.
Further Details
===============
The following conventions have been used when calling ILAENV from the
LAPACK routines:
1) OPTS is a concatenation of all of the character options to
subroutine NAME, in the same order that they appear in the
argument list for NAME, even if they are not used in determining
the value of the parameter specified by ISPEC.
2) The problem dimensions N1, N2, N3, N4 are specified in the order
that they appear in the argument list for NAME. N1 is used
first, N2 second, and so on, and unused problem dimensions are
passed a value of -1.
3) The parameter value returned by ILAENV is checked for validity in
the calling subroutine. For example, ILAENV is used to retrieve
the optimal blocksize for STRTRI as follows:
NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
IF( NB.LE.1 ) NB = MAX( 1, N )
=====================================================================
.. Local Scalars ..
public void ilaver(org.netlib.util.intW vers_major, org.netlib.util.intW vers_minor, org.netlib.util.intW vers_patch)
LAPACK
-- LAPACK routine (version 3.1.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
January 2007
..
Purpose
=======
This subroutine return the Lapack version
Arguments
=========
VERS_MAJOR (output) INTEGER
return the lapack major version
VERS_MINOR (output) INTEGER
return the lapack minor version from the major version
VERS_PATCH (output) INTEGER
return the lapack patch version from the minor version
=====================================================================
public int iparmq(int ispec, String name, String opts, int n, int ilo, int ihi, int lwork)
LAPACK
Purpose
=======
This program sets problem and machine dependent parameters
useful for xHSEQR and its subroutines. It is called whenever
ILAENV is called with 12 <= ISPEC <= 16
Arguments
=========
ISPEC (input) integer scalar
ISPEC specifies which tunable parameter IPARMQ should
return.
ISPEC=12: (INMIN) Matrices of order nmin or less
are sent directly to xLAHQR, the implicit
double shift QR algorithm. NMIN must be
at least 11.
ISPEC=13: (INWIN) Size of the deflation window.
This is best set greater than or equal to
the number of simultaneous shifts NS.
Larger matrices benefit from larger deflation
windows.
ISPEC=14: (INIBL) Determines when to stop nibbling and
invest in an (expensive) multi-shift QR sweep.
If the aggressive early deflation subroutine
finds LD converged eigenvalues from an order
NW deflation window and LD.GT.(NW*NIBBLE)/100,
then the next QR sweep is skipped and early
deflation is applied immediately to the
remaining active diagonal block. Setting
IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a
multi-shift QR sweep whenever early deflation
finds a converged eigenvalue. Setting
IPARMQ(ISPEC=14) greater than or equal to 100
prevents TTQRE from skipping a multi-shift
QR sweep.
ISPEC=15: (NSHFTS) The number of simultaneous shifts in
a multi-shift QR iteration.
ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the
following meanings.
0: During the multi-shift QR sweep,
xLAQR5 does not accumulate reflections and
does not use matrix-matrix multiply to
update the far-from-diagonal matrix
entries.
1: During the multi-shift QR sweep,
xLAQR5 and/or xLAQRaccumulates reflections
matrix-matrix multiply to update the
far-from-diagonal matrix entries.
2: During the multi-shift QR sweep.
xLAQR5 accumulates reflections and takes
advantage of 2-by-2 block structure during
matrix-matrix multiplies.
(If xTRMM is slower than xGEMM, then
IPARMQ(ISPEC=16)=1 may be more efficient than
IPARMQ(ISPEC=16)=2 despite the greater level of
arithmetic work implied by the latter choice.)
NAME (input) character string
Name of the calling subroutine
OPTS (input) character string
This is a concatenation of the string arguments to
TTQRE.
N (input) integer scalar
N is the order of the Hessenberg matrix H.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular
in rows and columns 1:ILO-1 and IHI+1:N.
LWORK (input) integer scalar
The amount of workspace available.
Further Details
===============
Little is known about how best to choose these parameters.
It is possible to use different values of the parameters
for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR.
It is probably best to choose different parameters for
different matrices and different parameters at different
times during the iteration, but this has not been
implemented --- yet.
The best choices of most of the parameters depend
in an ill-understood way on the relative execution
rate of xLAQR3 and xLAQR5 and on the nature of each
particular eigenvalue problem. Experiment may be the
only practical way to determine which choices are most
effective.
Following is a list of default values supplied by IPARMQ.
These defaults may be adjusted in order to attain better
performance in any particular computational environment.
IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point.
Default: 75. (Must be at least 11.)
IPARMQ(ISPEC=13) Recommended deflation window size.
This depends on ILO, IHI and NS, the
number of simultaneous shifts returned
by IPARMQ(ISPEC=15). The default for
(IHI-ILO+1).LE.500 is NS. The default
for (IHI-ILO+1).GT.500 is 3*NS/2.
IPARMQ(ISPEC=14) Nibble crossover point. Default: 14.
IPARMQ(ISPEC=15) Number of simultaneous shifts, NS.
a multi-shift QR iteration.
If IHI-ILO+1 is ...
greater than ...but less ... the
or equal to ... than default is
0 30 NS = 2+
30 60 NS = 4+
60 150 NS = 10
150 590 NS = **
590 3000 NS = 64
3000 6000 NS = 128
6000 infinity NS = 256
(+) By default matrices of this order are
passed to the implicit double shift routine
xLAHQR. See IPARMQ(ISPEC=12) above. These
values of NS are used only in case of a rare
xLAHQR failure.
(**) The asterisks (**) indicate an ad-hoc
function increasing from 10 to 64.
IPARMQ(ISPEC=16) Select structured matrix multiply.
(See ISPEC=16 above for details.)
Default: 3.
================================================================
.. Parameters ..
public boolean lsamen(int n, String ca, String cb)
LAPACK
..
Purpose
=======
LSAMEN tests if the first N letters of CA are the same as the
first N letters of CB, regardless of case.
LSAMEN returns .TRUE. if CA and CB are equivalent except for case
and .FALSE. otherwise. LSAMEN also returns .FALSE. if LEN( CA )
or LEN( CB ) is less than N.
Arguments
=========
N (input) INTEGER
The number of characters in CA and CB to be compared.
CA (input) CHARACTER*(*)
CB (input) CHARACTER*(*)
CA and CB specify two character strings of length at least N.
Only the first N characters of each string will be accessed.
=====================================================================
.. Local Scalars ..
public void sbdsdc(String uplo, String compq, int n, float[] d, float[] e, float[] u, int ldu, float[] vt, int ldvt, float[] q, int[] iq, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SBDSDC computes the singular value decomposition (SVD) of a real
N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
using a divide and conquer method, where S is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and
U and VT are orthogonal matrices of left and right singular vectors,
respectively. SBDSDC can be used to compute all singular values,
and optionally, singular vectors or singular vectors in compact form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See SLASD3 for details.
The code currently calls SLASDQ if singular values only are desired.
However, it can be slightly modified to compute singular values
using the divide and conquer method.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal.
= 'L': B is lower bidiagonal.
COMPQ (input) CHARACTER*1
Specifies whether singular vectors are to be computed
as follows:
= 'N': Compute singular values only;
= 'P': Compute singular values and compute singular
vectors in compact form;
= 'I': Compute singular values and singular vectors.
N (input) INTEGER
The order of the matrix B. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B.
E (input/output) REAL array, dimension (N-1)
On entry, the elements of E contain the offdiagonal
elements of the bidiagonal matrix whose SVD is desired.
On exit, E has been destroyed.
U (output) REAL array, dimension (LDU,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, U contains the left singular vectors
of the bidiagonal matrix.
For other values of COMPQ, U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1.
If singular vectors are desired, then LDU >= max( 1, N ).
VT (output) REAL array, dimension (LDVT,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, VT' contains the right singular
vectors of the bidiagonal matrix.
For other values of COMPQ, VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1.
If singular vectors are desired, then LDVT >= max( 1, N ).
Q (output) REAL array, dimension (LDQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, Q contains all the REAL data in
LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, Q is not referenced.
IQ (output) INTEGER array, dimension (LDIQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, IQ contains all INTEGER data in
LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, IQ is not referenced.
WORK (workspace) REAL array, dimension (MAX(1,LWORK))
If COMPQ = 'N' then LWORK >= (4 * N).
If COMPQ = 'P' then LWORK >= (6 * N).
If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
IWORK (workspace) INTEGER array, dimension (8*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value.
The update process of divide and conquer failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
Changed dimension statement in comment describing E from (N) to
(N-1). Sven, 17 Feb 05.
=====================================================================
.. Parameters ..
public void sbdsdc(String uplo, String compq, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int ldvt, float[] q, int _q_offset, int[] iq, int _iq_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SBDSDC computes the singular value decomposition (SVD) of a real
N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
using a divide and conquer method, where S is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and
U and VT are orthogonal matrices of left and right singular vectors,
respectively. SBDSDC can be used to compute all singular values,
and optionally, singular vectors or singular vectors in compact form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See SLASD3 for details.
The code currently calls SLASDQ if singular values only are desired.
However, it can be slightly modified to compute singular values
using the divide and conquer method.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal.
= 'L': B is lower bidiagonal.
COMPQ (input) CHARACTER*1
Specifies whether singular vectors are to be computed
as follows:
= 'N': Compute singular values only;
= 'P': Compute singular values and compute singular
vectors in compact form;
= 'I': Compute singular values and singular vectors.
N (input) INTEGER
The order of the matrix B. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B.
E (input/output) REAL array, dimension (N-1)
On entry, the elements of E contain the offdiagonal
elements of the bidiagonal matrix whose SVD is desired.
On exit, E has been destroyed.
U (output) REAL array, dimension (LDU,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, U contains the left singular vectors
of the bidiagonal matrix.
For other values of COMPQ, U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1.
If singular vectors are desired, then LDU >= max( 1, N ).
VT (output) REAL array, dimension (LDVT,N)
If COMPQ = 'I', then:
On exit, if INFO = 0, VT' contains the right singular
vectors of the bidiagonal matrix.
For other values of COMPQ, VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1.
If singular vectors are desired, then LDVT >= max( 1, N ).
Q (output) REAL array, dimension (LDQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, Q contains all the REAL data in
LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, Q is not referenced.
IQ (output) INTEGER array, dimension (LDIQ)
If COMPQ = 'P', then:
On exit, if INFO = 0, Q and IQ contain the left
and right singular vectors in a compact form,
requiring O(N log N) space instead of 2*N**2.
In particular, IQ contains all INTEGER data in
LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
words of memory, where SMLSIZ is returned by ILAENV and
is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25).
For other values of COMPQ, IQ is not referenced.
WORK (workspace) REAL array, dimension (MAX(1,LWORK))
If COMPQ = 'N' then LWORK >= (4 * N).
If COMPQ = 'P' then LWORK >= (6 * N).
If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
IWORK (workspace) INTEGER array, dimension (8*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value.
The update process of divide and conquer failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
Changed dimension statement in comment describing E from (N) to
(N-1). Sven, 17 Feb 05.
=====================================================================
.. Parameters ..
public void sbdsqr(String uplo, int n, int ncvt, int nru, int ncc, float[] d, float[] e, float[] vt, int ldvt, float[] u, int ldu, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SBDSQR computes the singular values and, optionally, the right and/or
left singular vectors from the singular value decomposition (SVD) of
a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
zero-shift QR algorithm. The SVD of B has the form
B = Q * S * P**T
where S is the diagonal matrix of singular values, Q is an orthogonal
matrix of left singular vectors, and P is an orthogonal matrix of
right singular vectors. If left singular vectors are requested, this
subroutine actually returns U*Q instead of Q, and, if right singular
vectors are requested, this subroutine returns P**T*VT instead of
P**T, for given real input matrices U and VT. When U and VT are the
orthogonal matrices that reduce a general matrix A to bidiagonal
form: A = U*B*VT, as computed by SGEBRD, then
A = (U*Q) * S * (P**T*VT)
is the SVD of A. Optionally, the subroutine may also compute Q**T*C
for a given real input matrix C.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
no. 5, pp. 873-912, Sept 1990) and
"Accurate singular values and differential qd algorithms," by
B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
Department, University of California at Berkeley, July 1992
for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal;
= 'L': B is lower bidiagonal.
N (input) INTEGER
The order of the matrix B. N >= 0.
NCVT (input) INTEGER
The number of columns of the matrix VT. NCVT >= 0.
NRU (input) INTEGER
The number of rows of the matrix U. NRU >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B in decreasing
order.
E (input/output) REAL array, dimension (N-1)
On entry, the N-1 offdiagonal elements of the bidiagonal
matrix B.
On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
will contain the diagonal and superdiagonal elements of a
bidiagonal matrix orthogonally equivalent to the one given
as input.
VT (input/output) REAL array, dimension (LDVT, NCVT)
On entry, an N-by-NCVT matrix VT.
On exit, VT is overwritten by P**T * VT.
Not referenced if NCVT = 0.
LDVT (input) INTEGER
The leading dimension of the array VT.
LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
U (input/output) REAL array, dimension (LDU, N)
On entry, an NRU-by-N matrix U.
On exit, U is overwritten by U * Q.
Not referenced if NRU = 0.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,NRU).
C (input/output) REAL array, dimension (LDC, NCC)
On entry, an N-by-NCC matrix C.
On exit, C is overwritten by Q**T * C.
Not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
WORK (workspace) REAL array, dimension (2*N)
if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value
> 0: the algorithm did not converge; D and E contain the
elements of a bidiagonal matrix which is orthogonally
similar to the input matrix B; if INFO = i, i
elements of E have not converged to zero.
Internal Parameters
===================
TOLMUL REAL, default = max(10,min(100,EPS**(-1/8)))
TOLMUL controls the convergence criterion of the QR loop.
If it is positive, TOLMUL*EPS is the desired relative
precision in the computed singular values.
If it is negative, abs(TOLMUL*EPS*sigma_max) is the
desired absolute accuracy in the computed singular
values (corresponds to relative accuracy
abs(TOLMUL*EPS) in the largest singular value.
abs(TOLMUL) should be between 1 and 1/EPS, and preferably
between 10 (for fast convergence) and .1/EPS
(for there to be some accuracy in the results).
Default is to lose at either one eighth or 2 of the
available decimal digits in each computed singular value
(whichever is smaller).
MAXITR INTEGER, default = 6
MAXITR controls the maximum number of passes of the
algorithm through its inner loop. The algorithms stops
(and so fails to converge) if the number of passes
through the inner loop exceeds MAXITR*N**2.
=====================================================================
.. Parameters ..
public void sbdsqr(String uplo, int n, int ncvt, int nru, int ncc, float[] d, int _d_offset, float[] e, int _e_offset, float[] vt, int _vt_offset, int ldvt, float[] u, int _u_offset, int ldu, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SBDSQR computes the singular values and, optionally, the right and/or
left singular vectors from the singular value decomposition (SVD) of
a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
zero-shift QR algorithm. The SVD of B has the form
B = Q * S * P**T
where S is the diagonal matrix of singular values, Q is an orthogonal
matrix of left singular vectors, and P is an orthogonal matrix of
right singular vectors. If left singular vectors are requested, this
subroutine actually returns U*Q instead of Q, and, if right singular
vectors are requested, this subroutine returns P**T*VT instead of
P**T, for given real input matrices U and VT. When U and VT are the
orthogonal matrices that reduce a general matrix A to bidiagonal
form: A = U*B*VT, as computed by SGEBRD, then
A = (U*Q) * S * (P**T*VT)
is the SVD of A. Optionally, the subroutine may also compute Q**T*C
for a given real input matrix C.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
no. 5, pp. 873-912, Sept 1990) and
"Accurate singular values and differential qd algorithms," by
B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
Department, University of California at Berkeley, July 1992
for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': B is upper bidiagonal;
= 'L': B is lower bidiagonal.
N (input) INTEGER
The order of the matrix B. N >= 0.
NCVT (input) INTEGER
The number of columns of the matrix VT. NCVT >= 0.
NRU (input) INTEGER
The number of rows of the matrix U. NRU >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the bidiagonal matrix B.
On exit, if INFO=0, the singular values of B in decreasing
order.
E (input/output) REAL array, dimension (N-1)
On entry, the N-1 offdiagonal elements of the bidiagonal
matrix B.
On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
will contain the diagonal and superdiagonal elements of a
bidiagonal matrix orthogonally equivalent to the one given
as input.
VT (input/output) REAL array, dimension (LDVT, NCVT)
On entry, an N-by-NCVT matrix VT.
On exit, VT is overwritten by P**T * VT.
Not referenced if NCVT = 0.
LDVT (input) INTEGER
The leading dimension of the array VT.
LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
U (input/output) REAL array, dimension (LDU, N)
On entry, an NRU-by-N matrix U.
On exit, U is overwritten by U * Q.
Not referenced if NRU = 0.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,NRU).
C (input/output) REAL array, dimension (LDC, NCC)
On entry, an N-by-NCC matrix C.
On exit, C is overwritten by Q**T * C.
Not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
WORK (workspace) REAL array, dimension (2*N)
if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value
> 0: the algorithm did not converge; D and E contain the
elements of a bidiagonal matrix which is orthogonally
similar to the input matrix B; if INFO = i, i
elements of E have not converged to zero.
Internal Parameters
===================
TOLMUL REAL, default = max(10,min(100,EPS**(-1/8)))
TOLMUL controls the convergence criterion of the QR loop.
If it is positive, TOLMUL*EPS is the desired relative
precision in the computed singular values.
If it is negative, abs(TOLMUL*EPS*sigma_max) is the
desired absolute accuracy in the computed singular
values (corresponds to relative accuracy
abs(TOLMUL*EPS) in the largest singular value.
abs(TOLMUL) should be between 1 and 1/EPS, and preferably
between 10 (for fast convergence) and .1/EPS
(for there to be some accuracy in the results).
Default is to lose at either one eighth or 2 of the
available decimal digits in each computed singular value
(whichever is smaller).
MAXITR INTEGER, default = 6
MAXITR controls the maximum number of passes of the
algorithm through its inner loop. The algorithms stops
(and so fails to converge) if the number of passes
through the inner loop exceeds MAXITR*N**2.
=====================================================================
.. Parameters ..
public void sdisna(String job, int m, int n, float[] d, float[] sep, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SDISNA computes the reciprocal condition numbers for the eigenvectors
of a real symmetric or complex Hermitian matrix or for the left or
right singular vectors of a general m-by-n matrix. The reciprocal
condition number is the 'gap' between the corresponding eigenvalue or
singular value and the nearest other one.
The bound on the error, measured by angle in radians, in the I-th
computed vector is given by
SLAMCH( 'E' ) * ( ANORM / SEP( I ) )
where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed
to be smaller than SLAMCH( 'E' )*ANORM in order to limit the size of
the error bound.
SDISNA may also be used to compute error bounds for eigenvectors of
the generalized symmetric definite eigenproblem.
Arguments
=========
JOB (input) CHARACTER*1
Specifies for which problem the reciprocal condition numbers
should be computed:
= 'E': the eigenvectors of a symmetric/Hermitian matrix;
= 'L': the left singular vectors of a general matrix;
= 'R': the right singular vectors of a general matrix.
M (input) INTEGER
The number of rows of the matrix. M >= 0.
N (input) INTEGER
If JOB = 'L' or 'R', the number of columns of the matrix,
in which case N >= 0. Ignored if JOB = 'E'.
D (input) REAL array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The eigenvalues (if JOB = 'E') or singular values (if JOB =
'L' or 'R') of the matrix, in either increasing or decreasing
order. If singular values, they must be non-negative.
SEP (output) REAL array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The reciprocal condition numbers of the vectors.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void sdisna(String job, int m, int n, float[] d, int _d_offset, float[] sep, int _sep_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SDISNA computes the reciprocal condition numbers for the eigenvectors
of a real symmetric or complex Hermitian matrix or for the left or
right singular vectors of a general m-by-n matrix. The reciprocal
condition number is the 'gap' between the corresponding eigenvalue or
singular value and the nearest other one.
The bound on the error, measured by angle in radians, in the I-th
computed vector is given by
SLAMCH( 'E' ) * ( ANORM / SEP( I ) )
where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed
to be smaller than SLAMCH( 'E' )*ANORM in order to limit the size of
the error bound.
SDISNA may also be used to compute error bounds for eigenvectors of
the generalized symmetric definite eigenproblem.
Arguments
=========
JOB (input) CHARACTER*1
Specifies for which problem the reciprocal condition numbers
should be computed:
= 'E': the eigenvectors of a symmetric/Hermitian matrix;
= 'L': the left singular vectors of a general matrix;
= 'R': the right singular vectors of a general matrix.
M (input) INTEGER
The number of rows of the matrix. M >= 0.
N (input) INTEGER
If JOB = 'L' or 'R', the number of columns of the matrix,
in which case N >= 0. Ignored if JOB = 'E'.
D (input) REAL array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The eigenvalues (if JOB = 'E') or singular values (if JOB =
'L' or 'R') of the matrix, in either increasing or decreasing
order. If singular values, they must be non-negative.
SEP (output) REAL array, dimension (M) if JOB = 'E'
dimension (min(M,N)) if JOB = 'L' or 'R'
The reciprocal condition numbers of the vectors.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void sgbbrd(String vect, int m, int n, int ncc, int kl, int ku, float[] ab, int ldab, float[] d, float[] e, float[] q, int ldq, float[] pt, int ldpt, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBBRD reduces a real general m-by-n band matrix A to upper
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
The routine computes B, and optionally forms Q or P', or computes
Q'*C for a given matrix C.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether or not the matrices Q and P' are to be
formed.
= 'N': do not form Q or P';
= 'Q': form Q only;
= 'P': form P' only;
= 'B': form both.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
KL (input) INTEGER
The number of subdiagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals of the matrix A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the m-by-n band matrix A, stored in rows 1 to
KL+KU+1. The j-th column of A is stored in the j-th column of
the array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
On exit, A is overwritten by values generated during the
reduction.
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KL+KU+1.
D (output) REAL array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B.
E (output) REAL array, dimension (min(M,N)-1)
The superdiagonal elements of the bidiagonal matrix B.
Q (output) REAL array, dimension (LDQ,M)
If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
If VECT = 'N' or 'P', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
PT (output) REAL array, dimension (LDPT,N)
If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
If VECT = 'N' or 'Q', the array PT is not referenced.
LDPT (input) INTEGER
The leading dimension of the array PT.
LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
C (input/output) REAL array, dimension (LDC,NCC)
On entry, an m-by-ncc matrix C.
On exit, C is overwritten by Q'*C.
C is not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
WORK (workspace) REAL array, dimension (2*max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void sgbbrd(String vect, int m, int n, int ncc, int kl, int ku, float[] ab, int _ab_offset, int ldab, float[] d, int _d_offset, float[] e, int _e_offset, float[] q, int _q_offset, int ldq, float[] pt, int _pt_offset, int ldpt, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBBRD reduces a real general m-by-n band matrix A to upper
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
The routine computes B, and optionally forms Q or P', or computes
Q'*C for a given matrix C.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether or not the matrices Q and P' are to be
formed.
= 'N': do not form Q or P';
= 'Q': form Q only;
= 'P': form P' only;
= 'B': form both.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NCC (input) INTEGER
The number of columns of the matrix C. NCC >= 0.
KL (input) INTEGER
The number of subdiagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals of the matrix A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the m-by-n band matrix A, stored in rows 1 to
KL+KU+1. The j-th column of A is stored in the j-th column of
the array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
On exit, A is overwritten by values generated during the
reduction.
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KL+KU+1.
D (output) REAL array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B.
E (output) REAL array, dimension (min(M,N)-1)
The superdiagonal elements of the bidiagonal matrix B.
Q (output) REAL array, dimension (LDQ,M)
If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
If VECT = 'N' or 'P', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
PT (output) REAL array, dimension (LDPT,N)
If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
If VECT = 'N' or 'Q', the array PT is not referenced.
LDPT (input) INTEGER
The leading dimension of the array PT.
LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
C (input/output) REAL array, dimension (LDC,NCC)
On entry, an m-by-ncc matrix C.
On exit, C is overwritten by Q'*C.
C is not referenced if NCC = 0.
LDC (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
WORK (workspace) REAL array, dimension (2*max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void sgbcon(String norm, int n, int kl, int ku, float[] ab, int ldab, int[] ipiv, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBCON estimates the reciprocal of the condition number of a real
general band matrix A, in either the 1-norm or the infinity-norm,
using the LU factorization computed by SGBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) REAL array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
ANORM (input) REAL
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgbcon(String norm, int n, int kl, int ku, float[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBCON estimates the reciprocal of the condition number of a real
general band matrix A, in either the 1-norm or the infinity-norm,
using the LU factorization computed by SGBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) REAL array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
ANORM (input) REAL
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgbequ(int m, int n, int kl, int ku, float[] ab, int ldab, float[] r, float[] c, org.netlib.util.floatW rowcnd, org.netlib.util.floatW colcnd, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBEQU computes row and column scalings intended to equilibrate an
M-by-N band matrix A and reduce its condition number. R returns the
row scale factors and C the column scale factors, chosen to try to
make the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) REAL array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
R (output) REAL array, dimension (M)
If INFO = 0, or INFO > M, R contains the row scale factors
for A.
C (output) REAL array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) REAL
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) REAL
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void sgbequ(int m, int n, int kl, int ku, float[] ab, int _ab_offset, int ldab, float[] r, int _r_offset, float[] c, int _c_offset, org.netlib.util.floatW rowcnd, org.netlib.util.floatW colcnd, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBEQU computes row and column scalings intended to equilibrate an
M-by-N band matrix A and reduce its condition number. R returns the
row scale factors and C the column scale factors, chosen to try to
make the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input) REAL array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
R (output) REAL array, dimension (M)
If INFO = 0, or INFO > M, R contains the row scale factors
for A.
C (output) REAL array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) REAL
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) REAL
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void sgbrfs(String trans, int n, int kl, int ku, int nrhs, float[] ab, int ldab, float[] afb, int ldafb, int[] ipiv, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input) REAL array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SGBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sgbrfs(String trans, int n, int kl, int ku, int nrhs, float[] ab, int _ab_offset, int ldab, float[] afb, int _afb_offset, int ldafb, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input) REAL array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SGBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sgbsv(int n, int kl, int ku, int nrhs, float[] ab, int ldab, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBSV computes the solution to a real system of linear equations
A * X = B, where A is a band matrix of order N with KL subdiagonals
and KU superdiagonals, and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as A = L * U, where L is a product of permutation
and unit lower triangular matrices with KL subdiagonals, and U is
upper triangular with KL+KU superdiagonals. The factored form of A
is then used to solve the system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. External Subroutines ..
public void sgbsv(int n, int kl, int ku, int nrhs, float[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBSV computes the solution to a real system of linear equations
A * X = B, where A is a band matrix of order N with KL subdiagonals
and KU superdiagonals, and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as A = L * U, where L is a product of permutation
and unit lower triangular matrices with KL subdiagonals, and U is
upper triangular with KL+KU superdiagonals. The factored form of A
is then used to solve the system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. External Subroutines ..
public void sgbsvx(String fact, String trans, int n, int kl, int ku, int nrhs, float[] ab, int ldab, float[] afb, int ldafb, int[] ipiv, org.netlib.util.StringW equed, float[] r, float[] c, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
where A is a band matrix of order N with KL subdiagonals and KU
superdiagonals, and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed by this subroutine:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = L * U,
where L is a product of permutation and unit lower triangular
matrices with KL subdiagonals, and U is upper triangular with
KL+KU superdiagonals.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB and IPIV contain the factored form of
A. If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
AB, AFB, and IPIV are not modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
If FACT = 'F' and EQUED is not 'N', then A must have been
equilibrated by the scaling factors in R and/or C. AB is not
modified if FACT = 'F' or 'N', or if FACT = 'E' and
EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input or output) REAL array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains details of the LU factorization of the band matrix
A, as computed by SGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns details of the LU factorization of A.
If FACT = 'E', then AFB is an output argument and on exit
returns details of the LU factorization of the equilibrated
matrix A (see the description of AB for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = L*U
as computed by SGBTRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) REAL array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) REAL array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) REAL array, dimension (3*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
Moved setting of INFO = N+1 so INFO does not subsequently get
overwritten. Sven, 17 Mar 05.
=====================================================================
.. Parameters ..
public void sgbsvx(String fact, String trans, int n, int kl, int ku, int nrhs, float[] ab, int _ab_offset, int ldab, float[] afb, int _afb_offset, int ldafb, int[] ipiv, int _ipiv_offset, org.netlib.util.StringW equed, float[] r, int _r_offset, float[] c, int _c_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
where A is a band matrix of order N with KL subdiagonals and KU
superdiagonals, and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed by this subroutine:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = L * U,
where L is a product of permutation and unit lower triangular
matrices with KL subdiagonals, and U is upper triangular with
KL+KU superdiagonals.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB and IPIV contain the factored form of
A. If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
AB, AFB, and IPIV are not modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
If FACT = 'F' and EQUED is not 'N', then A must have been
equilibrated by the scaling factors in R and/or C. AB is not
modified if FACT = 'F' or 'N', or if FACT = 'E' and
EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input or output) REAL array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains details of the LU factorization of the band matrix
A, as computed by SGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns details of the LU factorization of A.
If FACT = 'E', then AFB is an output argument and on exit
returns details of the LU factorization of the equilibrated
matrix A (see the description of AB for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = L*U
as computed by SGBTRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) REAL array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) REAL array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) REAL array, dimension (3*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
Moved setting of INFO = N+1 so INFO does not subsequently get
overwritten. Sven, 17 Mar 05.
=====================================================================
.. Parameters ..
public void sgbtf2(int m, int n, int kl, int ku, float[] ab, int ldab, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBTF2 computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U, because of fill-in resulting from the row
interchanges.
=====================================================================
.. Parameters ..
public void sgbtf2(int m, int n, int kl, int ku, float[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBTF2 computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U, because of fill-in resulting from the row
interchanges.
=====================================================================
.. Parameters ..
public void sgbtrf(int m, int n, int kl, int ku, float[] ab, int ldab, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBTRF computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. Parameters ..
public void sgbtrf(int m, int n, int kl, int ku, float[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBTRF computes an LU factorization of a real m-by-n band matrix A
using partial pivoting with row interchanges.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to
2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, details of the factorization: U is stored as an
upper triangular band matrix with KL+KU superdiagonals in
rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = +i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Further Details
===============
The band storage scheme is illustrated by the following example, when
M = N = 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked
+ need not be set on entry, but are required by the routine to store
elements of U because of fill-in resulting from the row interchanges.
=====================================================================
.. Parameters ..
public void sgbtrs(String trans, int n, int kl, int ku, int nrhs, float[] ab, int ldab, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBTRS solves a system of linear equations
A * X = B or A' * X = B
with a general band matrix A using the LU factorization computed
by SGBTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgbtrs(String trans, int n, int kl, int ku, int nrhs, float[] ab, int _ab_offset, int ldab, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGBTRS solves a system of linear equations
A * X = B or A' * X = B
with a general band matrix A using the LU factorization computed
by SGBTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgebak(String job, String side, int n, int ilo, int ihi, float[] scale, int m, float[] v, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBAK forms the right or left eigenvectors of a real general matrix
by backward transformation on the computed eigenvectors of the
balanced matrix output by SGEBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N', do nothing, return immediately;
= 'P', do backward transformation for permutation only;
= 'S', do backward transformation for scaling only;
= 'B', do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to SGEBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by SGEBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
SCALE (input) REAL array, dimension (N)
Details of the permutation and scaling factors, as returned
by SGEBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) REAL array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by SHSEIN or STREVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void sgebak(String job, String side, int n, int ilo, int ihi, float[] scale, int _scale_offset, int m, float[] v, int _v_offset, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBAK forms the right or left eigenvectors of a real general matrix
by backward transformation on the computed eigenvectors of the
balanced matrix output by SGEBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N', do nothing, return immediately;
= 'P', do backward transformation for permutation only;
= 'S', do backward transformation for scaling only;
= 'B', do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to SGEBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by SGEBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
SCALE (input) REAL array, dimension (N)
Details of the permutation and scaling factors, as returned
by SGEBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) REAL array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by SHSEIN or STREVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void sgebal(String job, int n, float[] a, int lda, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] scale, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBAL balances a general real matrix A. This involves, first,
permuting A by a similarity transformation to isolate eigenvalues
in the first 1 to ILO-1 and last IHI+1 to N elements on the
diagonal; and second, applying a diagonal similarity transformation
to rows and columns ILO to IHI to make the rows and columns as
close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrix, and improve the
accuracy of the computed eigenvalues and/or eigenvectors.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A:
= 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
for i = 1,...,N;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
SCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied to
A. If P(j) is the index of the row and column interchanged
with row and column j and D(j) is the scaling factor
applied to row and column j, then
SCALE(j) = P(j) for j = 1,...,ILO-1
= D(j) for j = ILO,...,IHI
= P(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The permutations consist of row and column interchanges which put
the matrix in the form
( T1 X Y )
P A P = ( 0 B Z )
( 0 0 T2 )
where T1 and T2 are upper triangular matrices whose eigenvalues lie
along the diagonal. The column indices ILO and IHI mark the starting
and ending columns of the submatrix B. Balancing consists of applying
a diagonal similarity transformation inv(D) * B * D to make the
1-norms of each row of B and its corresponding column nearly equal.
The output matrix is
( T1 X*D Y )
( 0 inv(D)*B*D inv(D)*Z ).
( 0 0 T2 )
Information about the permutations P and the diagonal matrix D is
returned in the vector SCALE.
This subroutine is based on the EISPACK routine BALANC.
Modified by Tzu-Yi Chen, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void sgebal(String job, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] scale, int _scale_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBAL balances a general real matrix A. This involves, first,
permuting A by a similarity transformation to isolate eigenvalues
in the first 1 to ILO-1 and last IHI+1 to N elements on the
diagonal; and second, applying a diagonal similarity transformation
to rows and columns ILO to IHI to make the rows and columns as
close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrix, and improve the
accuracy of the computed eigenvalues and/or eigenvectors.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A:
= 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
for i = 1,...,N;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
SCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied to
A. If P(j) is the index of the row and column interchanged
with row and column j and D(j) is the scaling factor
applied to row and column j, then
SCALE(j) = P(j) for j = 1,...,ILO-1
= D(j) for j = ILO,...,IHI
= P(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The permutations consist of row and column interchanges which put
the matrix in the form
( T1 X Y )
P A P = ( 0 B Z )
( 0 0 T2 )
where T1 and T2 are upper triangular matrices whose eigenvalues lie
along the diagonal. The column indices ILO and IHI mark the starting
and ending columns of the submatrix B. Balancing consists of applying
a diagonal similarity transformation inv(D) * B * D to make the
1-norms of each row of B and its corresponding column nearly equal.
The output matrix is
( T1 X*D Y )
( 0 inv(D)*B*D inv(D)*Z ).
( 0 0 T2 )
Information about the permutations P and the diagonal matrix D is
returned in the vector SCALE.
This subroutine is based on the EISPACK routine BALANC.
Modified by Tzu-Yi Chen, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void sgebd2(int m, int n, float[] a, int lda, float[] d, float[] e, float[] tauq, float[] taup, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBD2 reduces a real general m by n matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) REAL array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) REAL array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) REAL array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace) REAL array, dimension (max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void sgebd2(int m, int n, float[] a, int _a_offset, int lda, float[] d, int _d_offset, float[] e, int _e_offset, float[] tauq, int _tauq_offset, float[] taup, int _taup_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBD2 reduces a real general m by n matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) REAL array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) REAL array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) REAL array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace) REAL array, dimension (max(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void sgebrd(int m, int n, float[] a, int lda, float[] d, float[] e, float[] tauq, float[] taup, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBRD reduces a general real M-by-N matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) REAL array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) REAL array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) REAL array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,M,N).
For optimum performance LWORK >= (M+N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void sgebrd(int m, int n, float[] a, int _a_offset, int lda, float[] d, int _d_offset, float[] e, int _e_offset, float[] tauq, int _tauq_offset, float[] taup, int _taup_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEBRD reduces a general real M-by-N matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A. M >= 0.
N (input) INTEGER
The number of columns in the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) REAL array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E (output) REAL array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ (output) REAL array dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,M,N).
For optimum performance LWORK >= (M+N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
=====================================================================
.. Parameters ..
public void sgecon(String norm, int n, float[] a, int lda, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGECON estimates the reciprocal of the condition number of a general
real matrix A, in either the 1-norm or the infinity-norm, using
the LU factorization computed by SGETRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by SGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) REAL
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgecon(String norm, int n, float[] a, int _a_offset, int lda, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGECON estimates the reciprocal of the condition number of a general
real matrix A, in either the 1-norm or the infinity-norm, using
the LU factorization computed by SGETRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by SGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) REAL
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgeequ(int m, int n, float[] a, int lda, float[] r, float[] c, org.netlib.util.floatW rowcnd, org.netlib.util.floatW colcnd, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEEQU computes row and column scalings intended to equilibrate an
M-by-N matrix A and reduce its condition number. R returns the row
scale factors and C the column scale factors, chosen to try to make
the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The M-by-N matrix whose equilibration factors are
to be computed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
R (output) REAL array, dimension (M)
If INFO = 0 or INFO > M, R contains the row scale factors
for A.
C (output) REAL array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) REAL
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) REAL
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void sgeequ(int m, int n, float[] a, int _a_offset, int lda, float[] r, int _r_offset, float[] c, int _c_offset, org.netlib.util.floatW rowcnd, org.netlib.util.floatW colcnd, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEEQU computes row and column scalings intended to equilibrate an
M-by-N matrix A and reduce its condition number. R returns the row
scale factors and C the column scale factors, chosen to try to make
the largest element in each row and column of the matrix B with
elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe
number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but
works well in practice.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The M-by-N matrix whose equilibration factors are
to be computed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
R (output) REAL array, dimension (M)
If INFO = 0 or INFO > M, R contains the row scale factors
for A.
C (output) REAL array, dimension (N)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output) REAL
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
AMAX is neither too large nor too small, it is not worth
scaling by R.
COLCND (output) REAL
If INFO = 0, COLCND contains the ratio of the smallest
C(i) to the largest C(i). If COLCND >= 0.1, it is not
worth scaling by C.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
=====================================================================
.. Parameters ..
public void sgees(String jobvs, String sort, Object select, int n, float[] a, int lda, org.netlib.util.intW sdim, float[] wr, float[] wi, float[] vs, int ldvs, float[] work, int lwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEES computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left.
The leading columns of Z then form an orthonormal basis for the
invariant subspace corresponding to the selected eigenvalues.
A matrix is in real Schur form if it is upper quasi-triangular with
1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
conjugate pair of eigenvalues is selected, then both complex
eigenvalues are selected.
Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO is set to N+2 (see INFO below).
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues in the same order
that they appear on the diagonal of the output Schur form T.
Complex conjugate pairs of eigenvalues will appear
consecutively with the eigenvalue having the positive
imaginary part first.
VS (output) REAL array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1; if
JOBVS = 'V', LDVS >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the matrix which reduces A
to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void sgees(String jobvs, String sort, Object select, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW sdim, float[] wr, int _wr_offset, float[] wi, int _wi_offset, float[] vs, int _vs_offset, int ldvs, float[] work, int _work_offset, int lwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEES computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left.
The leading columns of Z then form an orthonormal basis for the
invariant subspace corresponding to the selected eigenvalues.
A matrix is in real Schur form if it is upper quasi-triangular with
1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
conjugate pair of eigenvalues is selected, then both complex
eigenvalues are selected.
Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO is set to N+2 (see INFO below).
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues in the same order
that they appear on the diagonal of the output Schur form T.
Complex conjugate pairs of eigenvalues will appear
consecutively with the eigenvalue having the positive
imaginary part first.
VS (output) REAL array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1; if
JOBVS = 'V', LDVS >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the matrix which reduces A
to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void sgeesx(String jobvs, String sort, Object select, String sense, int n, float[] a, int lda, org.netlib.util.intW sdim, float[] wr, float[] wi, float[] vs, int ldvs, org.netlib.util.floatW rconde, org.netlib.util.floatW rcondv, float[] work, int lwork, int[] iwork, int liwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEESX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left;
computes a reciprocal condition number for the average of the
selected eigenvalues (RCONDE); and computes a reciprocal condition
number for the right invariant subspace corresponding to the
selected eigenvalues (RCONDV). The leading columns of Z form an
orthonormal basis for this invariant subspace.
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
these quantities are called s and sep respectively).
A real matrix is in real Schur form if it is upper quasi-triangular
with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
the form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a
complex conjugate pair of eigenvalues is selected, then both
are. Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO may be set to N+3 (see INFO below).
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for average of selected eigenvalues only;
= 'V': Computed for selected right invariant subspace only;
= 'B': Computed for both.
If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the N-by-N matrix A.
On exit, A is overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts, respectively,
of the computed eigenvalues, in the same order that they
appear on the diagonal of the output Schur form T. Complex
conjugate pairs of eigenvalues appear consecutively with the
eigenvalue having the positive imaginary part first.
VS (output) REAL array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1, and if
JOBVS = 'V', LDVS >= N.
RCONDE (output) REAL
If SENSE = 'E' or 'B', RCONDE contains the reciprocal
condition number for the average of the selected eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) REAL
If SENSE = 'V' or 'B', RCONDV contains the reciprocal
condition number for the selected right invariant subspace.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
Also, if SENSE = 'E' or 'V' or 'B',
LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
selected eigenvalues computed by this routine. Note that
N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
'B' this may not be large enough.
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates upper bounds on the optimal sizes of the
arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
may not be large enough.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates upper bounds on the optimal sizes of
the arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the transformation which
reduces A to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void sgeesx(String jobvs, String sort, Object select, String sense, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW sdim, float[] wr, int _wr_offset, float[] wi, int _wi_offset, float[] vs, int _vs_offset, int ldvs, org.netlib.util.floatW rconde, org.netlib.util.floatW rcondv, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEESX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues, the real Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
Optionally, it also orders the eigenvalues on the diagonal of the
real Schur form so that selected eigenvalues are at the top left;
computes a reciprocal condition number for the average of the
selected eigenvalues (RCONDE); and computes a reciprocal condition
number for the right invariant subspace corresponding to the
selected eigenvalues (RCONDV). The leading columns of Z form an
orthonormal basis for this invariant subspace.
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
these quantities are called s and sep respectively).
A real matrix is in real Schur form if it is upper quasi-triangular
with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
the form
[ a b ]
[ c a ]
where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
Arguments
=========
JOBVS (input) CHARACTER*1
= 'N': Schur vectors are not computed;
= 'V': Schur vectors are computed.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELECT).
SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments
SELECT must be declared EXTERNAL in the calling subroutine.
If SORT = 'S', SELECT is used to select eigenvalues to sort
to the top left of the Schur form.
If SORT = 'N', SELECT is not referenced.
An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
SELECT(WR(j),WI(j)) is true; i.e., if either one of a
complex conjugate pair of eigenvalues is selected, then both
are. Note that a selected complex eigenvalue may no longer
satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case INFO may be set to N+3 (see INFO below).
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for average of selected eigenvalues only;
= 'V': Computed for selected right invariant subspace only;
= 'B': Computed for both.
If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the N-by-N matrix A.
On exit, A is overwritten by its real Schur form T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELECT is true. (Complex conjugate
pairs for which SELECT is true for either
eigenvalue count as 2.)
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts, respectively,
of the computed eigenvalues, in the same order that they
appear on the diagonal of the output Schur form T. Complex
conjugate pairs of eigenvalues appear consecutively with the
eigenvalue having the positive imaginary part first.
VS (output) REAL array, dimension (LDVS,N)
If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
vectors.
If JOBVS = 'N', VS is not referenced.
LDVS (input) INTEGER
The leading dimension of the array VS. LDVS >= 1, and if
JOBVS = 'V', LDVS >= N.
RCONDE (output) REAL
If SENSE = 'E' or 'B', RCONDE contains the reciprocal
condition number for the average of the selected eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) REAL
If SENSE = 'V' or 'B', RCONDV contains the reciprocal
condition number for the selected right invariant subspace.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N).
Also, if SENSE = 'E' or 'V' or 'B',
LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
selected eigenvalues computed by this routine. Note that
N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
'B' this may not be large enough.
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates upper bounds on the optimal sizes of the
arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
may not be large enough.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates upper bounds on the optimal sizes of
the arrays WORK and IWORK, returns these values as the first
entries of the WORK and IWORK arrays, and no error messages
related to LWORK or LIWORK are issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is
<= N: the QR algorithm failed to compute all the
eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
contain those eigenvalues which have converged; if
JOBVS = 'V', VS contains the transformation which
reduces A to its partially converged Schur form.
= N+1: the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem
is very ill-conditioned);
= N+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy SELECT=.TRUE. This
could also be caused by underflow due to scaling.
=====================================================================
.. Parameters ..
public void sgeev(String jobvl, String jobvr, int n, float[] a, int lda, float[] wr, float[] wi, float[] vl, int ldvl, float[] vr, int ldvr, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1; if
JOBVR = 'V', LDVR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N), and
if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elements i+1:N of WR and WI contain eigenvalues which
have converged.
=====================================================================
.. Parameters ..
public void sgeev(String jobvl, String jobvr, int n, float[] a, int _a_offset, int lda, float[] wr, int _wr_offset, float[] wi, int _wi_offset, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1; if
JOBVR = 'V', LDVR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N), and
if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elements i+1:N of WR and WI contain eigenvalues which
have converged.
=====================================================================
.. Parameters ..
public void sgeevx(String balanc, String jobvl, String jobvr, String sense, int n, float[] a, int lda, float[] wr, float[] wi, float[] vl, int ldvl, float[] vr, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] scale, org.netlib.util.floatW abnrm, float[] rconde, float[] rcondv, float[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEEVX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
(RCONDE), and reciprocal condition numbers for the right
eigenvectors (RCONDV).
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it
more nearly upper triangular, and applying a diagonal similarity
transformation D * A * D**(-1), where D is a diagonal matrix, to
make its rows and columns closer in norm and the condition numbers
of its eigenvalues and eigenvectors smaller. The computed
reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers
(in exact arithmetic) but diagonal scaling will. For further
explanation of balancing, see section 4.10.2 of the LAPACK
Users' Guide.
Arguments
=========
BALANC (input) CHARACTER*1
Indicates how the input matrix should be diagonally scaled
and/or permuted to improve the conditioning of its
eigenvalues.
= 'N': Do not diagonally scale or permute;
= 'P': Perform permutations to make the matrix more nearly
upper triangular. Do not diagonally scale;
= 'S': Diagonally scale the matrix, i.e. replace A by
D*A*D**(-1), where D is a diagonal matrix chosen
to make the rows and columns of A more equal in
norm. Do not permute;
= 'B': Both diagonally scale and permute A.
Computed reciprocal condition numbers will be for the matrix
after balancing and/or permuting. Permuting does not change
condition numbers (in exact arithmetic), but balancing does.
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVL must = 'V'.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVR must = 'V'.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for eigenvalues only;
= 'V': Computed for right eigenvectors only;
= 'B': Computed for eigenvalues and right eigenvectors.
If SENSE = 'E' or 'B', both left and right eigenvectors
must also be computed (JOBVL = 'V' and JOBVR = 'V').
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten. If JOBVL = 'V' or
JOBVR = 'V', A contains the real Schur form of the balanced
version of the input matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues will appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values determined when A was
balanced. The balanced A(i,j) = 0 if I > J and
J = 1,...,ILO-1 or I = IHI+1,...,N.
SCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
when balancing A. If P(j) is the index of the row and column
interchanged with row and column j, and D(j) is the scaling
factor applied to row and column j, then
SCALE(J) = P(J), for J = 1,...,ILO-1
= D(J), for J = ILO,...,IHI
= P(J) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) REAL
The one-norm of the balanced matrix (the maximum
of the sum of absolute values of elements of any column).
RCONDE (output) REAL array, dimension (N)
RCONDE(j) is the reciprocal condition number of the j-th
eigenvalue.
RCONDV (output) REAL array, dimension (N)
RCONDV(j) is the reciprocal condition number of the j-th
right eigenvector.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SENSE = 'N' or 'E',
LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (2*N-2)
If SENSE = 'N' or 'E', not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors or condition numbers
have been computed; elements 1:ILO-1 and i+1:N of WR
and WI contain eigenvalues which have converged.
=====================================================================
.. Parameters ..
public void sgeevx(String balanc, String jobvl, String jobvr, String sense, int n, float[] a, int _a_offset, int lda, float[] wr, int _wr_offset, float[] wi, int _wi_offset, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] scale, int _scale_offset, org.netlib.util.floatW abnrm, float[] rconde, int _rconde_offset, float[] rcondv, int _rcondv_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEEVX computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
(RCONDE), and reciprocal condition numbers for the right
eigenvectors (RCONDV).
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it
more nearly upper triangular, and applying a diagonal similarity
transformation D * A * D**(-1), where D is a diagonal matrix, to
make its rows and columns closer in norm and the condition numbers
of its eigenvalues and eigenvectors smaller. The computed
reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers
(in exact arithmetic) but diagonal scaling will. For further
explanation of balancing, see section 4.10.2 of the LAPACK
Users' Guide.
Arguments
=========
BALANC (input) CHARACTER*1
Indicates how the input matrix should be diagonally scaled
and/or permuted to improve the conditioning of its
eigenvalues.
= 'N': Do not diagonally scale or permute;
= 'P': Perform permutations to make the matrix more nearly
upper triangular. Do not diagonally scale;
= 'S': Diagonally scale the matrix, i.e. replace A by
D*A*D**(-1), where D is a diagonal matrix chosen
to make the rows and columns of A more equal in
norm. Do not permute;
= 'B': Both diagonally scale and permute A.
Computed reciprocal condition numbers will be for the matrix
after balancing and/or permuting. Permuting does not change
condition numbers (in exact arithmetic), but balancing does.
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVL must = 'V'.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
If SENSE = 'E' or 'B', JOBVR must = 'V'.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': None are computed;
= 'E': Computed for eigenvalues only;
= 'V': Computed for right eigenvectors only;
= 'B': Computed for eigenvalues and right eigenvectors.
If SENSE = 'E' or 'B', both left and right eigenvectors
must also be computed (JOBVL = 'V' and JOBVR = 'V').
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten. If JOBVL = 'V' or
JOBVR = 'V', A contains the real Schur form of the balanced
version of the input matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues will appear consecutively
with the eigenvalue having the positive imaginary part
first.
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values determined when A was
balanced. The balanced A(i,j) = 0 if I > J and
J = 1,...,ILO-1 or I = IHI+1,...,N.
SCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
when balancing A. If P(j) is the index of the row and column
interchanged with row and column j, and D(j) is the scaling
factor applied to row and column j, then
SCALE(J) = P(J), for J = 1,...,ILO-1
= D(J), for J = ILO,...,IHI
= P(J) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) REAL
The one-norm of the balanced matrix (the maximum
of the sum of absolute values of elements of any column).
RCONDE (output) REAL array, dimension (N)
RCONDE(j) is the reciprocal condition number of the j-th
eigenvalue.
RCONDV (output) REAL array, dimension (N)
RCONDV(j) is the reciprocal condition number of the j-th
right eigenvector.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SENSE = 'N' or 'E',
LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (2*N-2)
If SENSE = 'N' or 'E', not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors or condition numbers
have been computed; elements 1:ILO-1 and i+1:N of WR
and WI contain eigenvalues which have converged.
=====================================================================
.. Parameters ..
public void sgegs(String jobvsl, String jobvsr, int n, float[] a, int lda, float[] b, int ldb, float[] alphar, float[] alphai, float[] beta, float[] vsl, int ldvsl, float[] vsr, int ldvsr, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGGES.
SGEGS computes the eigenvalues, real Schur form, and, optionally,
left and or/right Schur vectors of a real matrix pair (A,B).
Given two square matrices A and B, the generalized real Schur
factorization has the form
A = Q*S*Z**T, B = Q*T*Z**T
where Q and Z are orthogonal matrices, T is upper triangular, and S
is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
of eigenvalues of (A,B). The columns of Q are the left Schur vectors
and the columns of Z are the right Schur vectors.
If only the eigenvalues of (A,B) are needed, the driver routine
SGEGV should be used instead. See SGEGV for a description of the
eigenvalues of the generalized nonsymmetric eigenvalue problem
(GNEP).
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors (returned in VSL).
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors (returned in VSR).
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A.
On exit, the upper quasi-triangular matrix S from the
generalized real Schur factorization.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B.
On exit, the upper triangular matrix T from the generalized
real Schur factorization.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) REAL array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and (j+1)-st
eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) REAL array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VSL (output) REAL array, dimension (LDVSL,N)
If JOBVSL = 'V', the matrix of left Schur vectors Q.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) REAL array, dimension (LDVSR,N)
If JOBVSR = 'V', the matrix of right Schur vectors Z.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,4*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR
The optimal LWORK is 2*N + N*(NB+1).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from SGGBAL
=N+2: error return from SGEQRF
=N+3: error return from SORMQR
=N+4: error return from SORGQR
=N+5: error return from SGGHRD
=N+6: error return from SHGEQZ (other than failed
iteration)
=N+7: error return from SGGBAK (computing VSL)
=N+8: error return from SGGBAK (computing VSR)
=N+9: error return from SLASCL (various places)
=====================================================================
.. Parameters ..
public void sgegs(String jobvsl, String jobvsr, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] vsl, int _vsl_offset, int ldvsl, float[] vsr, int _vsr_offset, int ldvsr, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGGES.
SGEGS computes the eigenvalues, real Schur form, and, optionally,
left and or/right Schur vectors of a real matrix pair (A,B).
Given two square matrices A and B, the generalized real Schur
factorization has the form
A = Q*S*Z**T, B = Q*T*Z**T
where Q and Z are orthogonal matrices, T is upper triangular, and S
is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
of eigenvalues of (A,B). The columns of Q are the left Schur vectors
and the columns of Z are the right Schur vectors.
If only the eigenvalues of (A,B) are needed, the driver routine
SGEGV should be used instead. See SGEGV for a description of the
eigenvalues of the generalized nonsymmetric eigenvalue problem
(GNEP).
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors (returned in VSL).
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors (returned in VSR).
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A.
On exit, the upper quasi-triangular matrix S from the
generalized real Schur factorization.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B.
On exit, the upper triangular matrix T from the generalized
real Schur factorization.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) REAL array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and (j+1)-st
eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) REAL array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VSL (output) REAL array, dimension (LDVSL,N)
If JOBVSL = 'V', the matrix of left Schur vectors Q.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) REAL array, dimension (LDVSR,N)
If JOBVSR = 'V', the matrix of right Schur vectors Z.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,4*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR
The optimal LWORK is 2*N + N*(NB+1).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from SGGBAL
=N+2: error return from SGEQRF
=N+3: error return from SORMQR
=N+4: error return from SORGQR
=N+5: error return from SGGHRD
=N+6: error return from SHGEQZ (other than failed
iteration)
=N+7: error return from SGGBAK (computing VSL)
=N+8: error return from SGGBAK (computing VSR)
=N+9: error return from SLASCL (various places)
=====================================================================
.. Parameters ..
public void sgegv(String jobvl, String jobvr, int n, float[] a, int lda, float[] b, int ldb, float[] alphar, float[] alphai, float[] beta, float[] vl, int ldvl, float[] vr, int ldvr, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGGEV.
SGEGV computes the eigenvalues and, optionally, the left and/or right
eigenvectors of a real matrix pair (A,B).
Given two square matrices A and B,
the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
eigenvalues lambda and corresponding (non-zero) eigenvectors x such
that
A*x = lambda*B*x.
An alternate form is to find the eigenvalues mu and corresponding
eigenvectors y such that
mu*A*y = B*y.
These two forms are equivalent with mu = 1/lambda and x = y if
neither lambda nor mu is zero. In order to deal with the case that
lambda or mu is zero or small, two values alpha and beta are returned
for each eigenvalue, such that lambda = alpha/beta and
mu = beta/alpha.
The vectors x and y in the above equations are right eigenvectors of
the matrix pair (A,B). Vectors u and v satisfying
u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
are left eigenvectors of (A,B).
Note: this routine performs "full balancing" on A and B -- see
"Further Details", below.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors (returned
in VL).
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors (returned
in VR).
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A.
If JOBVL = 'V' or JOBVR = 'V', then on exit A
contains the real Schur form of A from the generalized Schur
factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only the diagonal
blocks from the Schur form will be correct. See SGGHRD and
SHGEQZ for details.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B.
If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
upper triangular matrix obtained from B in the generalized
Schur factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only those elements of
B corresponding to the diagonal blocks from the Schur form of
A will be correct. See SGGHRD and SHGEQZ for details.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue of
GNEP.
ALPHAI (output) REAL array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) REAL array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored
in the columns of VL, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then u(j) = VL(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
u(j) = VL(:,j) + i*VL(:,j+1)
and
u(j+1) = VL(:,j) - i*VL(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvectors
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors x(j) are stored
in the columns of VR, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then x(j) = VR(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
x(j) = VR(:,j) + i*VR(:,j+1)
and
x(j+1) = VR(:,j) - i*VR(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvalues
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR;
The optimal LWORK is:
2*N + MAX( 6*N, N*(NB+1) ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from SGGBAL
=N+2: error return from SGEQRF
=N+3: error return from SORMQR
=N+4: error return from SORGQR
=N+5: error return from SGGHRD
=N+6: error return from SHGEQZ (other than failed
iteration)
=N+7: error return from STGEVC
=N+8: error return from SGGBAK (computing VL)
=N+9: error return from SGGBAK (computing VR)
=N+10: error return from SLASCL (various calls)
Further Details
===============
Balancing
---------
This driver calls SGGBAL to both permute and scale rows and columns
of A and B. The permutations PL and PR are chosen so that PL*A*PR
and PL*B*R will be upper triangular except for the diagonal blocks
A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
possible. The diagonal scaling matrices DL and DR are chosen so
that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
one (except for the elements that start out zero.)
After the eigenvalues and eigenvectors of the balanced matrices
have been computed, SGGBAK transforms the eigenvectors back to what
they would have been (in perfect arithmetic) if they had not been
balanced.
Contents of A and B on Exit
-------- -- - --- - -- ----
If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
both), then on exit the arrays A and B will contain the real Schur
form[*] of the "balanced" versions of A and B. If no eigenvectors
are computed, then only the diagonal blocks will be correct.
[*] See SHGEQZ, SGEGS, or read the book "Matrix Computations",
by Golub & van Loan, pub. by Johns Hopkins U. Press.
=====================================================================
.. Parameters ..
public void sgegv(String jobvl, String jobvr, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGGEV.
SGEGV computes the eigenvalues and, optionally, the left and/or right
eigenvectors of a real matrix pair (A,B).
Given two square matrices A and B,
the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
eigenvalues lambda and corresponding (non-zero) eigenvectors x such
that
A*x = lambda*B*x.
An alternate form is to find the eigenvalues mu and corresponding
eigenvectors y such that
mu*A*y = B*y.
These two forms are equivalent with mu = 1/lambda and x = y if
neither lambda nor mu is zero. In order to deal with the case that
lambda or mu is zero or small, two values alpha and beta are returned
for each eigenvalue, such that lambda = alpha/beta and
mu = beta/alpha.
The vectors x and y in the above equations are right eigenvectors of
the matrix pair (A,B). Vectors u and v satisfying
u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
are left eigenvectors of (A,B).
Note: this routine performs "full balancing" on A and B -- see
"Further Details", below.
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors (returned
in VL).
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors (returned
in VR).
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A.
If JOBVL = 'V' or JOBVR = 'V', then on exit A
contains the real Schur form of A from the generalized Schur
factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only the diagonal
blocks from the Schur form will be correct. See SGGHRD and
SHGEQZ for details.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B.
If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
upper triangular matrix obtained from B in the generalized
Schur factorization of the pair (A,B) after balancing.
If no eigenvectors were computed, then only those elements of
B corresponding to the diagonal blocks from the Schur form of
A will be correct. See SGGHRD and SHGEQZ for details.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue of
GNEP.
ALPHAI (output) REAL array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) = -ALPHAI(j).
BETA (output) REAL array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored
in the columns of VL, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then u(j) = VL(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
u(j) = VL(:,j) + i*VL(:,j+1)
and
u(j+1) = VL(:,j) - i*VL(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvectors
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors x(j) are stored
in the columns of VR, in the same order as their eigenvalues.
If the j-th eigenvalue is real, then x(j) = VR(:,j).
If the j-th and (j+1)-st eigenvalues form a complex conjugate
pair, then
x(j) = VR(:,j) + i*VR(:,j+1)
and
x(j+1) = VR(:,j) - i*VR(:,j+1).
Each eigenvector is scaled so that its largest component has
abs(real part) + abs(imag. part) = 1, except for eigenvalues
corresponding to an eigenvalue with alpha = beta = 0, which
are set to zero.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
To compute the optimal value of LWORK, call ILAENV to get
blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR;
The optimal LWORK is:
2*N + MAX( 6*N, N*(NB+1) ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: errors that usually indicate LAPACK problems:
=N+1: error return from SGGBAL
=N+2: error return from SGEQRF
=N+3: error return from SORMQR
=N+4: error return from SORGQR
=N+5: error return from SGGHRD
=N+6: error return from SHGEQZ (other than failed
iteration)
=N+7: error return from STGEVC
=N+8: error return from SGGBAK (computing VL)
=N+9: error return from SGGBAK (computing VR)
=N+10: error return from SLASCL (various calls)
Further Details
===============
Balancing
---------
This driver calls SGGBAL to both permute and scale rows and columns
of A and B. The permutations PL and PR are chosen so that PL*A*PR
and PL*B*R will be upper triangular except for the diagonal blocks
A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
possible. The diagonal scaling matrices DL and DR are chosen so
that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
one (except for the elements that start out zero.)
After the eigenvalues and eigenvectors of the balanced matrices
have been computed, SGGBAK transforms the eigenvectors back to what
they would have been (in perfect arithmetic) if they had not been
balanced.
Contents of A and B on Exit
-------- -- - --- - -- ----
If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
both), then on exit the arrays A and B will contain the real Schur
form[*] of the "balanced" versions of A and B. If no eigenvectors
are computed, then only the diagonal blocks will be correct.
[*] See SHGEQZ, SGEGS, or read the book "Matrix Computations",
by Golub & van Loan, pub. by Johns Hopkins U. Press.
=====================================================================
.. Parameters ..
public void sgehd2(int n, int ilo, int ihi, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEHD2 reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= max(1,N).
A (input/output) REAL array, dimension (LDA,N)
On entry, the n by n general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void sgehd2(int n, int ilo, int ihi, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEHD2 reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= max(1,N).
A (input/output) REAL array, dimension (LDA,N)
On entry, the n by n general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void sgehrd(int n, int ilo, int ihi, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEHRD reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
zero.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's SGEHRD
subroutine incorporating improvements proposed by Quintana-Orti and
Van de Geijn (2005).
=====================================================================
.. Parameters ..
public void sgehrd(int n, int ilo, int ihi, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEHRD reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q' * A * Q = H .
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
zero.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's SGEHRD
subroutine incorporating improvements proposed by Quintana-Orti and
Van de Geijn (2005).
=====================================================================
.. Parameters ..
public void sgelq2(int m, int n, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELQ2 computes an LQ factorization of a real m by n matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and below the diagonal of the array
contain the m by min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgelq2(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELQ2 computes an LQ factorization of a real m by n matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and below the diagonal of the array
contain the m by min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgelqf(int m, int n, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELQF computes an LQ factorization of a real M-by-N matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal of the array
contain the m-by-min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgelqf(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELQF computes an LQ factorization of a real M-by-N matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal of the array
contain the m-by-min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgels(String trans, int m, int n, int nrhs, float[] a, int lda, float[] b, int ldb, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELS solves overdetermined or underdetermined real linear systems
involving an M-by-N matrix A, or its transpose, using a QR or LQ
factorization of A. It is assumed that A has full rank.
The following options are provided:
1. If TRANS = 'N' and m >= n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A*X ||.
2. If TRANS = 'N' and m < n: find the minimum norm solution of
an underdetermined system A * X = B.
3. If TRANS = 'T' and m >= n: find the minimum norm solution of
an undetermined system A**T * X = B.
4. If TRANS = 'T' and m < n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A**T * X ||.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N': the linear system involves A;
= 'T': the linear system involves A**T.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of the matrices B and X. NRHS >=0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if M >= N, A is overwritten by details of its QR
factorization as returned by SGEQRF;
if M < N, A is overwritten by details of its LQ
factorization as returned by SGELQF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the matrix B of right hand side vectors, stored
columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
if TRANS = 'T'.
On exit, if INFO = 0, B is overwritten by the solution
vectors, stored columnwise:
if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
squares solution vectors; the residual sum of squares for the
solution in each column is given by the sum of squares of
elements N+1 to M in that column;
if TRANS = 'N' and m < n, rows 1 to N of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m >= n, rows 1 to M of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m < n, rows 1 to M of B contain the
least squares solution vectors; the residual sum of squares
for the solution in each column is given by the sum of
squares of elements M+1 to N in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= MAX(1,M,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= max( 1, MN + max( MN, NRHS ) ).
For optimal performance,
LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
where MN = min(M,N) and NB is the optimum block size.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of the
triangular factor of A is zero, so that A does not have
full rank; the least squares solution could not be
computed.
=====================================================================
.. Parameters ..
public void sgels(String trans, int m, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELS solves overdetermined or underdetermined real linear systems
involving an M-by-N matrix A, or its transpose, using a QR or LQ
factorization of A. It is assumed that A has full rank.
The following options are provided:
1. If TRANS = 'N' and m >= n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A*X ||.
2. If TRANS = 'N' and m < n: find the minimum norm solution of
an underdetermined system A * X = B.
3. If TRANS = 'T' and m >= n: find the minimum norm solution of
an undetermined system A**T * X = B.
4. If TRANS = 'T' and m < n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A**T * X ||.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N': the linear system involves A;
= 'T': the linear system involves A**T.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of the matrices B and X. NRHS >=0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if M >= N, A is overwritten by details of its QR
factorization as returned by SGEQRF;
if M < N, A is overwritten by details of its LQ
factorization as returned by SGELQF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the matrix B of right hand side vectors, stored
columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
if TRANS = 'T'.
On exit, if INFO = 0, B is overwritten by the solution
vectors, stored columnwise:
if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
squares solution vectors; the residual sum of squares for the
solution in each column is given by the sum of squares of
elements N+1 to M in that column;
if TRANS = 'N' and m < n, rows 1 to N of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m >= n, rows 1 to M of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m < n, rows 1 to M of B contain the
least squares solution vectors; the residual sum of squares
for the solution in each column is given by the sum of
squares of elements M+1 to N in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= MAX(1,M,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= max( 1, MN + max( MN, NRHS ) ).
For optimal performance,
LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
where MN = min(M,N) and NB is the optimum block size.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of the
triangular factor of A is zero, so that A does not have
full rank; the least squares solution could not be
computed.
=====================================================================
.. Parameters ..
public void sgelsd(int m, int n, int nrhs, float[] a, int lda, float[] b, int ldb, float[] s, float rcond, org.netlib.util.intW rank, float[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELSD computes the minimum-norm solution to a real linear least
squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with
Householder transformations, reducing the original problem
into a "bidiagonal least squares problem" (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder tranformations to solve
the original least squares problem.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
M (input) INTEGER
The number of rows of A. M >= 0.
N (input) INTEGER
The number of columns of A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) REAL array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) REAL
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK must be at least 1.
The exact minimum amount of workspace needed depends on M,
N and NRHS. As long as LWORK is at least
12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
if M is greater than or equal to N or
12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
if M is less than N, the code will execute correctly.
SMLSIZ is returned by ILAENV and is equal to the maximum
size of the subproblems at the bottom of the computation
tree (usually about 25), and
NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the array WORK and the
minimum size of the array IWORK, and returns these values as
the first entries of the WORK and IWORK arrays, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
where MINMN = MIN( M,N ).
On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void sgelsd(int m, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] s, int _s_offset, float rcond, org.netlib.util.intW rank, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELSD computes the minimum-norm solution to a real linear least
squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with
Householder transformations, reducing the original problem
into a "bidiagonal least squares problem" (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder tranformations to solve
the original least squares problem.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
M (input) INTEGER
The number of rows of A. M >= 0.
N (input) INTEGER
The number of columns of A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) REAL array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) REAL
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK must be at least 1.
The exact minimum amount of workspace needed depends on M,
N and NRHS. As long as LWORK is at least
12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
if M is greater than or equal to N or
12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
if M is less than N, the code will execute correctly.
SMLSIZ is returned by ILAENV and is equal to the maximum
size of the subproblems at the bottom of the computation
tree (usually about 25), and
NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the array WORK and the
minimum size of the array IWORK, and returns these values as
the first entries of the WORK and IWORK arrays, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
where MINMN = MIN( M,N ).
On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void sgelss(int m, int n, int nrhs, float[] a, int lda, float[] b, int ldb, float[] s, float rcond, org.netlib.util.intW rank, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELSS computes the minimum norm solution to a real linear least
squares problem:
Minimize 2-norm(| b - A*x |).
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
X.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the first min(m,n) rows of A are overwritten with
its right singular vectors, stored rowwise.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) REAL array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) REAL
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1, and also:
LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
=====================================================================
.. Parameters ..
public void sgelss(int m, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] s, int _s_offset, float rcond, org.netlib.util.intW rank, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELSS computes the minimum norm solution to a real linear least
squares problem:
Minimize 2-norm(| b - A*x |).
using the singular value decomposition (SVD) of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
X.
The effective rank of A is determined by treating as zero those
singular values which are less than RCOND times the largest singular
value.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the first min(m,n) rows of A are overwritten with
its right singular vectors, stored rowwise.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, B is overwritten by the N-by-NRHS solution
matrix X. If m >= n and RANK = n, the residual
sum-of-squares for the solution in the i-th column is given
by the sum of squares of elements n+1:m in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,max(M,N)).
S (output) REAL array, dimension (min(M,N))
The singular values of A in decreasing order.
The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND (input) REAL
RCOND is used to determine the effective rank of A.
Singular values S(i) <= RCOND*S(1) are treated as zero.
If RCOND < 0, machine precision is used instead.
RANK (output) INTEGER
The effective rank of A, i.e., the number of singular values
which are greater than RCOND*S(1).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1, and also:
LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the algorithm for computing the SVD failed to converge;
if INFO = i, i off-diagonal elements of an intermediate
bidiagonal form did not converge to zero.
=====================================================================
.. Parameters ..
public void sgelsx(int m, int n, int nrhs, float[] a, int lda, float[] b, int ldb, int[] jpvt, float rcond, org.netlib.util.intW rank, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGELSY.
SGELSX computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
If m >= n and RANK = n, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of elements N+1:M in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is an
initial column, otherwise it is a free column. Before
the QR factorization of A, all initial columns are
permuted to the leading positions; only the remaining
free columns are moved as a result of column pivoting
during the factorization.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
RCOND (input) REAL
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace) REAL array, dimension
(max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgelsx(int m, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, int[] jpvt, int _jpvt_offset, float rcond, org.netlib.util.intW rank, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGELSY.
SGELSX computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
If m >= n and RANK = n, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of elements N+1:M in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is an
initial column, otherwise it is a free column. Before
the QR factorization of A, all initial columns are
permuted to the leading positions; only the remaining
free columns are moved as a result of column pivoting
during the factorization.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
RCOND (input) REAL
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace) REAL array, dimension
(max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgelsy(int m, int n, int nrhs, float[] a, int lda, float[] b, int ldb, int[] jpvt, float rcond, org.netlib.util.intW rank, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELSY computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
This routine is basically identical to the original xGELSX except
three differences:
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
o The permutation of matrix B (the right hand side) is faster and
more simple.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of AP, otherwise column i is a free column.
On exit, if JPVT(i) = k, then the i-th column of AP
was the k-th column of A.
RCOND (input) REAL
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
The unblocked strategy requires that:
LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
where MN = min( M, N ).
The block algorithm requires that:
LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
where NB is an upper bound on the blocksize returned
by ILAENV for the routines SGEQP3, STZRZF, STZRQF, SORMQR,
and SORMRZ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
=====================================================================
.. Parameters ..
public void sgelsy(int m, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, int[] jpvt, int _jpvt_offset, float rcond, org.netlib.util.intW rank, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGELSY computes the minimum-norm solution to a real linear least
squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
This routine is basically identical to the original xGELSX except
three differences:
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
o The permutation of matrix B (the right hand side) is faster and
more simple.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of AP, otherwise column i is a free column.
On exit, if JPVT(i) = k, then the i-th column of AP
was the k-th column of A.
RCOND (input) REAL
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
The unblocked strategy requires that:
LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
where MN = min( M, N ).
The block algorithm requires that:
LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
where NB is an upper bound on the blocksize returned
by ILAENV for the routines SGEQP3, STZRZF, STZRQF, SORMQR,
and SORMRZ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
=====================================================================
.. Parameters ..
public void sgeql2(int m, int n, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQL2 computes a QL factorization of a real m by n matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the m by n lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgeql2(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQL2 computes a QL factorization of a real m by n matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the m by n lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgeqlf(int m, int n, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQLF computes a QL factorization of a real M-by-N matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the M-by-N lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgeqlf(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQLF computes a QL factorization of a real M-by-N matrix A:
A = Q * L.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the M-by-N lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgeqp3(int m, int n, float[] a, int lda, int[] jpvt, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQP3 computes a QR factorization with column pivoting of a
matrix A: A*P = Q*R using Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper trapezoidal matrix R; the elements below
the diagonal, together with the array TAU, represent the
orthogonal matrix Q as a product of min(M,N) elementary
reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(J).ne.0, the J-th column of A is permuted
to the front of A*P (a leading column); if JPVT(J)=0,
the J-th column of A is a free column.
On exit, if JPVT(J)=K, then the J-th column of A*P was the
the K-th column of A.
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO=0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 3*N+1.
For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real/complex scalar, and v is a real/complex vector
with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
A(i+1:m,i), and tau in TAU(i).
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
=====================================================================
.. Parameters ..
public void sgeqp3(int m, int n, float[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQP3 computes a QR factorization with column pivoting of a
matrix A: A*P = Q*R using Level 3 BLAS.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper trapezoidal matrix R; the elements below
the diagonal, together with the array TAU, represent the
orthogonal matrix Q as a product of min(M,N) elementary
reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(J).ne.0, the J-th column of A is permuted
to the front of A*P (a leading column); if JPVT(J)=0,
the J-th column of A is a free column.
On exit, if JPVT(J)=K, then the J-th column of A*P was the
the K-th column of A.
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO=0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 3*N+1.
For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real/complex scalar, and v is a real/complex vector
with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
A(i+1:m,i), and tau in TAU(i).
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
=====================================================================
.. Parameters ..
public void sgeqpf(int m, int n, float[] a, int lda, int[] jpvt, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGEQP3.
SGEQPF computes a QR factorization with column pivoting of a
real M-by-N matrix A: A*P = Q*R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper triangular matrix R; the elements
below the diagonal, together with the array TAU,
represent the orthogonal matrix Q as a product of
min(m,n) elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n)
Each H(i) has the form
H = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
The matrix P is represented in jpvt as follows: If
jpvt(j) = i
then the jth column of P is the ith canonical unit vector.
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void sgeqpf(int m, int n, float[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SGEQP3.
SGEQPF computes a QR factorization with column pivoting of a
real M-by-N matrix A: A*P = Q*R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper triangular matrix R; the elements
below the diagonal, together with the array TAU,
represent the orthogonal matrix Q as a product of
min(m,n) elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n)
Each H(i) has the form
H = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
The matrix P is represented in jpvt as follows: If
jpvt(j) = i
then the jth column of P is the ith canonical unit vector.
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void sgeqr2(int m, int n, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQR2 computes a QR factorization of a real m by n matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgeqr2(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQR2 computes a QR factorization of a real m by n matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgeqrf(int m, int n, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQRF computes a QR factorization of a real M-by-N matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgeqrf(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGEQRF computes a QR factorization of a real M-by-N matrix A:
A = Q * R.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgerfs(String trans, int n, int nrhs, float[] a, int lda, float[] af, int ldaf, int[] ipiv, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGERFS improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates for
the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The original N-by-N matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) REAL array, dimension (LDAF,N)
The factors L and U from the factorization A = P*L*U
as computed by SGETRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SGETRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sgerfs(String trans, int n, int nrhs, float[] a, int _a_offset, int lda, float[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGERFS improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates for
the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The original N-by-N matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) REAL array, dimension (LDAF,N)
The factors L and U from the factorization A = P*L*U
as computed by SGETRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SGETRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sgerq2(int m, int n, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGERQ2 computes an RQ factorization of a real m by n matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgerq2(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGERQ2 computes an RQ factorization of a real m by n matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Parameters ..
public void sgerqf(int m, int n, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGERQF computes an RQ factorization of a real M-by-N matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of min(m,n) elementary
reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgerqf(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGERQF computes an RQ factorization of a real M-by-N matrix A:
A = R * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of min(m,n) elementary
reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
=====================================================================
.. Local Scalars ..
public void sgesc2(int n, float[] a, int lda, float[] rhs, int[] ipiv, int[] jpiv, org.netlib.util.floatW scale)
LAPACK
..
Purpose
=======
SGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by SGETC2.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
A (input) REAL array, dimension (LDA,N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by SGETC2: A = P * L * U * Q
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, N).
RHS (input/output) REAL array, dimension (N).
On entry, the right hand side vector b.
On exit, the solution vector X.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
SCALE (output) REAL
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent owerflow in the solution.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void sgesc2(int n, float[] a, int _a_offset, int lda, float[] rhs, int _rhs_offset, int[] ipiv, int _ipiv_offset, int[] jpiv, int _jpiv_offset, org.netlib.util.floatW scale)
LAPACK
..
Purpose
=======
SGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by SGETC2.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
A (input) REAL array, dimension (LDA,N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by SGETC2: A = P * L * U * Q
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, N).
RHS (input/output) REAL array, dimension (N).
On entry, the right hand side vector b.
On exit, the solution vector X.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
SCALE (output) REAL
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent owerflow in the solution.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void sgesdd(String jobz, int m, int n, float[] a, int lda, float[] s, float[] u, int ldu, float[] vt, int ldvt, float[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESDD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and right singular
vectors. If singular vectors are desired, it uses a
divide-and-conquer algorithm.
The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**T, not V.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U and all N rows of V**T are
returned in the arrays U and VT;
= 'S': the first min(M,N) columns of U and the first
min(M,N) rows of V**T are returned in the arrays U
and VT;
= 'O': If M >= N, the first N columns of U are overwritten
on the array A and all rows of V**T are returned in
the array VT;
otherwise, all columns of U are returned in the
array U and the first M rows of V**T are overwritten
in the array A;
= 'N': no columns of U or rows of V**T are computed.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBZ = 'O', A is overwritten with the first N columns
of U (the left singular vectors, stored
columnwise) if M >= N;
A is overwritten with the first M rows
of V**T (the right singular vectors, stored
rowwise) otherwise.
if JOBZ .ne. 'O', the contents of A are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) REAL array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) REAL array, dimension (LDU,UCOL)
UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
UCOL = min(M,N) if JOBZ = 'S'.
If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
orthogonal matrix U;
if JOBZ = 'S', U contains the first min(M,N) columns of U
(the left singular vectors, stored columnwise);
if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
VT (output) REAL array, dimension (LDVT,N)
If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
N-by-N orthogonal matrix V**T;
if JOBZ = 'S', VT contains the first min(M,N) rows of
V**T (the right singular vectors, stored rowwise);
if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
if JOBZ = 'S', LDVT >= min(M,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
If JOBZ = 'N',
LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).
If JOBZ = 'O',
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
If JOBZ = 'S' or 'A'
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1 but other input arguments are legal, WORK(1)
returns the optimal LWORK.
IWORK (workspace) INTEGER array, dimension (8*min(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: SBDSDC did not converge, updating process failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void sgesdd(String jobz, int m, int n, float[] a, int _a_offset, int lda, float[] s, int _s_offset, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int ldvt, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESDD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and right singular
vectors. If singular vectors are desired, it uses a
divide-and-conquer algorithm.
The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**T, not V.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U and all N rows of V**T are
returned in the arrays U and VT;
= 'S': the first min(M,N) columns of U and the first
min(M,N) rows of V**T are returned in the arrays U
and VT;
= 'O': If M >= N, the first N columns of U are overwritten
on the array A and all rows of V**T are returned in
the array VT;
otherwise, all columns of U are returned in the
array U and the first M rows of V**T are overwritten
in the array A;
= 'N': no columns of U or rows of V**T are computed.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBZ = 'O', A is overwritten with the first N columns
of U (the left singular vectors, stored
columnwise) if M >= N;
A is overwritten with the first M rows
of V**T (the right singular vectors, stored
rowwise) otherwise.
if JOBZ .ne. 'O', the contents of A are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) REAL array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) REAL array, dimension (LDU,UCOL)
UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
UCOL = min(M,N) if JOBZ = 'S'.
If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
orthogonal matrix U;
if JOBZ = 'S', U contains the first min(M,N) columns of U
(the left singular vectors, stored columnwise);
if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
VT (output) REAL array, dimension (LDVT,N)
If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
N-by-N orthogonal matrix V**T;
if JOBZ = 'S', VT contains the first min(M,N) rows of
V**T (the right singular vectors, stored rowwise);
if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
if JOBZ = 'S', LDVT >= min(M,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
If JOBZ = 'N',
LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).
If JOBZ = 'O',
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
If JOBZ = 'S' or 'A'
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1 but other input arguments are legal, WORK(1)
returns the optimal LWORK.
IWORK (workspace) INTEGER array, dimension (8*min(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: SBDSDC did not converge, updating process failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void sgesv(int n, int nrhs, float[] a, int lda, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is
upper triangular. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution could not be computed.
=====================================================================
.. External Subroutines ..
public void sgesv(int n, int nrhs, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is
upper triangular. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution could not be computed.
=====================================================================
.. External Subroutines ..
public void sgesvd(String jobu, String jobvt, int m, int n, float[] a, int lda, float[] s, float[] u, int ldu, float[] vt, int ldvt, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESVD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns V**T, not V.
Arguments
=========
JOBU (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U are returned in array U:
= 'S': the first min(m,n) columns of U (the left singular
vectors) are returned in the array U;
= 'O': the first min(m,n) columns of U (the left singular
vectors) are overwritten on the array A;
= 'N': no columns of U (no left singular vectors) are
computed.
JOBVT (input) CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:
= 'A': all N rows of V**T are returned in the array VT;
= 'S': the first min(m,n) rows of V**T (the right singular
vectors) are returned in the array VT;
= 'O': the first min(m,n) rows of V**T (the right singular
vectors) are overwritten on the array A;
= 'N': no rows of V**T (no right singular vectors) are
computed.
JOBVT and JOBU cannot both be 'O'.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBU = 'O', A is overwritten with the first min(m,n)
columns of U (the left singular vectors,
stored columnwise);
if JOBVT = 'O', A is overwritten with the first min(m,n)
rows of V**T (the right singular vectors,
stored rowwise);
if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) REAL array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) REAL array, dimension (LDU,UCOL)
(LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
if JOBU = 'S', U contains the first min(m,n) columns of U
(the left singular vectors, stored columnwise);
if JOBU = 'N' or 'O', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = 'S' or 'A', LDU >= M.
VT (output) REAL array, dimension (LDVT,N)
If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
V**T;
if JOBVT = 'S', VT contains the first min(m,n) rows of
V**T (the right singular vectors, stored rowwise);
if JOBVT = 'N' or 'O', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B
whose diagonal is in S (not necessarily sorted). B
satisfies A = U * B * VT, so it has the same singular values
as A, and singular vectors related by U and VT.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if SBDSQR did not converge, INFO specifies how many
superdiagonals of an intermediate bidiagonal form B
did not converge to zero. See the description of WORK
above for details.
=====================================================================
.. Parameters ..
public void sgesvd(String jobu, String jobvt, int m, int n, float[] a, int _a_offset, int lda, float[] s, int _s_offset, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int ldvt, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESVD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns V**T, not V.
Arguments
=========
JOBU (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U are returned in array U:
= 'S': the first min(m,n) columns of U (the left singular
vectors) are returned in the array U;
= 'O': the first min(m,n) columns of U (the left singular
vectors) are overwritten on the array A;
= 'N': no columns of U (no left singular vectors) are
computed.
JOBVT (input) CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:
= 'A': all N rows of V**T are returned in the array VT;
= 'S': the first min(m,n) rows of V**T (the right singular
vectors) are returned in the array VT;
= 'O': the first min(m,n) rows of V**T (the right singular
vectors) are overwritten on the array A;
= 'N': no rows of V**T (no right singular vectors) are
computed.
JOBVT and JOBU cannot both be 'O'.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBU = 'O', A is overwritten with the first min(m,n)
columns of U (the left singular vectors,
stored columnwise);
if JOBVT = 'O', A is overwritten with the first min(m,n)
rows of V**T (the right singular vectors,
stored rowwise);
if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) REAL array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) REAL array, dimension (LDU,UCOL)
(LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
if JOBU = 'S', U contains the first min(m,n) columns of U
(the left singular vectors, stored columnwise);
if JOBU = 'N' or 'O', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = 'S' or 'A', LDU >= M.
VT (output) REAL array, dimension (LDVT,N)
If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
V**T;
if JOBVT = 'S', VT contains the first min(m,n) rows of
V**T (the right singular vectors, stored rowwise);
if JOBVT = 'N' or 'O', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B
whose diagonal is in S (not necessarily sorted). B
satisfies A = U * B * VT, so it has the same singular values
as A, and singular vectors related by U and VT.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if SBDSQR did not converge, INFO specifies how many
superdiagonals of an intermediate bidiagonal form B
did not converge to zero. See the description of WORK
above for details.
=====================================================================
.. Parameters ..
public void sgesvx(String fact, String trans, int n, int nrhs, float[] a, int lda, float[] af, int ldaf, int[] ipiv, org.netlib.util.StringW equed, float[] r, float[] c, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESVX uses the LU factorization to compute the solution to a real
system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = P * L * U,
where P is a permutation matrix, L is a unit lower triangular
matrix, and U is upper triangular.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF and IPIV contain the factored form of A.
If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
A, AF, and IPIV are not modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
not 'N', then A must have been equilibrated by the scaling
factors in R and/or C. A is not modified if FACT = 'F' or
'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) REAL array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the factors L and U from the factorization
A = P*L*U as computed by SGETRF. If EQUED .ne. 'N', then
AF is the factored form of the equilibrated matrix A.
If FACT = 'N', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the equilibrated matrix A (see the description of A for
the form of the equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = P*L*U
as computed by SGETRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) REAL array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) REAL array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) REAL array, dimension (4*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void sgesvx(String fact, String trans, int n, int nrhs, float[] a, int _a_offset, int lda, float[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, org.netlib.util.StringW equed, float[] r, int _r_offset, float[] c, int _c_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGESVX uses the LU factorization to compute the solution to a real
system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').
2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = P * L * U,
where P is a permutation matrix, L is a unit lower triangular
matrix, and U is upper triangular.
3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF and IPIV contain the factored form of A.
If EQUED is not 'N', the matrix A has been
equilibrated with scaling factors given by R and C.
A, AF, and IPIV are not modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Transpose)
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
not 'N', then A must have been equilibrated by the scaling
factors in R and/or C. A is not modified if FACT = 'F' or
'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if EQUED .ne. 'N', A is scaled as follows:
EQUED = 'R': A := diag(R) * A
EQUED = 'C': A := A * diag(C)
EQUED = 'B': A := diag(R) * A * diag(C).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) REAL array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the factors L and U from the factorization
A = P*L*U as computed by SGETRF. If EQUED .ne. 'N', then
AF is the factored form of the equilibrated matrix A.
If FACT = 'N', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the factors L and U from the factorization A = P*L*U
of the equilibrated matrix A (see the description of A for
the form of the equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the factorization A = P*L*U
as computed by SGETRF; row i of the matrix was interchanged
with row IPIV(i).
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the original matrix A.
If FACT = 'E', then IPIV is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U
of the equilibrated matrix A.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
R (input or output) REAL array, dimension (N)
The row scale factors for A. If EQUED = 'R' or 'B', A is
multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
is not accessed. R is an input argument if FACT = 'F';
otherwise, R is an output argument. If FACT = 'F' and
EQUED = 'R' or 'B', each element of R must be positive.
C (input or output) REAL array, dimension (N)
The column scale factors for A. If EQUED = 'C' or 'B', A is
multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
is not accessed. C is an input argument if FACT = 'F';
otherwise, C is an output argument. If FACT = 'F' and
EQUED = 'C' or 'B', each element of C must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit,
if EQUED = 'N', B is not modified;
if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
diag(R)*B;
if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
overwritten by diag(C)*B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
to the original system of equations. Note that A and B are
modified on exit if EQUED .ne. 'N', and the solution to the
equilibrated system is inv(diag(C))*X if TRANS = 'N' and
EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
and EQUED = 'R' or 'B'.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) REAL array, dimension (4*N)
On exit, WORK(1) contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If WORK(1) is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A
could be poor. This also means that the solution X, condition
estimator RCOND, and forward error bound FERR could be
unreliable. If factorization fails with 0 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly
singular, so the solution and error bounds
could not be computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void sgetc2(int n, float[] a, int lda, int[] ipiv, int[] jpiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETC2 computes an LU factorization with complete pivoting of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is the Level 2 BLAS algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the n-by-n matrix A to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, i.e., giving a nonsingular perturbed system.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce owerflow if
we try to solve for x in Ax = b. So U is perturbed to
avoid the overflow.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void sgetc2(int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, int[] jpiv, int _jpiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETC2 computes an LU factorization with complete pivoting of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is the Level 2 BLAS algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the n-by-n matrix A to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, i.e., giving a nonsingular perturbed system.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (output) INTEGER array, dimension(N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce owerflow if
we try to solve for x in Ax = b. So U is perturbed to
avoid the overflow.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
.. Parameters ..
public void sgetf2(int m, int n, float[] a, int lda, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void sgetf2(int m, int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void sgetrf(int m, int n, float[] a, int lda, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void sgetrf(int m, int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void sgetri(int n, float[] a, int lda, int[] ipiv, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETRI computes the inverse of a matrix using the LU factorization
computed by SGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by SGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.
=====================================================================
.. Parameters ..
public void sgetri(int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETRI computes the inverse of a matrix using the LU factorization
computed by SGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by SGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.
=====================================================================
.. Parameters ..
public void sgetrs(String trans, int n, int nrhs, float[] a, int lda, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETRS solves a system of linear equations
A * X = B or A' * X = B
with a general N-by-N matrix A using the LU factorization computed
by SGETRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by SGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgetrs(String trans, int n, int nrhs, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGETRS solves a system of linear equations
A * X = B or A' * X = B
with a general N-by-N matrix A using the LU factorization computed
by SGETRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by SGETRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sggbak(String job, String side, int n, int ilo, int ihi, float[] lscale, float[] rscale, int m, float[] v, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGBAK forms the right or left eigenvectors of a real generalized
eigenvalue problem A*x = lambda*B*x, by backward transformation on
the computed eigenvectors of the balanced pair of matrices output by
SGGBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N': do nothing, return immediately;
= 'P': do backward transformation for permutation only;
= 'S': do backward transformation for scaling only;
= 'B': do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to SGGBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by SGGBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
LSCALE (input) REAL array, dimension (N)
Details of the permutations and/or scaling factors applied
to the left side of A and B, as returned by SGGBAL.
RSCALE (input) REAL array, dimension (N)
Details of the permutations and/or scaling factors applied
to the right side of A and B, as returned by SGGBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) REAL array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by STGEVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the matrix V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. Ward, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Local Scalars ..
public void sggbak(String job, String side, int n, int ilo, int ihi, float[] lscale, int _lscale_offset, float[] rscale, int _rscale_offset, int m, float[] v, int _v_offset, int ldv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGBAK forms the right or left eigenvectors of a real generalized
eigenvalue problem A*x = lambda*B*x, by backward transformation on
the computed eigenvectors of the balanced pair of matrices output by
SGGBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N': do nothing, return immediately;
= 'P': do backward transformation for permutation only;
= 'S': do backward transformation for scaling only;
= 'B': do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to SGGBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by SGGBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
LSCALE (input) REAL array, dimension (N)
Details of the permutations and/or scaling factors applied
to the left side of A and B, as returned by SGGBAL.
RSCALE (input) REAL array, dimension (N)
Details of the permutations and/or scaling factors applied
to the right side of A and B, as returned by SGGBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) REAL array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by STGEVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the matrix V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. Ward, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Local Scalars ..
public void sggbal(String job, int n, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] lscale, float[] rscale, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGBAL balances a pair of general real matrices (A,B). This
involves, first, permuting A and B by similarity transformations to
isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
elements on the diagonal; and second, applying a diagonal similarity
transformation to rows and columns ILO to IHI to make the rows
and columns as close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrices, and improve the
accuracy of the computed eigenvalues and/or eigenvectors in the
generalized eigenvalue problem A*x = lambda*B*x.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A and B:
= 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
and RSCALE(I) = 1.0 for i = 1,...,N.
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,N)
On entry, the input matrix B.
On exit, B is overwritten by the balanced matrix.
If JOB = 'N', B is not referenced.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If P(j) is the index of the
row interchanged with row j, and D(j)
is the scaling factor applied to row j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If P(j) is the index of the
column interchanged with column j, and D(j)
is the scaling factor applied to column j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
WORK (workspace) REAL array, dimension (lwork)
lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
at least 1 when JOB = 'N' or 'P'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. WARD, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Parameters ..
public void sggbal(String job, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] lscale, int _lscale_offset, float[] rscale, int _rscale_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGBAL balances a pair of general real matrices (A,B). This
involves, first, permuting A and B by similarity transformations to
isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
elements on the diagonal; and second, applying a diagonal similarity
transformation to rows and columns ILO to IHI to make the rows
and columns as close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrices, and improve the
accuracy of the computed eigenvalues and/or eigenvectors in the
generalized eigenvalue problem A*x = lambda*B*x.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the operations to be performed on A and B:
= 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
and RSCALE(I) = 1.0 for i = 1,...,N.
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the input matrix A.
On exit, A is overwritten by the balanced matrix.
If JOB = 'N', A is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,N)
On entry, the input matrix B.
On exit, B is overwritten by the balanced matrix.
If JOB = 'N', B is not referenced.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are set to integers such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If JOB = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If P(j) is the index of the
row interchanged with row j, and D(j)
is the scaling factor applied to row j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If P(j) is the index of the
column interchanged with column j, and D(j)
is the scaling factor applied to column j, then
LSCALE(j) = P(j) for J = 1,...,ILO-1
= D(j) for J = ILO,...,IHI
= P(j) for J = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
WORK (workspace) REAL array, dimension (lwork)
lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
at least 1 when JOB = 'N' or 'P'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. WARD, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
.. Parameters ..
public void sgges(String jobvsl, String jobvsr, String sort, Object selctg, int n, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW sdim, float[] alphar, float[] alphai, float[] beta, float[] vsl, int ldvsl, float[] vsr, int ldvsr, float[] work, int lwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
the generalized eigenvalues, the generalized real Schur form (S,T),
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T.The
leading columns of VSL and VSR then form an orthonormal basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver
SGGEV instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG);
SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
in this case.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i,
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) REAL array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) REAL array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else LWORK >= max(8*N,6*N+16).
For good performance , LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ.
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in STGSEN.
=====================================================================
.. Parameters ..
public void sgges(String jobvsl, String jobvsr, String sort, Object selctg, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW sdim, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] vsl, int _vsl_offset, int ldvsl, float[] vsr, int _vsr_offset, int ldvsr, float[] work, int _work_offset, int lwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
the generalized eigenvalues, the generalized real Schur form (S,T),
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T.The
leading columns of VSL and VSR then form an orthonormal basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver
SGGEV instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG);
SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
in this case.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i,
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) REAL array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) REAL array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else LWORK >= max(8*N,6*N+16).
For good performance , LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ.
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in STGSEN.
=====================================================================
.. Parameters ..
public void sggesx(String jobvsl, String jobvsr, String sort, Object selctg, String sense, int n, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW sdim, float[] alphar, float[] alphai, float[] beta, float[] vsl, int ldvsl, float[] vsr, int ldvsr, float[] rconde, float[] rcondv, float[] work, int lwork, int[] iwork, int liwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGESX computes for a pair of N-by-N real nonsymmetric matrices
(A,B), the generalized eigenvalues, the real Schur form (S,T), and,
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T; computes
a reciprocal condition number for the average of the selected
eigenvalues (RCONDE); and computes a reciprocal condition number for
the right and left deflating subspaces corresponding to the selected
eigenvalues (RCONDV). The leading columns of VSL and VSR then form
an orthonormal basis for the corresponding left and right eigenspaces
(deflating subspaces).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG).
SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that a selected complex eigenvalue may no longer satisfy
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
since ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned), in this
case INFO is set to N+3.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N' : None are computed;
= 'E' : Computed for average of selected eigenvalues only;
= 'V' : Computed for selected deflating subspaces only;
= 'B' : Computed for both.
If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) REAL array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) REAL array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
RCONDE (output) REAL array, dimension ( 2 )
If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
reciprocal condition numbers for the average of the selected
eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) REAL array, dimension ( 2 )
If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
reciprocal condition numbers for the selected deflating
subspaces.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
LWORK >= max( 8*N, 6*N+16 ).
Note that 2*SDIM*(N-SDIM) <= N*N/2.
Note also that an error is only returned if
LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
this may not be large enough.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the bound on the optimal size of the WORK
array and the minimum size of the IWORK array, returns these
values as the first entries of the WORK and IWORK arrays, and
no error message related to LWORK or LIWORK is issued by
XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
LIWORK >= N+6.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the bound on the optimal size of the
WORK array and the minimum size of the IWORK array, returns
these values as the first entries of the WORK and IWORK
arrays, and no error message related to LWORK or LIWORK is
issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in STGSEN.
Further details
===============
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / RCONDE( 1 ).
An approximate (asymptotic) bound on the maximum angular error in
the computed deflating subspaces is
EPS * norm((A, B)) / RCONDV( 2 ).
See LAPACK User's Guide, section 4.11 for more information.
=====================================================================
.. Parameters ..
public void sggesx(String jobvsl, String jobvsr, String sort, Object selctg, String sense, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW sdim, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] vsl, int _vsl_offset, int ldvsl, float[] vsr, int _vsr_offset, int ldvsr, float[] rconde, int _rconde_offset, float[] rcondv, int _rcondv_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGESX computes for a pair of N-by-N real nonsymmetric matrices
(A,B), the generalized eigenvalues, the real Schur form (S,T), and,
optionally, the left and/or right matrices of Schur vectors (VSL and
VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T; computes
a reciprocal condition number for the average of the selected
eigenvalues (RCONDE); and computes a reciprocal condition number for
the right and left deflating subspaces corresponding to the selected
eigenvalues (RCONDV). The leading columns of VSL and VSR then form
an orthonormal basis for the corresponding left and right eigenspaces
(deflating subspaces).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is
upper triangular with non-negative diagonal and S is block upper
triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be
"standardized" by making the corresponding elements of T have the
form:
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2-by-2 blocks in S and T will have a
complex conjugate pair of generalized eigenvalues.
Arguments
=========
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors.
JOBVSR (input) CHARACTER*1
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors.
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG).
SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments
SELCTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', SELCTG is not referenced.
If SORT = 'S', SELCTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
one of a complex conjugate pair of eigenvalues is selected,
then both complex eigenvalues are selected.
Note that a selected complex eigenvalue may no longer satisfy
SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
since ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned), in this
case INFO is set to N+3.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N' : None are computed;
= 'E' : Computed for average of selected eigenvalues only;
= 'V' : Computed for selected deflating subspaces only;
= 'B' : Computed for both.
If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which SELCTG is true. (Complex conjugate pairs for which
SELCTG is true for either eigenvalue count as 2.)
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real Schur form of (A,B) were further reduced to
triangular form using 2-by-2 complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio.
However, ALPHAR and ALPHAI will be always less than and
usually comparable with norm(A) in magnitude, and BETA always
less than and usually comparable with norm(B).
VSL (output) REAL array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >=1, and
if JOBVSL = 'V', LDVSL >= N.
VSR (output) REAL array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
RCONDE (output) REAL array, dimension ( 2 )
If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
reciprocal condition numbers for the average of the selected
eigenvalues.
Not referenced if SENSE = 'N' or 'V'.
RCONDV (output) REAL array, dimension ( 2 )
If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
reciprocal condition numbers for the selected deflating
subspaces.
Not referenced if SENSE = 'N' or 'E'.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
LWORK >= max( 8*N, 6*N+16 ).
Note that 2*SDIM*(N-SDIM) <= N*N/2.
Note also that an error is only returned if
LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
this may not be large enough.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the bound on the optimal size of the WORK
array and the minimum size of the IWORK array, returns these
values as the first entries of the WORK and IWORK arrays, and
no error message related to LWORK or LIWORK is issued by
XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
LIWORK >= N+6.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the bound on the optimal size of the
WORK array and the minimum size of the IWORK array, returns
these values as the first entries of the WORK and IWORK
arrays, and no error message related to LWORK or LIWORK is
issued by XERBLA.
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy SELCTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering failed in STGSEN.
Further details
===============
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / RCONDE( 1 ).
An approximate (asymptotic) bound on the maximum angular error in
the computed deflating subspaces is
EPS * norm((A, B)) / RCONDV( 2 ).
See LAPACK User's Guide, section 4.11 for more information.
=====================================================================
.. Parameters ..
public void sggev(String jobvl, String jobvr, int n, float[] a, int lda, float[] b, int ldb, float[] alphar, float[] alphai, float[] beta, float[] vl, int ldvl, float[] vr, int ldvr, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B .
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
alpha/beta. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ.
=N+2: error return from STGEVC.
=====================================================================
.. Parameters ..
public void sggev(String jobvl, String jobvr, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B .
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
alpha/beta. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector is scaled so the largest component has
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ.
=N+2: error return from STGEVC.
=====================================================================
.. Parameters ..
public void sggevx(String balanc, String jobvl, String jobvr, String sense, int n, float[] a, int lda, float[] b, int ldb, float[] alphar, float[] alphai, float[] beta, float[] vl, int ldvl, float[] vr, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] lscale, float[] rscale, org.netlib.util.floatW abnrm, org.netlib.util.floatW bbnrm, float[] rconde, float[] rcondv, float[] work, int lwork, int[] iwork, boolean[] bwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
the eigenvalues (RCONDE), and reciprocal condition numbers for the
right eigenvectors (RCONDV).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j) .
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B.
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
BALANC (input) CHARACTER*1
Specifies the balance option to be performed.
= 'N': do not diagonally scale or permute;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
Computed reciprocal condition numbers will be for the
matrices after permuting and/or balancing. Permuting does
not change condition numbers (in exact arithmetic), but
balancing does.
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': none are computed;
= 'E': computed for eigenvalues only;
= 'V': computed for eigenvectors only;
= 'B': computed for eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then A contains the first part of the real Schur
form of the "balanced" versions of the input A and B.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then B contains the second part of the real Schur
form of the "balanced" versions of the input A and B.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If PL(j) is the index of the
row interchanged with row j, and DL(j) is the scaling
factor applied to row j, then
LSCALE(j) = PL(j) for j = 1,...,ILO-1
= DL(j) for j = ILO,...,IHI
= PL(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If PR(j) is the index of the
column interchanged with column j, and DR(j) is the scaling
factor applied to column j, then
RSCALE(j) = PR(j) for j = 1,...,ILO-1
= DR(j) for j = ILO,...,IHI
= PR(j) for j = IHI+1,...,N
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) REAL
The one-norm of the balanced matrix A.
BBNRM (output) REAL
The one-norm of the balanced matrix B.
RCONDE (output) REAL array, dimension (N)
If SENSE = 'E' or 'B', the reciprocal condition numbers of
the eigenvalues, stored in consecutive elements of the array.
For a complex conjugate pair of eigenvalues two consecutive
elements of RCONDE are set to the same value. Thus RCONDE(j),
RCONDV(j), and the j-th columns of VL and VR all correspond
to the j-th eigenpair.
If SENSE = 'N' or 'V', RCONDE is not referenced.
RCONDV (output) REAL array, dimension (N)
If SENSE = 'V' or 'B', the estimated reciprocal condition
numbers of the eigenvectors, stored in consecutive elements
of the array. For a complex eigenvector two consecutive
elements of RCONDV are set to the same value. If the
eigenvalues cannot be reordered to compute RCONDV(j),
RCONDV(j) is set to 0; this can only occur when the true
value would be very small anyway.
If SENSE = 'N' or 'E', RCONDV is not referenced.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
LWORK >= max(1,6*N).
If SENSE = 'E', LWORK >= max(1,10*N).
If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N+6)
If SENSE = 'E', IWORK is not referenced.
BWORK (workspace) LOGICAL array, dimension (N)
If SENSE = 'N', BWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ.
=N+2: error return from STGEVC.
Further Details
===============
Balancing a matrix pair (A,B) includes, first, permuting rows and
columns to isolate eigenvalues, second, applying diagonal similarity
transformation to the rows and columns to make the rows and columns
as close in norm as possible. The computed reciprocal condition
numbers correspond to the balanced matrix. Permuting rows and columns
will not change the condition numbers (in exact arithmetic) but
diagonal scaling will. For further explanation of balancing, see
section 4.11.1.2 of LAPACK Users' Guide.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
An approximate error bound for the angle between the i-th computed
eigenvector VL(i) or VR(i) is given by
EPS * norm(ABNRM, BBNRM) / DIF(i).
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see section 4.11 of LAPACK User's Guide.
=====================================================================
.. Parameters ..
public void sggevx(String balanc, String jobvl, String jobvr, String sense, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, org.netlib.util.intW ilo, org.netlib.util.intW ihi, float[] lscale, int _lscale_offset, float[] rscale, int _rscale_offset, org.netlib.util.floatW abnrm, org.netlib.util.floatW bbnrm, float[] rconde, int _rconde_offset, float[] rcondv, int _rcondv_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, boolean[] bwork, int _bwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
the eigenvalues (RCONDE), and reciprocal condition numbers for the
right eigenvectors (RCONDV).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j) .
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B.
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
BALANC (input) CHARACTER*1
Specifies the balance option to be performed.
= 'N': do not diagonally scale or permute;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
Computed reciprocal condition numbers will be for the
matrices after permuting and/or balancing. Permuting does
not change condition numbers (in exact arithmetic), but
balancing does.
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
SENSE (input) CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': none are computed;
= 'E': computed for eigenvalues only;
= 'V': computed for eigenvectors only;
= 'B': computed for eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then A contains the first part of the real Schur
form of the "balanced" versions of the input A and B.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then B contains the second part of the real Schur
form of the "balanced" versions of the input A and B.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
ILO (output) INTEGER
IHI (output) INTEGER
ILO and IHI are integer values such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
LSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If PL(j) is the index of the
row interchanged with row j, and DL(j) is the scaling
factor applied to row j, then
LSCALE(j) = PL(j) for j = 1,...,ILO-1
= DL(j) for j = ILO,...,IHI
= PL(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
RSCALE (output) REAL array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If PR(j) is the index of the
column interchanged with column j, and DR(j) is the scaling
factor applied to column j, then
RSCALE(j) = PR(j) for j = 1,...,ILO-1
= DR(j) for j = ILO,...,IHI
= PR(j) for j = IHI+1,...,N
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.
ABNRM (output) REAL
The one-norm of the balanced matrix A.
BBNRM (output) REAL
The one-norm of the balanced matrix B.
RCONDE (output) REAL array, dimension (N)
If SENSE = 'E' or 'B', the reciprocal condition numbers of
the eigenvalues, stored in consecutive elements of the array.
For a complex conjugate pair of eigenvalues two consecutive
elements of RCONDE are set to the same value. Thus RCONDE(j),
RCONDV(j), and the j-th columns of VL and VR all correspond
to the j-th eigenpair.
If SENSE = 'N' or 'V', RCONDE is not referenced.
RCONDV (output) REAL array, dimension (N)
If SENSE = 'V' or 'B', the estimated reciprocal condition
numbers of the eigenvectors, stored in consecutive elements
of the array. For a complex eigenvector two consecutive
elements of RCONDV are set to the same value. If the
eigenvalues cannot be reordered to compute RCONDV(j),
RCONDV(j) is set to 0; this can only occur when the true
value would be very small anyway.
If SENSE = 'N' or 'E', RCONDV is not referenced.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
LWORK >= max(1,6*N).
If SENSE = 'E', LWORK >= max(1,10*N).
If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N+6)
If SENSE = 'E', IWORK is not referenced.
BWORK (workspace) LOGICAL array, dimension (N)
If SENSE = 'N', BWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in SHGEQZ.
=N+2: error return from STGEVC.
Further Details
===============
Balancing a matrix pair (A,B) includes, first, permuting rows and
columns to isolate eigenvalues, second, applying diagonal similarity
transformation to the rows and columns to make the rows and columns
as close in norm as possible. The computed reciprocal condition
numbers correspond to the balanced matrix. Permuting rows and columns
will not change the condition numbers (in exact arithmetic) but
diagonal scaling will. For further explanation of balancing, see
section 4.11.1.2 of LAPACK Users' Guide.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
An approximate error bound for the angle between the i-th computed
eigenvector VL(i) or VR(i) is given by
EPS * norm(ABNRM, BBNRM) / DIF(i).
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see section 4.11 of LAPACK User's Guide.
=====================================================================
.. Parameters ..
public void sggglm(int n, int m, int p, float[] a, int lda, float[] b, int ldb, float[] d, float[] x, float[] y, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGGLM solves a general Gauss-Markov linear model (GLM) problem:
minimize || y ||_2 subject to d = A*x + B*y
x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
given N-vector. It is assumed that M <= N <= M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always
consistent, and there is a unique solution x and a minimal 2-norm
solution y, which is obtained using a generalized QR factorization
of the matrices (A, B) given by
A = Q*(R), B = Q*T*Z.
(0)
In particular, if matrix B is square nonsingular, then the problem
GLM is equivalent to the following weighted linear least squares
problem
minimize || inv(B)*(d-A*x) ||_2
x
where inv(B) denotes the inverse of B.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. 0 <= M <= N.
P (input) INTEGER
The number of columns of the matrix B. P >= N-M.
A (input/output) REAL array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the upper triangular part of the array A contains
the M-by-M upper triangular matrix R.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)th subdiagonal
contain the N-by-P upper trapezoidal matrix T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
D (input/output) REAL array, dimension (N)
On entry, D is the left hand side of the GLM equation.
On exit, D is destroyed.
X (output) REAL array, dimension (M)
Y (output) REAL array, dimension (P)
On exit, X and Y are the solutions of the GLM problem.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N+M+P).
For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
where NB is an upper bound for the optimal blocksizes for
SGEQRF, SGERQF, SORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with A in the
generalized QR factorization of the pair (A, B) is
singular, so that rank(A) < M; the least squares
solution could not be computed.
= 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
factor T associated with B in the generalized QR
factorization of the pair (A, B) is singular, so that
rank( A B ) < N; the least squares solution could not
be computed.
===================================================================
.. Parameters ..
public void sggglm(int n, int m, int p, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] d, int _d_offset, float[] x, int _x_offset, float[] y, int _y_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGGLM solves a general Gauss-Markov linear model (GLM) problem:
minimize || y ||_2 subject to d = A*x + B*y
x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
given N-vector. It is assumed that M <= N <= M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always
consistent, and there is a unique solution x and a minimal 2-norm
solution y, which is obtained using a generalized QR factorization
of the matrices (A, B) given by
A = Q*(R), B = Q*T*Z.
(0)
In particular, if matrix B is square nonsingular, then the problem
GLM is equivalent to the following weighted linear least squares
problem
minimize || inv(B)*(d-A*x) ||_2
x
where inv(B) denotes the inverse of B.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. 0 <= M <= N.
P (input) INTEGER
The number of columns of the matrix B. P >= N-M.
A (input/output) REAL array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the upper triangular part of the array A contains
the M-by-M upper triangular matrix R.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)th subdiagonal
contain the N-by-P upper trapezoidal matrix T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
D (input/output) REAL array, dimension (N)
On entry, D is the left hand side of the GLM equation.
On exit, D is destroyed.
X (output) REAL array, dimension (M)
Y (output) REAL array, dimension (P)
On exit, X and Y are the solutions of the GLM problem.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N+M+P).
For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
where NB is an upper bound for the optimal blocksizes for
SGEQRF, SGERQF, SORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with A in the
generalized QR factorization of the pair (A, B) is
singular, so that rank(A) < M; the least squares
solution could not be computed.
= 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
factor T associated with B in the generalized QR
factorization of the pair (A, B) is singular, so that
rank( A B ) < N; the least squares solution could not
be computed.
===================================================================
.. Parameters ..
public void sgghrd(String compq, String compz, int n, int ilo, int ihi, float[] a, int lda, float[] b, int ldb, float[] q, int ldq, float[] z, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGHRD reduces a pair of real matrices (A,B) to generalized upper
Hessenberg form using orthogonal transformations, where A is a
general matrix and B is upper triangular. The form of the
generalized eigenvalue problem is
A*x = lambda*B*x,
and B is typically made upper triangular by computing its QR
factorization and moving the orthogonal matrix Q to the left side
of the equation.
This subroutine simultaneously reduces A to a Hessenberg matrix H:
Q**T*A*Z = H
and transforms B to another upper triangular matrix T:
Q**T*B*Z = T
in order to reduce the problem to its standard form
H*y = lambda*T*y
where y = Z**T*x.
The orthogonal matrices Q and Z are determined as products of Givens
rotations. They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
If Q1 is the orthogonal matrix from the QR factorization of B in the
original equation A*x = lambda*B*x, then SGGHRD reduces the original
problem to generalized Hessenberg form.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry,
and the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': do not compute Z;
= 'I': Z is initialized to the unit matrix, and the
orthogonal matrix Z is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry,
and the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of A which are to be
reduced. It is assumed that A is already upper triangular
in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
normally set by a previous call to SGGBAL; otherwise they
should be set to 1 and N respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
rest is set to zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the N-by-N upper triangular matrix B.
On exit, the upper triangular matrix T = Q**T B Z. The
elements below the diagonal are set to zero.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) REAL array, dimension (LDQ, N)
On entry, if COMPQ = 'V', the orthogonal matrix Q1,
typically from the QR factorization of B.
On exit, if COMPQ='I', the orthogonal matrix Q, and if
COMPQ = 'V', the product Q1*Q.
Not referenced if COMPQ='N'.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1.
On exit, if COMPZ='I', the orthogonal matrix Z, and if
COMPZ = 'V', the product Z1*Z.
Not referenced if COMPZ='N'.
LDZ (input) INTEGER
The leading dimension of the array Z.
LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
This routine reduces A to Hessenberg and B to triangular form by
an unblocked reduction, as described in _Matrix_Computations_,
by Golub and Van Loan (Johns Hopkins Press.)
=====================================================================
.. Parameters ..
public void sgghrd(String compq, String compz, int n, int ilo, int ihi, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] q, int _q_offset, int ldq, float[] z, int _z_offset, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGHRD reduces a pair of real matrices (A,B) to generalized upper
Hessenberg form using orthogonal transformations, where A is a
general matrix and B is upper triangular. The form of the
generalized eigenvalue problem is
A*x = lambda*B*x,
and B is typically made upper triangular by computing its QR
factorization and moving the orthogonal matrix Q to the left side
of the equation.
This subroutine simultaneously reduces A to a Hessenberg matrix H:
Q**T*A*Z = H
and transforms B to another upper triangular matrix T:
Q**T*B*Z = T
in order to reduce the problem to its standard form
H*y = lambda*T*y
where y = Z**T*x.
The orthogonal matrices Q and Z are determined as products of Givens
rotations. They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
If Q1 is the orthogonal matrix from the QR factorization of B in the
original equation A*x = lambda*B*x, then SGGHRD reduces the original
problem to generalized Hessenberg form.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry,
and the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': do not compute Z;
= 'I': Z is initialized to the unit matrix, and the
orthogonal matrix Z is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry,
and the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of A which are to be
reduced. It is assumed that A is already upper triangular
in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
normally set by a previous call to SGGBAL; otherwise they
should be set to 1 and N respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
rest is set to zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the N-by-N upper triangular matrix B.
On exit, the upper triangular matrix T = Q**T B Z. The
elements below the diagonal are set to zero.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) REAL array, dimension (LDQ, N)
On entry, if COMPQ = 'V', the orthogonal matrix Q1,
typically from the QR factorization of B.
On exit, if COMPQ='I', the orthogonal matrix Q, and if
COMPQ = 'V', the product Q1*Q.
Not referenced if COMPQ='N'.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1.
On exit, if COMPZ='I', the orthogonal matrix Z, and if
COMPZ = 'V', the product Z1*Z.
Not referenced if COMPZ='N'.
LDZ (input) INTEGER
The leading dimension of the array Z.
LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
This routine reduces A to Hessenberg and B to triangular form by
an unblocked reduction, as described in _Matrix_Computations_,
by Golub and Van Loan (Johns Hopkins Press.)
=====================================================================
.. Parameters ..
public void sgglse(int m, int n, int p, float[] a, int lda, float[] b, int ldb, float[] c, float[] d, float[] x, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGLSE solves the linear equality-constrained least squares (LSE)
problem:
minimize || c - A*x ||_2 subject to B*x = d
where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
M-vector, and d is a given P-vector. It is assumed that
P <= N <= M+P, and
rank(B) = P and rank( (A) ) = N.
( (B) )
These conditions ensure that the LSE problem has a unique solution,
which is obtained using a generalized RQ factorization of the
matrices (B, A) given by
B = (0 R)*Q, A = Z*T*Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. 0 <= P <= N <= M+P.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
contains the P-by-P upper triangular matrix R.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
C (input/output) REAL array, dimension (M)
On entry, C contains the right hand side vector for the
least squares part of the LSE problem.
On exit, the residual sum of squares for the solution
is given by the sum of squares of elements N-P+1 to M of
vector C.
D (input/output) REAL array, dimension (P)
On entry, D contains the right hand side vector for the
constrained equation.
On exit, D is destroyed.
X (output) REAL array, dimension (N)
On exit, X is the solution of the LSE problem.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M+N+P).
For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
where NB is an upper bound for the optimal blocksizes for
SGEQRF, SGERQF, SORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with B in the
generalized RQ factorization of the pair (B, A) is
singular, so that rank(B) < P; the least squares
solution could not be computed.
= 2: the (N-P) by (N-P) part of the upper trapezoidal factor
T associated with A in the generalized RQ factorization
of the pair (B, A) is singular, so that
rank( (A) ) < N; the least squares solution could not
( (B) )
be computed.
=====================================================================
.. Parameters ..
public void sgglse(int m, int n, int p, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] c, int _c_offset, float[] d, int _d_offset, float[] x, int _x_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGLSE solves the linear equality-constrained least squares (LSE)
problem:
minimize || c - A*x ||_2 subject to B*x = d
where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
M-vector, and d is a given P-vector. It is assumed that
P <= N <= M+P, and
rank(B) = P and rank( (A) ) = N.
( (B) )
These conditions ensure that the LSE problem has a unique solution,
which is obtained using a generalized RQ factorization of the
matrices (B, A) given by
B = (0 R)*Q, A = Z*T*Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. 0 <= P <= N <= M+P.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
contains the P-by-P upper triangular matrix R.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
C (input/output) REAL array, dimension (M)
On entry, C contains the right hand side vector for the
least squares part of the LSE problem.
On exit, the residual sum of squares for the solution
is given by the sum of squares of elements N-P+1 to M of
vector C.
D (input/output) REAL array, dimension (P)
On entry, D contains the right hand side vector for the
constrained equation.
On exit, D is destroyed.
X (output) REAL array, dimension (N)
On exit, X is the solution of the LSE problem.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M+N+P).
For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
where NB is an upper bound for the optimal blocksizes for
SGEQRF, SGERQF, SORMQR and SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the upper triangular factor R associated with B in the
generalized RQ factorization of the pair (B, A) is
singular, so that rank(B) < P; the least squares
solution could not be computed.
= 2: the (N-P) by (N-P) part of the upper trapezoidal factor
T associated with A in the generalized RQ factorization
of the pair (B, A) is singular, so that
rank( (A) ) < N; the least squares solution could not
( (B) )
be computed.
=====================================================================
.. Parameters ..
public void sggqrf(int n, int m, int p, float[] a, int lda, float[] taua, float[] b, int ldb, float[] taub, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGQRF computes a generalized QR factorization of an N-by-M matrix A
and an N-by-P matrix B:
A = Q*R, B = Q*T*Z,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N,
( 0 ) N-M N M-N
M
where R11 is upper triangular, and
if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P,
P-N N ( T21 ) P
P
where T12 or T21 is upper triangular.
In particular, if B is square and nonsingular, the GQR factorization
of A and B implicitly gives the QR factorization of inv(B)*A:
inv(B)*A = Z'*(inv(T)*R)
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. M >= 0.
P (input) INTEGER
The number of columns of the matrix B. P >= 0.
A (input/output) REAL array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(N,M)-by-M upper trapezoidal matrix R (R is
upper triangular if N >= M); the elements below the diagonal,
with the array TAUA, represent the orthogonal matrix Q as a
product of min(N,M) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAUA (output) REAL array, dimension (min(N,M))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) REAL array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)-th subdiagonal
contain the N-by-P upper trapezoidal matrix T; the remaining
elements, with the array TAUB, represent the orthogonal
matrix Z as a product of elementary reflectors (see Further
Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
TAUB (output) REAL array, dimension (min(N,P))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the QR factorization
of an N-by-M matrix, NB2 is the optimal blocksize for the
RQ factorization of an N-by-P matrix, and NB3 is the optimal
blocksize for a call of SORMQR.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(n,m).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine SORGQR.
To use Q to update another matrix, use LAPACK subroutine SORMQR.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(n,p).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine SORGRQ.
To use Z to update another matrix, use LAPACK subroutine SORMRQ.
=====================================================================
.. Local Scalars ..
public void sggqrf(int n, int m, int p, float[] a, int _a_offset, int lda, float[] taua, int _taua_offset, float[] b, int _b_offset, int ldb, float[] taub, int _taub_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGQRF computes a generalized QR factorization of an N-by-M matrix A
and an N-by-P matrix B:
A = Q*R, B = Q*T*Z,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N,
( 0 ) N-M N M-N
M
where R11 is upper triangular, and
if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P,
P-N N ( T21 ) P
P
where T12 or T21 is upper triangular.
In particular, if B is square and nonsingular, the GQR factorization
of A and B implicitly gives the QR factorization of inv(B)*A:
inv(B)*A = Z'*(inv(T)*R)
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
N (input) INTEGER
The number of rows of the matrices A and B. N >= 0.
M (input) INTEGER
The number of columns of the matrix A. M >= 0.
P (input) INTEGER
The number of columns of the matrix B. P >= 0.
A (input/output) REAL array, dimension (LDA,M)
On entry, the N-by-M matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(N,M)-by-M upper trapezoidal matrix R (R is
upper triangular if N >= M); the elements below the diagonal,
with the array TAUA, represent the orthogonal matrix Q as a
product of min(N,M) elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAUA (output) REAL array, dimension (min(N,M))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) REAL array, dimension (LDB,P)
On entry, the N-by-P matrix B.
On exit, if N <= P, the upper triangle of the subarray
B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
if N > P, the elements on and above the (N-P)-th subdiagonal
contain the N-by-P upper trapezoidal matrix T; the remaining
elements, with the array TAUB, represent the orthogonal
matrix Z as a product of elementary reflectors (see Further
Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
TAUB (output) REAL array, dimension (min(N,P))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the QR factorization
of an N-by-M matrix, NB2 is the optimal blocksize for the
RQ factorization of an N-by-P matrix, and NB3 is the optimal
blocksize for a call of SORMQR.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(n,m).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine SORGQR.
To use Q to update another matrix, use LAPACK subroutine SORMQR.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(n,p).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine SORGRQ.
To use Z to update another matrix, use LAPACK subroutine SORMRQ.
=====================================================================
.. Local Scalars ..
public void sggrqf(int m, int p, int n, float[] a, int lda, float[] taua, float[] b, int ldb, float[] taub, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGRQF computes a generalized RQ factorization of an M-by-N matrix A
and a P-by-N matrix B:
A = R*Q, B = Z*T*Q,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,
N-M M ( R21 ) N
N
where R12 or R21 is upper triangular, and
if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,
( 0 ) P-N P N-P
N
where T11 is upper triangular.
In particular, if B is square and nonsingular, the GRQ factorization
of A and B implicitly gives the RQ factorization of A*inv(B):
A*inv(B) = (R*inv(T))*Z'
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, if M <= N, the upper triangle of the subarray
A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
if M > N, the elements on and above the (M-N)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R; the remaining
elements, with the array TAUA, represent the orthogonal
matrix Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAUA (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the elements on and above the diagonal of the array
contain the min(P,N)-by-N upper trapezoidal matrix T (T is
upper triangular if P >= N); the elements below the diagonal,
with the array TAUB, represent the orthogonal matrix Z as a
product of elementary reflectors (see Further Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TAUB (output) REAL array, dimension (min(P,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the RQ factorization
of an M-by-N matrix, NB2 is the optimal blocksize for the
QR factorization of a P-by-N matrix, and NB3 is the optimal
blocksize for a call of SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INF0= -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine SORGRQ.
To use Q to update another matrix, use LAPACK subroutine SORMRQ.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(p,n).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine SORGQR.
To use Z to update another matrix, use LAPACK subroutine SORMQR.
=====================================================================
.. Local Scalars ..
public void sggrqf(int m, int p, int n, float[] a, int _a_offset, int lda, float[] taua, int _taua_offset, float[] b, int _b_offset, int ldb, float[] taub, int _taub_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGRQF computes a generalized RQ factorization of an M-by-N matrix A
and a P-by-N matrix B:
A = R*Q, B = Z*T*Q,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
matrix, and R and T assume one of the forms:
if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,
N-M M ( R21 ) N
N
where R12 or R21 is upper triangular, and
if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,
( 0 ) P-N P N-P
N
where T11 is upper triangular.
In particular, if B is square and nonsingular, the GRQ factorization
of A and B implicitly gives the RQ factorization of A*inv(B):
A*inv(B) = (R*inv(T))*Z'
where inv(B) denotes the inverse of the matrix B, and Z' denotes the
transpose of the matrix Z.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, if M <= N, the upper triangle of the subarray
A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
if M > N, the elements on and above the (M-N)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R; the remaining
elements, with the array TAUA, represent the orthogonal
matrix Q as a product of elementary reflectors (see Further
Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAUA (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q (see Further Details).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, the elements on and above the diagonal of the array
contain the min(P,N)-by-N upper trapezoidal matrix T (T is
upper triangular if P >= N); the elements below the diagonal,
with the array TAUB, represent the orthogonal matrix Z as a
product of elementary reflectors (see Further Details).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TAUB (output) REAL array, dimension (min(P,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Z (see Further Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N,M,P).
For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
where NB1 is the optimal blocksize for the RQ factorization
of an M-by-N matrix, NB2 is the optimal blocksize for the
QR factorization of a P-by-N matrix, and NB3 is the optimal
blocksize for a call of SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INF0= -i, the i-th argument had an illegal value.
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - taua * v * v'
where taua is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
To form Q explicitly, use LAPACK subroutine SORGRQ.
To use Q to update another matrix, use LAPACK subroutine SORMRQ.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(p,n).
Each H(i) has the form
H(i) = I - taub * v * v'
where taub is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
and taub in TAUB(i).
To form Z explicitly, use LAPACK subroutine SORGQR.
To use Z to update another matrix, use LAPACK subroutine SORMQR.
=====================================================================
.. Local Scalars ..
public void sggsvd(String jobu, String jobv, String jobq, int m, int n, int p, org.netlib.util.intW k, org.netlib.util.intW l, float[] a, int lda, float[] b, int ldb, float[] alpha, float[] beta, float[] u, int ldu, float[] v, int ldv, float[] q, int ldq, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGSVD computes the generalized singular value decomposition (GSVD)
of an M-by-N real matrix A and P-by-N real matrix B:
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
where U, V and Q are orthogonal matrices, and Z' is the transpose
of Z. Let K+L = the effective numerical rank of the matrix (A',B')',
then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the orthogonal
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V'.
If ( A',B')' has orthonormal columns, then the GSVD of A and B is
also equal to the CS decomposition of A and B. Furthermore, the GSVD
can be used to derive the solution of the eigenvalue problem:
A'*A x = lambda* B'*B x.
In some literature, the GSVD of A and B is presented in the form
U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in the Purpose section.
K + L = effective numerical rank of (A',B')'.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix R if M-K-L < 0.
See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
ALPHA (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0
U (output) REAL array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) REAL array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) REAL array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) REAL array,
dimension (max(3*N,M,P)+N)
IWORK (workspace/output) INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine STGSJA.
Internal Parameters
===================
TOLA REAL
TOLB REAL
TOLA and TOLB are the thresholds to determine the effective
rank of (A',B')'. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
Further Details
===============
2-96 Based on modifications by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void sggsvd(String jobu, String jobv, String jobq, int m, int n, int p, org.netlib.util.intW k, org.netlib.util.intW l, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] alpha, int _alpha_offset, float[] beta, int _beta_offset, float[] u, int _u_offset, int ldu, float[] v, int _v_offset, int ldv, float[] q, int _q_offset, int ldq, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGSVD computes the generalized singular value decomposition (GSVD)
of an M-by-N real matrix A and P-by-N real matrix B:
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
where U, V and Q are orthogonal matrices, and Z' is the transpose
of Z. Let K+L = the effective numerical rank of the matrix (A',B')',
then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
following structures, respectively:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the orthogonal
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V'.
If ( A',B')' has orthonormal columns, then the GSVD of A and B is
also equal to the CS decomposition of A and B. Furthermore, the GSVD
can be used to derive the solution of the eigenvalue problem:
A'*A x = lambda* B'*B x.
In some literature, the GSVD of A and B is presented in the form
U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in the Purpose section.
K + L = effective numerical rank of (A',B')'.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix R if M-K-L < 0.
See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
ALPHA (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L < 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0
U (output) REAL array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) REAL array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) REAL array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) REAL array,
dimension (max(3*N,M,P)+N)
IWORK (workspace/output) INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine STGSJA.
Internal Parameters
===================
TOLA REAL
TOLB REAL
TOLA and TOLB are the thresholds to determine the effective
rank of (A',B')'. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
Further Details
===============
2-96 Based on modifications by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void sggsvp(String jobu, String jobv, String jobq, int m, int p, int n, float[] a, int lda, float[] b, int ldb, float tola, float tolb, org.netlib.util.intW k, org.netlib.util.intW l, float[] u, int ldu, float[] v, int ldv, float[] q, int ldq, int[] iwork, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGSVP computes orthogonal matrices U, V and Q such that
N-K-L K L
U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
SGGSVD.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular (or trapezoidal) matrix
described in the Purpose section.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix described in
the Purpose section.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) REAL
TOLB (input) REAL
TOLA and TOLB are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A',B')'.
U (output) REAL array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) REAL array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) REAL array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK (workspace) INTEGER array, dimension (N)
TAU (workspace) REAL array, dimension (N)
WORK (workspace) REAL array, dimension (max(3*N,M,P))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The subroutine uses LAPACK subroutine SGEQPF for the QR factorization
with column pivoting to detect the effective numerical rank of the
a matrix. It may be replaced by a better rank determination strategy.
=====================================================================
.. Parameters ..
public void sggsvp(String jobu, String jobv, String jobq, int m, int p, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float tola, float tolb, org.netlib.util.intW k, org.netlib.util.intW l, float[] u, int _u_offset, int ldu, float[] v, int _v_offset, int ldv, float[] q, int _q_offset, int ldq, int[] iwork, int _iwork_offset, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGGSVP computes orthogonal matrices U, V and Q such that
N-K-L K L
U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
SGGSVD.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular (or trapezoidal) matrix
described in the Purpose section.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix described in
the Purpose section.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) REAL
TOLB (input) REAL
TOLA and TOLB are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A',B')'.
U (output) REAL array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (output) REAL array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (output) REAL array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK (workspace) INTEGER array, dimension (N)
TAU (workspace) REAL array, dimension (N)
WORK (workspace) REAL array, dimension (max(3*N,M,P))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
The subroutine uses LAPACK subroutine SGEQPF for the QR factorization
with column pivoting to detect the effective numerical rank of the
a matrix. It may be replaced by a better rank determination strategy.
=====================================================================
.. Parameters ..
public void sgtcon(String norm, int n, float[] dl, float[] d, float[] du, float[] du2, int[] ipiv, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTCON estimates the reciprocal of the condition number of a real
tridiagonal matrix A using the LU factorization as computed by
SGTTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by SGTTRF.
D (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) REAL array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
ANORM (input) REAL
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgtcon(String norm, int n, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTCON estimates the reciprocal of the condition number of a real
tridiagonal matrix A using the LU factorization as computed by
SGTTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER
The order of the matrix A. N >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by SGTTRF.
D (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) REAL array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
ANORM (input) REAL
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sgtrfs(String trans, int n, int nrhs, float[] dl, float[] d, float[] du, float[] dlf, float[] df, float[] duf, float[] du2, int[] ipiv, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) REAL array, dimension (N)
The diagonal elements of A.
DU (input) REAL array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by SGTTRF.
DF (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DUF (input) REAL array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SGTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sgtrfs(String trans, int n, int nrhs, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] dlf, int _dlf_offset, float[] df, int _df_offset, float[] duf, int _duf_offset, float[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and provides
error bounds and backward error estimates for the solution.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) REAL array, dimension (N)
The diagonal elements of A.
DU (input) REAL array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by SGTTRF.
DF (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DUF (input) REAL array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SGTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sgtsv(int n, int nrhs, float[] dl, float[] d, float[] du, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTSV solves the equation
A*X = B,
where A is an n by n tridiagonal matrix, by Gaussian elimination with
partial pivoting.
Note that the equation A'*X = B may be solved by interchanging the
order of the arguments DU and DL.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input/output) REAL array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-2) elements of the
second super-diagonal of the upper triangular matrix U from
the LU factorization of A, in DL(1), ..., DL(n-2).
D (input/output) REAL array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of U.
DU (input/output) REAL array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N by NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero, and the solution
has not been computed. The factorization has not been
completed unless i = N.
=====================================================================
.. Parameters ..
public void sgtsv(int n, int nrhs, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTSV solves the equation
A*X = B,
where A is an n by n tridiagonal matrix, by Gaussian elimination with
partial pivoting.
Note that the equation A'*X = B may be solved by interchanging the
order of the arguments DU and DL.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input/output) REAL array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-2) elements of the
second super-diagonal of the upper triangular matrix U from
the LU factorization of A, in DL(1), ..., DL(n-2).
D (input/output) REAL array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of U.
DU (input/output) REAL array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N by NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero, and the solution
has not been computed. The factorization has not been
completed unless i = N.
=====================================================================
.. Parameters ..
public void sgtsvx(String fact, String trans, int n, int nrhs, float[] dl, float[] d, float[] du, float[] dlf, float[] df, float[] duf, float[] du2, int[] ipiv, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B or A**T * X = B,
where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the LU decomposition is used to factor the matrix A
as A = L * U, where L is a product of permutation and unit lower
bidiagonal matrices and U is upper triangular with nonzeros in
only the main diagonal and first two superdiagonals.
2. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': DLF, DF, DUF, DU2, and IPIV contain the factored
form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
will not be modified.
= 'N': The matrix will be copied to DLF, DF, and DUF
and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) REAL array, dimension (N)
The n diagonal elements of A.
DU (input) REAL array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input or output) REAL array, dimension (N-1)
If FACT = 'F', then DLF is an input argument and on entry
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A as computed by SGTTRF.
If FACT = 'N', then DLF is an output argument and on exit
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A.
DF (input or output) REAL array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
DUF (input or output) REAL array, dimension (N-1)
If FACT = 'F', then DUF is an input argument and on entry
contains the (n-1) elements of the first superdiagonal of U.
If FACT = 'N', then DUF is an output argument and on exit
contains the (n-1) elements of the first superdiagonal of U.
DU2 (input or output) REAL array, dimension (N-2)
If FACT = 'F', then DU2 is an input argument and on entry
contains the (n-2) elements of the second superdiagonal of
U.
If FACT = 'N', then DU2 is an output argument and on exit
contains the (n-2) elements of the second superdiagonal of
U.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the LU factorization of A as
computed by SGTTRF.
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the LU factorization of A;
row i of the matrix was interchanged with row IPIV(i).
IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
a row interchange was not required.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has not been completed unless i = N, but the
factor U is exactly singular, so the solution
and error bounds could not be computed.
RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void sgtsvx(String fact, String trans, int n, int nrhs, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] dlf, int _dlf_offset, float[] df, int _df_offset, float[] duf, int _duf_offset, float[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTSVX uses the LU factorization to compute the solution to a real
system of linear equations A * X = B or A**T * X = B,
where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the LU decomposition is used to factor the matrix A
as A = L * U, where L is a product of permutation and unit lower
bidiagonal matrices and U is upper triangular with nonzeros in
only the main diagonal and first two superdiagonals.
2. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': DLF, DF, DUF, DU2, and IPIV contain the factored
form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
will not be modified.
= 'N': The matrix will be copied to DLF, DF, and DUF
and factored.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) REAL array, dimension (N)
The n diagonal elements of A.
DU (input) REAL array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input or output) REAL array, dimension (N-1)
If FACT = 'F', then DLF is an input argument and on entry
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A as computed by SGTTRF.
If FACT = 'N', then DLF is an output argument and on exit
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A.
DF (input or output) REAL array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
DUF (input or output) REAL array, dimension (N-1)
If FACT = 'F', then DUF is an input argument and on entry
contains the (n-1) elements of the first superdiagonal of U.
If FACT = 'N', then DUF is an output argument and on exit
contains the (n-1) elements of the first superdiagonal of U.
DU2 (input or output) REAL array, dimension (N-2)
If FACT = 'F', then DU2 is an input argument and on entry
contains the (n-2) elements of the second superdiagonal of
U.
If FACT = 'N', then DU2 is an output argument and on exit
contains the (n-2) elements of the second superdiagonal of
U.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the LU factorization of A as
computed by SGTTRF.
If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the LU factorization of A;
row i of the matrix was interchanged with row IPIV(i).
IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
a row interchange was not required.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: U(i,i) is exactly zero. The factorization
has not been completed unless i = N, but the
factor U is exactly singular, so the solution
and error bounds could not be computed.
RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void sgttrf(int n, float[] dl, float[] d, float[] du, float[] du2, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTTRF computes an LU factorization of a real tridiagonal matrix A
using elimination with partial pivoting and row interchanges.
The factorization has the form
A = L * U
where L is a product of permutation and unit lower bidiagonal
matrices and U is upper triangular with nonzeros in only the main
diagonal and first two superdiagonals.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
DL (input/output) REAL array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-1) multipliers that
define the matrix L from the LU factorization of A.
D (input/output) REAL array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of the
upper triangular matrix U from the LU factorization of A.
DU (input/output) REAL array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
DU2 (output) REAL array, dimension (N-2)
On exit, DU2 is overwritten by the (n-2) elements of the
second super-diagonal of U.
IPIV (output) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void sgttrf(int n, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTTRF computes an LU factorization of a real tridiagonal matrix A
using elimination with partial pivoting and row interchanges.
The factorization has the form
A = L * U
where L is a product of permutation and unit lower bidiagonal
matrices and U is upper triangular with nonzeros in only the main
diagonal and first two superdiagonals.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
DL (input/output) REAL array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-1) multipliers that
define the matrix L from the LU factorization of A.
D (input/output) REAL array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of the
upper triangular matrix U from the LU factorization of A.
DU (input/output) REAL array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
DU2 (output) REAL array, dimension (N-2)
On exit, DU2 is overwritten by the (n-2) elements of the
second super-diagonal of U.
IPIV (output) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
=====================================================================
.. Parameters ..
public void sgttrs(String trans, int n, int nrhs, float[] dl, float[] d, float[] du, float[] du2, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTTRS solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by SGTTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) REAL array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sgttrs(String trans, int n, int nrhs, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SGTTRS solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by SGTTRF.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A'* X = B (Transpose)
= 'C': A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) REAL array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sgtts2(int itrans, int n, int nrhs, float[] dl, float[] d, float[] du, float[] du2, int[] ipiv, float[] b, int ldb)
LAPACK
..
Purpose
=======
SGTTS2 solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by SGTTRF.
Arguments
=========
ITRANS (input) INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A'* X = B (Transpose)
= 2: A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) REAL array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void sgtts2(int itrans, int n, int nrhs, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] du2, int _du2_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
SGTTS2 solves one of the systems of equations
A*X = B or A'*X = B,
with a tridiagonal matrix A using the LU factorization computed
by SGTTRF.
Arguments
=========
ITRANS (input) INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A'* X = B (Transpose)
= 2: A'* X = B (Conjugate transpose = Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input) REAL array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void shgeqz(String job, String compq, String compz, int n, int ilo, int ihi, float[] h, int ldh, float[] t, int ldt, float[] alphar, float[] alphai, float[] beta, float[] q, int ldq, float[] z, int ldz, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SHGEQZ computes the eigenvalues of a real matrix pair (H,T),
where H is an upper Hessenberg matrix and T is upper triangular,
using the double-shift QZ method.
Matrix pairs of this type are produced by the reduction to
generalized upper Hessenberg form of a real matrix pair (A,B):
A = Q1*H*Z1**T, B = Q1*T*Z1**T,
as computed by SGGHRD.
If JOB='S', then the Hessenberg-triangular pair (H,T) is
also reduced to generalized Schur form,
H = Q*S*Z**T, T = Q*P*Z**T,
where Q and Z are orthogonal matrices, P is an upper triangular
matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
(H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of P
corresponding to 2-by-2 blocks of S are reduced to positive diagonal
form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
P(j,j) > 0, and P(j+1,j+1) > 0.
Optionally, the orthogonal matrix Q from the generalized Schur
factorization may be postmultiplied into an input matrix Q1, and the
orthogonal matrix Z may be postmultiplied into an input matrix Z1.
If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced
the matrix pair (A,B) to generalized upper Hessenberg form, then the
output matrices Q1*Q and Z1*Z are the orthogonal factors from the
generalized Schur factorization of (A,B):
A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.
To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently
of (A,B)) are computed as a pair of values (alpha,beta), where alpha
complex and beta real.
If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
generalized nonsymmetric eigenvalue problem (GNEP)
A*x = lambda*B*x
and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
alternate form of the GNEP
mu*A*y = B*y.
Real eigenvalues can be read directly from the generalized Schur
form:
alpha = S(i,i), beta = P(i,i).
Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
pp. 241--256.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': Compute eigenvalues only;
= 'S': Compute eigenvalues and the Schur form.
COMPQ (input) CHARACTER*1
= 'N': Left Schur vectors (Q) are not computed;
= 'I': Q is initialized to the unit matrix and the matrix Q
of left Schur vectors of (H,T) is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry and
the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': Right Schur vectors (Z) are not computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of right Schur vectors of (H,T) is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry and
the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices H, T, Q, and Z. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of H which are in
Hessenberg form. It is assumed that A is already upper
triangular in rows and columns 1:ILO-1 and IHI+1:N.
If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
H (input/output) REAL array, dimension (LDH, N)
On entry, the N-by-N upper Hessenberg matrix H.
On exit, if JOB = 'S', H contains the upper quasi-triangular
matrix S from the generalized Schur factorization;
2-by-2 diagonal blocks (corresponding to complex conjugate
pairs of eigenvalues) are returned in standard form, with
H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0.
If JOB = 'E', the diagonal blocks of H match those of S, but
the rest of H is unspecified.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max( 1, N ).
T (input/output) REAL array, dimension (LDT, N)
On entry, the N-by-N upper triangular matrix T.
On exit, if JOB = 'S', T contains the upper triangular
matrix P from the generalized Schur factorization;
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of
are reduced to positive diagonal form, i.e., if H(j+1,j) is
non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
T(j+1,j+1) > 0.
If JOB = 'E', the diagonal blocks of T match those of P, but
the rest of T is unspecified.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max( 1, N ).
ALPHAR (output) REAL array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) REAL array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
BETA (output) REAL array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of left Schur
vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix
of left Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If COMPQ='V' or 'I', then LDQ >= N.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of
right Schur vectors of (H,T), and if COMPZ = 'V', the
orthogonal matrix of right Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If COMPZ='V' or 'I', then LDZ >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1,...,N: the QZ iteration did not converge. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO+1,...,N should be correct.
= N+1,...,2*N: the shift calculation failed. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO-N+1,...,N should be correct.
Further Details
===============
Iteration counters:
JITER -- counts iterations.
IITER -- counts iterations run since ILAST was last
changed. This is therefore reset only when a 1-by-1 or
2-by-2 block deflates off the bottom.
=====================================================================
.. Parameters ..
$ SAFETY = 1.0E+0 )
public void shgeqz(String job, String compq, String compz, int n, int ilo, int ihi, float[] h, int _h_offset, int ldh, float[] t, int _t_offset, int ldt, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] q, int _q_offset, int ldq, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SHGEQZ computes the eigenvalues of a real matrix pair (H,T),
where H is an upper Hessenberg matrix and T is upper triangular,
using the double-shift QZ method.
Matrix pairs of this type are produced by the reduction to
generalized upper Hessenberg form of a real matrix pair (A,B):
A = Q1*H*Z1**T, B = Q1*T*Z1**T,
as computed by SGGHRD.
If JOB='S', then the Hessenberg-triangular pair (H,T) is
also reduced to generalized Schur form,
H = Q*S*Z**T, T = Q*P*Z**T,
where Q and Z are orthogonal matrices, P is an upper triangular
matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
(H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of P
corresponding to 2-by-2 blocks of S are reduced to positive diagonal
form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
P(j,j) > 0, and P(j+1,j+1) > 0.
Optionally, the orthogonal matrix Q from the generalized Schur
factorization may be postmultiplied into an input matrix Q1, and the
orthogonal matrix Z may be postmultiplied into an input matrix Z1.
If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced
the matrix pair (A,B) to generalized upper Hessenberg form, then the
output matrices Q1*Q and Z1*Z are the orthogonal factors from the
generalized Schur factorization of (A,B):
A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.
To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently
of (A,B)) are computed as a pair of values (alpha,beta), where alpha
complex and beta real.
If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
generalized nonsymmetric eigenvalue problem (GNEP)
A*x = lambda*B*x
and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
alternate form of the GNEP
mu*A*y = B*y.
Real eigenvalues can be read directly from the generalized Schur
form:
alpha = S(i,i), beta = P(i,i).
Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
pp. 241--256.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': Compute eigenvalues only;
= 'S': Compute eigenvalues and the Schur form.
COMPQ (input) CHARACTER*1
= 'N': Left Schur vectors (Q) are not computed;
= 'I': Q is initialized to the unit matrix and the matrix Q
of left Schur vectors of (H,T) is returned;
= 'V': Q must contain an orthogonal matrix Q1 on entry and
the product Q1*Q is returned.
COMPZ (input) CHARACTER*1
= 'N': Right Schur vectors (Z) are not computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of right Schur vectors of (H,T) is returned;
= 'V': Z must contain an orthogonal matrix Z1 on entry and
the product Z1*Z is returned.
N (input) INTEGER
The order of the matrices H, T, Q, and Z. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI mark the rows and columns of H which are in
Hessenberg form. It is assumed that A is already upper
triangular in rows and columns 1:ILO-1 and IHI+1:N.
If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
H (input/output) REAL array, dimension (LDH, N)
On entry, the N-by-N upper Hessenberg matrix H.
On exit, if JOB = 'S', H contains the upper quasi-triangular
matrix S from the generalized Schur factorization;
2-by-2 diagonal blocks (corresponding to complex conjugate
pairs of eigenvalues) are returned in standard form, with
H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0.
If JOB = 'E', the diagonal blocks of H match those of S, but
the rest of H is unspecified.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max( 1, N ).
T (input/output) REAL array, dimension (LDT, N)
On entry, the N-by-N upper triangular matrix T.
On exit, if JOB = 'S', T contains the upper triangular
matrix P from the generalized Schur factorization;
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of
are reduced to positive diagonal form, i.e., if H(j+1,j) is
non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
T(j+1,j+1) > 0.
If JOB = 'E', the diagonal blocks of T match those of P, but
the rest of T is unspecified.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max( 1, N ).
ALPHAR (output) REAL array, dimension (N)
The real parts of each scalar alpha defining an eigenvalue
of GNEP.
ALPHAI (output) REAL array, dimension (N)
The imaginary parts of each scalar alpha defining an
eigenvalue of GNEP.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
BETA (output) REAL array, dimension (N)
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
beta = BETA(j) represent the j-th eigenvalue of the matrix
pair (A,B), in one of the forms lambda = alpha/beta or
mu = beta/alpha. Since either lambda or mu may overflow,
they should not, in general, be computed.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of left Schur
vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix
of left Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If COMPQ='V' or 'I', then LDQ >= N.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
the reduction of (A,B) to generalized Hessenberg form.
On exit, if COMPZ = 'I', the orthogonal matrix of
right Schur vectors of (H,T), and if COMPZ = 'V', the
orthogonal matrix of right Schur vectors of (A,B).
Not referenced if COMPZ = 'N'.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If COMPZ='V' or 'I', then LDZ >= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1,...,N: the QZ iteration did not converge. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO+1,...,N should be correct.
= N+1,...,2*N: the shift calculation failed. (H,T) is not
in Schur form, but ALPHAR(i), ALPHAI(i), and
BETA(i), i=INFO-N+1,...,N should be correct.
Further Details
===============
Iteration counters:
JITER -- counts iterations.
IITER -- counts iterations run since ILAST was last
changed. This is therefore reset only when a 1-by-1 or
2-by-2 block deflates off the bottom.
=====================================================================
.. Parameters ..
$ SAFETY = 1.0E+0 )
public void shsein(String side, String eigsrc, String initv, boolean[] select, int n, float[] h, int ldh, float[] wr, float[] wi, float[] vl, int ldvl, float[] vr, int ldvr, int mm, org.netlib.util.intW m, float[] work, int[] ifaill, int[] ifailr, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SHSEIN uses inverse iteration to find specified right and/or left
eigenvectors of a real upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H
corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
EIGSRC (input) CHARACTER*1
Specifies the source of eigenvalues supplied in (WR,WI):
= 'Q': the eigenvalues were found using SHSEQR; thus, if
H has zero subdiagonal elements, and so is
block-triangular, then the j-th eigenvalue can be
assumed to be an eigenvalue of the block containing
the j-th row/column. This property allows SHSEIN to
perform inverse iteration on just one diagonal block.
= 'N': no assumptions are made on the correspondence
between eigenvalues and diagonal blocks. In this
case, SHSEIN must always perform inverse iteration
using the whole matrix H.
INITV (input) CHARACTER*1
= 'N': no initial vectors are supplied;
= 'U': user-supplied initial vectors are stored in the arrays
VL and/or VR.
SELECT (input/output) LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To select the
real eigenvector corresponding to a real eigenvalue WR(j),
SELECT(j) must be set to .TRUE.. To select the complex
eigenvector corresponding to a complex eigenvalue
(WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
.FALSE..
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) REAL array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input/output) REAL array, dimension (N)
WI (input) REAL array, dimension (N)
On entry, the real and imaginary parts of the eigenvalues of
H; a complex conjugate pair of eigenvalues must be stored in
consecutive elements of WR and WI.
On exit, WR may have been altered since close eigenvalues
are perturbed slightly in searching for independent
eigenvectors.
VL (input/output) REAL array, dimension (LDVL,MM)
On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
contain starting vectors for the inverse iteration for the
left eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'L' or 'B', the left eigenvectors
specified by SELECT will be stored consecutively in the
columns of VL, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) REAL array, dimension (LDVR,MM)
On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
contain starting vectors for the inverse iteration for the
right eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'R' or 'B', the right eigenvectors
specified by SELECT will be stored consecutively in the
columns of VR, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR required to
store the eigenvectors; each selected real eigenvector
occupies one column and each selected complex eigenvector
occupies two columns.
WORK (workspace) REAL array, dimension ((N+2)*N)
IFAILL (output) INTEGER array, dimension (MM)
If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
eigenvector in the i-th column of VL (corresponding to the
eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VL hold a complex eigenvector, then IFAILL(i) and
IFAILL(i+1) are set to the same value.
If SIDE = 'R', IFAILL is not referenced.
IFAILR (output) INTEGER array, dimension (MM)
If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
eigenvector in the i-th column of VR (corresponding to the
eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VR hold a complex eigenvector, then IFAILR(i) and
IFAILR(i+1) are set to the same value.
If SIDE = 'L', IFAILR is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, i is the number of eigenvectors which
failed to converge; see IFAILL and IFAILR for further
details.
Further Details
===============
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x|+|y|.
=====================================================================
.. Parameters ..
public void shsein(String side, String eigsrc, String initv, boolean[] select, int _select_offset, int n, float[] h, int _h_offset, int ldh, float[] wr, int _wr_offset, float[] wi, int _wi_offset, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, int mm, org.netlib.util.intW m, float[] work, int _work_offset, int[] ifaill, int _ifaill_offset, int[] ifailr, int _ifailr_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SHSEIN uses inverse iteration to find specified right and/or left
eigenvectors of a real upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H
corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
EIGSRC (input) CHARACTER*1
Specifies the source of eigenvalues supplied in (WR,WI):
= 'Q': the eigenvalues were found using SHSEQR; thus, if
H has zero subdiagonal elements, and so is
block-triangular, then the j-th eigenvalue can be
assumed to be an eigenvalue of the block containing
the j-th row/column. This property allows SHSEIN to
perform inverse iteration on just one diagonal block.
= 'N': no assumptions are made on the correspondence
between eigenvalues and diagonal blocks. In this
case, SHSEIN must always perform inverse iteration
using the whole matrix H.
INITV (input) CHARACTER*1
= 'N': no initial vectors are supplied;
= 'U': user-supplied initial vectors are stored in the arrays
VL and/or VR.
SELECT (input/output) LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To select the
real eigenvector corresponding to a real eigenvalue WR(j),
SELECT(j) must be set to .TRUE.. To select the complex
eigenvector corresponding to a complex eigenvalue
(WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
.FALSE..
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) REAL array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input/output) REAL array, dimension (N)
WI (input) REAL array, dimension (N)
On entry, the real and imaginary parts of the eigenvalues of
H; a complex conjugate pair of eigenvalues must be stored in
consecutive elements of WR and WI.
On exit, WR may have been altered since close eigenvalues
are perturbed slightly in searching for independent
eigenvectors.
VL (input/output) REAL array, dimension (LDVL,MM)
On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
contain starting vectors for the inverse iteration for the
left eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'L' or 'B', the left eigenvectors
specified by SELECT will be stored consecutively in the
columns of VL, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) REAL array, dimension (LDVR,MM)
On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
contain starting vectors for the inverse iteration for the
right eigenvectors; the starting vector for each eigenvector
must be in the same column(s) in which the eigenvector will
be stored.
On exit, if SIDE = 'R' or 'B', the right eigenvectors
specified by SELECT will be stored consecutively in the
columns of VR, in the same order as their eigenvalues. A
complex eigenvector corresponding to a complex eigenvalue is
stored in two consecutive columns, the first holding the real
part and the second the imaginary part.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR required to
store the eigenvectors; each selected real eigenvector
occupies one column and each selected complex eigenvector
occupies two columns.
WORK (workspace) REAL array, dimension ((N+2)*N)
IFAILL (output) INTEGER array, dimension (MM)
If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
eigenvector in the i-th column of VL (corresponding to the
eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VL hold a complex eigenvector, then IFAILL(i) and
IFAILL(i+1) are set to the same value.
If SIDE = 'R', IFAILL is not referenced.
IFAILR (output) INTEGER array, dimension (MM)
If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
eigenvector in the i-th column of VR (corresponding to the
eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
eigenvector converged satisfactorily. If the i-th and (i+1)th
columns of VR hold a complex eigenvector, then IFAILR(i) and
IFAILR(i+1) are set to the same value.
If SIDE = 'L', IFAILR is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, i is the number of eigenvectors which
failed to converge; see IFAILL and IFAILR for further
details.
Further Details
===============
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x|+|y|.
=====================================================================
.. Parameters ..
public void shseqr(String job, String compz, int n, int ilo, int ihi, float[] h, int ldh, float[] wr, float[] wi, float[] z, int ldz, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SHSEQR computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': compute eigenvalues only;
= 'S': compute eigenvalues and the Schur form T.
COMPZ (input) CHARACTER*1
= 'N': no Schur vectors are computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of Schur vectors of H is returned;
= 'V': Z must contain an orthogonal matrix Q on entry, and
the product Q*Z is returned.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL, and then passed to SGEHRD
when the matrix output by SGEBAL is reduced to Hessenberg
form. Otherwise ILO and IHI should be set to 1 and N
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and JOB = 'S', then H contains the
upper quasi-triangular matrix T from the Schur decomposition
(the Schur form); 2-by-2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in
standard form, with H(i,i) = H(i+1,i+1) and
H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
contents of H are unspecified on exit. (The output value of
H when INFO.GT.0 is given under the description of INFO
below.)
Unlike earlier versions of SHSEQR, this subroutine may
explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues. If two eigenvalues are computed as a complex
conjugate pair, they are stored in consecutive elements of
WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
the same order as on the diagonal of the Schur form returned
in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
Z (input/output) REAL array, dimension (LDZ,N)
If COMPZ = 'N', Z is not referenced.
If COMPZ = 'I', on entry Z need not be set and on exit,
if INFO = 0, Z contains the orthogonal matrix Z of the Schur
vectors of H. If COMPZ = 'V', on entry Z must contain an
N-by-N matrix Q, which is assumed to be equal to the unit
matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
if INFO = 0, Z contains Q*Z.
Normally Q is the orthogonal matrix generated by SORGHR
after the call to SGEHRD which formed the Hessenberg matrix
H. (The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if COMPZ = 'I' or
COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then SHSEQR does a workspace query.
In this case, SHSEQR checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.LT. 0: if INFO = -i, the i-th argument had an illegal
value
.GT. 0: if INFO = i, SHSEQR failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and JOB = 'E', then on exit, the
remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and JOB = 'S', then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and COMPZ = 'V', then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'I', then on exit
(final value of Z) = U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'N', then Z is not
accessed.
================================================================
Default values supplied by
ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
It is suggested that these defaults be adjusted in order
to attain best performance in each particular
computational environment.
ISPEC=1: The SLAHQR vs SLAQR0 crossover point.
Default: 75. (Must be at least 11.)
ISPEC=2: Recommended deflation window size.
This depends on ILO, IHI and NS. NS is the
number of simultaneous shifts returned
by ILAENV(ISPEC=4). (See ISPEC=4 below.)
The default for (IHI-ILO+1).LE.500 is NS.
The default for (IHI-ILO+1).GT.500 is 3*NS/2.
ISPEC=3: Nibble crossover point. (See ILAENV for
details.) Default: 14% of deflation window
size.
ISPEC=4: Number of simultaneous shifts, NS, in
a multi-shift QR iteration.
If IHI-ILO+1 is ...
greater than ...but less ... the
or equal to ... than default is
1 30 NS - 2(+)
30 60 NS - 4(+)
60 150 NS = 10(+)
150 590 NS = **
590 3000 NS = 64
3000 6000 NS = 128
6000 infinity NS = 256
(+) By default some or all matrices of this order
are passed to the implicit double shift routine
SLAHQR and NS is ignored. See ISPEC=1 above
and comments in IPARM for details.
The asterisks (**) indicate an ad-hoc
function of N increasing from 10 to 64.
ISPEC=5: Select structured matrix multiply.
(See ILAENV for details.) Default: 3.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. SLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== NL allocates some local workspace to help small matrices
. through a rare SLAHQR failure. NL .GT. NTINY = 11 is
. required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom-
. mended. (The default value of NMIN is 75.) Using NL = 49
. allows up to six simultaneous shifts and a 16-by-16
. deflation window. ====
public void shseqr(String job, String compz, int n, int ilo, int ihi, float[] h, int _h_offset, int ldh, float[] wr, int _wr_offset, float[] wi, int _wi_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SHSEQR computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': compute eigenvalues only;
= 'S': compute eigenvalues and the Schur form T.
COMPZ (input) CHARACTER*1
= 'N': no Schur vectors are computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of Schur vectors of H is returned;
= 'V': Z must contain an orthogonal matrix Q on entry, and
the product Q*Z is returned.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL, and then passed to SGEHRD
when the matrix output by SGEBAL is reduced to Hessenberg
form. Otherwise ILO and IHI should be set to 1 and N
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and JOB = 'S', then H contains the
upper quasi-triangular matrix T from the Schur decomposition
(the Schur form); 2-by-2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in
standard form, with H(i,i) = H(i+1,i+1) and
H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
contents of H are unspecified on exit. (The output value of
H when INFO.GT.0 is given under the description of INFO
below.)
Unlike earlier versions of SHSEQR, this subroutine may
explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues. If two eigenvalues are computed as a complex
conjugate pair, they are stored in consecutive elements of
WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
the same order as on the diagonal of the Schur form returned
in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
Z (input/output) REAL array, dimension (LDZ,N)
If COMPZ = 'N', Z is not referenced.
If COMPZ = 'I', on entry Z need not be set and on exit,
if INFO = 0, Z contains the orthogonal matrix Z of the Schur
vectors of H. If COMPZ = 'V', on entry Z must contain an
N-by-N matrix Q, which is assumed to be equal to the unit
matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
if INFO = 0, Z contains Q*Z.
Normally Q is the orthogonal matrix generated by SORGHR
after the call to SGEHRD which formed the Hessenberg matrix
H. (The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if COMPZ = 'I' or
COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then SHSEQR does a workspace query.
In this case, SHSEQR checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.LT. 0: if INFO = -i, the i-th argument had an illegal
value
.GT. 0: if INFO = i, SHSEQR failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and JOB = 'E', then on exit, the
remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and JOB = 'S', then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and COMPZ = 'V', then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'I', then on exit
(final value of Z) = U
where U is the orthogonal matrix in (*) (regard-
less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'N', then Z is not
accessed.
================================================================
Default values supplied by
ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
It is suggested that these defaults be adjusted in order
to attain best performance in each particular
computational environment.
ISPEC=1: The SLAHQR vs SLAQR0 crossover point.
Default: 75. (Must be at least 11.)
ISPEC=2: Recommended deflation window size.
This depends on ILO, IHI and NS. NS is the
number of simultaneous shifts returned
by ILAENV(ISPEC=4). (See ISPEC=4 below.)
The default for (IHI-ILO+1).LE.500 is NS.
The default for (IHI-ILO+1).GT.500 is 3*NS/2.
ISPEC=3: Nibble crossover point. (See ILAENV for
details.) Default: 14% of deflation window
size.
ISPEC=4: Number of simultaneous shifts, NS, in
a multi-shift QR iteration.
If IHI-ILO+1 is ...
greater than ...but less ... the
or equal to ... than default is
1 30 NS - 2(+)
30 60 NS - 4(+)
60 150 NS = 10(+)
150 590 NS = **
590 3000 NS = 64
3000 6000 NS = 128
6000 infinity NS = 256
(+) By default some or all matrices of this order
are passed to the implicit double shift routine
SLAHQR and NS is ignored. See ISPEC=1 above
and comments in IPARM for details.
The asterisks (**) indicate an ad-hoc
function of N increasing from 10 to 64.
ISPEC=5: Select structured matrix multiply.
(See ILAENV for details.) Default: 3.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. SLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== NL allocates some local workspace to help small matrices
. through a rare SLAHQR failure. NL .GT. NTINY = 11 is
. required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom-
. mended. (The default value of NMIN is 75.) Using NL = 49
. allows up to six simultaneous shifts and a 16-by-16
. deflation window. ====
public boolean sisnan(float sin)
LAPACK
..
Purpose
=======
SISNAN returns .TRUE. if its argument is NaN, and .FALSE.
otherwise. To be replaced by the Fortran 2003 intrinsic in the
future.
Arguments
=========
SIN (input) REAL
Input to test for NaN.
=====================================================================
.. External Functions ..
public void slabad(org.netlib.util.floatW small, org.netlib.util.floatW large)
LAPACK
..
Purpose
=======
SLABAD takes as input the values computed by SLAMCH for underflow and
overflow, and returns the square root of each of these values if the
log of LARGE is sufficiently large. This subroutine is intended to
identify machines with a large exponent range, such as the Crays, and
redefine the underflow and overflow limits to be the square roots of
the values computed by SLAMCH. This subroutine is needed because
SLAMCH does not compensate for poor arithmetic in the upper half of
the exponent range, as is found on a Cray.
Arguments
=========
SMALL (input/output) REAL
On entry, the underflow threshold as computed by SLAMCH.
On exit, if LOG10(LARGE) is sufficiently large, the square
root of SMALL, otherwise unchanged.
LARGE (input/output) REAL
On entry, the overflow threshold as computed by SLAMCH.
On exit, if LOG10(LARGE) is sufficiently large, the square
root of LARGE, otherwise unchanged.
=====================================================================
.. Intrinsic Functions ..
public void slabrd(int m, int n, int nb, float[] a, int lda, float[] d, float[] e, float[] tauq, float[] taup, float[] x, int ldx, float[] y, int ldy)
LAPACK
..
Purpose
=======
SLABRD reduces the first NB rows and columns of a real general
m by n matrix A to upper or lower bidiagonal form by an orthogonal
transformation Q' * A * P, and returns the matrices X and Y which
are needed to apply the transformation to the unreduced part of A.
If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
bidiagonal form.
This is an auxiliary routine called by SGEBRD
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A.
N (input) INTEGER
The number of columns in the matrix A.
NB (input) INTEGER
The number of leading rows and columns of A to be reduced.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit, the first NB rows and columns of the matrix are
overwritten; the rest of the array is unchanged.
If m >= n, elements on and below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors; and
elements above the diagonal in the first NB rows, with the
array TAUP, represent the orthogonal matrix P as a product
of elementary reflectors.
If m < n, elements below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors, and
elements on and above the diagonal in the first NB rows,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) REAL array, dimension (NB)
The diagonal elements of the first NB rows and columns of
the reduced matrix. D(i) = A(i,i).
E (output) REAL array, dimension (NB)
The off-diagonal elements of the first NB rows and columns of
the reduced matrix.
TAUQ (output) REAL array dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) REAL array, dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
X (output) REAL array, dimension (LDX,NB)
The m-by-nb matrix X required to update the unreduced part
of A.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= M.
Y (output) REAL array, dimension (LDY,NB)
The n-by-nb matrix Y required to update the unreduced part
of A.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors.
If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
The elements of the vectors v and u together form the m-by-nb matrix
V and the nb-by-n matrix U' which are needed, with X and Y, to apply
the transformation to the unreduced part of the matrix, using a block
update of the form: A := A - V*Y' - X*U'.
The contents of A on exit are illustrated by the following examples
with nb = 2:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
( v1 v2 a a a ) ( v1 1 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix which is unchanged,
vi denotes an element of the vector defining H(i), and ui an element
of the vector defining G(i).
=====================================================================
.. Parameters ..
public void slabrd(int m, int n, int nb, float[] a, int _a_offset, int lda, float[] d, int _d_offset, float[] e, int _e_offset, float[] tauq, int _tauq_offset, float[] taup, int _taup_offset, float[] x, int _x_offset, int ldx, float[] y, int _y_offset, int ldy)
LAPACK
..
Purpose
=======
SLABRD reduces the first NB rows and columns of a real general
m by n matrix A to upper or lower bidiagonal form by an orthogonal
transformation Q' * A * P, and returns the matrices X and Y which
are needed to apply the transformation to the unreduced part of A.
If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
bidiagonal form.
This is an auxiliary routine called by SGEBRD
Arguments
=========
M (input) INTEGER
The number of rows in the matrix A.
N (input) INTEGER
The number of columns in the matrix A.
NB (input) INTEGER
The number of leading rows and columns of A to be reduced.
A (input/output) REAL array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit, the first NB rows and columns of the matrix are
overwritten; the rest of the array is unchanged.
If m >= n, elements on and below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors; and
elements above the diagonal in the first NB rows, with the
array TAUP, represent the orthogonal matrix P as a product
of elementary reflectors.
If m < n, elements below the diagonal in the first NB
columns, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors, and
elements on and above the diagonal in the first NB rows,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D (output) REAL array, dimension (NB)
The diagonal elements of the first NB rows and columns of
the reduced matrix. D(i) = A(i,i).
E (output) REAL array, dimension (NB)
The off-diagonal elements of the first NB rows and columns of
the reduced matrix.
TAUQ (output) REAL array dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.
TAUP (output) REAL array, dimension (NB)
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.
X (output) REAL array, dimension (LDX,NB)
The m-by-nb matrix X required to update the unreduced part
of A.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= M.
Y (output) REAL array, dimension (LDY,NB)
The n-by-nb matrix Y required to update the unreduced part
of A.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrices Q and P are represented as products of elementary
reflectors:
Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
where tauq and taup are real scalars, and v and u are real vectors.
If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
The elements of the vectors v and u together form the m-by-nb matrix
V and the nb-by-n matrix U' which are needed, with X and Y, to apply
the transformation to the unreduced part of the matrix, using a block
update of the form: A := A - V*Y' - X*U'.
The contents of A on exit are illustrated by the following examples
with nb = 2:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
( v1 v2 a a a ) ( v1 1 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a ) ( v1 v2 a a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix which is unchanged,
vi denotes an element of the vector defining H(i), and ui an element
of the vector defining G(i).
=====================================================================
.. Parameters ..
public void slacn2(int n, float[] v, float[] x, int[] isgn, org.netlib.util.floatW est, org.netlib.util.intW kase, int[] isave)
LAPACK
..
Purpose
=======
SLACN2 estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) REAL array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) REAL array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and SLACN2 must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) REAL
On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
unchanged from the previous call to SLACN2.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to SLACN2, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from SLACN2, KASE will again be 0.
ISAVE (input/output) INTEGER array, dimension (3)
ISAVE is used to save variables between calls to SLACN2
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
This is a thread safe version of SLACON, which uses the array ISAVE
in place of a SAVE statement, as follows:
SLACON SLACN2
JUMP ISAVE(1)
J ISAVE(2)
ITER ISAVE(3)
=====================================================================
.. Parameters ..
public void slacn2(int n, float[] v, int _v_offset, float[] x, int _x_offset, int[] isgn, int _isgn_offset, org.netlib.util.floatW est, org.netlib.util.intW kase, int[] isave, int _isave_offset)
LAPACK
..
Purpose
=======
SLACN2 estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) REAL array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) REAL array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and SLACN2 must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) REAL
On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
unchanged from the previous call to SLACN2.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to SLACN2, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from SLACN2, KASE will again be 0.
ISAVE (input/output) INTEGER array, dimension (3)
ISAVE is used to save variables between calls to SLACN2
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
This is a thread safe version of SLACON, which uses the array ISAVE
in place of a SAVE statement, as follows:
SLACON SLACN2
JUMP ISAVE(1)
J ISAVE(2)
ITER ISAVE(3)
=====================================================================
.. Parameters ..
public void slacon(int n, float[] v, float[] x, int[] isgn, org.netlib.util.floatW est, org.netlib.util.intW kase)
LAPACK
..
Purpose
=======
SLACON estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) REAL array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) REAL array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and SLACON must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) REAL
On entry with KASE = 1 or 2 and JUMP = 3, EST should be
unchanged from the previous call to SLACON.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to SLACON, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from SLACON, KASE will again be 0.
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
=====================================================================
.. Parameters ..
public void slacon(int n, float[] v, int _v_offset, float[] x, int _x_offset, int[] isgn, int _isgn_offset, org.netlib.util.floatW est, org.netlib.util.intW kase)
LAPACK
..
Purpose
=======
SLACON estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 1.
V (workspace) REAL array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) REAL array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
and SLACON must be re-called with all the other parameters
unchanged.
ISGN (workspace) INTEGER array, dimension (N)
EST (input/output) REAL
On entry with KASE = 1 or 2 and JUMP = 3, EST should be
unchanged from the previous call to SLACON.
On exit, EST is an estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to SLACON, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from SLACON, KASE will again be 0.
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
=====================================================================
.. Parameters ..
public void slacpy(String uplo, int m, int n, float[] a, int lda, float[] b, int ldb)
LAPACK
..
Purpose
=======
SLACPY copies all or part of a two-dimensional matrix A to another
matrix B.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be copied to B.
= 'U': Upper triangular part
= 'L': Lower triangular part
Otherwise: All of the matrix A
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The m by n matrix A. If UPLO = 'U', only the upper triangle
or trapezoid is accessed; if UPLO = 'L', only the lower
triangle or trapezoid is accessed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (output) REAL array, dimension (LDB,N)
On exit, B = A in the locations specified by UPLO.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M).
=====================================================================
.. Local Scalars ..
public void slacpy(String uplo, int m, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
SLACPY copies all or part of a two-dimensional matrix A to another
matrix B.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be copied to B.
= 'U': Upper triangular part
= 'L': Lower triangular part
Otherwise: All of the matrix A
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The m by n matrix A. If UPLO = 'U', only the upper triangle
or trapezoid is accessed; if UPLO = 'L', only the lower
triangle or trapezoid is accessed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (output) REAL array, dimension (LDB,N)
On exit, B = A in the locations specified by UPLO.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M).
=====================================================================
.. Local Scalars ..
public void sladiv(float a, float b, float c, float d, org.netlib.util.floatW p, org.netlib.util.floatW q)
LAPACK
..
Purpose
=======
SLADIV performs complex division in real arithmetic
a + i*b
p + i*q = ---------
c + i*d
The algorithm is due to Robert L. Smith and can be found
in D. Knuth, The art of Computer Programming, Vol.2, p.195
Arguments
=========
A (input) REAL
B (input) REAL
C (input) REAL
D (input) REAL
The scalars a, b, c, and d in the above expression.
P (output) REAL
Q (output) REAL
The scalars p and q in the above expression.
=====================================================================
.. Local Scalars ..
public void slae2(float a, float b, float c, org.netlib.util.floatW rt1, org.netlib.util.floatW rt2)
LAPACK
..
Purpose
=======
SLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
[ A B ]
[ B C ].
On return, RT1 is the eigenvalue of larger absolute value, and RT2
is the eigenvalue of smaller absolute value.
Arguments
=========
A (input) REAL
The (1,1) element of the 2-by-2 matrix.
B (input) REAL
The (1,2) and (2,1) elements of the 2-by-2 matrix.
C (input) REAL
The (2,2) element of the 2-by-2 matrix.
RT1 (output) REAL
The eigenvalue of larger absolute value.
RT2 (output) REAL
The eigenvalue of smaller absolute value.
Further Details
===============
RT1 is accurate to a few ulps barring over/underflow.
RT2 may be inaccurate if there is massive cancellation in the
determinant A*C-B*B; higher precision or correctly rounded or
correctly truncated arithmetic would be needed to compute RT2
accurately in all cases.
Overflow is possible only if RT1 is within a factor of 5 of overflow.
Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.
=====================================================================
.. Parameters ..
public void slaebz(int ijob, int nitmax, int n, int mmax, int minp, int nbmin, float abstol, float reltol, float pivmin, float[] d, float[] e, float[] e2, int[] nval, float[] ab, float[] c, org.netlib.util.intW mout, int[] nab, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEBZ contains the iteration loops which compute and use the
function N(w), which is the count of eigenvalues of a symmetric
tridiagonal matrix T less than or equal to its argument w. It
performs a choice of two types of loops:
IJOB=1, followed by
IJOB=2: It takes as input a list of intervals and returns a list of
sufficiently small intervals whose union contains the same
eigenvalues as the union of the original intervals.
The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
The output interval (AB(j,1),AB(j,2)] will contain
eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
IJOB=3: It performs a binary search in each input interval
(AB(j,1),AB(j,2)] for a point w(j) such that
N(w(j))=NVAL(j), and uses C(j) as the starting point of
the search. If such a w(j) is found, then on output
AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
(AB(j,1),AB(j,2)] will be a small interval containing the
point where N(w) jumps through NVAL(j), unless that point
lies outside the initial interval.
Note that the intervals are in all cases half-open intervals,
i.e., of the form (a,b] , which includes b but not a .
To avoid underflow, the matrix should be scaled so that its largest
element is no greater than overflow**(1/2) * underflow**(1/4)
in absolute value. To assure the most accurate computation
of small eigenvalues, the matrix should be scaled to be
not much smaller than that, either.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966
Note: the arguments are, in general, *not* checked for unreasonable
values.
Arguments
=========
IJOB (input) INTEGER
Specifies what is to be done:
= 1: Compute NAB for the initial intervals.
= 2: Perform bisection iteration to find eigenvalues of T.
= 3: Perform bisection iteration to invert N(w), i.e.,
to find a point which has a specified number of
eigenvalues of T to its left.
Other values will cause SLAEBZ to return with INFO=-1.
NITMAX (input) INTEGER
The maximum number of "levels" of bisection to be
performed, i.e., an interval of width W will not be made
smaller than 2^(-NITMAX) * W. If not all intervals
have converged after NITMAX iterations, then INFO is set
to the number of non-converged intervals.
N (input) INTEGER
The dimension n of the tridiagonal matrix T. It must be at
least 1.
MMAX (input) INTEGER
The maximum number of intervals. If more than MMAX intervals
are generated, then SLAEBZ will quit with INFO=MMAX+1.
MINP (input) INTEGER
The initial number of intervals. It may not be greater than
MMAX.
NBMIN (input) INTEGER
The smallest number of intervals that should be processed
using a vector loop. If zero, then only the scalar loop
will be used.
ABSTOL (input) REAL
The minimum (absolute) width of an interval. When an
interval is narrower than ABSTOL, or than RELTOL times the
larger (in magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. This must be at least
zero.
RELTOL (input) REAL
The minimum relative width of an interval. When an interval
is narrower than ABSTOL, or than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
PIVMIN (input) REAL
The minimum absolute value of a "pivot" in the Sturm
sequence loop. This *must* be at least max |e(j)**2| *
safe_min and at least safe_min, where safe_min is at least
the smallest number that can divide one without overflow.
D (input) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N)
The offdiagonal elements of the tridiagonal matrix T in
positions 1 through N-1. E(N) is arbitrary.
E2 (input) REAL array, dimension (N)
The squares of the offdiagonal elements of the tridiagonal
matrix T. E2(N) is ignored.
NVAL (input/output) INTEGER array, dimension (MINP)
If IJOB=1 or 2, not referenced.
If IJOB=3, the desired values of N(w). The elements of NVAL
will be reordered to correspond with the intervals in AB.
Thus, NVAL(j) on output will not, in general be the same as
NVAL(j) on input, but it will correspond with the interval
(AB(j,1),AB(j,2)] on output.
AB (input/output) REAL array, dimension (MMAX,2)
The endpoints of the intervals. AB(j,1) is a(j), the left
endpoint of the j-th interval, and AB(j,2) is b(j), the
right endpoint of the j-th interval. The input intervals
will, in general, be modified, split, and reordered by the
calculation.
C (input/output) REAL array, dimension (MMAX)
If IJOB=1, ignored.
If IJOB=2, workspace.
If IJOB=3, then on input C(j) should be initialized to the
first search point in the binary search.
MOUT (output) INTEGER
If IJOB=1, the number of eigenvalues in the intervals.
If IJOB=2 or 3, the number of intervals output.
If IJOB=3, MOUT will equal MINP.
NAB (input/output) INTEGER array, dimension (MMAX,2)
If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
If IJOB=2, then on input, NAB(i,j) should be set. It must
satisfy the condition:
N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
which means that in interval i only eigenvalues
NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with
IJOB=1.
On output, NAB(i,j) will contain
max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
the input interval that the output interval
(AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
the input values of NAB(k,1) and NAB(k,2).
If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
unless N(w) > NVAL(i) for all search points w , in which
case NAB(i,1) will not be modified, i.e., the output
value will be the same as the input value (modulo
reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
for all search points w , in which case NAB(i,2) will
not be modified. Normally, NAB should be set to some
distinctive value(s) before SLAEBZ is called.
WORK (workspace) REAL array, dimension (MMAX)
Workspace.
IWORK (workspace) INTEGER array, dimension (MMAX)
Workspace.
INFO (output) INTEGER
= 0: All intervals converged.
= 1--MMAX: The last INFO intervals did not converge.
= MMAX+1: More than MMAX intervals were generated.
Further Details
===============
This routine is intended to be called only by other LAPACK
routines, thus the interface is less user-friendly. It is intended
for two purposes:
(a) finding eigenvalues. In this case, SLAEBZ should have one or
more initial intervals set up in AB, and SLAEBZ should be called
with IJOB=1. This sets up NAB, and also counts the eigenvalues.
Intervals with no eigenvalues would usually be thrown out at
this point. Also, if not all the eigenvalues in an interval i
are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
eigenvalue. SLAEBZ is then called with IJOB=2 and MMAX
no smaller than the value of MOUT returned by the call with
IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
tolerance specified by ABSTOL and RELTOL.
(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
In this case, start with a Gershgorin interval (a,b). Set up
AB to contain 2 search intervals, both initially (a,b). One
NVAL element should contain f-1 and the other should contain l
, while C should contain a and b, resp. NAB(i,1) should be -1
and NAB(i,2) should be N+1, to flag an error if the desired
interval does not lie in (a,b). SLAEBZ is then called with
IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
>= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
w(l-r)=...=w(l+k) are handled similarly.
=====================================================================
.. Parameters ..
public void slaebz(int ijob, int nitmax, int n, int mmax, int minp, int nbmin, float abstol, float reltol, float pivmin, float[] d, int _d_offset, float[] e, int _e_offset, float[] e2, int _e2_offset, int[] nval, int _nval_offset, float[] ab, int _ab_offset, float[] c, int _c_offset, org.netlib.util.intW mout, int[] nab, int _nab_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEBZ contains the iteration loops which compute and use the
function N(w), which is the count of eigenvalues of a symmetric
tridiagonal matrix T less than or equal to its argument w. It
performs a choice of two types of loops:
IJOB=1, followed by
IJOB=2: It takes as input a list of intervals and returns a list of
sufficiently small intervals whose union contains the same
eigenvalues as the union of the original intervals.
The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
The output interval (AB(j,1),AB(j,2)] will contain
eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
IJOB=3: It performs a binary search in each input interval
(AB(j,1),AB(j,2)] for a point w(j) such that
N(w(j))=NVAL(j), and uses C(j) as the starting point of
the search. If such a w(j) is found, then on output
AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
(AB(j,1),AB(j,2)] will be a small interval containing the
point where N(w) jumps through NVAL(j), unless that point
lies outside the initial interval.
Note that the intervals are in all cases half-open intervals,
i.e., of the form (a,b] , which includes b but not a .
To avoid underflow, the matrix should be scaled so that its largest
element is no greater than overflow**(1/2) * underflow**(1/4)
in absolute value. To assure the most accurate computation
of small eigenvalues, the matrix should be scaled to be
not much smaller than that, either.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966
Note: the arguments are, in general, *not* checked for unreasonable
values.
Arguments
=========
IJOB (input) INTEGER
Specifies what is to be done:
= 1: Compute NAB for the initial intervals.
= 2: Perform bisection iteration to find eigenvalues of T.
= 3: Perform bisection iteration to invert N(w), i.e.,
to find a point which has a specified number of
eigenvalues of T to its left.
Other values will cause SLAEBZ to return with INFO=-1.
NITMAX (input) INTEGER
The maximum number of "levels" of bisection to be
performed, i.e., an interval of width W will not be made
smaller than 2^(-NITMAX) * W. If not all intervals
have converged after NITMAX iterations, then INFO is set
to the number of non-converged intervals.
N (input) INTEGER
The dimension n of the tridiagonal matrix T. It must be at
least 1.
MMAX (input) INTEGER
The maximum number of intervals. If more than MMAX intervals
are generated, then SLAEBZ will quit with INFO=MMAX+1.
MINP (input) INTEGER
The initial number of intervals. It may not be greater than
MMAX.
NBMIN (input) INTEGER
The smallest number of intervals that should be processed
using a vector loop. If zero, then only the scalar loop
will be used.
ABSTOL (input) REAL
The minimum (absolute) width of an interval. When an
interval is narrower than ABSTOL, or than RELTOL times the
larger (in magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. This must be at least
zero.
RELTOL (input) REAL
The minimum relative width of an interval. When an interval
is narrower than ABSTOL, or than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
PIVMIN (input) REAL
The minimum absolute value of a "pivot" in the Sturm
sequence loop. This *must* be at least max |e(j)**2| *
safe_min and at least safe_min, where safe_min is at least
the smallest number that can divide one without overflow.
D (input) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N)
The offdiagonal elements of the tridiagonal matrix T in
positions 1 through N-1. E(N) is arbitrary.
E2 (input) REAL array, dimension (N)
The squares of the offdiagonal elements of the tridiagonal
matrix T. E2(N) is ignored.
NVAL (input/output) INTEGER array, dimension (MINP)
If IJOB=1 or 2, not referenced.
If IJOB=3, the desired values of N(w). The elements of NVAL
will be reordered to correspond with the intervals in AB.
Thus, NVAL(j) on output will not, in general be the same as
NVAL(j) on input, but it will correspond with the interval
(AB(j,1),AB(j,2)] on output.
AB (input/output) REAL array, dimension (MMAX,2)
The endpoints of the intervals. AB(j,1) is a(j), the left
endpoint of the j-th interval, and AB(j,2) is b(j), the
right endpoint of the j-th interval. The input intervals
will, in general, be modified, split, and reordered by the
calculation.
C (input/output) REAL array, dimension (MMAX)
If IJOB=1, ignored.
If IJOB=2, workspace.
If IJOB=3, then on input C(j) should be initialized to the
first search point in the binary search.
MOUT (output) INTEGER
If IJOB=1, the number of eigenvalues in the intervals.
If IJOB=2 or 3, the number of intervals output.
If IJOB=3, MOUT will equal MINP.
NAB (input/output) INTEGER array, dimension (MMAX,2)
If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
If IJOB=2, then on input, NAB(i,j) should be set. It must
satisfy the condition:
N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
which means that in interval i only eigenvalues
NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with
IJOB=1.
On output, NAB(i,j) will contain
max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
the input interval that the output interval
(AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
the input values of NAB(k,1) and NAB(k,2).
If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
unless N(w) > NVAL(i) for all search points w , in which
case NAB(i,1) will not be modified, i.e., the output
value will be the same as the input value (modulo
reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
for all search points w , in which case NAB(i,2) will
not be modified. Normally, NAB should be set to some
distinctive value(s) before SLAEBZ is called.
WORK (workspace) REAL array, dimension (MMAX)
Workspace.
IWORK (workspace) INTEGER array, dimension (MMAX)
Workspace.
INFO (output) INTEGER
= 0: All intervals converged.
= 1--MMAX: The last INFO intervals did not converge.
= MMAX+1: More than MMAX intervals were generated.
Further Details
===============
This routine is intended to be called only by other LAPACK
routines, thus the interface is less user-friendly. It is intended
for two purposes:
(a) finding eigenvalues. In this case, SLAEBZ should have one or
more initial intervals set up in AB, and SLAEBZ should be called
with IJOB=1. This sets up NAB, and also counts the eigenvalues.
Intervals with no eigenvalues would usually be thrown out at
this point. Also, if not all the eigenvalues in an interval i
are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
eigenvalue. SLAEBZ is then called with IJOB=2 and MMAX
no smaller than the value of MOUT returned by the call with
IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
tolerance specified by ABSTOL and RELTOL.
(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
In this case, start with a Gershgorin interval (a,b). Set up
AB to contain 2 search intervals, both initially (a,b). One
NVAL element should contain f-1 and the other should contain l
, while C should contain a and b, resp. NAB(i,1) should be -1
and NAB(i,2) should be N+1, to flag an error if the desired
interval does not lie in (a,b). SLAEBZ is then called with
IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
>= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
w(l-r)=...=w(l+k) are handled similarly.
=====================================================================
.. Parameters ..
public void slaed0(int icompq, int qsiz, int n, float[] d, float[] e, float[] q, int ldq, float[] qstore, int ldqs, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED0 computes all eigenvalues and corresponding eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
= 2: Compute eigenvalues and eigenvectors of tridiagonal
matrix.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the main diagonal of the tridiagonal matrix.
On exit, its eigenvalues.
E (input) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, Q must contain an N-by-N orthogonal matrix.
If ICOMPQ = 0 Q is not referenced.
If ICOMPQ = 1 On entry, Q is a subset of the columns of the
orthogonal matrix used to reduce the full
matrix to tridiagonal form corresponding to
the subset of the full matrix which is being
decomposed at this time.
If ICOMPQ = 2 On entry, Q will be the identity matrix.
On exit, Q contains the eigenvectors of the
tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. If eigenvectors are
desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
QSTORE (workspace) REAL array, dimension (LDQS, N)
Referenced only when ICOMPQ = 1. Used to store parts of
the eigenvector matrix when the updating matrix multiplies
take place.
LDQS (input) INTEGER
The leading dimension of the array QSTORE. If ICOMPQ = 1,
then LDQS >= max(1,N). In any case, LDQS >= 1.
WORK (workspace) REAL array,
If ICOMPQ = 0 or 1, the dimension of WORK must be at least
1 + 3*N + 2*N*lg N + 2*N**2
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of WORK must be at least
4*N + N**2.
IWORK (workspace) INTEGER array,
If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
6 + 6*N + 5*N*lg N.
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of IWORK must be at least
3 + 5*N.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed0(int icompq, int qsiz, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] q, int _q_offset, int ldq, float[] qstore, int _qstore_offset, int ldqs, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED0 computes all eigenvalues and corresponding eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
= 2: Compute eigenvalues and eigenvectors of tridiagonal
matrix.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the main diagonal of the tridiagonal matrix.
On exit, its eigenvalues.
E (input) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, Q must contain an N-by-N orthogonal matrix.
If ICOMPQ = 0 Q is not referenced.
If ICOMPQ = 1 On entry, Q is a subset of the columns of the
orthogonal matrix used to reduce the full
matrix to tridiagonal form corresponding to
the subset of the full matrix which is being
decomposed at this time.
If ICOMPQ = 2 On entry, Q will be the identity matrix.
On exit, Q contains the eigenvectors of the
tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. If eigenvectors are
desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
QSTORE (workspace) REAL array, dimension (LDQS, N)
Referenced only when ICOMPQ = 1. Used to store parts of
the eigenvector matrix when the updating matrix multiplies
take place.
LDQS (input) INTEGER
The leading dimension of the array QSTORE. If ICOMPQ = 1,
then LDQS >= max(1,N). In any case, LDQS >= 1.
WORK (workspace) REAL array,
If ICOMPQ = 0 or 1, the dimension of WORK must be at least
1 + 3*N + 2*N*lg N + 2*N**2
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of WORK must be at least
4*N + N**2.
IWORK (workspace) INTEGER array,
If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
6 + 6*N + 5*N*lg N.
( lg( N ) = smallest integer k
such that 2^k >= N )
If ICOMPQ = 2, the dimension of IWORK must be at least
3 + 5*N.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed1(int n, float[] d, float[] q, int ldq, int[] indxq, org.netlib.util.floatW rho, int cutpnt, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED1 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and eigenvectors of a tridiagonal matrix. SLAED7 handles
the case in which eigenvalues only or eigenvalues and eigenvectors
of a full symmetric matrix (which was reduced to tridiagonal form)
are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLAED2.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine SLAED4 (as called by SLAED3).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
On entry, the permutation which separately sorts the two
subproblems in D into ascending order.
On exit, the permutation which will reintegrate the
subproblems back into sorted order,
i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
RHO (input) REAL
The subdiagonal entry used to create the rank-1 modification.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= CUTPNT <= N/2.
WORK (workspace) REAL array, dimension (4*N + N**2)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Local Scalars ..
public void slaed1(int n, float[] d, int _d_offset, float[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.floatW rho, int cutpnt, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED1 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and eigenvectors of a tridiagonal matrix. SLAED7 handles
the case in which eigenvalues only or eigenvalues and eigenvectors
of a full symmetric matrix (which was reduced to tridiagonal form)
are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLAED2.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine SLAED4 (as called by SLAED3).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
On entry, the permutation which separately sorts the two
subproblems in D into ascending order.
On exit, the permutation which will reintegrate the
subproblems back into sorted order,
i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
RHO (input) REAL
The subdiagonal entry used to create the rank-1 modification.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= CUTPNT <= N/2.
WORK (workspace) REAL array, dimension (4*N + N**2)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Local Scalars ..
public void slaed2(org.netlib.util.intW k, int n, int n1, float[] d, float[] q, int ldq, int[] indxq, org.netlib.util.floatW rho, float[] z, float[] dlamda, float[] w, float[] q2, int[] indx, int[] indxc, int[] indxp, int[] coltyp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED2 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation. 0 <= K <=N.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
N1 (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= N1 <= N/2.
D (input/output) REAL array, dimension (N)
On entry, D contains the eigenvalues of the two submatrices to
be combined.
On exit, D contains the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, Q contains the eigenvectors of two submatrices in
the two square blocks with corners at (1,1), (N1,N1)
and (N1+1, N1+1), (N,N).
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have N1 added to their
values. Destroyed on exit.
RHO (input/output) REAL
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
SLAED3.
Z (input) REAL array, dimension (N)
On entry, Z contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
On exit, the contents of Z have been destroyed by the updating
process.
DLAMDA (output) REAL array, dimension (N)
A copy of the first K eigenvalues which will be used by
SLAED3 to form the secular equation.
W (output) REAL array, dimension (N)
The first k values of the final deflation-altered z-vector
which will be passed to SLAED3.
Q2 (output) REAL array, dimension (N1**2+(N-N1)**2)
A copy of the first K eigenvectors which will be used by
SLAED3 in a matrix multiply (SGEMM) to solve for the new
eigenvectors.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of DLAMDA into
ascending order.
INDXC (output) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups: the first group contains non-zero
elements only at and above N1, the second contains
non-zero elements only below N1, and the third is dense.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
COLTYP (workspace/output) INTEGER array, dimension (N)
During execution, a label which will indicate which of the
following types a column in the Q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.
On exit, COLTYP(i) is the number of columns of type i,
for i=1 to 4 only.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void slaed2(org.netlib.util.intW k, int n, int n1, float[] d, int _d_offset, float[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.floatW rho, float[] z, int _z_offset, float[] dlamda, int _dlamda_offset, float[] w, int _w_offset, float[] q2, int _q2_offset, int[] indx, int _indx_offset, int[] indxc, int _indxc_offset, int[] indxp, int _indxp_offset, int[] coltyp, int _coltyp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED2 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation. 0 <= K <=N.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
N1 (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= N1 <= N/2.
D (input/output) REAL array, dimension (N)
On entry, D contains the eigenvalues of the two submatrices to
be combined.
On exit, D contains the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, Q contains the eigenvectors of two submatrices in
the two square blocks with corners at (1,1), (N1,N1)
and (N1+1, N1+1), (N,N).
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have N1 added to their
values. Destroyed on exit.
RHO (input/output) REAL
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
SLAED3.
Z (input) REAL array, dimension (N)
On entry, Z contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
On exit, the contents of Z have been destroyed by the updating
process.
DLAMDA (output) REAL array, dimension (N)
A copy of the first K eigenvalues which will be used by
SLAED3 to form the secular equation.
W (output) REAL array, dimension (N)
The first k values of the final deflation-altered z-vector
which will be passed to SLAED3.
Q2 (output) REAL array, dimension (N1**2+(N-N1)**2)
A copy of the first K eigenvectors which will be used by
SLAED3 in a matrix multiply (SGEMM) to solve for the new
eigenvectors.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of DLAMDA into
ascending order.
INDXC (output) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups: the first group contains non-zero
elements only at and above N1, the second contains
non-zero elements only below N1, and the third is dense.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
COLTYP (workspace/output) INTEGER array, dimension (N)
During execution, a label which will indicate which of the
following types a column in the Q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.
On exit, COLTYP(i) is the number of columns of type i,
for i=1 to 4 only.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void slaed3(int k, int n, int n1, float[] d, float[] q, int ldq, float rho, float[] dlamda, float[] q2, int[] indx, int[] ctot, float[] w, float[] s, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED3 finds the roots of the secular equation, as defined by the
values in D, W, and RHO, between 1 and K. It makes the
appropriate calls to SLAED4 and then updates the eigenvectors by
multiplying the matrix of eigenvectors of the pair of eigensystems
being combined by the matrix of eigenvectors of the K-by-K system
which is solved here.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
SLAED4. K >= 0.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (deflation may result in N>K).
N1 (input) INTEGER
The location of the last eigenvalue in the leading submatrix.
min(1,N) <= N1 <= N/2.
D (output) REAL array, dimension (N)
D(I) contains the updated eigenvalues for
1 <= I <= K.
Q (output) REAL array, dimension (LDQ,N)
Initially the first K columns are used as workspace.
On output the columns 1 to K contain
the updated eigenvectors.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
RHO (input) REAL
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input/output) REAL array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation. May be changed on output by
having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
Cray-2, or Cray C-90, as described above.
Q2 (input) REAL array, dimension (LDQ2, N)
The first K columns of this matrix contain the non-deflated
eigenvectors for the split problem.
INDX (input) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups (see SLAED2).
The rows of the eigenvectors found by SLAED4 must be likewise
permuted before the matrix multiply can take place.
CTOT (input) INTEGER array, dimension (4)
A count of the total number of the various types of columns
in Q, as described in INDX. The fourth column type is any
column which has been deflated.
W (input/output) REAL array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector. Destroyed on
output.
S (workspace) REAL array, dimension (N1 + 1)*K
Will contain the eigenvectors of the repaired matrix which
will be multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max(1,K).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void slaed3(int k, int n, int n1, float[] d, int _d_offset, float[] q, int _q_offset, int ldq, float rho, float[] dlamda, int _dlamda_offset, float[] q2, int _q2_offset, int[] indx, int _indx_offset, int[] ctot, int _ctot_offset, float[] w, int _w_offset, float[] s, int _s_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED3 finds the roots of the secular equation, as defined by the
values in D, W, and RHO, between 1 and K. It makes the
appropriate calls to SLAED4 and then updates the eigenvectors by
multiplying the matrix of eigenvectors of the pair of eigensystems
being combined by the matrix of eigenvectors of the K-by-K system
which is solved here.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
SLAED4. K >= 0.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (deflation may result in N>K).
N1 (input) INTEGER
The location of the last eigenvalue in the leading submatrix.
min(1,N) <= N1 <= N/2.
D (output) REAL array, dimension (N)
D(I) contains the updated eigenvalues for
1 <= I <= K.
Q (output) REAL array, dimension (LDQ,N)
Initially the first K columns are used as workspace.
On output the columns 1 to K contain
the updated eigenvectors.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
RHO (input) REAL
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input/output) REAL array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation. May be changed on output by
having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
Cray-2, or Cray C-90, as described above.
Q2 (input) REAL array, dimension (LDQ2, N)
The first K columns of this matrix contain the non-deflated
eigenvectors for the split problem.
INDX (input) INTEGER array, dimension (N)
The permutation used to arrange the columns of the deflated
Q matrix into three groups (see SLAED2).
The rows of the eigenvectors found by SLAED4 must be likewise
permuted before the matrix multiply can take place.
CTOT (input) INTEGER array, dimension (4)
A count of the total number of the various types of columns
in Q, as described in INDX. The fourth column type is any
column which has been deflated.
W (input/output) REAL array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector. Destroyed on
output.
S (workspace) REAL array, dimension (N1 + 1)*K
Will contain the eigenvectors of the repaired matrix which
will be multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max(1,K).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void slaed4(int n, int i, float[] d, float[] z, float[] delta, float rho, org.netlib.util.floatW dlam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the I-th updated eigenvalue of a symmetric
rank-one modification to a diagonal matrix whose elements are
given in the array d, and that
D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) REAL array, dimension (N)
The original eigenvalues. It is assumed that they are in
order, D(I) < D(J) for I < J.
Z (input) REAL array, dimension (N)
The components of the updating vector.
DELTA (output) REAL array, dimension (N)
If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th
component. If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5
for detail. The vector DELTA contains the information necessar
to construct the eigenvectors by SLAED3 and SLAED9.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigenvalue.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed4(int n, int i, float[] d, int _d_offset, float[] z, int _z_offset, float[] delta, int _delta_offset, float rho, org.netlib.util.floatW dlam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the I-th updated eigenvalue of a symmetric
rank-one modification to a diagonal matrix whose elements are
given in the array d, and that
D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) REAL array, dimension (N)
The original eigenvalues. It is assumed that they are in
order, D(I) < D(J) for I < J.
Z (input) REAL array, dimension (N)
The components of the updating vector.
DELTA (output) REAL array, dimension (N)
If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th
component. If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5
for detail. The vector DELTA contains the information necessar
to construct the eigenvectors by SLAED3 and SLAED9.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigenvalue.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed5(int i, float[] d, float[] z, float[] delta, float rho, org.netlib.util.floatW dlam)
LAPACK
..
Purpose
=======
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed5(int i, float[] d, int _d_offset, float[] z, int _z_offset, float[] delta, int _delta_offset, float rho, org.netlib.util.floatW dlam)
LAPACK
..
Purpose
=======
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed6(int kniter, boolean orgati, float rho, float[] d, float[] z, float finit, org.netlib.util.floatW tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED6 computes the positive or negative root (closest to the origin)
of
z(1) z(2) z(3)
f(x) = rho + --------- + ---------- + ---------
d(1)-x d(2)-x d(3)-x
It is assumed that
if ORGATI = .true. the root is between d(2) and d(3);
otherwise it is between d(1) and d(2)
This routine will be called by SLAED4 when necessary. In most cases,
the root sought is the smallest in magnitude, though it might not be
in some extremely rare situations.
Arguments
=========
KNITER (input) INTEGER
Refer to SLAED4 for its significance.
ORGATI (input) LOGICAL
If ORGATI is true, the needed root is between d(2) and
d(3); otherwise it is between d(1) and d(2). See
SLAED4 for further details.
RHO (input) REAL
Refer to the equation f(x) above.
D (input) REAL array, dimension (3)
D satisfies d(1) < d(2) < d(3).
Z (input) REAL array, dimension (3)
Each of the elements in z must be positive.
FINIT (input) REAL
The value of f at 0. It is more accurate than the one
evaluated inside this routine (if someone wants to do
so).
TAU (output) REAL
The root of the equation f(x).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, failure to converge
Further Details
===============
30/06/99: Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
10/02/03: This version has a few statements commented out for thread
(machine parameters are computed on each entry). SJH.
05/10/06: Modified from a new version of Ren-Cang Li, use
Gragg-Thornton-Warner cubic convergent scheme for better stability
=====================================================================
.. Parameters ..
public void slaed6(int kniter, boolean orgati, float rho, float[] d, int _d_offset, float[] z, int _z_offset, float finit, org.netlib.util.floatW tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED6 computes the positive or negative root (closest to the origin)
of
z(1) z(2) z(3)
f(x) = rho + --------- + ---------- + ---------
d(1)-x d(2)-x d(3)-x
It is assumed that
if ORGATI = .true. the root is between d(2) and d(3);
otherwise it is between d(1) and d(2)
This routine will be called by SLAED4 when necessary. In most cases,
the root sought is the smallest in magnitude, though it might not be
in some extremely rare situations.
Arguments
=========
KNITER (input) INTEGER
Refer to SLAED4 for its significance.
ORGATI (input) LOGICAL
If ORGATI is true, the needed root is between d(2) and
d(3); otherwise it is between d(1) and d(2). See
SLAED4 for further details.
RHO (input) REAL
Refer to the equation f(x) above.
D (input) REAL array, dimension (3)
D satisfies d(1) < d(2) < d(3).
Z (input) REAL array, dimension (3)
Each of the elements in z must be positive.
FINIT (input) REAL
The value of f at 0. It is more accurate than the one
evaluated inside this routine (if someone wants to do
so).
TAU (output) REAL
The root of the equation f(x).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, failure to converge
Further Details
===============
30/06/99: Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
10/02/03: This version has a few statements commented out for thread
(machine parameters are computed on each entry). SJH.
05/10/06: Modified from a new version of Ren-Cang Li, use
Gragg-Thornton-Warner cubic convergent scheme for better stability
=====================================================================
.. Parameters ..
public void slaed7(int icompq, int n, int qsiz, int tlvls, int curlvl, int curpbm, float[] d, float[] q, int ldq, int[] indxq, org.netlib.util.floatW rho, int cutpnt, float[] qstore, int[] qptr, int[] prmptr, int[] perm, int[] givptr, int[] givcol, float[] givnum, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED7 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and optionally eigenvectors of a dense symmetric matrix
that has been reduced to tridiagonal form. SLAED1 handles
the case in which all eigenvalues and eigenvectors of a symmetric
tridiagonal matrix are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLAED8.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine SLAED4 (as called by SLAED9).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= CURLVL <= TLVLS.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (output) INTEGER array, dimension (N)
The permutation which will reintegrate the subproblem just
solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
will be in ascending order.
RHO (input) REAL
The subdiagonal element used to create the rank-1
modification.
CUTPNT (input) INTEGER
Contains the location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
QSTORE (input/output) REAL array, dimension (N**2+1)
Stores eigenvectors of submatrices encountered during
divide and conquer, packed together. QPTR points to
beginning of the submatrices.
QPTR (input/output) INTEGER array, dimension (N+2)
List of indices pointing to beginning of submatrices stored
in QSTORE. The submatrices are numbered starting at the
bottom left of the divide and conquer tree, from left to
right and bottom to top.
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and also the size of
the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) REAL array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
WORK (workspace) REAL array, dimension (3*N+QSIZ*N)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed7(int icompq, int n, int qsiz, int tlvls, int curlvl, int curpbm, float[] d, int _d_offset, float[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.floatW rho, int cutpnt, float[] qstore, int _qstore_offset, int[] qptr, int _qptr_offset, int[] prmptr, int _prmptr_offset, int[] perm, int _perm_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, float[] givnum, int _givnum_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED7 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and optionally eigenvectors of a dense symmetric matrix
that has been reduced to tridiagonal form. SLAED1 handles
the case in which all eigenvalues and eigenvectors of a symmetric
tridiagonal matrix are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLAED8.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine SLAED4 (as called by SLAED9).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= CURLVL <= TLVLS.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) REAL array, dimension (LDQ, N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (output) INTEGER array, dimension (N)
The permutation which will reintegrate the subproblem just
solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
will be in ascending order.
RHO (input) REAL
The subdiagonal element used to create the rank-1
modification.
CUTPNT (input) INTEGER
Contains the location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
QSTORE (input/output) REAL array, dimension (N**2+1)
Stores eigenvectors of submatrices encountered during
divide and conquer, packed together. QPTR points to
beginning of the submatrices.
QPTR (input/output) INTEGER array, dimension (N+2)
List of indices pointing to beginning of submatrices stored
in QSTORE. The submatrices are numbered starting at the
bottom left of the divide and conquer tree, from left to
right and bottom to top.
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and also the size of
the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) REAL array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
WORK (workspace) REAL array, dimension (3*N+QSIZ*N)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed8(int icompq, org.netlib.util.intW k, int n, int qsiz, float[] d, float[] q, int ldq, int[] indxq, org.netlib.util.floatW rho, int cutpnt, float[] z, float[] dlamda, float[] q2, int ldq2, float[] w, int[] perm, org.netlib.util.intW givptr, int[] givcol, float[] givnum, int[] indxp, int[] indx, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED8 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny element in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the two submatrices to be
combined. On exit, the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) REAL array, dimension (LDQ,N)
If ICOMPQ = 0, Q is not referenced. Otherwise,
on entry, Q contains the eigenvectors of the partially solved
system which has been previously updated in matrix
multiplies with other partially solved eigensystems.
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have CUTPNT added to
their values in order to be accurate.
RHO (input/output) REAL
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
SLAED3.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
Z (input) REAL array, dimension (N)
On entry, Z contains the updating vector (the last row of
the first sub-eigenvector matrix and the first row of the
second sub-eigenvector matrix).
On exit, the contents of Z are destroyed by the updating
process.
DLAMDA (output) REAL array, dimension (N)
A copy of the first K eigenvalues which will be used by
SLAED3 to form the secular equation.
Q2 (output) REAL array, dimension (LDQ2,N)
If ICOMPQ = 0, Q2 is not referenced. Otherwise,
a copy of the first K eigenvectors which will be used by
SLAED7 in a matrix multiply (SGEMM) to update the new
eigenvectors.
LDQ2 (input) INTEGER
The leading dimension of the array Q2. LDQ2 >= max(1,N).
W (output) REAL array, dimension (N)
The first k values of the final deflation-altered z-vector and
will be passed to SLAED3.
PERM (output) INTEGER array, dimension (N)
The permutations (from deflation and sorting) to be applied
to each eigenblock.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (output) INTEGER array, dimension (2, N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (output) REAL array, dimension (2, N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of D into ascending
order.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed8(int icompq, org.netlib.util.intW k, int n, int qsiz, float[] d, int _d_offset, float[] q, int _q_offset, int ldq, int[] indxq, int _indxq_offset, org.netlib.util.floatW rho, int cutpnt, float[] z, int _z_offset, float[] dlamda, int _dlamda_offset, float[] q2, int _q2_offset, int ldq2, float[] w, int _w_offset, int[] perm, int _perm_offset, org.netlib.util.intW givptr, int[] givcol, int _givcol_offset, float[] givnum, int _givnum_offset, int[] indxp, int _indxp_offset, int[] indx, int _indx_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED8 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny element in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
Arguments
=========
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense symmetric matrix
also. On entry, Q contains the orthogonal matrix used
to reduce the original matrix to tridiagonal form.
K (output) INTEGER
The number of non-deflated eigenvalues, and the order of the
related secular equation.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the two submatrices to be
combined. On exit, the trailing (N-K) updated eigenvalues
(those which were deflated) sorted into increasing order.
Q (input/output) REAL array, dimension (LDQ,N)
If ICOMPQ = 0, Q is not referenced. Otherwise,
on entry, Q contains the eigenvectors of the partially solved
system which has been previously updated in matrix
multiplies with other partially solved eigensystems.
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input) INTEGER array, dimension (N)
The permutation which separately sorts the two sub-problems
in D into ascending order. Note that elements in the second
half of this permutation must first have CUTPNT added to
their values in order to be accurate.
RHO (input/output) REAL
On entry, the off-diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined.
On exit, RHO has been modified to the value required by
SLAED3.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
Z (input) REAL array, dimension (N)
On entry, Z contains the updating vector (the last row of
the first sub-eigenvector matrix and the first row of the
second sub-eigenvector matrix).
On exit, the contents of Z are destroyed by the updating
process.
DLAMDA (output) REAL array, dimension (N)
A copy of the first K eigenvalues which will be used by
SLAED3 to form the secular equation.
Q2 (output) REAL array, dimension (LDQ2,N)
If ICOMPQ = 0, Q2 is not referenced. Otherwise,
a copy of the first K eigenvectors which will be used by
SLAED7 in a matrix multiply (SGEMM) to update the new
eigenvectors.
LDQ2 (input) INTEGER
The leading dimension of the array Q2. LDQ2 >= max(1,N).
W (output) REAL array, dimension (N)
The first k values of the final deflation-altered z-vector and
will be passed to SLAED3.
PERM (output) INTEGER array, dimension (N)
The permutations (from deflation and sorting) to be applied
to each eigenblock.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (output) INTEGER array, dimension (2, N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (output) REAL array, dimension (2, N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
INDXP (workspace) INTEGER array, dimension (N)
The permutation used to place deflated values of D at the end
of the array. INDXP(1:K) points to the nondeflated D-values
and INDXP(K+1:N) points to the deflated eigenvalues.
INDX (workspace) INTEGER array, dimension (N)
The permutation used to sort the contents of D into ascending
order.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaed9(int k, int kstart, int kstop, int n, float[] d, float[] q, int ldq, float rho, float[] dlamda, float[] w, float[] s, int lds, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED9 finds the roots of the secular equation, as defined by the
values in D, Z, and RHO, between KSTART and KSTOP. It makes the
appropriate calls to SLAED4 and then stores the new matrix of
eigenvectors for use in calculating the next level of Z vectors.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
SLAED4. K >= 0.
KSTART (input) INTEGER
KSTOP (input) INTEGER
The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
are to be computed. 1 <= KSTART <= KSTOP <= K.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (delation may result in N > K).
D (output) REAL array, dimension (N)
D(I) contains the updated eigenvalues
for KSTART <= I <= KSTOP.
Q (workspace) REAL array, dimension (LDQ,N)
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max( 1, N ).
RHO (input) REAL
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input) REAL array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
W (input) REAL array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector.
S (output) REAL array, dimension (LDS, K)
Will contain the eigenvectors of the repaired matrix which
will be stored for subsequent Z vector calculation and
multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max( 1, K ).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void slaed9(int k, int kstart, int kstop, int n, float[] d, int _d_offset, float[] q, int _q_offset, int ldq, float rho, float[] dlamda, int _dlamda_offset, float[] w, int _w_offset, float[] s, int _s_offset, int lds, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAED9 finds the roots of the secular equation, as defined by the
values in D, Z, and RHO, between KSTART and KSTOP. It makes the
appropriate calls to SLAED4 and then stores the new matrix of
eigenvectors for use in calculating the next level of Z vectors.
Arguments
=========
K (input) INTEGER
The number of terms in the rational function to be solved by
SLAED4. K >= 0.
KSTART (input) INTEGER
KSTOP (input) INTEGER
The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
are to be computed. 1 <= KSTART <= KSTOP <= K.
N (input) INTEGER
The number of rows and columns in the Q matrix.
N >= K (delation may result in N > K).
D (output) REAL array, dimension (N)
D(I) contains the updated eigenvalues
for KSTART <= I <= KSTOP.
Q (workspace) REAL array, dimension (LDQ,N)
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max( 1, N ).
RHO (input) REAL
The value of the parameter in the rank one update equation.
RHO >= 0 required.
DLAMDA (input) REAL array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
W (input) REAL array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector.
S (output) REAL array, dimension (LDS, K)
Will contain the eigenvectors of the repaired matrix which
will be stored for subsequent Z vector calculation and
multiplied by the previously accumulated eigenvectors
to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max( 1, K ).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void slaeda(int n, int tlvls, int curlvl, int curpbm, int[] prmptr, int[] perm, int[] givptr, int[] givcol, float[] givnum, float[] q, int[] qptr, float[] z, float[] ztemp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEDA computes the Z vector corresponding to the merge step in the
CURLVLth step of the merge process with TLVLS steps for the CURPBMth
problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= curlvl <= tlvls.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and incidentally the
size of the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) REAL array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
Q (input) REAL array, dimension (N**2)
Contains the square eigenblocks from previous levels, the
starting positions for blocks are given by QPTR.
QPTR (input) INTEGER array, dimension (N+2)
Contains a list of pointers which indicate where in Q an
eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
the size of the block.
Z (output) REAL array, dimension (N)
On output this vector contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
ZTEMP (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaeda(int n, int tlvls, int curlvl, int curpbm, int[] prmptr, int _prmptr_offset, int[] perm, int _perm_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, float[] givnum, int _givnum_offset, float[] q, int _q_offset, int[] qptr, int _qptr_offset, float[] z, int _z_offset, float[] ztemp, int _ztemp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEDA computes the Z vector corresponding to the merge step in the
CURLVLth step of the merge process with TLVLS steps for the CURPBMth
problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= curlvl <= tlvls.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and incidentally the
size of the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) REAL array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
Q (input) REAL array, dimension (N**2)
Contains the square eigenblocks from previous levels, the
starting positions for blocks are given by QPTR.
QPTR (input) INTEGER array, dimension (N+2)
Contains a list of pointers which indicate where in Q an
eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
the size of the block.
Z (output) REAL array, dimension (N)
On output this vector contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).
ZTEMP (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaein(boolean rightv, boolean noinit, int n, float[] h, int ldh, float wr, float wi, float[] vr, float[] vi, float[] b, int ldb, float[] work, float eps3, float smlnum, float bignum, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEIN uses inverse iteration to find a right or left eigenvector
corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
matrix H.
Arguments
=========
RIGHTV (input) LOGICAL
= .TRUE. : compute right eigenvector;
= .FALSE.: compute left eigenvector.
NOINIT (input) LOGICAL
= .TRUE. : no initial vector supplied in (VR,VI).
= .FALSE.: initial vector supplied in (VR,VI).
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) REAL array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input) REAL
WI (input) REAL
The real and imaginary parts of the eigenvalue of H whose
corresponding right or left eigenvector is to be computed.
VR (input/output) REAL array, dimension (N)
VI (input/output) REAL array, dimension (N)
On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
a real starting vector for inverse iteration using the real
eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
must contain the real and imaginary parts of a complex
starting vector for inverse iteration using the complex
eigenvalue (WR,WI); otherwise VR and VI need not be set.
On exit, if WI = 0.0 (real eigenvalue), VR contains the
computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
VR and VI contain the real and imaginary parts of the
computed complex eigenvector. The eigenvector is normalized
so that the component of largest magnitude has magnitude 1;
here the magnitude of a complex number (x,y) is taken to be
|x| + |y|.
VI is not referenced if WI = 0.0.
B (workspace) REAL array, dimension (LDB,N)
LDB (input) INTEGER
The leading dimension of the array B. LDB >= N+1.
WORK (workspace) REAL array, dimension (N)
EPS3 (input) REAL
A small machine-dependent value which is used to perturb
close eigenvalues, and to replace zero pivots.
SMLNUM (input) REAL
A machine-dependent value close to the underflow threshold.
BIGNUM (input) REAL
A machine-dependent value close to the overflow threshold.
INFO (output) INTEGER
= 0: successful exit
= 1: inverse iteration did not converge; VR is set to the
last iterate, and so is VI if WI.ne.0.0.
=====================================================================
.. Parameters ..
public void slaein(boolean rightv, boolean noinit, int n, float[] h, int _h_offset, int ldh, float wr, float wi, float[] vr, int _vr_offset, float[] vi, int _vi_offset, float[] b, int _b_offset, int ldb, float[] work, int _work_offset, float eps3, float smlnum, float bignum, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEIN uses inverse iteration to find a right or left eigenvector
corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
matrix H.
Arguments
=========
RIGHTV (input) LOGICAL
= .TRUE. : compute right eigenvector;
= .FALSE.: compute left eigenvector.
NOINIT (input) LOGICAL
= .TRUE. : no initial vector supplied in (VR,VI).
= .FALSE.: initial vector supplied in (VR,VI).
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) REAL array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (input) REAL
WI (input) REAL
The real and imaginary parts of the eigenvalue of H whose
corresponding right or left eigenvector is to be computed.
VR (input/output) REAL array, dimension (N)
VI (input/output) REAL array, dimension (N)
On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
a real starting vector for inverse iteration using the real
eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
must contain the real and imaginary parts of a complex
starting vector for inverse iteration using the complex
eigenvalue (WR,WI); otherwise VR and VI need not be set.
On exit, if WI = 0.0 (real eigenvalue), VR contains the
computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
VR and VI contain the real and imaginary parts of the
computed complex eigenvector. The eigenvector is normalized
so that the component of largest magnitude has magnitude 1;
here the magnitude of a complex number (x,y) is taken to be
|x| + |y|.
VI is not referenced if WI = 0.0.
B (workspace) REAL array, dimension (LDB,N)
LDB (input) INTEGER
The leading dimension of the array B. LDB >= N+1.
WORK (workspace) REAL array, dimension (N)
EPS3 (input) REAL
A small machine-dependent value which is used to perturb
close eigenvalues, and to replace zero pivots.
SMLNUM (input) REAL
A machine-dependent value close to the underflow threshold.
BIGNUM (input) REAL
A machine-dependent value close to the overflow threshold.
INFO (output) INTEGER
= 0: successful exit
= 1: inverse iteration did not converge; VR is set to the
last iterate, and so is VI if WI.ne.0.0.
=====================================================================
.. Parameters ..
public void slaev2(float a, float b, float c, org.netlib.util.floatW rt1, org.netlib.util.floatW rt2, org.netlib.util.floatW cs1, org.netlib.util.floatW sn1)
LAPACK
..
Purpose
=======
SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
[ A B ]
[ B C ].
On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
eigenvector for RT1, giving the decomposition
[ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
[-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
Arguments
=========
A (input) REAL
The (1,1) element of the 2-by-2 matrix.
B (input) REAL
The (1,2) element and the conjugate of the (2,1) element of
the 2-by-2 matrix.
C (input) REAL
The (2,2) element of the 2-by-2 matrix.
RT1 (output) REAL
The eigenvalue of larger absolute value.
RT2 (output) REAL
The eigenvalue of smaller absolute value.
CS1 (output) REAL
SN1 (output) REAL
The vector (CS1, SN1) is a unit right eigenvector for RT1.
Further Details
===============
RT1 is accurate to a few ulps barring over/underflow.
RT2 may be inaccurate if there is massive cancellation in the
determinant A*C-B*B; higher precision or correctly rounded or
correctly truncated arithmetic would be needed to compute RT2
accurately in all cases.
CS1 and SN1 are accurate to a few ulps barring over/underflow.
Overflow is possible only if RT1 is within a factor of 5 of overflow.
Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.
=====================================================================
.. Parameters ..
public void slaexc(boolean wantq, int n, float[] t, int ldt, float[] q, int ldq, int j1, int n1, int n2, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
an upper quasi-triangular matrix T by an orthogonal similarity
transformation.
T must be in Schur canonical form, that is, block upper triangular
with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
has its diagonal elemnts equal and its off-diagonal elements of
opposite sign.
Arguments
=========
WANTQ (input) LOGICAL
= .TRUE. : accumulate the transformation in the matrix Q;
= .FALSE.: do not accumulate the transformation.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) REAL array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, the updated matrix T, again in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
On exit, if WANTQ is .TRUE., the updated matrix Q.
If WANTQ is .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
J1 (input) INTEGER
The index of the first row of the first block T11.
N1 (input) INTEGER
The order of the first block T11. N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block T22. N2 = 0, 1 or 2.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
= 1: the transformed matrix T would be too far from Schur
form; the blocks are not swapped and T and Q are
unchanged.
=====================================================================
.. Parameters ..
public void slaexc(boolean wantq, int n, float[] t, int _t_offset, int ldt, float[] q, int _q_offset, int ldq, int j1, int n1, int n2, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
an upper quasi-triangular matrix T by an orthogonal similarity
transformation.
T must be in Schur canonical form, that is, block upper triangular
with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
has its diagonal elemnts equal and its off-diagonal elements of
opposite sign.
Arguments
=========
WANTQ (input) LOGICAL
= .TRUE. : accumulate the transformation in the matrix Q;
= .FALSE.: do not accumulate the transformation.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) REAL array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, the updated matrix T, again in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
On exit, if WANTQ is .TRUE., the updated matrix Q.
If WANTQ is .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
J1 (input) INTEGER
The index of the first row of the first block T11.
N1 (input) INTEGER
The order of the first block T11. N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block T22. N2 = 0, 1 or 2.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
= 1: the transformed matrix T would be too far from Schur
form; the blocks are not swapped and T and Q are
unchanged.
=====================================================================
.. Parameters ..
public void slag2(float[] a, int lda, float[] b, int ldb, float safmin, org.netlib.util.floatW scale1, org.netlib.util.floatW scale2, org.netlib.util.floatW wr1, org.netlib.util.floatW wr2, org.netlib.util.floatW wi)
LAPACK
..
Purpose
=======
SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
problem A - w B, with scaling as necessary to avoid over-/underflow.
The scaling factor "s" results in a modified eigenvalue equation
s A - w B
where s is a non-negative scaling factor chosen so that w, w B,
and s A do not overflow and, if possible, do not underflow, either.
Arguments
=========
A (input) REAL array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
is less than 1/SAFMIN. Entries less than
sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= 2.
B (input) REAL array, dimension (LDB, 2)
On entry, the 2 x 2 upper triangular matrix B. It is
assumed that the one-norm of B is less than 1/SAFMIN. The
diagonals should be at least sqrt(SAFMIN) times the largest
element of B (in absolute value); if a diagonal is smaller
than that, then +/- sqrt(SAFMIN) will be used instead of
that diagonal.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= 2.
SAFMIN (input) REAL
The smallest positive number s.t. 1/SAFMIN does not
overflow. (This should always be SLAMCH('S') -- it is an
argument in order to avoid having to call SLAMCH frequently.)
SCALE1 (output) REAL
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the first eigenvalue. If
the eigenvalues are complex, then the eigenvalues are
( WR1 +/- WI i ) / SCALE1 (which may lie outside the
exponent range of the machine), SCALE1=SCALE2, and SCALE1
will always be positive. If the eigenvalues are real, then
the first (real) eigenvalue is WR1 / SCALE1 , but this may
overflow or underflow, and in fact, SCALE1 may be zero or
less than the underflow threshhold if the exact eigenvalue
is sufficiently large.
SCALE2 (output) REAL
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the second eigenvalue. If
the eigenvalues are complex, then SCALE2=SCALE1. If the
eigenvalues are real, then the second (real) eigenvalue is
WR2 / SCALE2 , but this may overflow or underflow, and in
fact, SCALE2 may be zero or less than the underflow
threshhold if the exact eigenvalue is sufficiently large.
WR1 (output) REAL
If the eigenvalue is real, then WR1 is SCALE1 times the
eigenvalue closest to the (2,2) element of A B**(-1). If the
eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
part of the eigenvalues.
WR2 (output) REAL
If the eigenvalue is real, then WR2 is SCALE2 times the
other eigenvalue. If the eigenvalue is complex, then
WR1=WR2 is SCALE1 times the real part of the eigenvalues.
WI (output) REAL
If the eigenvalue is real, then WI is zero. If the
eigenvalue is complex, then WI is SCALE1 times the imaginary
part of the eigenvalues. WI will always be non-negative.
=====================================================================
.. Parameters ..
public void slag2(float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float safmin, org.netlib.util.floatW scale1, org.netlib.util.floatW scale2, org.netlib.util.floatW wr1, org.netlib.util.floatW wr2, org.netlib.util.floatW wi)
LAPACK
..
Purpose
=======
SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
problem A - w B, with scaling as necessary to avoid over-/underflow.
The scaling factor "s" results in a modified eigenvalue equation
s A - w B
where s is a non-negative scaling factor chosen so that w, w B,
and s A do not overflow and, if possible, do not underflow, either.
Arguments
=========
A (input) REAL array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
is less than 1/SAFMIN. Entries less than
sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= 2.
B (input) REAL array, dimension (LDB, 2)
On entry, the 2 x 2 upper triangular matrix B. It is
assumed that the one-norm of B is less than 1/SAFMIN. The
diagonals should be at least sqrt(SAFMIN) times the largest
element of B (in absolute value); if a diagonal is smaller
than that, then +/- sqrt(SAFMIN) will be used instead of
that diagonal.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= 2.
SAFMIN (input) REAL
The smallest positive number s.t. 1/SAFMIN does not
overflow. (This should always be SLAMCH('S') -- it is an
argument in order to avoid having to call SLAMCH frequently.)
SCALE1 (output) REAL
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the first eigenvalue. If
the eigenvalues are complex, then the eigenvalues are
( WR1 +/- WI i ) / SCALE1 (which may lie outside the
exponent range of the machine), SCALE1=SCALE2, and SCALE1
will always be positive. If the eigenvalues are real, then
the first (real) eigenvalue is WR1 / SCALE1 , but this may
overflow or underflow, and in fact, SCALE1 may be zero or
less than the underflow threshhold if the exact eigenvalue
is sufficiently large.
SCALE2 (output) REAL
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the second eigenvalue. If
the eigenvalues are complex, then SCALE2=SCALE1. If the
eigenvalues are real, then the second (real) eigenvalue is
WR2 / SCALE2 , but this may overflow or underflow, and in
fact, SCALE2 may be zero or less than the underflow
threshhold if the exact eigenvalue is sufficiently large.
WR1 (output) REAL
If the eigenvalue is real, then WR1 is SCALE1 times the
eigenvalue closest to the (2,2) element of A B**(-1). If the
eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
part of the eigenvalues.
WR2 (output) REAL
If the eigenvalue is real, then WR2 is SCALE2 times the
other eigenvalue. If the eigenvalue is complex, then
WR1=WR2 is SCALE1 times the real part of the eigenvalues.
WI (output) REAL
If the eigenvalue is real, then WI is zero. If the
eigenvalue is complex, then WI is SCALE1 times the imaginary
part of the eigenvalues. WI will always be non-negative.
=====================================================================
.. Parameters ..
public void slag2d(int m, int n, float[] sa, int ldsa, double[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAG2D converts a SINGLE PRECISION matrix, SA, to a DOUBLE
PRECISION matrix, A.
Note that while it is possible to overflow while converting
from double to single, it is not possible to overflow when
converting from single to double.
This is a helper routine so there is no argument checking.
Arguments
=========
M (input) INTEGER
The number of lines of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
SA (output) REAL array, dimension (LDSA,N)
On exit, the M-by-N coefficient matrix SA.
LDSA (input) INTEGER
The leading dimension of the array SA. LDSA >= max(1,M).
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N coefficient matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
= 0: successful exit
=========
.. Local Scalars ..
public void slag2d(int m, int n, float[] sa, int _sa_offset, int ldsa, double[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAG2D converts a SINGLE PRECISION matrix, SA, to a DOUBLE
PRECISION matrix, A.
Note that while it is possible to overflow while converting
from double to single, it is not possible to overflow when
converting from single to double.
This is a helper routine so there is no argument checking.
Arguments
=========
M (input) INTEGER
The number of lines of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
SA (output) REAL array, dimension (LDSA,N)
On exit, the M-by-N coefficient matrix SA.
LDSA (input) INTEGER
The leading dimension of the array SA. LDSA >= max(1,M).
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N coefficient matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
= 0: successful exit
=========
.. Local Scalars ..
public void slags2(boolean upper, float a1, float a2, float a3, float b1, float b2, float b3, org.netlib.util.floatW csu, org.netlib.util.floatW snu, org.netlib.util.floatW csv, org.netlib.util.floatW snv, org.netlib.util.floatW csq, org.netlib.util.floatW snq)
LAPACK
..
Purpose
=======
SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
U'*A*Q = U'*( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V'*B*Q = V'*( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U'*A*Q = U'*( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V'*B*Q = V'*( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ )
( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )
Z' denotes the transpose of Z.
Arguments
=========
UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A1 (input) REAL
A2 (input) REAL
A3 (input) REAL
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
B1 (input) REAL
B2 (input) REAL
B3 (input) REAL
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
CSU (output) REAL
SNU (output) REAL
The desired orthogonal matrix U.
CSV (output) REAL
SNV (output) REAL
The desired orthogonal matrix V.
CSQ (output) REAL
SNQ (output) REAL
The desired orthogonal matrix Q.
=====================================================================
.. Parameters ..
public void slagtf(int n, float[] a, float lambda, float[] b, float[] c, float tol, float[] d, int[] in, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
tridiagonal matrix and lambda is a scalar, as
T - lambda*I = PLU,
where P is a permutation matrix, L is a unit lower tridiagonal matrix
with at most one non-zero sub-diagonal elements per column and U is
an upper triangular matrix with at most two non-zero super-diagonal
elements per column.
The factorization is obtained by Gaussian elimination with partial
pivoting and implicit row scaling.
The parameter LAMBDA is included in the routine so that SLAGTF may
be used, in conjunction with SLAGTS, to obtain eigenvectors of T by
inverse iteration.
Arguments
=========
N (input) INTEGER
The order of the matrix T.
A (input/output) REAL array, dimension (N)
On entry, A must contain the diagonal elements of T.
On exit, A is overwritten by the n diagonal elements of the
upper triangular matrix U of the factorization of T.
LAMBDA (input) REAL
On entry, the scalar lambda.
B (input/output) REAL array, dimension (N-1)
On entry, B must contain the (n-1) super-diagonal elements of
T.
On exit, B is overwritten by the (n-1) super-diagonal
elements of the matrix U of the factorization of T.
C (input/output) REAL array, dimension (N-1)
On entry, C must contain the (n-1) sub-diagonal elements of
T.
On exit, C is overwritten by the (n-1) sub-diagonal elements
of the matrix L of the factorization of T.
TOL (input) REAL
On entry, a relative tolerance used to indicate whether or
not the matrix (T - lambda*I) is nearly singular. TOL should
normally be chose as approximately the largest relative error
in the elements of T. For example, if the elements of T are
correct to about 4 significant figures, then TOL should be
set to about 5*10**(-4). If TOL is supplied as less than eps,
where eps is the relative machine precision, then the value
eps is used in place of TOL.
D (output) REAL array, dimension (N-2)
On exit, D is overwritten by the (n-2) second super-diagonal
elements of the matrix U of the factorization of T.
IN (output) INTEGER array, dimension (N)
On exit, IN contains details of the permutation matrix P. If
an interchange occurred at the kth step of the elimination,
then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
returns the smallest positive integer j such that
abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
where norm( A(j) ) denotes the sum of the absolute values of
the jth row of the matrix A. If no such j exists then IN(n)
is returned as zero. If IN(n) is returned as positive, then a
diagonal element of U is small, indicating that
(T - lambda*I) is singular or nearly singular,
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -k, the kth argument had an illegal value
=====================================================================
.. Parameters ..
public void slagtf(int n, float[] a, int _a_offset, float lambda, float[] b, int _b_offset, float[] c, int _c_offset, float tol, float[] d, int _d_offset, int[] in, int _in_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
tridiagonal matrix and lambda is a scalar, as
T - lambda*I = PLU,
where P is a permutation matrix, L is a unit lower tridiagonal matrix
with at most one non-zero sub-diagonal elements per column and U is
an upper triangular matrix with at most two non-zero super-diagonal
elements per column.
The factorization is obtained by Gaussian elimination with partial
pivoting and implicit row scaling.
The parameter LAMBDA is included in the routine so that SLAGTF may
be used, in conjunction with SLAGTS, to obtain eigenvectors of T by
inverse iteration.
Arguments
=========
N (input) INTEGER
The order of the matrix T.
A (input/output) REAL array, dimension (N)
On entry, A must contain the diagonal elements of T.
On exit, A is overwritten by the n diagonal elements of the
upper triangular matrix U of the factorization of T.
LAMBDA (input) REAL
On entry, the scalar lambda.
B (input/output) REAL array, dimension (N-1)
On entry, B must contain the (n-1) super-diagonal elements of
T.
On exit, B is overwritten by the (n-1) super-diagonal
elements of the matrix U of the factorization of T.
C (input/output) REAL array, dimension (N-1)
On entry, C must contain the (n-1) sub-diagonal elements of
T.
On exit, C is overwritten by the (n-1) sub-diagonal elements
of the matrix L of the factorization of T.
TOL (input) REAL
On entry, a relative tolerance used to indicate whether or
not the matrix (T - lambda*I) is nearly singular. TOL should
normally be chose as approximately the largest relative error
in the elements of T. For example, if the elements of T are
correct to about 4 significant figures, then TOL should be
set to about 5*10**(-4). If TOL is supplied as less than eps,
where eps is the relative machine precision, then the value
eps is used in place of TOL.
D (output) REAL array, dimension (N-2)
On exit, D is overwritten by the (n-2) second super-diagonal
elements of the matrix U of the factorization of T.
IN (output) INTEGER array, dimension (N)
On exit, IN contains details of the permutation matrix P. If
an interchange occurred at the kth step of the elimination,
then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
returns the smallest positive integer j such that
abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
where norm( A(j) ) denotes the sum of the absolute values of
the jth row of the matrix A. If no such j exists then IN(n)
is returned as zero. If IN(n) is returned as positive, then a
diagonal element of U is small, indicating that
(T - lambda*I) is singular or nearly singular,
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -k, the kth argument had an illegal value
=====================================================================
.. Parameters ..
public void slagtm(String trans, int n, int nrhs, float alpha, float[] dl, float[] d, float[] du, float[] x, int ldx, float beta, float[] b, int ldb)
LAPACK
..
Purpose
=======
SLAGTM performs a matrix-vector product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta * B
= 'C': Conjugate transpose = Transpose
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA (input) REAL
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL (input) REAL array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) REAL array, dimension (N)
The diagonal elements of T.
DU (input) REAL array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) REAL array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA (input) REAL
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(N,1).
=====================================================================
.. Parameters ..
public void slagtm(String trans, int n, int nrhs, float alpha, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset, float[] x, int _x_offset, int ldx, float beta, float[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
SLAGTM performs a matrix-vector product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.
Arguments
=========
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta * B
= 'C': Conjugate transpose = Transpose
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA (input) REAL
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL (input) REAL array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) REAL array, dimension (N)
The diagonal elements of T.
DU (input) REAL array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) REAL array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA (input) REAL
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(N,1).
=====================================================================
.. Parameters ..
public void slagts(int job, int n, float[] a, float[] b, float[] c, float[] d, int[] in, float[] y, org.netlib.util.floatW tol, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAGTS may be used to solve one of the systems of equations
(T - lambda*I)*x = y or (T - lambda*I)'*x = y,
where T is an n by n tridiagonal matrix, for x, following the
factorization of (T - lambda*I) as
(T - lambda*I) = P*L*U ,
by routine SLAGTF. The choice of equation to be solved is
controlled by the argument JOB, and in each case there is an option
to perturb zero or very small diagonal elements of U, this option
being intended for use in applications such as inverse iteration.
Arguments
=========
JOB (input) INTEGER
Specifies the job to be performed by SLAGTS as follows:
= 1: The equations (T - lambda*I)x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -1: The equations (T - lambda*I)x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
= 2: The equations (T - lambda*I)'x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -2: The equations (T - lambda*I)'x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
N (input) INTEGER
The order of the matrix T.
A (input) REAL array, dimension (N)
On entry, A must contain the diagonal elements of U as
returned from SLAGTF.
B (input) REAL array, dimension (N-1)
On entry, B must contain the first super-diagonal elements of
U as returned from SLAGTF.
C (input) REAL array, dimension (N-1)
On entry, C must contain the sub-diagonal elements of L as
returned from SLAGTF.
D (input) REAL array, dimension (N-2)
On entry, D must contain the second super-diagonal elements
of U as returned from SLAGTF.
IN (input) INTEGER array, dimension (N)
On entry, IN must contain details of the matrix P as returned
from SLAGTF.
Y (input/output) REAL array, dimension (N)
On entry, the right hand side vector y.
On exit, Y is overwritten by the solution vector x.
TOL (input/output) REAL
On entry, with JOB .lt. 0, TOL should be the minimum
perturbation to be made to very small diagonal elements of U.
TOL should normally be chosen as about eps*norm(U), where eps
is the relative machine precision, but if TOL is supplied as
non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
If JOB .gt. 0 then TOL is not referenced.
On exit, TOL is changed as described above, only if TOL is
non-positive on entry. Otherwise TOL is unchanged.
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -i, the i-th argument had an illegal value
.gt. 0: overflow would occur when computing the INFO(th)
element of the solution vector x. This can only occur
when JOB is supplied as positive and either means
that a diagonal element of U is very small, or that
the elements of the right-hand side vector y are very
large.
=====================================================================
.. Parameters ..
public void slagts(int job, int n, float[] a, int _a_offset, float[] b, int _b_offset, float[] c, int _c_offset, float[] d, int _d_offset, int[] in, int _in_offset, float[] y, int _y_offset, org.netlib.util.floatW tol, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAGTS may be used to solve one of the systems of equations
(T - lambda*I)*x = y or (T - lambda*I)'*x = y,
where T is an n by n tridiagonal matrix, for x, following the
factorization of (T - lambda*I) as
(T - lambda*I) = P*L*U ,
by routine SLAGTF. The choice of equation to be solved is
controlled by the argument JOB, and in each case there is an option
to perturb zero or very small diagonal elements of U, this option
being intended for use in applications such as inverse iteration.
Arguments
=========
JOB (input) INTEGER
Specifies the job to be performed by SLAGTS as follows:
= 1: The equations (T - lambda*I)x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -1: The equations (T - lambda*I)x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
= 2: The equations (T - lambda*I)'x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -2: The equations (T - lambda*I)'x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
N (input) INTEGER
The order of the matrix T.
A (input) REAL array, dimension (N)
On entry, A must contain the diagonal elements of U as
returned from SLAGTF.
B (input) REAL array, dimension (N-1)
On entry, B must contain the first super-diagonal elements of
U as returned from SLAGTF.
C (input) REAL array, dimension (N-1)
On entry, C must contain the sub-diagonal elements of L as
returned from SLAGTF.
D (input) REAL array, dimension (N-2)
On entry, D must contain the second super-diagonal elements
of U as returned from SLAGTF.
IN (input) INTEGER array, dimension (N)
On entry, IN must contain details of the matrix P as returned
from SLAGTF.
Y (input/output) REAL array, dimension (N)
On entry, the right hand side vector y.
On exit, Y is overwritten by the solution vector x.
TOL (input/output) REAL
On entry, with JOB .lt. 0, TOL should be the minimum
perturbation to be made to very small diagonal elements of U.
TOL should normally be chosen as about eps*norm(U), where eps
is the relative machine precision, but if TOL is supplied as
non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
If JOB .gt. 0 then TOL is not referenced.
On exit, TOL is changed as described above, only if TOL is
non-positive on entry. Otherwise TOL is unchanged.
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -i, the i-th argument had an illegal value
.gt. 0: overflow would occur when computing the INFO(th)
element of the solution vector x. This can only occur
when JOB is supplied as positive and either means
that a diagonal element of U is very small, or that
the elements of the right-hand side vector y are very
large.
=====================================================================
.. Parameters ..
public void slagv2(float[] a, int lda, float[] b, int ldb, float[] alphar, float[] alphai, float[] beta, org.netlib.util.floatW csl, org.netlib.util.floatW snl, org.netlib.util.floatW csr, org.netlib.util.floatW snr)
LAPACK
..
Purpose
=======
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0.
Arguments
=========
A (input/output) REAL array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A.
On exit, A is overwritten by the ``A-part'' of the
generalized Schur form.
LDA (input) INTEGER
THe leading dimension of the array A. LDA >= 2.
B (input/output) REAL array, dimension (LDB, 2)
On entry, the upper triangular 2 x 2 matrix B.
On exit, B is overwritten by the ``B-part'' of the
generalized Schur form.
LDB (input) INTEGER
THe leading dimension of the array B. LDB >= 2.
ALPHAR (output) REAL array, dimension (2)
ALPHAI (output) REAL array, dimension (2)
BETA (output) REAL array, dimension (2)
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
be zero.
CSL (output) REAL
The cosine of the left rotation matrix.
SNL (output) REAL
The sine of the left rotation matrix.
CSR (output) REAL
The cosine of the right rotation matrix.
SNR (output) REAL
The sine of the right rotation matrix.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void slagv2(float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, org.netlib.util.floatW csl, org.netlib.util.floatW snl, org.netlib.util.floatW csr, org.netlib.util.floatW snr)
LAPACK
..
Purpose
=======
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0.
Arguments
=========
A (input/output) REAL array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A.
On exit, A is overwritten by the ``A-part'' of the
generalized Schur form.
LDA (input) INTEGER
THe leading dimension of the array A. LDA >= 2.
B (input/output) REAL array, dimension (LDB, 2)
On entry, the upper triangular 2 x 2 matrix B.
On exit, B is overwritten by the ``B-part'' of the
generalized Schur form.
LDB (input) INTEGER
THe leading dimension of the array B. LDB >= 2.
ALPHAR (output) REAL array, dimension (2)
ALPHAI (output) REAL array, dimension (2)
BETA (output) REAL array, dimension (2)
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
be zero.
CSL (output) REAL
The cosine of the left rotation matrix.
SNL (output) REAL
The sine of the left rotation matrix.
CSR (output) REAL
The cosine of the right rotation matrix.
SNR (output) REAL
The sine of the right rotation matrix.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void slahqr(boolean wantt, boolean wantz, int n, int ilo, int ihi, float[] h, int ldh, float[] wr, float[] wi, int iloz, int ihiz, float[] z, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAHQR is an auxiliary routine called by SHSEQR to update the
eigenvalues and Schur decomposition already computed by SHSEQR, by
dealing with the Hessenberg submatrix in rows and columns ILO to
IHI.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper quasi-triangular in
rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
ILO = 1). SLAHQR works primarily with the Hessenberg
submatrix in rows and columns ILO to IHI, but applies
transformations to all of H if WANTT is .TRUE..
1 <= ILO <= max(1,IHI); IHI <= N.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO is zero and if WANTT is .TRUE., H is upper
quasi-triangular in rows and columns ILO:IHI, with any
2-by-2 diagonal blocks in standard form. If INFO is zero
and WANTT is .FALSE., the contents of H are unspecified on
exit. The output state of H if INFO is nonzero is given
below under the description of INFO.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues ILO to IHI are stored in the corresponding
elements of WR and WI. If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
eigenvalues are stored in the same order as on the diagonal
of the Schur form returned in H, with WR(i) = H(i,i), and, if
H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
Z (input/output) REAL array, dimension (LDZ,N)
If WANTZ is .TRUE., on entry Z must contain the current
matrix Z of transformations accumulated by SHSEQR, and on
exit Z has been updated; transformations are applied only to
the submatrix Z(ILOZ:IHIZ,ILO:IHI).
If WANTZ is .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
.GT. 0: If INFO = i, SLAHQR failed to compute all the
eigenvalues ILO to IHI in a total of 30 iterations
per eigenvalue; elements i+1:ihi of WR and WI
contain those eigenvalues which have been
successfully computed.
If INFO .GT. 0 and WANTT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the
eigenvalues of the upper Hessenberg matrix rows
and columns ILO thorugh INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthognal matrix. The final
value of H is upper Hessenberg and triangular in
rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*)
(regardless of the value of WANTT.)
Further Details
===============
02-96 Based on modifications by
David Day, Sandia National Laboratory, USA
12-04 Further modifications by
Ralph Byers, University of Kansas, USA
This is a modified version of SLAHQR from LAPACK version 3.0.
It is (1) more robust against overflow and underflow and
(2) adopts the more conservative Ahues & Tisseur stopping
criterion (LAWN 122, 1997).
=========================================================
.. Parameters ..
public void slahqr(boolean wantt, boolean wantz, int n, int ilo, int ihi, float[] h, int _h_offset, int ldh, float[] wr, int _wr_offset, float[] wi, int _wi_offset, int iloz, int ihiz, float[] z, int _z_offset, int ldz, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAHQR is an auxiliary routine called by SHSEQR to update the
eigenvalues and Schur decomposition already computed by SHSEQR, by
dealing with the Hessenberg submatrix in rows and columns ILO to
IHI.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper quasi-triangular in
rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
ILO = 1). SLAHQR works primarily with the Hessenberg
submatrix in rows and columns ILO to IHI, but applies
transformations to all of H if WANTT is .TRUE..
1 <= ILO <= max(1,IHI); IHI <= N.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO is zero and if WANTT is .TRUE., H is upper
quasi-triangular in rows and columns ILO:IHI, with any
2-by-2 diagonal blocks in standard form. If INFO is zero
and WANTT is .FALSE., the contents of H are unspecified on
exit. The output state of H if INFO is nonzero is given
below under the description of INFO.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues ILO to IHI are stored in the corresponding
elements of WR and WI. If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
eigenvalues are stored in the same order as on the diagonal
of the Schur form returned in H, with WR(i) = H(i,i), and, if
H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
Z (input/output) REAL array, dimension (LDZ,N)
If WANTZ is .TRUE., on entry Z must contain the current
matrix Z of transformations accumulated by SHSEQR, and on
exit Z has been updated; transformations are applied only to
the submatrix Z(ILOZ:IHIZ,ILO:IHI).
If WANTZ is .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
.GT. 0: If INFO = i, SLAHQR failed to compute all the
eigenvalues ILO to IHI in a total of 30 iterations
per eigenvalue; elements i+1:ihi of WR and WI
contain those eigenvalues which have been
successfully computed.
If INFO .GT. 0 and WANTT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the
eigenvalues of the upper Hessenberg matrix rows
and columns ILO thorugh INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthognal matrix. The final
value of H is upper Hessenberg and triangular in
rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*)
(regardless of the value of WANTT.)
Further Details
===============
02-96 Based on modifications by
David Day, Sandia National Laboratory, USA
12-04 Further modifications by
Ralph Byers, University of Kansas, USA
This is a modified version of SLAHQR from LAPACK version 3.0.
It is (1) more robust against overflow and underflow and
(2) adopts the more conservative Ahues & Tisseur stopping
criterion (LAWN 122, 1997).
=========================================================
.. Parameters ..
public void slahr2(int n, int k, int nb, float[] a, int lda, float[] tau, float[] t, int ldt, float[] y, int ldy)
LAPACK
..
Purpose
=======
SLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an auxiliary routine called by SGEHRD.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
K < N.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) REAL array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) REAL array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) REAL array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a a a a a )
( a a a a a )
( a a a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's SLAHRD
incorporating improvements proposed by Quintana-Orti and Van de
Gejin. Note that the entries of A(1:K,2:NB) differ from those
returned by the original LAPACK routine. This function is
not backward compatible with LAPACK3.0.
=====================================================================
.. Parameters ..
public void slahr2(int n, int k, int nb, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] t, int _t_offset, int ldt, float[] y, int _y_offset, int ldy)
LAPACK
..
Purpose
=======
SLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an auxiliary routine called by SGEHRD.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
K < N.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) REAL array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) REAL array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) REAL array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a a a a a )
( a a a a a )
( a a a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's SLAHRD
incorporating improvements proposed by Quintana-Orti and Van de
Gejin. Note that the entries of A(1:K,2:NB) differ from those
returned by the original LAPACK routine. This function is
not backward compatible with LAPACK3.0.
=====================================================================
.. Parameters ..
public void slahrd(int n, int k, int nb, float[] a, int lda, float[] tau, float[] t, int ldt, float[] y, int ldy)
LAPACK
..
Purpose
=======
SLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an OBSOLETE auxiliary routine.
This routine will be 'deprecated' in a future release.
Please use the new routine SLAHR2 instead.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) REAL array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) REAL array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) REAL array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a h a a a )
( a h a a a )
( a h a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void slahrd(int n, int k, int nb, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] t, int _t_offset, int ldt, float[] y, int _y_offset, int ldy)
LAPACK
..
Purpose
=======
SLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal similarity transformation
Q' * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
This is an OBSOLETE auxiliary routine.
This routine will be 'deprecated' in a future release.
Please use the new routine SLAHR2 instead.
Arguments
=========
N (input) INTEGER
The order of the matrix A.
K (input) INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
NB (input) INTEGER
The number of columns to be reduced.
A (input/output) REAL array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (output) REAL array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T (output) REAL array, dimension (LDT,NB)
The upper triangular matrix T.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= NB.
Y (output) REAL array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY (input) INTEGER
The leading dimension of the array Y. LDY >= N.
Further Details
===============
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V') * (A - Y*V').
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a h a a a )
( a h a a a )
( a h a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void slaic1(int job, int j, float[] x, float sest, float[] w, float gamma, org.netlib.util.floatW sestpr, org.netlib.util.floatW s, org.netlib.util.floatW c)
LAPACK
..
Purpose
=======
SLAIC1 applies one step of incremental condition estimation in
its simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then SLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w' gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular
value is computed.
Note that [s c]' and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x'*w.
Arguments
=========
JOB (input) INTEGER
= 1: an estimate for the largest singular value is computed.
= 2: an estimate for the smallest singular value is computed.
J (input) INTEGER
Length of X and W
X (input) REAL array, dimension (J)
The j-vector x.
SEST (input) REAL
Estimated singular value of j by j matrix L
W (input) REAL array, dimension (J)
The j-vector w.
GAMMA (input) REAL
The diagonal element gamma.
SESTPR (output) REAL
Estimated singular value of (j+1) by (j+1) matrix Lhat.
S (output) REAL
Sine needed in forming xhat.
C (output) REAL
Cosine needed in forming xhat.
=====================================================================
.. Parameters ..
public void slaic1(int job, int j, float[] x, int _x_offset, float sest, float[] w, int _w_offset, float gamma, org.netlib.util.floatW sestpr, org.netlib.util.floatW s, org.netlib.util.floatW c)
LAPACK
..
Purpose
=======
SLAIC1 applies one step of incremental condition estimation in
its simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then SLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w' gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular
value is computed.
Note that [s c]' and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x'*w.
Arguments
=========
JOB (input) INTEGER
= 1: an estimate for the largest singular value is computed.
= 2: an estimate for the smallest singular value is computed.
J (input) INTEGER
Length of X and W
X (input) REAL array, dimension (J)
The j-vector x.
SEST (input) REAL
Estimated singular value of j by j matrix L
W (input) REAL array, dimension (J)
The j-vector w.
GAMMA (input) REAL
The diagonal element gamma.
SESTPR (output) REAL
Estimated singular value of (j+1) by (j+1) matrix Lhat.
S (output) REAL
Sine needed in forming xhat.
C (output) REAL
Cosine needed in forming xhat.
=====================================================================
.. Parameters ..
public boolean slaisnan(float sin1, float sin2)
LAPACK
..
Purpose
=======
This routine is not for general use. It exists solely to avoid
over-optimization in SISNAN.
SLAISNAN checks for NaNs by comparing its two arguments for
inequality. NaN is the only floating-point value where NaN != NaN
returns .TRUE. To check for NaNs, pass the same variable as both
arguments.
Strictly speaking, Fortran does not allow aliasing of function
arguments. So a compiler must assume that the two arguments are
not the same variable, and the test will not be optimized away.
Interprocedural or whole-program optimization may delete this
test. The ISNAN functions will be replaced by the correct
Fortran 03 intrinsic once the intrinsic is widely available.
Arguments
=========
SIN1 (input) REAL
SIN2 (input) REAL
Two numbers to compare for inequality.
=====================================================================
.. Executable Statements ..
public void slaln2(boolean ltrans, int na, int nw, float smin, float ca, float[] a, int lda, float d1, float d2, float[] b, int ldb, float wr, float wi, float[] x, int ldx, org.netlib.util.floatW scale, org.netlib.util.floatW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALN2 solves a system of the form (ca A - w D ) X = s B
or (ca A' - w D) X = s B with possible scaling ("s") and
perturbation of A. (A' means A-transpose.)
A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
real diagonal matrix, w is a real or complex value, and X and B are
NA x 1 matrices -- real if w is real, complex if w is complex. NA
may be 1 or 2.
If w is complex, X and B are represented as NA x 2 matrices,
the first column of each being the real part and the second
being the imaginary part.
"s" is a scaling factor (.LE. 1), computed by SLALN2, which is
so chosen that X can be computed without overflow. X is further
scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
than overflow.
If both singular values of (ca A - w D) are less than SMIN,
SMIN*identity will be used instead of (ca A - w D). If only one
singular value is less than SMIN, one element of (ca A - w D) will be
perturbed enough to make the smallest singular value roughly SMIN.
If both singular values are at least SMIN, (ca A - w D) will not be
perturbed. In any case, the perturbation will be at most some small
multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values
are computed by infinity-norm approximations, and thus will only be
correct to a factor of 2 or so.
Note: all input quantities are assumed to be smaller than overflow
by a reasonable factor. (See BIGNUM.)
Arguments
==========
LTRANS (input) LOGICAL
=.TRUE.: A-transpose will be used.
=.FALSE.: A will be used (not transposed.)
NA (input) INTEGER
The size of the matrix A. It may (only) be 1 or 2.
NW (input) INTEGER
1 if "w" is real, 2 if "w" is complex. It may only be 1
or 2.
SMIN (input) REAL
The desired lower bound on the singular values of A. This
should be a safe distance away from underflow or overflow,
say, between (underflow/machine precision) and (machine
precision * overflow ). (See BIGNUM and ULP.)
CA (input) REAL
The coefficient c, which A is multiplied by.
A (input) REAL array, dimension (LDA,NA)
The NA x NA matrix A.
LDA (input) INTEGER
The leading dimension of A. It must be at least NA.
D1 (input) REAL
The 1,1 element in the diagonal matrix D.
D2 (input) REAL
The 2,2 element in the diagonal matrix D. Not used if NW=1.
B (input) REAL array, dimension (LDB,NW)
The NA x NW matrix B (right-hand side). If NW=2 ("w" is
complex), column 1 contains the real part of B and column 2
contains the imaginary part.
LDB (input) INTEGER
The leading dimension of B. It must be at least NA.
WR (input) REAL
The real part of the scalar "w".
WI (input) REAL
The imaginary part of the scalar "w". Not used if NW=1.
X (output) REAL array, dimension (LDX,NW)
The NA x NW matrix X (unknowns), as computed by SLALN2.
If NW=2 ("w" is complex), on exit, column 1 will contain
the real part of X and column 2 will contain the imaginary
part.
LDX (input) INTEGER
The leading dimension of X. It must be at least NA.
SCALE (output) REAL
The scale factor that B must be multiplied by to insure
that overflow does not occur when computing X. Thus,
(ca A - w D) X will be SCALE*B, not B (ignoring
perturbations of A.) It will be at most 1.
XNORM (output) REAL
The infinity-norm of X, when X is regarded as an NA x NW
real matrix.
INFO (output) INTEGER
An error flag. It will be set to zero if no error occurs,
a negative number if an argument is in error, or a positive
number if ca A - w D had to be perturbed.
The possible values are:
= 0: No error occurred, and (ca A - w D) did not have to be
perturbed.
= 1: (ca A - w D) had to be perturbed to make its smallest
(or only) singular value greater than SMIN.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void slaln2(boolean ltrans, int na, int nw, float smin, float ca, float[] a, int _a_offset, int lda, float d1, float d2, float[] b, int _b_offset, int ldb, float wr, float wi, float[] x, int _x_offset, int ldx, org.netlib.util.floatW scale, org.netlib.util.floatW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALN2 solves a system of the form (ca A - w D ) X = s B
or (ca A' - w D) X = s B with possible scaling ("s") and
perturbation of A. (A' means A-transpose.)
A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
real diagonal matrix, w is a real or complex value, and X and B are
NA x 1 matrices -- real if w is real, complex if w is complex. NA
may be 1 or 2.
If w is complex, X and B are represented as NA x 2 matrices,
the first column of each being the real part and the second
being the imaginary part.
"s" is a scaling factor (.LE. 1), computed by SLALN2, which is
so chosen that X can be computed without overflow. X is further
scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
than overflow.
If both singular values of (ca A - w D) are less than SMIN,
SMIN*identity will be used instead of (ca A - w D). If only one
singular value is less than SMIN, one element of (ca A - w D) will be
perturbed enough to make the smallest singular value roughly SMIN.
If both singular values are at least SMIN, (ca A - w D) will not be
perturbed. In any case, the perturbation will be at most some small
multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values
are computed by infinity-norm approximations, and thus will only be
correct to a factor of 2 or so.
Note: all input quantities are assumed to be smaller than overflow
by a reasonable factor. (See BIGNUM.)
Arguments
==========
LTRANS (input) LOGICAL
=.TRUE.: A-transpose will be used.
=.FALSE.: A will be used (not transposed.)
NA (input) INTEGER
The size of the matrix A. It may (only) be 1 or 2.
NW (input) INTEGER
1 if "w" is real, 2 if "w" is complex. It may only be 1
or 2.
SMIN (input) REAL
The desired lower bound on the singular values of A. This
should be a safe distance away from underflow or overflow,
say, between (underflow/machine precision) and (machine
precision * overflow ). (See BIGNUM and ULP.)
CA (input) REAL
The coefficient c, which A is multiplied by.
A (input) REAL array, dimension (LDA,NA)
The NA x NA matrix A.
LDA (input) INTEGER
The leading dimension of A. It must be at least NA.
D1 (input) REAL
The 1,1 element in the diagonal matrix D.
D2 (input) REAL
The 2,2 element in the diagonal matrix D. Not used if NW=1.
B (input) REAL array, dimension (LDB,NW)
The NA x NW matrix B (right-hand side). If NW=2 ("w" is
complex), column 1 contains the real part of B and column 2
contains the imaginary part.
LDB (input) INTEGER
The leading dimension of B. It must be at least NA.
WR (input) REAL
The real part of the scalar "w".
WI (input) REAL
The imaginary part of the scalar "w". Not used if NW=1.
X (output) REAL array, dimension (LDX,NW)
The NA x NW matrix X (unknowns), as computed by SLALN2.
If NW=2 ("w" is complex), on exit, column 1 will contain
the real part of X and column 2 will contain the imaginary
part.
LDX (input) INTEGER
The leading dimension of X. It must be at least NA.
SCALE (output) REAL
The scale factor that B must be multiplied by to insure
that overflow does not occur when computing X. Thus,
(ca A - w D) X will be SCALE*B, not B (ignoring
perturbations of A.) It will be at most 1.
XNORM (output) REAL
The infinity-norm of X, when X is regarded as an NA x NW
real matrix.
INFO (output) INTEGER
An error flag. It will be set to zero if no error occurs,
a negative number if an argument is in error, or a positive
number if ca A - w D had to be perturbed.
The possible values are:
= 0: No error occurred, and (ca A - w D) did not have to be
perturbed.
= 1: (ca A - w D) had to be perturbed to make its smallest
(or only) singular value greater than SMIN.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void slals0(int icompq, int nl, int nr, int sqre, int nrhs, float[] b, int ldb, float[] bx, int ldbx, int[] perm, int givptr, int[] givcol, int ldgcol, float[] givnum, int ldgnum, float[] poles, float[] difl, float[] difr, float[] z, int k, float c, float s, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALS0 applies back the multiplying factors of either the left or the
right singular vector matrix of a diagonal matrix appended by a row
to the right hand side matrix B in solving the least squares problem
using the divide-and-conquer SVD approach.
For the left singular vector matrix, three types of orthogonal
matrices are involved:
(1L) Givens rotations: the number of such rotations is GIVPTR; the
pairs of columns/rows they were applied to are stored in GIVCOL;
and the C- and S-values of these rotations are stored in GIVNUM.
(2L) Permutation. The (NL+1)-st row of B is to be moved to the first
row, and for J=2:N, PERM(J)-th row of B is to be moved to the
J-th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal
matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
(2R) If SQRE = 1, one extra Givens rotation to generate the right
null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Left singular vector matrix.
= 1: Right singular vector matrix.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) REAL array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B. LDB must be at least
max(1,MAX( M, N ) ).
BX (workspace) REAL array, dimension ( LDBX, NRHS )
LDBX (input) INTEGER
The leading dimension of BX.
PERM (input) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) applied
to the two blocks.
GIVPTR (input) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of rows/columns
involved in a Givens rotation.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (input) REAL array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value used in the
corresponding Givens rotation.
LDGNUM (input) INTEGER
The leading dimension of arrays DIFR, POLES and
GIVNUM, must be at least K.
POLES (input) REAL array, dimension ( LDGNUM, 2 )
On entry, POLES(1:K, 1) contains the new singular
values obtained from solving the secular equation, and
POLES(1:K, 2) is an array containing the poles in the secular
equation.
DIFL (input) REAL array, dimension ( K ).
On entry, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (input) REAL array, dimension ( LDGNUM, 2 ).
On entry, DIFR(I, 1) contains the distances between I-th
updated (undeflated) singular value and the I+1-th
(undeflated) old singular value. And DIFR(I, 2) is the
normalizing factor for the I-th right singular vector.
Z (input) REAL array, dimension ( K )
Contain the components of the deflation-adjusted updating row
vector.
K (input) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (input) REAL
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (input) REAL
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) REAL array, dimension ( K )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void slals0(int icompq, int nl, int nr, int sqre, int nrhs, float[] b, int _b_offset, int ldb, float[] bx, int _bx_offset, int ldbx, int[] perm, int _perm_offset, int givptr, int[] givcol, int _givcol_offset, int ldgcol, float[] givnum, int _givnum_offset, int ldgnum, float[] poles, int _poles_offset, float[] difl, int _difl_offset, float[] difr, int _difr_offset, float[] z, int _z_offset, int k, float c, float s, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALS0 applies back the multiplying factors of either the left or the
right singular vector matrix of a diagonal matrix appended by a row
to the right hand side matrix B in solving the least squares problem
using the divide-and-conquer SVD approach.
For the left singular vector matrix, three types of orthogonal
matrices are involved:
(1L) Givens rotations: the number of such rotations is GIVPTR; the
pairs of columns/rows they were applied to are stored in GIVCOL;
and the C- and S-values of these rotations are stored in GIVNUM.
(2L) Permutation. The (NL+1)-st row of B is to be moved to the first
row, and for J=2:N, PERM(J)-th row of B is to be moved to the
J-th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal
matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
(2R) If SQRE = 1, one extra Givens rotation to generate the right
null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Left singular vector matrix.
= 1: Right singular vector matrix.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) REAL array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B. LDB must be at least
max(1,MAX( M, N ) ).
BX (workspace) REAL array, dimension ( LDBX, NRHS )
LDBX (input) INTEGER
The leading dimension of BX.
PERM (input) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) applied
to the two blocks.
GIVPTR (input) INTEGER
The number of Givens rotations which took place in this
subproblem.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of rows/columns
involved in a Givens rotation.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (input) REAL array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value used in the
corresponding Givens rotation.
LDGNUM (input) INTEGER
The leading dimension of arrays DIFR, POLES and
GIVNUM, must be at least K.
POLES (input) REAL array, dimension ( LDGNUM, 2 )
On entry, POLES(1:K, 1) contains the new singular
values obtained from solving the secular equation, and
POLES(1:K, 2) is an array containing the poles in the secular
equation.
DIFL (input) REAL array, dimension ( K ).
On entry, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (input) REAL array, dimension ( LDGNUM, 2 ).
On entry, DIFR(I, 1) contains the distances between I-th
updated (undeflated) singular value and the I+1-th
(undeflated) old singular value. And DIFR(I, 2) is the
normalizing factor for the I-th right singular vector.
Z (input) REAL array, dimension ( K )
Contain the components of the deflation-adjusted updating row
vector.
K (input) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (input) REAL
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (input) REAL
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) REAL array, dimension ( K )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void slalsa(int icompq, int smlsiz, int n, int nrhs, float[] b, int ldb, float[] bx, int ldbx, float[] u, int ldu, float[] vt, int[] k, float[] difl, float[] difr, float[] z, float[] poles, int[] givptr, int[] givcol, int ldgcol, int[] perm, float[] givnum, float[] c, float[] s, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).
If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, SLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by SLALSA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row and column dimensions of the upper bidiagonal matrix.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) REAL array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M.
On output, B contains the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
BX (output) REAL array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
LDBX (input) INTEGER
The leading dimension of BX.
U (input) REAL array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT' contains the right singular vector matrices of
all subproblems at the bottom level.
K (input) INTEGER array, dimension ( N ).
DIFL (input) REAL array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
Z (input) REAL array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
POLES (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.
GIVPTR (input) INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.
GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
C (input) REAL array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (input) REAL array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) REAL array.
The dimension must be at least N.
IWORK (workspace) INTEGER array.
The dimension must be at least 3 * N
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void slalsa(int icompq, int smlsiz, int n, int nrhs, float[] b, int _b_offset, int ldb, float[] bx, int _bx_offset, int ldbx, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int[] k, int _k_offset, float[] difl, int _difl_offset, float[] difr, int _difr_offset, float[] z, int _z_offset, float[] poles, int _poles_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, int ldgcol, int[] perm, int _perm_offset, float[] givnum, int _givnum_offset, float[] c, int _c_offset, float[] s, int _s_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).
If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, SLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by SLALSA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row and column dimensions of the upper bidiagonal matrix.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input/output) REAL array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M.
On output, B contains the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
BX (output) REAL array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
LDBX (input) INTEGER
The leading dimension of BX.
U (input) REAL array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT' contains the right singular vector matrices of
all subproblems at the bottom level.
K (input) INTEGER array, dimension ( N ).
DIFL (input) REAL array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
Z (input) REAL array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
POLES (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.
GIVPTR (input) INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.
GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
C (input) REAL array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (input) REAL array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) REAL array.
The dimension must be at least N.
IWORK (workspace) INTEGER array.
The dimension must be at least 3 * N
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void slalsd(String uplo, int smlsiz, int n, int nrhs, float[] d, float[] e, float[] b, int ldb, float rcond, org.netlib.util.intW rank, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALSD uses the singular value decomposition of A to solve the least
squares problem of finding X to minimize the Euclidean norm of each
column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
are N-by-NRHS. The solution X overwrites B.
The singular values of A smaller than RCOND times the largest
singular value are treated as zero in solving the least squares
problem; in this case a minimum norm solution is returned.
The actual singular values are returned in D in ascending order.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': D and E define an upper bidiagonal matrix.
= 'L': D and E define a lower bidiagonal matrix.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The dimension of the bidiagonal matrix. N >= 0.
NRHS (input) INTEGER
The number of columns of B. NRHS must be at least 1.
D (input/output) REAL array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix. On exit, if INFO = 0, D contains its singular values.
E (input/output) REAL array, dimension (N-1)
Contains the super-diagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
B (input/output) REAL array, dimension (LDB,NRHS)
On input, B contains the right hand sides of the least
squares problem. On output, B contains the solution X.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,N).
RCOND (input) REAL
The singular values of A less than or equal to RCOND times
the largest singular value are treated as zero in solving
the least squares problem. If RCOND is negative,
machine precision is used instead.
For example, if diag(S)*X=B were the least squares problem,
where diag(S) is a diagonal matrix of singular values, the
solution would be X(i) = B(i) / S(i) if S(i) is greater than
RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
RCOND*max(S).
RANK (output) INTEGER
The number of singular values of A greater than RCOND times
the largest singular value.
WORK (workspace) REAL array, dimension at least
(9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
IWORK (workspace) INTEGER array, dimension at least
(3*N*NLVL + 11*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value while
working on the submatrix lying in rows and columns
INFO/(N+1) through MOD(INFO,N+1).
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void slalsd(String uplo, int smlsiz, int n, int nrhs, float[] d, int _d_offset, float[] e, int _e_offset, float[] b, int _b_offset, int ldb, float rcond, org.netlib.util.intW rank, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLALSD uses the singular value decomposition of A to solve the least
squares problem of finding X to minimize the Euclidean norm of each
column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
are N-by-NRHS. The solution X overwrites B.
The singular values of A smaller than RCOND times the largest
singular value are treated as zero in solving the least squares
problem; in this case a minimum norm solution is returned.
The actual singular values are returned in D in ascending order.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': D and E define an upper bidiagonal matrix.
= 'L': D and E define a lower bidiagonal matrix.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The dimension of the bidiagonal matrix. N >= 0.
NRHS (input) INTEGER
The number of columns of B. NRHS must be at least 1.
D (input/output) REAL array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix. On exit, if INFO = 0, D contains its singular values.
E (input/output) REAL array, dimension (N-1)
Contains the super-diagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
B (input/output) REAL array, dimension (LDB,NRHS)
On input, B contains the right hand sides of the least
squares problem. On output, B contains the solution X.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,N).
RCOND (input) REAL
The singular values of A less than or equal to RCOND times
the largest singular value are treated as zero in solving
the least squares problem. If RCOND is negative,
machine precision is used instead.
For example, if diag(S)*X=B were the least squares problem,
where diag(S) is a diagonal matrix of singular values, the
solution would be X(i) = B(i) / S(i) if S(i) is greater than
RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
RCOND*max(S).
RANK (output) INTEGER
The number of singular values of A greater than RCOND times
the largest singular value.
WORK (workspace) REAL array, dimension at least
(9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
IWORK (workspace) INTEGER array, dimension at least
(3*N*NLVL + 11*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an singular value while
working on the submatrix lying in rows and columns
INFO/(N+1) through MOD(INFO,N+1).
Further Details
===============
Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
=====================================================================
.. Parameters ..
public void slamrg(int n1, int n2, float[] a, int strd1, int strd2, int[] index)
LAPACK
..
Purpose
=======
SLAMRG will create a permutation list which will merge the elements
of A (which is composed of two independently sorted sets) into a
single set which is sorted in ascending order.
Arguments
=========
N1 (input) INTEGER
N2 (input) INTEGER
These arguements contain the respective lengths of the two
sorted lists to be merged.
A (input) REAL array, dimension (N1+N2)
The first N1 elements of A contain a list of numbers which
are sorted in either ascending or descending order. Likewise
for the final N2 elements.
STRD1 (input) INTEGER
STRD2 (input) INTEGER
These are the strides to be taken through the array A.
Allowable strides are 1 and -1. They indicate whether a
subset of A is sorted in ascending (STRDx = 1) or descending
(STRDx = -1) order.
INDEX (output) INTEGER array, dimension (N1+N2)
On exit this array will contain a permutation such that
if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be
sorted in ascending order.
=====================================================================
.. Local Scalars ..
public void slamrg(int n1, int n2, float[] a, int _a_offset, int strd1, int strd2, int[] index, int _index_offset)
LAPACK
..
Purpose
=======
SLAMRG will create a permutation list which will merge the elements
of A (which is composed of two independently sorted sets) into a
single set which is sorted in ascending order.
Arguments
=========
N1 (input) INTEGER
N2 (input) INTEGER
These arguements contain the respective lengths of the two
sorted lists to be merged.
A (input) REAL array, dimension (N1+N2)
The first N1 elements of A contain a list of numbers which
are sorted in either ascending or descending order. Likewise
for the final N2 elements.
STRD1 (input) INTEGER
STRD2 (input) INTEGER
These are the strides to be taken through the array A.
Allowable strides are 1 and -1. They indicate whether a
subset of A is sorted in ascending (STRDx = 1) or descending
(STRDx = -1) order.
INDEX (output) INTEGER array, dimension (N1+N2)
On exit this array will contain a permutation such that
if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be
sorted in ascending order.
=====================================================================
.. Local Scalars ..
public int slaneg(int n, float[] d, float[] lld, float sigma, float pivmin, int r)
LAPACK
..
Purpose
=======
SLANEG computes the Sturm count, the number of negative pivots
encountered while factoring tridiagonal T - sigma I = L D L^T.
This implementation works directly on the factors without forming
the tridiagonal matrix T. The Sturm count is also the number of
eigenvalues of T less than sigma.
This routine is called from SLARRB.
The current routine does not use the PIVMIN parameter but rather
requires IEEE-754 propagation of Infinities and NaNs. This
routine also has no input range restrictions but does require
default exception handling such that x/0 produces Inf when x is
non-zero, and Inf/Inf produces NaN. For more information, see:
Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
(Tech report version in LAWN 172 with the same title.)
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) REAL array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
SIGMA (input) REAL
Shift amount in T - sigma I = L D L^T.
PIVMIN (input) REAL
The minimum pivot in the Sturm sequence. May be used
when zero pivots are encountered on non-IEEE-754
architectures.
R (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
Further Details
===============
Based on contributions by
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Jason Riedy, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public int slaneg(int n, float[] d, int _d_offset, float[] lld, int _lld_offset, float sigma, float pivmin, int r)
LAPACK
..
Purpose
=======
SLANEG computes the Sturm count, the number of negative pivots
encountered while factoring tridiagonal T - sigma I = L D L^T.
This implementation works directly on the factors without forming
the tridiagonal matrix T. The Sturm count is also the number of
eigenvalues of T less than sigma.
This routine is called from SLARRB.
The current routine does not use the PIVMIN parameter but rather
requires IEEE-754 propagation of Infinities and NaNs. This
routine also has no input range restrictions but does require
default exception handling such that x/0 produces Inf when x is
non-zero, and Inf/Inf produces NaN. For more information, see:
Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
(Tech report version in LAWN 172 with the same title.)
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) REAL array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
SIGMA (input) REAL
Shift amount in T - sigma I = L D L^T.
PIVMIN (input) REAL
The minimum pivot in the Sturm sequence. May be used
when zero pivots are encountered on non-IEEE-754
architectures.
R (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
Further Details
===============
Based on contributions by
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Jason Riedy, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public float slangb(String norm, int n, int kl, int ku, float[] ab, int ldab, float[] work)
LAPACK
..
Purpose
=======
SLANGB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
Description
===========
SLANGB returns the value
SLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANGB as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANGB is
set to zero.
KL (input) INTEGER
The number of sub-diagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of super-diagonals of the matrix A. KU >= 0.
AB (input) REAL array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slangb(String norm, int n, int kl, int ku, float[] ab, int _ab_offset, int ldab, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANGB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
Description
===========
SLANGB returns the value
SLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANGB as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANGB is
set to zero.
KL (input) INTEGER
The number of sub-diagonals of the matrix A. KL >= 0.
KU (input) INTEGER
The number of super-diagonals of the matrix A. KU >= 0.
AB (input) REAL array, dimension (LDAB,N)
The band matrix A, stored in rows 1 to KL+KU+1. The j-th
column of A is stored in the j-th column of the array AB as
follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slange(String norm, int m, int n, float[] a, int lda, float[] work)
LAPACK
..
Purpose
=======
SLANGE returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real matrix A.
Description
===========
SLANGE returns the value
SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANGE as described
above.
M (input) INTEGER
The number of rows of the matrix A. M >= 0. When M = 0,
SLANGE is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0. When N = 0,
SLANGE is set to zero.
A (input) REAL array, dimension (LDA,N)
The m by n matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slange(String norm, int m, int n, float[] a, int _a_offset, int lda, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANGE returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real matrix A.
Description
===========
SLANGE returns the value
SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANGE as described
above.
M (input) INTEGER
The number of rows of the matrix A. M >= 0. When M = 0,
SLANGE is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0. When N = 0,
SLANGE is set to zero.
A (input) REAL array, dimension (LDA,N)
The m by n matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slangt(String norm, int n, float[] dl, float[] d, float[] du)
LAPACK
..
Purpose
=======
SLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real tridiagonal matrix A.
Description
===========
SLANGT returns the value
SLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANGT as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANGT is
set to zero.
DL (input) REAL array, dimension (N-1)
The (n-1) sub-diagonal elements of A.
D (input) REAL array, dimension (N)
The diagonal elements of A.
DU (input) REAL array, dimension (N-1)
The (n-1) super-diagonal elements of A.
=====================================================================
.. Parameters ..
public float slangt(String norm, int n, float[] dl, int _dl_offset, float[] d, int _d_offset, float[] du, int _du_offset)
LAPACK
..
Purpose
=======
SLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real tridiagonal matrix A.
Description
===========
SLANGT returns the value
SLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANGT as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANGT is
set to zero.
DL (input) REAL array, dimension (N-1)
The (n-1) sub-diagonal elements of A.
D (input) REAL array, dimension (N)
The diagonal elements of A.
DU (input) REAL array, dimension (N-1)
The (n-1) super-diagonal elements of A.
=====================================================================
.. Parameters ..
public float slanhs(String norm, int n, float[] a, int lda, float[] work)
LAPACK
..
Purpose
=======
SLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.
Description
===========
SLANHS returns the value
SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANHS as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANHS is
set to zero.
A (input) REAL array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slanhs(String norm, int n, float[] a, int _a_offset, int lda, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANHS returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.
Description
===========
SLANHS returns the value
SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANHS as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANHS is
set to zero.
A (input) REAL array, dimension (LDA,N)
The n by n upper Hessenberg matrix A; the part of A below the
first sub-diagonal is not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slansb(String norm, String uplo, int n, int k, float[] ab, int ldab, float[] work)
LAPACK
..
Purpose
=======
SLANSB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n symmetric band matrix A, with k super-diagonals.
Description
===========
SLANSB returns the value
SLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANSB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
band matrix A is supplied.
= 'U': Upper triangular part is supplied
= 'L': Lower triangular part is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSB is
set to zero.
K (input) INTEGER
The number of super-diagonals or sub-diagonals of the
band matrix A. K >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first K+1 rows of AB. The j-th column of A is
stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public float slansb(String norm, String uplo, int n, int k, float[] ab, int _ab_offset, int ldab, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANSB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n symmetric band matrix A, with k super-diagonals.
Description
===========
SLANSB returns the value
SLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANSB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
band matrix A is supplied.
= 'U': Upper triangular part is supplied
= 'L': Lower triangular part is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSB is
set to zero.
K (input) INTEGER
The number of super-diagonals or sub-diagonals of the
band matrix A. K >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first K+1 rows of AB. The j-th column of A is
stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public float slansp(String norm, String uplo, int n, float[] ap, float[] work)
LAPACK
..
Purpose
=======
SLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.
Description
===========
SLANSP returns the value
SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANSP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSP is
set to zero.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public float slansp(String norm, String uplo, int n, float[] ap, int _ap_offset, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANSP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.
Description
===========
SLANSP returns the value
SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANSP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSP is
set to zero.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public float slanst(String norm, int n, float[] d, float[] e)
LAPACK
..
Purpose
=======
SLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.
Description
===========
SLANST returns the value
SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANST as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANST is
set to zero.
D (input) REAL array, dimension (N)
The diagonal elements of A.
E (input) REAL array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
=====================================================================
.. Parameters ..
public float slanst(String norm, int n, float[] d, int _d_offset, float[] e, int _e_offset)
LAPACK
..
Purpose
=======
SLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.
Description
===========
SLANST returns the value
SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANST as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANST is
set to zero.
D (input) REAL array, dimension (N)
The diagonal elements of A.
E (input) REAL array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
=====================================================================
.. Parameters ..
public float slansy(String norm, String uplo, int n, float[] a, int lda, float[] work)
LAPACK
..
Purpose
=======
SLANSY returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A.
Description
===========
SLANSY returns the value
SLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANSY as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced
= 'L': Lower triangular part of A is referenced
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSY is
set to zero.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading n by n
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public float slansy(String norm, String uplo, int n, float[] a, int _a_offset, int lda, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANSY returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A.
Description
===========
SLANSY returns the value
SLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANSY as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced
= 'L': Lower triangular part of A is referenced
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSY is
set to zero.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading n by n
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
.. Parameters ..
public float slantb(String norm, String uplo, String diag, int n, int k, float[] ab, int ldab, float[] work)
LAPACK
..
Purpose
=======
SLANTB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n triangular band matrix A, with ( k + 1 ) diagonals.
Description
===========
SLANTB returns the value
SLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANTB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANTB is
set to zero.
K (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals of the matrix A if UPLO = 'L'.
K >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first k+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
Note that when DIAG = 'U', the elements of the array AB
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slantb(String norm, String uplo, String diag, int n, int k, float[] ab, int _ab_offset, int ldab, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANTB returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n triangular band matrix A, with ( k + 1 ) diagonals.
Description
===========
SLANTB returns the value
SLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANTB as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANTB is
set to zero.
K (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals of the matrix A if UPLO = 'L'.
K >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first k+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
Note that when DIAG = 'U', the elements of the array AB
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= K+1.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slantp(String norm, String uplo, String diag, int n, float[] ap, float[] work)
LAPACK
..
Purpose
=======
SLANTP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
triangular matrix A, supplied in packed form.
Description
===========
SLANTP returns the value
SLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANTP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANTP is
set to zero.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
Note that when DIAG = 'U', the elements of the array AP
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slantp(String norm, String uplo, String diag, int n, float[] ap, int _ap_offset, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANTP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
triangular matrix A, supplied in packed form.
Description
===========
SLANTP returns the value
SLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANTP as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANTP is
set to zero.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
Note that when DIAG = 'U', the elements of the array AP
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slantr(String norm, String uplo, String diag, int m, int n, float[] a, int lda, float[] work)
LAPACK
..
Purpose
=======
SLANTR returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
trapezoidal or triangular matrix A.
Description
===========
SLANTR returns the value
SLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANTR as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower trapezoidal.
= 'U': Upper trapezoidal
= 'L': Lower trapezoidal
Note that A is triangular instead of trapezoidal if M = N.
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal
M (input) INTEGER
The number of rows of the matrix A. M >= 0, and if
UPLO = 'U', M <= N. When M = 0, SLANTR is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0, and if
UPLO = 'L', N <= M. When N = 0, SLANTR is set to zero.
A (input) REAL array, dimension (LDA,N)
The trapezoidal matrix A (A is triangular if M = N).
If UPLO = 'U', the leading m by n upper trapezoidal part of
the array A contains the upper trapezoidal matrix, and the
strictly lower triangular part of A is not referenced.
If UPLO = 'L', the leading m by n lower trapezoidal part of
the array A contains the lower trapezoidal matrix, and the
strictly upper triangular part of A is not referenced. Note
that when DIAG = 'U', the diagonal elements of A are not
referenced and are assumed to be one.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public float slantr(String norm, String uplo, String diag, int m, int n, float[] a, int _a_offset, int lda, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLANTR returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
trapezoidal or triangular matrix A.
Description
===========
SLANTR returns the value
SLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix no
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in SLANTR as described
above.
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower trapezoidal.
= 'U': Upper trapezoidal
= 'L': Lower trapezoidal
Note that A is triangular instead of trapezoidal if M = N.
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal
M (input) INTEGER
The number of rows of the matrix A. M >= 0, and if
UPLO = 'U', M <= N. When M = 0, SLANTR is set to zero.
N (input) INTEGER
The number of columns of the matrix A. N >= 0, and if
UPLO = 'L', N <= M. When N = 0, SLANTR is set to zero.
A (input) REAL array, dimension (LDA,N)
The trapezoidal matrix A (A is triangular if M = N).
If UPLO = 'U', the leading m by n upper trapezoidal part of
the array A contains the upper trapezoidal matrix, and the
strictly lower triangular part of A is not referenced.
If UPLO = 'L', the leading m by n lower trapezoidal part of
the array A contains the lower trapezoidal matrix, and the
strictly upper triangular part of A is not referenced. Note
that when DIAG = 'U', the diagonal elements of A are not
referenced and are assumed to be one.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
where LWORK >= M when NORM = 'I'; otherwise, WORK is not
referenced.
=====================================================================
.. Parameters ..
public void slanv2(org.netlib.util.floatW a, org.netlib.util.floatW b, org.netlib.util.floatW c, org.netlib.util.floatW d, org.netlib.util.floatW rt1r, org.netlib.util.floatW rt1i, org.netlib.util.floatW rt2r, org.netlib.util.floatW rt2i, org.netlib.util.floatW cs, org.netlib.util.floatW sn)
LAPACK
..
Purpose
=======
SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
conjugate eigenvalues.
Arguments
=========
A (input/output) REAL
B (input/output) REAL
C (input/output) REAL
D (input/output) REAL
On entry, the elements of the input matrix.
On exit, they are overwritten by the elements of the
standardised Schur form.
RT1R (output) REAL
RT1I (output) REAL
RT2R (output) REAL
RT2I (output) REAL
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair, RT1I > 0.
CS (output) REAL
SN (output) REAL
Parameters of the rotation matrix.
Further Details
===============
Modified by V. Sima, Research Institute for Informatics, Bucharest,
Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possible, that
abs(RT1R) >= abs(RT2R).
=====================================================================
.. Parameters ..
public void slapll(int n, float[] x, int incx, float[] y, int incy, org.netlib.util.floatW ssmin)
LAPACK
..
Purpose
=======
Given two column vectors X and Y, let
A = ( X Y ).
The subroutine first computes the QR factorization of A = Q*R,
and then computes the SVD of the 2-by-2 upper triangular matrix R.
The smaller singular value of R is returned in SSMIN, which is used
as the measurement of the linear dependency of the vectors X and Y.
Arguments
=========
N (input) INTEGER
The length of the vectors X and Y.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
On entry, X contains the N-vector X.
On exit, X is overwritten.
INCX (input) INTEGER
The increment between successive elements of X. INCX > 0.
Y (input/output) REAL array,
dimension (1+(N-1)*INCY)
On entry, Y contains the N-vector Y.
On exit, Y is overwritten.
INCY (input) INTEGER
The increment between successive elements of Y. INCY > 0.
SSMIN (output) REAL
The smallest singular value of the N-by-2 matrix A = ( X Y ).
=====================================================================
.. Parameters ..
public void slapll(int n, float[] x, int _x_offset, int incx, float[] y, int _y_offset, int incy, org.netlib.util.floatW ssmin)
LAPACK
..
Purpose
=======
Given two column vectors X and Y, let
A = ( X Y ).
The subroutine first computes the QR factorization of A = Q*R,
and then computes the SVD of the 2-by-2 upper triangular matrix R.
The smaller singular value of R is returned in SSMIN, which is used
as the measurement of the linear dependency of the vectors X and Y.
Arguments
=========
N (input) INTEGER
The length of the vectors X and Y.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
On entry, X contains the N-vector X.
On exit, X is overwritten.
INCX (input) INTEGER
The increment between successive elements of X. INCX > 0.
Y (input/output) REAL array,
dimension (1+(N-1)*INCY)
On entry, Y contains the N-vector Y.
On exit, Y is overwritten.
INCY (input) INTEGER
The increment between successive elements of Y. INCY > 0.
SSMIN (output) REAL
The smallest singular value of the N-by-2 matrix A = ( X Y ).
=====================================================================
.. Parameters ..
public void slapmt(boolean forwrd, int m, int n, float[] x, int ldx, int[] k)
LAPACK
..
Purpose
=======
SLAPMT rearranges the columns of the M by N matrix X as specified
by the permutation K(1),K(2),...,K(N) of the integers 1,...,N.
If FORWRD = .TRUE., forward permutation:
X(*,K(J)) is moved X(*,J) for J = 1,2,...,N.
If FORWRD = .FALSE., backward permutation:
X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N.
Arguments
=========
FORWRD (input) LOGICAL
= .TRUE., forward permutation
= .FALSE., backward permutation
M (input) INTEGER
The number of rows of the matrix X. M >= 0.
N (input) INTEGER
The number of columns of the matrix X. N >= 0.
X (input/output) REAL array, dimension (LDX,N)
On entry, the M by N matrix X.
On exit, X contains the permuted matrix X.
LDX (input) INTEGER
The leading dimension of the array X, LDX >= MAX(1,M).
K (input/output) INTEGER array, dimension (N)
On entry, K contains the permutation vector. K is used as
internal workspace, but reset to its original value on
output.
=====================================================================
.. Local Scalars ..
public void slapmt(boolean forwrd, int m, int n, float[] x, int _x_offset, int ldx, int[] k, int _k_offset)
LAPACK
..
Purpose
=======
SLAPMT rearranges the columns of the M by N matrix X as specified
by the permutation K(1),K(2),...,K(N) of the integers 1,...,N.
If FORWRD = .TRUE., forward permutation:
X(*,K(J)) is moved X(*,J) for J = 1,2,...,N.
If FORWRD = .FALSE., backward permutation:
X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N.
Arguments
=========
FORWRD (input) LOGICAL
= .TRUE., forward permutation
= .FALSE., backward permutation
M (input) INTEGER
The number of rows of the matrix X. M >= 0.
N (input) INTEGER
The number of columns of the matrix X. N >= 0.
X (input/output) REAL array, dimension (LDX,N)
On entry, the M by N matrix X.
On exit, X contains the permuted matrix X.
LDX (input) INTEGER
The leading dimension of the array X, LDX >= MAX(1,M).
K (input/output) INTEGER array, dimension (N)
On entry, K contains the permutation vector. K is used as
internal workspace, but reset to its original value on
output.
=====================================================================
.. Local Scalars ..
public float slapy2(float x, float y)
LAPACK
..
Purpose
=======
SLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
overflow.
Arguments
=========
X (input) REAL
Y (input) REAL
X and Y specify the values x and y.
=====================================================================
.. Parameters ..
public float slapy3(float x, float y, float z)
LAPACK
..
Purpose
=======
SLAPY3 returns sqrt(x**2+y**2+z**2), taking care not to cause
unnecessary overflow.
Arguments
=========
X (input) REAL
Y (input) REAL
Z (input) REAL
X, Y and Z specify the values x, y and z.
=====================================================================
.. Parameters ..
public void slaqgb(int m, int n, int kl, int ku, float[] ab, int ldab, float[] r, float[] c, float rowcnd, float colcnd, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQGB equilibrates a general M by N band matrix A with KL
subdiagonals and KU superdiagonals using the row and scaling factors
in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, the equilibrated matrix, in the same storage format
as A. See EQUED for the form of the equilibrated matrix.
LDAB (input) INTEGER
The leading dimension of the array AB. LDA >= KL+KU+1.
R (input) REAL array, dimension (M)
The row scale factors for A.
C (input) REAL array, dimension (N)
The column scale factors for A.
ROWCND (input) REAL
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) REAL
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void slaqgb(int m, int n, int kl, int ku, float[] ab, int _ab_offset, int ldab, float[] r, int _r_offset, float[] c, int _c_offset, float rowcnd, float colcnd, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQGB equilibrates a general M by N band matrix A with KL
subdiagonals and KU superdiagonals using the row and scaling factors
in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
On exit, the equilibrated matrix, in the same storage format
as A. See EQUED for the form of the equilibrated matrix.
LDAB (input) INTEGER
The leading dimension of the array AB. LDA >= KL+KU+1.
R (input) REAL array, dimension (M)
The row scale factors for A.
C (input) REAL array, dimension (N)
The column scale factors for A.
ROWCND (input) REAL
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) REAL
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void slaqge(int m, int n, float[] a, int lda, float[] r, float[] c, float rowcnd, float colcnd, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQGE equilibrates a general M by N matrix A using the row and
column scaling factors in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M by N matrix A.
On exit, the equilibrated matrix. See EQUED for the form of
the equilibrated matrix.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
R (input) REAL array, dimension (M)
The row scale factors for A.
C (input) REAL array, dimension (N)
The column scale factors for A.
ROWCND (input) REAL
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) REAL
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void slaqge(int m, int n, float[] a, int _a_offset, int lda, float[] r, int _r_offset, float[] c, int _c_offset, float rowcnd, float colcnd, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQGE equilibrates a general M by N matrix A using the row and
column scaling factors in the vectors R and C.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M by N matrix A.
On exit, the equilibrated matrix. See EQUED for the form of
the equilibrated matrix.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(M,1).
R (input) REAL array, dimension (M)
The row scale factors for A.
C (input) REAL array, dimension (N)
The column scale factors for A.
ROWCND (input) REAL
Ratio of the smallest R(i) to the largest R(i).
COLCND (input) REAL
Ratio of the smallest C(i) to the largest C(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, i.e., A has been premultiplied by
diag(R).
= 'C': Column equilibration, i.e., A has been postmultiplied
by diag(C).
= 'B': Both row and column equilibration, i.e., A has been
replaced by diag(R) * A * diag(C).
Internal Parameters
===================
THRESH is a threshold value used to decide if row or column scaling
should be done based on the ratio of the row or column scaling
factors. If ROWCND < THRESH, row scaling is done, and if
COLCND < THRESH, column scaling is done.
LARGE and SMALL are threshold values used to decide if row scaling
should be done based on the absolute size of the largest matrix
element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
=====================================================================
.. Parameters ..
public void slaqp2(int m, int n, int offset, float[] a, int lda, int[] jpvt, float[] tau, float[] vn1, float[] vn2, float[] work)
LAPACK
..
Purpose
=======
SLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
OFFSET (input) INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
VN1 (input/output) REAL array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) REAL array, dimension (N)
The vector with the exact column norms.
WORK (workspace) REAL array, dimension (N)
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void slaqp2(int m, int n, int offset, float[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, float[] tau, int _tau_offset, float[] vn1, int _vn1_offset, float[] vn2, int _vn2_offset, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
OFFSET (input) INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
VN1 (input/output) REAL array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) REAL array, dimension (N)
The vector with the exact column norms.
WORK (workspace) REAL array, dimension (N)
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void slaqps(int m, int n, int offset, int nb, org.netlib.util.intW kb, float[] a, int lda, int[] jpvt, float[] tau, float[] vn1, float[] vn2, float[] auxv, float[] f, int ldf)
LAPACK
..
Purpose
=======
SLAQPS computes a step of QR factorization with column pivoting
of a real M-by-N matrix A by using Blas-3. It tries to factorize
NB columns from A starting from the row OFFSET+1, and updates all
of the matrix with Blas-3 xGEMM.
In some cases, due to catastrophic cancellations, it cannot
factorize NB columns. Hence, the actual number of factorized
columns is returned in KB.
Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
OFFSET (input) INTEGER
The number of rows of A that have been factorized in
previous steps.
NB (input) INTEGER
The number of columns to factorize.
KB (output) INTEGER
The number of columns actually factorized.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, block A(OFFSET+1:M,1:KB) is the triangular
factor obtained and block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
been updated.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
JPVT(I) = K <==> Column K of the full matrix A has been
permuted into position I in AP.
TAU (output) REAL array, dimension (KB)
The scalar factors of the elementary reflectors.
VN1 (input/output) REAL array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) REAL array, dimension (N)
The vector with the exact column norms.
AUXV (input/output) REAL array, dimension (NB)
Auxiliar vector.
F (input/output) REAL array, dimension (LDF,NB)
Matrix F' = L*Y'*A.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1,N).
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void slaqps(int m, int n, int offset, int nb, org.netlib.util.intW kb, float[] a, int _a_offset, int lda, int[] jpvt, int _jpvt_offset, float[] tau, int _tau_offset, float[] vn1, int _vn1_offset, float[] vn2, int _vn2_offset, float[] auxv, int _auxv_offset, float[] f, int _f_offset, int ldf)
LAPACK
..
Purpose
=======
SLAQPS computes a step of QR factorization with column pivoting
of a real M-by-N matrix A by using Blas-3. It tries to factorize
NB columns from A starting from the row OFFSET+1, and updates all
of the matrix with Blas-3 xGEMM.
In some cases, due to catastrophic cancellations, it cannot
factorize NB columns. Hence, the actual number of factorized
columns is returned in KB.
Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0
OFFSET (input) INTEGER
The number of rows of A that have been factorized in
previous steps.
NB (input) INTEGER
The number of columns to factorize.
KB (output) INTEGER
The number of columns actually factorized.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, block A(OFFSET+1:M,1:KB) is the triangular
factor obtained and block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
been updated.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output) INTEGER array, dimension (N)
JPVT(I) = K <==> Column K of the full matrix A has been
permuted into position I in AP.
TAU (output) REAL array, dimension (KB)
The scalar factors of the elementary reflectors.
VN1 (input/output) REAL array, dimension (N)
The vector with the partial column norms.
VN2 (input/output) REAL array, dimension (N)
The vector with the exact column norms.
AUXV (input/output) REAL array, dimension (NB)
Auxiliar vector.
F (input/output) REAL array, dimension (LDF,NB)
Matrix F' = L*Y'*A.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1,N).
Further Details
===============
Based on contributions by
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.
=====================================================================
.. Parameters ..
public void slaqr0(boolean wantt, boolean wantz, int n, int ilo, int ihi, float[] h, int ldh, float[] wr, float[] wi, int iloz, int ihiz, float[] z, int ldz, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAQR0 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to SGEBAL, and then passed to SGEHRD when the
matrix output by SGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) REAL array, dimension (IHI)
WI (output) REAL array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) REAL array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then SLAQR0 does a workspace query.
In this case, SLAQR0 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, SLAQR0 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. SLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void slaqr0(boolean wantt, boolean wantz, int n, int ilo, int ihi, float[] h, int _h_offset, int ldh, float[] wr, int _wr_offset, float[] wi, int _wi_offset, int iloz, int ihiz, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAQR0 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to SGEBAL, and then passed to SGEHRD when the
matrix output by SGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) REAL array, dimension (IHI)
WI (output) REAL array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) REAL array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then SLAQR0 does a workspace query.
In this case, SLAQR0 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, SLAQR0 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. SLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void slaqr1(int n, float[] h, int ldh, float sr1, float si1, float sr2, float si2, float[] v)
LAPACK
..
Given a 2-by-2 or 3-by-3 matrix H, SLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
scaling to avoid overflows and most underflows. It
is assumed that either
1) sr1 = sr2 and si1 = -si2
or
2) si1 = si2 = 0.
This is useful for starting double implicit shift bulges
in the QR algorithm.
N (input) integer
Order of the matrix H. N must be either 2 or 3.
H (input) REAL array of dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).
LDH (input) integer
The leading dimension of H as declared in
the calling procedure. LDH.GE.N
SR1 (input) REAL
SI1 The shifts in (*).
SR2
SI2
V (output) REAL array of dimension N
A scalar multiple of the first column of the
matrix K in (*).
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
.. Parameters ..
public void slaqr1(int n, float[] h, int _h_offset, int ldh, float sr1, float si1, float sr2, float si2, float[] v, int _v_offset)
LAPACK
..
Given a 2-by-2 or 3-by-3 matrix H, SLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
scaling to avoid overflows and most underflows. It
is assumed that either
1) sr1 = sr2 and si1 = -si2
or
2) si1 = si2 = 0.
This is useful for starting double implicit shift bulges
in the QR algorithm.
N (input) integer
Order of the matrix H. N must be either 2 or 3.
H (input) REAL array of dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).
LDH (input) integer
The leading dimension of H as declared in
the calling procedure. LDH.GE.N
SR1 (input) REAL
SI1 The shifts in (*).
SR2
SI2
V (output) REAL array of dimension N
A scalar multiple of the first column of the
matrix K in (*).
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
.. Parameters ..
public void slaqr2(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, float[] h, int ldh, int iloz, int ihiz, float[] z, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, float[] sr, float[] si, float[] v, int ldv, int nh, float[] t, int ldt, int nv, float[] wv, int ldwv, float[] work, int lwork)
LAPACK
..
This subroutine is identical to SLAQR3 except that it avoids
recursion by calling SLAHQR instead of SLAQR4.
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) REAL array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) REAL array, dimension KBOT
SI (output) REAL array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) REAL array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) REAL array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) REAL array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) REAL array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; SLAQR2
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
==================================================================
.. Parameters ..
public void slaqr2(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, float[] h, int _h_offset, int ldh, int iloz, int ihiz, float[] z, int _z_offset, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, float[] sr, int _sr_offset, float[] si, int _si_offset, float[] v, int _v_offset, int ldv, int nh, float[] t, int _t_offset, int ldt, int nv, float[] wv, int _wv_offset, int ldwv, float[] work, int _work_offset, int lwork)
LAPACK
..
This subroutine is identical to SLAQR3 except that it avoids
recursion by calling SLAHQR instead of SLAQR4.
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) REAL array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) REAL array, dimension KBOT
SI (output) REAL array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) REAL array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) REAL array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) REAL array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) REAL array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; SLAQR2
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
==================================================================
.. Parameters ..
public void slaqr3(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, float[] h, int ldh, int iloz, int ihiz, float[] z, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, float[] sr, float[] si, float[] v, int ldv, int nh, float[] t, int ldt, int nv, float[] wv, int ldwv, float[] work, int lwork)
LAPACK
..
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) REAL array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) REAL array, dimension KBOT
SI (output) REAL array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) REAL array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) REAL array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) REAL array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) REAL array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; SLAQR3
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
==================================================================
.. Parameters ..
public void slaqr3(boolean wantt, boolean wantz, int n, int ktop, int kbot, int nw, float[] h, int _h_offset, int ldh, int iloz, int ihiz, float[] z, int _z_offset, int ldz, org.netlib.util.intW ns, org.netlib.util.intW nd, float[] sr, int _sr_offset, float[] si, int _si_offset, float[] v, int _v_offset, int ldv, int nh, float[] t, int _t_offset, int ldt, int nv, float[] wv, int _wv_offset, int ldwv, float[] work, int _work_offset, int lwork)
LAPACK
..
******************************************************************
Aggressive early deflation:
This subroutine accepts as input an upper Hessenberg matrix
H and performs an orthogonal similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an orthogonal similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.
******************************************************************
WANTT (input) LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the quasi-triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.
WANTZ (input) LOGICAL
If .TRUE., then the orthogonal matrix Z is updated so
so that the orthogonal Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.
N (input) INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the orthogonal matrix Z.
KTOP (input) INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.
KBOT (input) INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.
NW (input) INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
H (input/output) REAL array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by an orthogonal
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.
LDH (input) integer
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
IF WANTZ is .TRUE., then on output, the orthogonal
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ is .FALSE., then Z is unreferenced.
LDZ (input) integer
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.
NS (output) integer
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.
ND (output) integer
The number of converged eigenvalues uncovered by this
subroutine.
SR (output) REAL array, dimension KBOT
SI (output) REAL array, dimension KBOT
On output, the real and imaginary parts of approximate
eigenvalues that may be used for shifts are stored in
SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
The real and imaginary parts of converged eigenvalues
are stored in SR(KBOT-ND+1) through SR(KBOT) and
SI(KBOT-ND+1) through SI(KBOT), respectively.
V (workspace) REAL array, dimension (LDV,NW)
An NW-by-NW work array.
LDV (input) integer scalar
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV
NH (input) integer scalar
The number of columns of T. NH.GE.NW.
T (workspace) REAL array, dimension (LDT,NW)
LDT (input) integer
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT
NV (input) integer
The number of rows of work array WV available for
workspace. NV.GE.NW.
WV (workspace) REAL array, dimension (LDWV,NW)
LDWV (input) integer
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV
WORK (workspace) REAL array, dimension LWORK.
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.
LWORK (input) integer
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; SLAQR3
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
==================================================================
.. Parameters ..
public void slaqr4(boolean wantt, boolean wantz, int n, int ilo, int ihi, float[] h, int ldh, float[] wr, float[] wi, int iloz, int ihiz, float[] z, int ldz, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
This subroutine implements one level of recursion for SLAQR0.
It is a complete implementation of the small bulge multi-shift
QR algorithm. It may be called by SLAQR0 and, for large enough
deflation window size, it may be called by SLAQR3. This
subroutine is identical to SLAQR0 except that it calls SLAQR2
instead of SLAQR3.
Purpose
=======
SLAQR4 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to SGEBAL, and then passed to SGEHRD when the
matrix output by SGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) REAL array, dimension (IHI)
WI (output) REAL array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) REAL array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then SLAQR4 does a workspace query.
In this case, SLAQR4 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, SLAQR4 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. SLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void slaqr4(boolean wantt, boolean wantz, int n, int ilo, int ihi, float[] h, int _h_offset, int ldh, float[] wr, int _wr_offset, float[] wi, int _wi_offset, int iloz, int ihiz, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
This subroutine implements one level of recursion for SLAQR0.
It is a complete implementation of the small bulge multi-shift
QR algorithm. It may be called by SLAQR0 and, for large enough
deflation window size, it may be called by SLAQR3. This
subroutine is identical to SLAQR0 except that it calls SLAQR2
instead of SLAQR3.
Purpose
=======
SLAQR4 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N .GE. 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
previous call to SGEBAL, and then passed to SGEHRD when the
matrix output by SGEBAL is reduced to Hessenberg form.
Otherwise, ILO and IHI should be set to 1 and N,
respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
If N = 0, then ILO = 1 and IHI = 0.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO = 0 and WANTT is .TRUE., then H contains
the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form); 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues)
are returned in standard form, with H(i,i) = H(i+1,i+1)
and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
.FALSE., then the contents of H are unspecified on exit.
(The output value of H when INFO.GT.0 is given under the
description of INFO below.)
This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH (input) INTEGER
The leading dimension of the array H. LDH .GE. max(1,N).
WR (output) REAL array, dimension (IHI)
WI (output) REAL array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
the eigenvalues are stored in the same order as on the
diagonal of the Schur form returned in H, with
WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
Z (input/output) REAL array, dimension (LDZ,IHI)
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
(The output value of Z when INFO.GT.0 is given under
the description of INFO below.)
LDZ (input) INTEGER
The leading dimension of the array Z. if WANTZ is .TRUE.
then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
WORK (workspace/output) REAL array, dimension LWORK
On exit, if LWORK = -1, WORK(1) returns an estimate of
the optimal value for LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK .GE. max(1,N)
is sufficient, but LWORK typically as large as 6*N may
be required for optimal performance. A workspace query
to determine the optimal workspace size is recommended.
If LWORK = -1, then SLAQR4 does a workspace query.
In this case, SLAQR4 checks the input parameters and
estimates the optimal workspace size for the given
values of N, ILO and IHI. The estimate is returned
in WORK(1). No error message related to LWORK is
issued by XERBLA. Neither H nor Z are accessed.
INFO (output) INTEGER
= 0: successful exit
.GT. 0: if INFO = i, SLAQR4 failed to compute all of
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
and WI contain those eigenvalues which have been
successfully computed. (Failures are rare.)
If INFO .GT. 0 and WANT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the eigen-
values of the upper Hessenberg matrix rows and
columns ILO through INFO of the final, output
value of H.
If INFO .GT. 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
================================================================
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part II: Aggressive Early Deflation, SIAM Journal
of Matrix Analysis, volume 23, pages 948--973, 2002.
================================================================
.. Parameters ..
==== Matrices of order NTINY or smaller must be processed by
. SLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by increasing the size of the
. deflation window after KEXNW iterations. =====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
public void slaqr5(boolean wantt, boolean wantz, int kacc22, int n, int ktop, int kbot, int nshfts, float[] sr, float[] si, float[] h, int ldh, int iloz, int ihiz, float[] z, int ldz, float[] v, int ldv, float[] u, int ldu, int nv, float[] wv, int ldwv, int nh, float[] wh, int ldwh)
LAPACK
..
This auxiliary subroutine called by SLAQR0 performs a
single small-bulge multi-shift QR sweep.
WANTT (input) logical scalar
WANTT = .true. if the quasi-triangular Schur factor
is being computed. WANTT is set to .false. otherwise.
WANTZ (input) logical scalar
WANTZ = .true. if the orthogonal Schur factor is being
computed. WANTZ is set to .false. otherwise.
KACC22 (input) integer with value 0, 1, or 2.
Specifies the computation mode of far-from-diagonal
orthogonal updates.
= 0: SLAQR5 does not accumulate reflections and does not
use matrix-matrix multiply to update far-from-diagonal
matrix entries.
= 1: SLAQR5 accumulates reflections and uses matrix-matrix
multiply to update the far-from-diagonal matrix entries.
= 2: SLAQR5 accumulates reflections, uses matrix-matrix
multiply to update the far-from-diagonal matrix entries,
and takes advantage of 2-by-2 block structure during
matrix multiplies.
N (input) integer scalar
N is the order of the Hessenberg matrix H upon which this
subroutine operates.
KTOP (input) integer scalar
KBOT (input) integer scalar
These are the first and last rows and columns of an
isolated diagonal block upon which the QR sweep is to be
applied. It is assumed without a check that
either KTOP = 1 or H(KTOP,KTOP-1) = 0
and
either KBOT = N or H(KBOT+1,KBOT) = 0.
NSHFTS (input) integer scalar
NSHFTS gives the number of simultaneous shifts. NSHFTS
must be positive and even.
SR (input) REAL array of size (NSHFTS)
SI (input) REAL array of size (NSHFTS)
SR contains the real parts and SI contains the imaginary
parts of the NSHFTS shifts of origin that define the
multi-shift QR sweep.
H (input/output) REAL array of size (LDH,N)
On input H contains a Hessenberg matrix. On output a
multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
to the isolated diagonal block in rows and columns KTOP
through KBOT.
LDH (input) integer scalar
LDH is the leading dimension of H just as declared in the
calling procedure. LDH.GE.MAX(1,N).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
Z (input/output) REAL array of size (LDZ,IHI)
If WANTZ = .TRUE., then the QR Sweep orthogonal
similarity transformation is accumulated into
Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ = .FALSE., then Z is unreferenced.
LDZ (input) integer scalar
LDA is the leading dimension of Z just as declared in
the calling procedure. LDZ.GE.N.
V (workspace) REAL array of size (LDV,NSHFTS/2)
LDV (input) integer scalar
LDV is the leading dimension of V as declared in the
calling procedure. LDV.GE.3.
U (workspace) REAL array of size
(LDU,3*NSHFTS-3)
LDU (input) integer scalar
LDU is the leading dimension of U just as declared in the
in the calling subroutine. LDU.GE.3*NSHFTS-3.
NH (input) integer scalar
NH is the number of columns in array WH available for
workspace. NH.GE.1.
WH (workspace) REAL array of size (LDWH,NH)
LDWH (input) integer scalar
Leading dimension of WH just as declared in the
calling procedure. LDWH.GE.3*NSHFTS-3.
NV (input) integer scalar
NV is the number of rows in WV agailable for workspace.
NV.GE.1.
WV (workspace) REAL array of size
(LDWV,3*NSHFTS-3)
LDWV (input) integer scalar
LDWV is the leading dimension of WV as declared in the
in the calling subroutine. LDWV.GE.NV.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
============================================================
Reference:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and
Level 3 Performance, SIAM Journal of Matrix Analysis,
volume 23, pages 929--947, 2002.
============================================================
.. Parameters ..
public void slaqr5(boolean wantt, boolean wantz, int kacc22, int n, int ktop, int kbot, int nshfts, float[] sr, int _sr_offset, float[] si, int _si_offset, float[] h, int _h_offset, int ldh, int iloz, int ihiz, float[] z, int _z_offset, int ldz, float[] v, int _v_offset, int ldv, float[] u, int _u_offset, int ldu, int nv, float[] wv, int _wv_offset, int ldwv, int nh, float[] wh, int _wh_offset, int ldwh)
LAPACK
..
This auxiliary subroutine called by SLAQR0 performs a
single small-bulge multi-shift QR sweep.
WANTT (input) logical scalar
WANTT = .true. if the quasi-triangular Schur factor
is being computed. WANTT is set to .false. otherwise.
WANTZ (input) logical scalar
WANTZ = .true. if the orthogonal Schur factor is being
computed. WANTZ is set to .false. otherwise.
KACC22 (input) integer with value 0, 1, or 2.
Specifies the computation mode of far-from-diagonal
orthogonal updates.
= 0: SLAQR5 does not accumulate reflections and does not
use matrix-matrix multiply to update far-from-diagonal
matrix entries.
= 1: SLAQR5 accumulates reflections and uses matrix-matrix
multiply to update the far-from-diagonal matrix entries.
= 2: SLAQR5 accumulates reflections, uses matrix-matrix
multiply to update the far-from-diagonal matrix entries,
and takes advantage of 2-by-2 block structure during
matrix multiplies.
N (input) integer scalar
N is the order of the Hessenberg matrix H upon which this
subroutine operates.
KTOP (input) integer scalar
KBOT (input) integer scalar
These are the first and last rows and columns of an
isolated diagonal block upon which the QR sweep is to be
applied. It is assumed without a check that
either KTOP = 1 or H(KTOP,KTOP-1) = 0
and
either KBOT = N or H(KBOT+1,KBOT) = 0.
NSHFTS (input) integer scalar
NSHFTS gives the number of simultaneous shifts. NSHFTS
must be positive and even.
SR (input) REAL array of size (NSHFTS)
SI (input) REAL array of size (NSHFTS)
SR contains the real parts and SI contains the imaginary
parts of the NSHFTS shifts of origin that define the
multi-shift QR sweep.
H (input/output) REAL array of size (LDH,N)
On input H contains a Hessenberg matrix. On output a
multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
to the isolated diagonal block in rows and columns KTOP
through KBOT.
LDH (input) integer scalar
LDH is the leading dimension of H just as declared in the
calling procedure. LDH.GE.MAX(1,N).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
Z (input/output) REAL array of size (LDZ,IHI)
If WANTZ = .TRUE., then the QR Sweep orthogonal
similarity transformation is accumulated into
Z(ILOZ:IHIZ,ILO:IHI) from the right.
If WANTZ = .FALSE., then Z is unreferenced.
LDZ (input) integer scalar
LDA is the leading dimension of Z just as declared in
the calling procedure. LDZ.GE.N.
V (workspace) REAL array of size (LDV,NSHFTS/2)
LDV (input) integer scalar
LDV is the leading dimension of V as declared in the
calling procedure. LDV.GE.3.
U (workspace) REAL array of size
(LDU,3*NSHFTS-3)
LDU (input) integer scalar
LDU is the leading dimension of U just as declared in the
in the calling subroutine. LDU.GE.3*NSHFTS-3.
NH (input) integer scalar
NH is the number of columns in array WH available for
workspace. NH.GE.1.
WH (workspace) REAL array of size (LDWH,NH)
LDWH (input) integer scalar
Leading dimension of WH just as declared in the
calling procedure. LDWH.GE.3*NSHFTS-3.
NV (input) integer scalar
NV is the number of rows in WV agailable for workspace.
NV.GE.1.
WV (workspace) REAL array of size
(LDWV,3*NSHFTS-3)
LDWV (input) integer scalar
LDWV is the leading dimension of WV as declared in the
in the calling subroutine. LDWV.GE.NV.
================================================================
Based on contributions by
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
============================================================
Reference:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and
Level 3 Performance, SIAM Journal of Matrix Analysis,
volume 23, pages 929--947, 2002.
============================================================
.. Parameters ..
public void slaqsb(String uplo, int n, int kd, float[] ab, int ldab, float[] s, float scond, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S (input) REAL array, dimension (N)
The scale factors for A.
SCOND (input) REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void slaqsb(String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, float[] s, int _s_offset, float scond, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
S (input) REAL array, dimension (N)
The scale factors for A.
SCOND (input) REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void slaqsp(String uplo, int n, float[] ap, float[] s, float scond, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQSP equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the equilibrated matrix: diag(S) * A * diag(S), in
the same storage format as A.
S (input) REAL array, dimension (N)
The scale factors for A.
SCOND (input) REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void slaqsp(String uplo, int n, float[] ap, int _ap_offset, float[] s, int _s_offset, float scond, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQSP equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the equilibrated matrix: diag(S) * A * diag(S), in
the same storage format as A.
S (input) REAL array, dimension (N)
The scale factors for A.
SCOND (input) REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void slaqsy(String uplo, int n, float[] a, int lda, float[] s, float scond, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
S (input) REAL array, dimension (N)
The scale factors for A.
SCOND (input) REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void slaqsy(String uplo, int n, float[] a, int _a_offset, int lda, float[] s, int _s_offset, float scond, float amax, org.netlib.util.StringW equed)
LAPACK
..
Purpose
=======
SLAQSY equilibrates a symmetric matrix A using the scaling factors
in the vector S.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if EQUED = 'Y', the equilibrated matrix:
diag(S) * A * diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
S (input) REAL array, dimension (N)
The scale factors for A.
SCOND (input) REAL
Ratio of the smallest S(i) to the largest S(i).
AMAX (input) REAL
Absolute value of largest matrix entry.
EQUED (output) CHARACTER*1
Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
Internal Parameters
===================
THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors. If SCOND < THRESH,
scaling is done.
LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.
=====================================================================
.. Parameters ..
public void slaqtr(boolean ltran, boolean lreal, int n, float[] t, int ldt, float[] b, float w, org.netlib.util.floatW scale, float[] x, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAQTR solves the real quasi-triangular system
op(T)*p = scale*c, if LREAL = .TRUE.
or the complex quasi-triangular systems
op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE.
in real arithmetic, where T is upper quasi-triangular.
If LREAL = .FALSE., then the first diagonal block of T must be
1 by 1, B is the specially structured matrix
B = [ b(1) b(2) ... b(n) ]
[ w ]
[ w ]
[ . ]
[ w ]
op(A) = A or A', A' denotes the conjugate transpose of
matrix A.
On input, X = [ c ]. On output, X = [ p ].
[ d ] [ q ]
This subroutine is designed for the condition number estimation
in routine STRSNA.
Arguments
=========
LTRAN (input) LOGICAL
On entry, LTRAN specifies the option of conjugate transpose:
= .FALSE., op(T+i*B) = T+i*B,
= .TRUE., op(T+i*B) = (T+i*B)'.
LREAL (input) LOGICAL
On entry, LREAL specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE., the input is real
N (input) INTEGER
On entry, N specifies the order of T+i*B. N >= 0.
T (input) REAL array, dimension (LDT,N)
On entry, T contains a matrix in Schur canonical form.
If LREAL = .FALSE., then the first diagonal block of T must
be 1 by 1.
LDT (input) INTEGER
The leading dimension of the matrix T. LDT >= max(1,N).
B (input) REAL array, dimension (N)
On entry, B contains the elements to form the matrix
B as described above.
If LREAL = .TRUE., B is not referenced.
W (input) REAL
On entry, W is the diagonal element of the matrix B.
If LREAL = .TRUE., W is not referenced.
SCALE (output) REAL
On exit, SCALE is the scale factor.
X (input/output) REAL array, dimension (2*N)
On entry, X contains the right hand side of the system.
On exit, X is overwritten by the solution.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: the some diagonal 1 by 1 block has been perturbed by
a small number SMIN to keep nonsingularity.
2: the some diagonal 2 by 2 block has been perturbed by
a small number in SLALN2 to keep nonsingularity.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void slaqtr(boolean ltran, boolean lreal, int n, float[] t, int _t_offset, int ldt, float[] b, int _b_offset, float w, org.netlib.util.floatW scale, float[] x, int _x_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAQTR solves the real quasi-triangular system
op(T)*p = scale*c, if LREAL = .TRUE.
or the complex quasi-triangular systems
op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE.
in real arithmetic, where T is upper quasi-triangular.
If LREAL = .FALSE., then the first diagonal block of T must be
1 by 1, B is the specially structured matrix
B = [ b(1) b(2) ... b(n) ]
[ w ]
[ w ]
[ . ]
[ w ]
op(A) = A or A', A' denotes the conjugate transpose of
matrix A.
On input, X = [ c ]. On output, X = [ p ].
[ d ] [ q ]
This subroutine is designed for the condition number estimation
in routine STRSNA.
Arguments
=========
LTRAN (input) LOGICAL
On entry, LTRAN specifies the option of conjugate transpose:
= .FALSE., op(T+i*B) = T+i*B,
= .TRUE., op(T+i*B) = (T+i*B)'.
LREAL (input) LOGICAL
On entry, LREAL specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE., the input is real
N (input) INTEGER
On entry, N specifies the order of T+i*B. N >= 0.
T (input) REAL array, dimension (LDT,N)
On entry, T contains a matrix in Schur canonical form.
If LREAL = .FALSE., then the first diagonal block of T must
be 1 by 1.
LDT (input) INTEGER
The leading dimension of the matrix T. LDT >= max(1,N).
B (input) REAL array, dimension (N)
On entry, B contains the elements to form the matrix
B as described above.
If LREAL = .TRUE., B is not referenced.
W (input) REAL
On entry, W is the diagonal element of the matrix B.
If LREAL = .TRUE., W is not referenced.
SCALE (output) REAL
On exit, SCALE is the scale factor.
X (input/output) REAL array, dimension (2*N)
On entry, X contains the right hand side of the system.
On exit, X is overwritten by the solution.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: the some diagonal 1 by 1 block has been perturbed by
a small number SMIN to keep nonsingularity.
2: the some diagonal 2 by 2 block has been perturbed by
a small number in SLALN2 to keep nonsingularity.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void slar1v(int n, int b1, int bn, float lambda, float[] d, float[] l, float[] ld, float[] lld, float pivmin, float gaptol, float[] z, boolean wantnc, org.netlib.util.intW negcnt, org.netlib.util.floatW ztz, org.netlib.util.floatW mingma, org.netlib.util.intW r, int[] isuppz, org.netlib.util.floatW nrminv, org.netlib.util.floatW resid, org.netlib.util.floatW rqcorr, float[] work)
LAPACK
..
Purpose
=======
SLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L^T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T,
(b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T,
(c) Computation of the diagonal elements of the inverse of
L D L^T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.
Arguments
=========
N (input) INTEGER
The order of the matrix L D L^T.
B1 (input) INTEGER
First index of the submatrix of L D L^T.
BN (input) INTEGER
Last index of the submatrix of L D L^T.
LAMBDA (input) REAL
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L^T.
L (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D.
LD (input) REAL array, dimension (N-1)
The n-1 elements L(i)*D(i).
LLD (input) REAL array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).
PIVMIN (input) REAL
The minimum pivot in the Sturm sequence.
GAPTOL (input) REAL
Tolerance that indicates when eigenvector entries are neglig
w.r.t. their contribution to the residual.
Z (input/output) REAL array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.
WANTNC (input) LOGICAL
Specifies whether NEGCNT has to be computed.
NEGCNT (output) INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < piv
in the matrix factorization L D L^T, and NEGCNT = -1 otherw
ZTZ (output) REAL
The square of the 2-norm of Z.
MINGMA (output) REAL
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L^T - sigma I.
R (input/output) INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L^T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in t
eigenvector.
ISUPPZ (output) INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
NRMINV (output) REAL
NRMINV = 1/SQRT( ZTZ )
RESID (output) REAL
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )
RQCORR (output) REAL
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP
WORK (workspace) REAL array, dimension (4*N)
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slar1v(int n, int b1, int bn, float lambda, float[] d, int _d_offset, float[] l, int _l_offset, float[] ld, int _ld_offset, float[] lld, int _lld_offset, float pivmin, float gaptol, float[] z, int _z_offset, boolean wantnc, org.netlib.util.intW negcnt, org.netlib.util.floatW ztz, org.netlib.util.floatW mingma, org.netlib.util.intW r, int[] isuppz, int _isuppz_offset, org.netlib.util.floatW nrminv, org.netlib.util.floatW resid, org.netlib.util.floatW rqcorr, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L^T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T,
(b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T,
(c) Computation of the diagonal elements of the inverse of
L D L^T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.
Arguments
=========
N (input) INTEGER
The order of the matrix L D L^T.
B1 (input) INTEGER
First index of the submatrix of L D L^T.
BN (input) INTEGER
Last index of the submatrix of L D L^T.
LAMBDA (input) REAL
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L^T.
L (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D.
LD (input) REAL array, dimension (N-1)
The n-1 elements L(i)*D(i).
LLD (input) REAL array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).
PIVMIN (input) REAL
The minimum pivot in the Sturm sequence.
GAPTOL (input) REAL
Tolerance that indicates when eigenvector entries are neglig
w.r.t. their contribution to the residual.
Z (input/output) REAL array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.
WANTNC (input) LOGICAL
Specifies whether NEGCNT has to be computed.
NEGCNT (output) INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < piv
in the matrix factorization L D L^T, and NEGCNT = -1 otherw
ZTZ (output) REAL
The square of the 2-norm of Z.
MINGMA (output) REAL
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L^T - sigma I.
R (input/output) INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L^T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in t
eigenvector.
ISUPPZ (output) INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
NRMINV (output) REAL
NRMINV = 1/SQRT( ZTZ )
RESID (output) REAL
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )
RQCORR (output) REAL
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP
WORK (workspace) REAL array, dimension (4*N)
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slar2v(int n, float[] x, float[] y, float[] z, int incx, float[] c, float[] s, int incc)
LAPACK
..
Purpose
=======
SLAR2V applies a vector of real plane rotations from both sides to
a sequence of 2-by-2 real symmetric matrices, defined by the elements
of the vectors x, y and z. For i = 1,2,...,n
( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) )
( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector x.
Y (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector y.
Z (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector z.
INCX (input) INTEGER
The increment between elements of X, Y and Z. INCX > 0.
C (input) REAL array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) REAL array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void slar2v(int n, float[] x, int _x_offset, float[] y, int _y_offset, float[] z, int _z_offset, int incx, float[] c, int _c_offset, float[] s, int _s_offset, int incc)
LAPACK
..
Purpose
=======
SLAR2V applies a vector of real plane rotations from both sides to
a sequence of 2-by-2 real symmetric matrices, defined by the elements
of the vectors x, y and z. For i = 1,2,...,n
( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) )
( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector x.
Y (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector y.
Z (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector z.
INCX (input) INTEGER
The increment between elements of X, Y and Z. INCX > 0.
C (input) REAL array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) REAL array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void slarf(String side, int m, int n, float[] v, int incv, float tau, float[] c, int Ldc, float[] work)
LAPACK
..
Purpose
=======
SLARF applies a real elementary reflector H to a real m by n matrix
C, from either the left or the right. H is represented in the form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) REAL array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) REAL
The value tau in the representation of H.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void slarf(String side, int m, int n, float[] v, int _v_offset, int incv, float tau, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLARF applies a real elementary reflector H to a real m by n matrix
C, from either the left or the right. H is represented in the form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) REAL array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) REAL
The value tau in the representation of H.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void slarfb(String side, String trans, String direct, String storev, int m, int n, int k, float[] v, int ldv, float[] t, int ldt, float[] c, int Ldc, float[] work, int ldwork)
LAPACK
..
Purpose
=======
SLARFB applies a real block reflector H or its transpose H' to a
real m by n matrix C, from either the left or the right.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'T': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
V (input) REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.
T (input) REAL array, dimension (LDT,K)
The triangular k by k matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= max(1,M).
WORK (workspace) REAL array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
=====================================================================
.. Parameters ..
public void slarfb(String side, String trans, String direct, String storev, int m, int n, int k, float[] v, int _v_offset, int ldv, float[] t, int _t_offset, int ldt, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int ldwork)
LAPACK
..
Purpose
=======
SLARFB applies a real block reflector H or its transpose H' to a
real m by n matrix C, from either the left or the right.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'T': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
V (input) REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.
T (input) REAL array, dimension (LDT,K)
The triangular k by k matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= max(1,M).
WORK (workspace) REAL array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
=====================================================================
.. Parameters ..
public void slarfg(int n, org.netlib.util.floatW alpha, float[] x, int incx, org.netlib.util.floatW tau)
LAPACK
..
Purpose
=======
SLARFG generates a real elementary reflector H of order n, such
that
H * ( alpha ) = ( beta ), H' * H = I.
( x ) ( 0 )
where alpha and beta are scalars, and x is an (n-1)-element real
vector. H is represented in the form
H = I - tau * ( 1 ) * ( 1 v' ) ,
( v )
where tau is a real scalar and v is a real (n-1)-element
vector.
If the elements of x are all zero, then tau = 0 and H is taken to be
the unit matrix.
Otherwise 1 <= tau <= 2.
Arguments
=========
N (input) INTEGER
The order of the elementary reflector.
ALPHA (input/output) REAL
On entry, the value alpha.
On exit, it is overwritten with the value beta.
X (input/output) REAL array, dimension
(1+(N-2)*abs(INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
TAU (output) REAL
The value tau.
=====================================================================
.. Parameters ..
public void slarfg(int n, org.netlib.util.floatW alpha, float[] x, int _x_offset, int incx, org.netlib.util.floatW tau)
LAPACK
..
Purpose
=======
SLARFG generates a real elementary reflector H of order n, such
that
H * ( alpha ) = ( beta ), H' * H = I.
( x ) ( 0 )
where alpha and beta are scalars, and x is an (n-1)-element real
vector. H is represented in the form
H = I - tau * ( 1 ) * ( 1 v' ) ,
( v )
where tau is a real scalar and v is a real (n-1)-element
vector.
If the elements of x are all zero, then tau = 0 and H is taken to be
the unit matrix.
Otherwise 1 <= tau <= 2.
Arguments
=========
N (input) INTEGER
The order of the elementary reflector.
ALPHA (input/output) REAL
On entry, the value alpha.
On exit, it is overwritten with the value beta.
X (input/output) REAL array, dimension
(1+(N-2)*abs(INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
TAU (output) REAL
The value tau.
=====================================================================
.. Parameters ..
public void slarft(String direct, String storev, int n, int k, float[] v, int ldv, float[] tau, float[] t, int ldt)
LAPACK
..
Purpose
=======
SLARFT forms the triangular factor T of a real block reflector H
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) REAL array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
=====================================================================
.. Parameters ..
public void slarft(String direct, String storev, int n, int k, float[] v, int _v_offset, int ldv, float[] tau, int _tau_offset, float[] t, int _t_offset, int ldt)
LAPACK
..
Purpose
=======
SLARFT forms the triangular factor T of a real block reflector H
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) REAL array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
=====================================================================
.. Parameters ..
public void slarfx(String side, int m, int n, float[] v, float tau, float[] c, int Ldc, float[] work)
LAPACK
..
Purpose
=======
SLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) REAL array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.
TAU (input) REAL
The value tau in the representation of H.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= (1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.
=====================================================================
.. Parameters ..
public void slarfx(String side, int m, int n, float[] v, int _v_offset, float tau, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) REAL array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.
TAU (input) REAL
The value tau in the representation of H.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDA >= (1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.
=====================================================================
.. Parameters ..
public void slargv(int n, float[] x, int incx, float[] y, int incy, float[] c, int incc)
LAPACK
..
Purpose
=======
SLARGV generates a vector of real plane rotations, determined by
elements of the real vectors x and y. For i = 1,2,...,n
( c(i) s(i) ) ( x(i) ) = ( a(i) )
( -s(i) c(i) ) ( y(i) ) = ( 0 )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be generated.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
On entry, the vector x.
On exit, x(i) is overwritten by a(i), for i = 1,...,n.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) REAL array,
dimension (1+(N-1)*INCY)
On entry, the vector y.
On exit, the sines of the plane rotations.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (output) REAL array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C. INCC > 0.
=====================================================================
.. Parameters ..
public void slargv(int n, float[] x, int _x_offset, int incx, float[] y, int _y_offset, int incy, float[] c, int _c_offset, int incc)
LAPACK
..
Purpose
=======
SLARGV generates a vector of real plane rotations, determined by
elements of the real vectors x and y. For i = 1,2,...,n
( c(i) s(i) ) ( x(i) ) = ( a(i) )
( -s(i) c(i) ) ( y(i) ) = ( 0 )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be generated.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
On entry, the vector x.
On exit, x(i) is overwritten by a(i), for i = 1,...,n.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) REAL array,
dimension (1+(N-1)*INCY)
On entry, the vector y.
On exit, the sines of the plane rotations.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (output) REAL array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C. INCC > 0.
=====================================================================
.. Parameters ..
public void slarnv(int idist, int[] iseed, int n, float[] x)
LAPACK
..
Purpose
=======
SLARNV returns a vector of n random real numbers from a uniform or
normal distribution.
Arguments
=========
IDIST (input) INTEGER
Specifies the distribution of the random numbers:
= 1: uniform (0,1)
= 2: uniform (-1,1)
= 3: normal (0,1)
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated.
X (output) REAL array, dimension (N)
The generated random numbers.
Further Details
===============
This routine calls the auxiliary routine SLARUV to generate random
real numbers from a uniform (0,1) distribution, in batches of up to
128 using vectorisable code. The Box-Muller method is used to
transform numbers from a uniform to a normal distribution.
=====================================================================
.. Parameters ..
public void slarnv(int idist, int[] iseed, int _iseed_offset, int n, float[] x, int _x_offset)
LAPACK
..
Purpose
=======
SLARNV returns a vector of n random real numbers from a uniform or
normal distribution.
Arguments
=========
IDIST (input) INTEGER
Specifies the distribution of the random numbers:
= 1: uniform (0,1)
= 2: uniform (-1,1)
= 3: normal (0,1)
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated.
X (output) REAL array, dimension (N)
The generated random numbers.
Further Details
===============
This routine calls the auxiliary routine SLARUV to generate random
real numbers from a uniform (0,1) distribution, in batches of up to
128 using vectorisable code. The Box-Muller method is used to
transform numbers from a uniform to a normal distribution.
=====================================================================
.. Parameters ..
public void slarra(int n, float[] d, float[] e, float[] e2, float spltol, float tnrm, org.netlib.util.intW nsplit, int[] isplit, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Compute the splitting points with threshold SPLTOL.
SLARRA sets any "small" off-diagonal elements to zero.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
E (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT,
are set to zero, the other entries of E are untouched.
E2 (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
SPLTOL (input) REAL
The threshold for splitting. Two criteria can be used:
SPLTOL<0 : criterion based on absolute off-diagonal value
SPLTOL>0 : criterion that preserves relative accuracy
TNRM (input) REAL
The norm of the matrix.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
INFO (output) INTEGER
= 0: successful exit
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarra(int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] e2, int _e2_offset, float spltol, float tnrm, org.netlib.util.intW nsplit, int[] isplit, int _isplit_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Compute the splitting points with threshold SPLTOL.
SLARRA sets any "small" off-diagonal elements to zero.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
E (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT,
are set to zero, the other entries of E are untouched.
E2 (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
SPLTOL (input) REAL
The threshold for splitting. Two criteria can be used:
SPLTOL<0 : criterion based on absolute off-diagonal value
SPLTOL>0 : criterion that preserves relative accuracy
TNRM (input) REAL
The norm of the matrix.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
INFO (output) INTEGER
= 0: successful exit
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrb(int n, float[] d, float[] lld, int ifirst, int ilast, float rtol1, float rtol2, int offset, float[] w, float[] wgap, float[] werr, float[] work, int[] iwork, float pivmin, float spdiam, int twist, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the relatively robust representation(RRR) L D L^T, SLARRB
does "limited" bisection to refine the eigenvalues of L D L^T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses and their gaps are input in WERR
and WGAP, respectively. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) REAL array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL1 (input) REAL
RTOL2 (input) REAL
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
where GAP is the (estimated) distance to the nearest
eigenvalue.
OFFSET (input) INTEGER
Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFS
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) REAL array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WGAP (input/output) REAL array, dimension (N-1)
On input, the (estimated) gaps between consecutive
eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap betwe
eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
then WGAP(IFIRST-OFFSET) must be set to ZERO.
On output, these gaps are refined.
WERR (input/output) REAL array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) REAL array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of the matrix.
TWIST (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L
TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U
TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrb(int n, float[] d, int _d_offset, float[] lld, int _lld_offset, int ifirst, int ilast, float rtol1, float rtol2, int offset, float[] w, int _w_offset, float[] wgap, int _wgap_offset, float[] werr, int _werr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, float pivmin, float spdiam, int twist, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the relatively robust representation(RRR) L D L^T, SLARRB
does "limited" bisection to refine the eigenvalues of L D L^T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses and their gaps are input in WERR
and WGAP, respectively. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D.
LLD (input) REAL array, dimension (N-1)
The (N-1) elements L(i)*L(i)*D(i).
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL1 (input) REAL
RTOL2 (input) REAL
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
where GAP is the (estimated) distance to the nearest
eigenvalue.
OFFSET (input) INTEGER
Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFS
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) REAL array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WGAP (input/output) REAL array, dimension (N-1)
On input, the (estimated) gaps between consecutive
eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap betwe
eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
then WGAP(IFIRST-OFFSET) must be set to ZERO.
On output, these gaps are refined.
WERR (input/output) REAL array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) REAL array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of the matrix.
TWIST (input) INTEGER
The twist index for the twisted factorization that is used
for the negcount.
TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L
TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U
TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrc(String jobt, int n, float vl, float vu, float[] d, float[] e, float pivmin, org.netlib.util.intW eigcnt, org.netlib.util.intW lcnt, org.netlib.util.intW rcnt, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Find the number of eigenvalues of the symmetric tridiagonal matrix T
that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
if JOBT = 'L'.
Arguments
=========
JOBT (input) CHARACTER*1
= 'T': Compute Sturm count for matrix T.
= 'L': Compute Sturm count for matrix L D L^T.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
The lower and upper bounds for the eigenvalues.
D (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N diagonal elements of the tridiagonal matrix
JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
EIGCNT (output) INTEGER
The number of eigenvalues of the symmetric tridiagonal matrix
that are in the interval (VL,VU]
LCNT (output) INTEGER
RCNT (output) INTEGER
The left and right negcounts of the interval.
INFO (output) INTEGER
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrc(String jobt, int n, float vl, float vu, float[] d, int _d_offset, float[] e, int _e_offset, float pivmin, org.netlib.util.intW eigcnt, org.netlib.util.intW lcnt, org.netlib.util.intW rcnt, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Find the number of eigenvalues of the symmetric tridiagonal matrix T
that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
if JOBT = 'L'.
Arguments
=========
JOBT (input) CHARACTER*1
= 'T': Compute Sturm count for matrix T.
= 'L': Compute Sturm count for matrix L D L^T.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
The lower and upper bounds for the eigenvalues.
D (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N diagonal elements of the tridiagonal matrix
JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E (input) DOUBLE PRECISION array, dimension (N)
JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
EIGCNT (output) INTEGER
The number of eigenvalues of the symmetric tridiagonal matrix
that are in the interval (VL,VU]
LCNT (output) INTEGER
RCNT (output) INTEGER
The left and right negcounts of the interval.
INFO (output) INTEGER
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrd(String range, String order, int n, float vl, float vu, int il, int iu, float[] gers, float reltol, float[] d, float[] e, float[] e2, float pivmin, int nsplit, int[] isplit, org.netlib.util.intW m, float[] w, float[] werr, org.netlib.util.floatW wl, org.netlib.util.floatW wu, int[] iblock, int[] indexw, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLARRD computes the eigenvalues of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from SSTEMR.
The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
GERS (input) REAL array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
RELTOL (input) REAL
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
E2 (input) REAL array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) REAL
The minimum pivot allowed in the Sturm sequence for T.
NSPLIT (input) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
W (output) REAL array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalue approximations. SLARRD computes an interval
I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue
approximation is given as the interval midpoint
W(j)= ( a_j + b_j)/2. The corresponding error is bounded by
WERR(j) = abs( a_j - b_j)/2
WERR (output) REAL array, dimension (N)
The error bound on the corresponding eigenvalue approximation
in W.
WL (output) REAL
WU (output) REAL
The interval (WL, WU] contains all the wanted eigenvalues.
If RANGE='V', then WL=VL and WU=VU.
If RANGE='A', then WL and WU are the global Gerschgorin bound
on the spectrum.
If RANGE='I', then WL and WU are computed by SLAEBZ from the
index range specified.
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (SLARRD may use the remaining N-M elements as
workspace.)
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= j and IBLOCK(i)=k imply that the
i-th eigenvalue W(i) is the j-th eigenvalue in block k.
WORK (workspace) REAL array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
FUDGE REAL , default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
Based on contributions by
W. Kahan, University of California, Berkeley, USA
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrd(String range, String order, int n, float vl, float vu, int il, int iu, float[] gers, int _gers_offset, float reltol, float[] d, int _d_offset, float[] e, int _e_offset, float[] e2, int _e2_offset, float pivmin, int nsplit, int[] isplit, int _isplit_offset, org.netlib.util.intW m, float[] w, int _w_offset, float[] werr, int _werr_offset, org.netlib.util.floatW wl, org.netlib.util.floatW wu, int[] iblock, int _iblock_offset, int[] indexw, int _indexw_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLARRD computes the eigenvalues of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from SSTEMR.
The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
GERS (input) REAL array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
RELTOL (input) REAL
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
E2 (input) REAL array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) REAL
The minimum pivot allowed in the Sturm sequence for T.
NSPLIT (input) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
W (output) REAL array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalue approximations. SLARRD computes an interval
I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue
approximation is given as the interval midpoint
W(j)= ( a_j + b_j)/2. The corresponding error is bounded by
WERR(j) = abs( a_j - b_j)/2
WERR (output) REAL array, dimension (N)
The error bound on the corresponding eigenvalue approximation
in W.
WL (output) REAL
WU (output) REAL
The interval (WL, WU] contains all the wanted eigenvalues.
If RANGE='V', then WL=VL and WU=VU.
If RANGE='A', then WL and WU are the global Gerschgorin bound
on the spectrum.
If RANGE='I', then WL and WU are computed by SLAEBZ from the
index range specified.
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (SLARRD may use the remaining N-M elements as
workspace.)
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= j and IBLOCK(i)=k imply that the
i-th eigenvalue W(i) is the j-th eigenvalue in block k.
WORK (workspace) REAL array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
FUDGE REAL , default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
Based on contributions by
W. Kahan, University of California, Berkeley, USA
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarre(String range, int n, org.netlib.util.floatW vl, org.netlib.util.floatW vu, int il, int iu, float[] d, float[] e, float[] e2, float rtol1, float rtol2, float spltol, org.netlib.util.intW nsplit, int[] isplit, org.netlib.util.intW m, float[] w, float[] werr, float[] wgap, int[] iblock, int[] indexw, float[] gers, org.netlib.util.floatW pivmin, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
To find the desired eigenvalues of a given real symmetric
tridiagonal matrix T, SLARRE sets any "small" off-diagonal
elements to zero, and for each unreduced block T_i, it finds
(a) a suitable shift at one end of the block's spectrum,
(b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
(c) eigenvalues of each L_i D_i L_i^T.
The representations and eigenvalues found are then used by
SSTEMR to compute the eigenvectors of T.
The accuracy varies depending on whether bisection is used to
find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to
conpute all and then discard any unwanted one.
As an added benefit, SLARRE also outputs the n
Gerschgorin intervals for the matrices L_i D_i L_i^T.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input/output) REAL
VU (input/output) REAL
If RANGE='V', the lower and upper bounds for the eigenvalues.
Eigenvalues less than or equal to VL, or greater than VU,
will not be returned. VL < VU.
If RANGE='I' or ='A', SLARRE computes bounds on the desired
part of the spectrum.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
On exit, the N diagonal elements of the diagonal
matrices D_i.
E (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, E contains the subdiagonal elements of the unit
bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
1 <= I <= NSPLIT, contain the base points sigma_i on output.
E2 (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
RTOL1 (input) REAL
RTOL2 (input) REAL
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
SPLTOL (input) REAL
The threshold for splitting.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
M (output) INTEGER
The total number of eigenvalues (of all L_i D_i L_i^T)
found.
W (output) REAL array, dimension (N)
The first M elements contain the eigenvalues. The
eigenvalues of each of the blocks, L_i D_i L_i^T, are
sorted in ascending order ( SLARRE may use the
remaining N-M elements as workspace).
WERR (output) REAL array, dimension (N)
The error bound on the corresponding eigenvalue in W.
WGAP (output) REAL array, dimension (N)
The separation from the right neighbor eigenvalue in W.
The gap is only with respect to the eigenvalues of the same b
as each block has its own representation tree.
Exception: at the right end of a block we store the left gap
IBLOCK (output) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
GERS (output) REAL array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
PIVMIN (output) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
WORK (workspace) REAL array, dimension (6*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (5*N)
Workspace.
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in SLARRE.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in SLARRD.
= 2: No base representation could be found in MAXTRY iterati
Increasing MAXTRY and recompilation might be a remedy.
=-3: Problem in SLARRB when computing the refined root
representation for SLASQ2.
=-4: Problem in SLARRB when preforming bisection on the
desired part of the spectrum.
=-5: Problem in SLASQ2.
=-6: Problem in SLASQ2.
Further Details
The base representations are required to suffer very little
element growth and consequently define all their eigenvalues to
high relative accuracy.
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarre(String range, int n, org.netlib.util.floatW vl, org.netlib.util.floatW vu, int il, int iu, float[] d, int _d_offset, float[] e, int _e_offset, float[] e2, int _e2_offset, float rtol1, float rtol2, float spltol, org.netlib.util.intW nsplit, int[] isplit, int _isplit_offset, org.netlib.util.intW m, float[] w, int _w_offset, float[] werr, int _werr_offset, float[] wgap, int _wgap_offset, int[] iblock, int _iblock_offset, int[] indexw, int _indexw_offset, float[] gers, int _gers_offset, org.netlib.util.floatW pivmin, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
To find the desired eigenvalues of a given real symmetric
tridiagonal matrix T, SLARRE sets any "small" off-diagonal
elements to zero, and for each unreduced block T_i, it finds
(a) a suitable shift at one end of the block's spectrum,
(b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
(c) eigenvalues of each L_i D_i L_i^T.
The representations and eigenvalues found are then used by
SSTEMR to compute the eigenvectors of T.
The accuracy varies depending on whether bisection is used to
find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to
conpute all and then discard any unwanted one.
As an added benefit, SLARRE also outputs the n
Gerschgorin intervals for the matrices L_i D_i L_i^T.
Arguments
=========
RANGE (input) CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
N (input) INTEGER
The order of the matrix. N > 0.
VL (input/output) REAL
VU (input/output) REAL
If RANGE='V', the lower and upper bounds for the eigenvalues.
Eigenvalues less than or equal to VL, or greater than VU,
will not be returned. VL < VU.
If RANGE='I' or ='A', SLARRE computes bounds on the desired
part of the spectrum.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal
matrix T.
On exit, the N diagonal elements of the diagonal
matrices D_i.
E (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) need not be set.
On exit, E contains the subdiagonal elements of the unit
bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
1 <= I <= NSPLIT, contain the base points sigma_i on output.
E2 (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the SQUARES of the
subdiagonal elements of the tridiagonal matrix T;
E2(N) need not be set.
On exit, the entries E2( ISPLIT( I ) ),
1 <= I <= NSPLIT, have been set to zero
RTOL1 (input) REAL
RTOL2 (input) REAL
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
SPLTOL (input) REAL
The threshold for splitting.
NSPLIT (output) INTEGER
The number of blocks T splits into. 1 <= NSPLIT <= N.
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
M (output) INTEGER
The total number of eigenvalues (of all L_i D_i L_i^T)
found.
W (output) REAL array, dimension (N)
The first M elements contain the eigenvalues. The
eigenvalues of each of the blocks, L_i D_i L_i^T, are
sorted in ascending order ( SLARRE may use the
remaining N-M elements as workspace).
WERR (output) REAL array, dimension (N)
The error bound on the corresponding eigenvalue in W.
WGAP (output) REAL array, dimension (N)
The separation from the right neighbor eigenvalue in W.
The gap is only with respect to the eigenvalues of the same b
as each block has its own representation tree.
Exception: at the right end of a block we store the left gap
IBLOCK (output) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (output) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
GERS (output) REAL array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)).
PIVMIN (output) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
WORK (workspace) REAL array, dimension (6*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (5*N)
Workspace.
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in SLARRE.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in SLARRD.
= 2: No base representation could be found in MAXTRY iterati
Increasing MAXTRY and recompilation might be a remedy.
=-3: Problem in SLARRB when computing the refined root
representation for SLASQ2.
=-4: Problem in SLARRB when preforming bisection on the
desired part of the spectrum.
=-5: Problem in SLASQ2.
=-6: Problem in SLASQ2.
Further Details
The base representations are required to suffer very little
element growth and consequently define all their eigenvalues to
high relative accuracy.
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrf(int n, float[] d, float[] l, float[] ld, int clstrt, int clend, float[] w, float[] wgap, float[] werr, float spdiam, float clgapl, float clgapr, float pivmin, org.netlib.util.floatW sigma, float[] dplus, float[] lplus, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial representation L D L^T and its cluster of close
eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
W( CLEND ), SLARRF finds a new relatively robust representation
L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
Arguments
=========
N (input) INTEGER
The order of the matrix (subblock, if the matrix splitted).
D (input) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D.
L (input) REAL array, dimension (N-1)
The (N-1) subdiagonal elements of the unit bidiagonal
matrix L.
LD (input) REAL array, dimension (N-1)
The (N-1) elements L(i)*D(i).
CLSTRT (input) INTEGER
The index of the first eigenvalue in the cluster.
CLEND (input) INTEGER
The index of the last eigenvalue in the cluster.
W (input) REAL array, dimension >= (CLEND-CLSTRT+1
The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
W( CLSTRT ) through W( CLEND ) form the cluster of relatively
close eigenalues.
WGAP (input/output) REAL array, dimension >= (CLEND-C
The separation from the right neighbor eigenvalue in W.
WERR (input) REAL array, dimension >= (CLEND-CLSTRT+1
WERR contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue APPROXIMATION in W
SPDIAM (input) estimate of the spectral diameter obtained from the
Gerschgorin intervals
CLGAPL, CLGAPR (input) absolute gap on each end of the cluster.
Set by the calling routine to protect against shifts too clos
to eigenvalues outside the cluster.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
SIGMA (output) REAL
The shift used to form L(+) D(+) L(+)^T.
DPLUS (output) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D(+).
LPLUS (output) REAL array, dimension (N-1)
The first (N-1) elements of LPLUS contain the subdiagonal
elements of the unit bidiagonal matrix L(+).
WORK (workspace) REAL array, dimension (2*N)
Workspace.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrf(int n, float[] d, int _d_offset, float[] l, int _l_offset, float[] ld, int _ld_offset, int clstrt, int clend, float[] w, int _w_offset, float[] wgap, int _wgap_offset, float[] werr, int _werr_offset, float spdiam, float clgapl, float clgapr, float pivmin, org.netlib.util.floatW sigma, float[] dplus, int _dplus_offset, float[] lplus, int _lplus_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial representation L D L^T and its cluster of close
eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
W( CLEND ), SLARRF finds a new relatively robust representation
L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
Arguments
=========
N (input) INTEGER
The order of the matrix (subblock, if the matrix splitted).
D (input) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D.
L (input) REAL array, dimension (N-1)
The (N-1) subdiagonal elements of the unit bidiagonal
matrix L.
LD (input) REAL array, dimension (N-1)
The (N-1) elements L(i)*D(i).
CLSTRT (input) INTEGER
The index of the first eigenvalue in the cluster.
CLEND (input) INTEGER
The index of the last eigenvalue in the cluster.
W (input) REAL array, dimension >= (CLEND-CLSTRT+1
The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
W( CLSTRT ) through W( CLEND ) form the cluster of relatively
close eigenalues.
WGAP (input/output) REAL array, dimension >= (CLEND-C
The separation from the right neighbor eigenvalue in W.
WERR (input) REAL array, dimension >= (CLEND-CLSTRT+1
WERR contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue APPROXIMATION in W
SPDIAM (input) estimate of the spectral diameter obtained from the
Gerschgorin intervals
CLGAPL, CLGAPR (input) absolute gap on each end of the cluster.
Set by the calling routine to protect against shifts too clos
to eigenvalues outside the cluster.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
SIGMA (output) REAL
The shift used to form L(+) D(+) L(+)^T.
DPLUS (output) REAL array, dimension (N)
The N diagonal elements of the diagonal matrix D(+).
LPLUS (output) REAL array, dimension (N-1)
The first (N-1) elements of LPLUS contain the subdiagonal
elements of the unit bidiagonal matrix L(+).
WORK (workspace) REAL array, dimension (2*N)
Workspace.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrj(int n, float[] d, float[] e2, int ifirst, int ilast, float rtol, int offset, float[] w, float[] werr, float[] work, int[] iwork, float pivmin, float spdiam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial eigenvalue approximations of T, SLARRJ
does bisection to refine the eigenvalues of T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses in WERR. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) REAL array, dimension (N)
The N diagonal elements of T.
E2 (input) REAL array, dimension (N-1)
The Squares of the (N-1) subdiagonal elements of T.
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL (input) REAL
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
OFFSET (input) INTEGER
Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) REAL array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WERR (input/output) REAL array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) REAL array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of T.
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrj(int n, float[] d, int _d_offset, float[] e2, int _e2_offset, int ifirst, int ilast, float rtol, int offset, float[] w, int _w_offset, float[] werr, int _werr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, float pivmin, float spdiam, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Given the initial eigenvalue approximations of T, SLARRJ
does bisection to refine the eigenvalues of T,
W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initi
guesses for these eigenvalues are input in W, the corresponding estim
of the error in these guesses in WERR. During bisection, intervals
[left, right] are maintained by storing their mid-points and
semi-widths in the arrays W and WERR respectively.
Arguments
=========
N (input) INTEGER
The order of the matrix.
D (input) REAL array, dimension (N)
The N diagonal elements of T.
E2 (input) REAL array, dimension (N-1)
The Squares of the (N-1) subdiagonal elements of T.
IFIRST (input) INTEGER
The index of the first eigenvalue to be computed.
ILAST (input) INTEGER
The index of the last eigenvalue to be computed.
RTOL (input) REAL
Tolerance for the convergence of the bisection intervals.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
OFFSET (input) INTEGER
Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
through ILAST-OFFSET elements of these arrays are to be used.
W (input/output) REAL array, dimension (N)
On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
estimates of the eigenvalues of L D L^T indexed IFIRST throug
ILAST.
On output, these estimates are refined.
WERR (input/output) REAL array, dimension (N)
On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
the errors in the estimates of the corresponding elements in
On output, these errors are refined.
WORK (workspace) REAL array, dimension (2*N)
Workspace.
IWORK (workspace) INTEGER array, dimension (2*N)
Workspace.
PIVMIN (input) DOUBLE PRECISION
The minimum pivot in the Sturm sequence for T.
SPDIAM (input) DOUBLE PRECISION
The spectral diameter of T.
INFO (output) INTEGER
Error flag.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrk(int n, int iw, float gl, float gu, float[] d, float[] e2, float pivmin, float reltol, org.netlib.util.floatW w, org.netlib.util.floatW werr, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLARRK computes one eigenvalue of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from SSTEMR.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
IW (input) INTEGER
The index of the eigenvalues to be returned.
GL (input) REAL
GU (input) REAL
An upper and a lower bound on the eigenvalue.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E2 (input) REAL array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) REAL
The minimum pivot allowed in the Sturm sequence for T.
RELTOL (input) REAL
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
W (output) REAL
WERR (output) REAL
The error bound on the corresponding eigenvalue approximation
in W.
INFO (output) INTEGER
= 0: Eigenvalue converged
= -1: Eigenvalue did NOT converge
Internal Parameters
===================
FUDGE REAL , default = 2
A "fudge factor" to widen the Gershgorin intervals.
=====================================================================
.. Parameters ..
public void slarrk(int n, int iw, float gl, float gu, float[] d, int _d_offset, float[] e2, int _e2_offset, float pivmin, float reltol, org.netlib.util.floatW w, org.netlib.util.floatW werr, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLARRK computes one eigenvalue of a symmetric tridiagonal
matrix T to suitable accuracy. This is an auxiliary code to be
called from SSTEMR.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
IW (input) INTEGER
The index of the eigenvalues to be returned.
GL (input) REAL
GU (input) REAL
An upper and a lower bound on the eigenvalue.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E2 (input) REAL array, dimension (N-1)
The (n-1) squared off-diagonal elements of the tridiagonal ma
PIVMIN (input) REAL
The minimum pivot allowed in the Sturm sequence for T.
RELTOL (input) REAL
The minimum relative width of an interval. When an interval
is narrower than RELTOL times the larger (in
magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should
always be at least radix*machine epsilon.
W (output) REAL
WERR (output) REAL
The error bound on the corresponding eigenvalue approximation
in W.
INFO (output) INTEGER
= 0: Eigenvalue converged
= -1: Eigenvalue did NOT converge
Internal Parameters
===================
FUDGE REAL , default = 2
A "fudge factor" to widen the Gershgorin intervals.
=====================================================================
.. Parameters ..
public void slarrr(int n, float[] d, float[] e, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Perform tests to decide whether the symmetric tridiagonal matrix T
warrants expensive computations which guarantee high relative accurac
in the eigenvalues.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) REAL array, dimension (N)
The N diagonal elements of the tridiagonal matrix T.
E (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) is set to ZERO.
INFO (output) INTEGER
INFO = 0(default) : the matrix warrants computations preservi
relative accuracy.
INFO = 1 : the matrix warrants computations guarante
only absolute accuracy.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrr(int n, float[] d, int _d_offset, float[] e, int _e_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Perform tests to decide whether the symmetric tridiagonal matrix T
warrants expensive computations which guarantee high relative accurac
in the eigenvalues.
Arguments
=========
N (input) INTEGER
The order of the matrix. N > 0.
D (input) REAL array, dimension (N)
The N diagonal elements of the tridiagonal matrix T.
E (input/output) REAL array, dimension (N)
On entry, the first (N-1) entries contain the subdiagonal
elements of the tridiagonal matrix T; E(N) is set to ZERO.
INFO (output) INTEGER
INFO = 0(default) : the matrix warrants computations preservi
relative accuracy.
INFO = 1 : the matrix warrants computations guarante
only absolute accuracy.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrv(int n, float vl, float vu, float[] d, float[] l, float pivmin, int[] isplit, int m, int dol, int dou, float minrgp, org.netlib.util.floatW rtol1, org.netlib.util.floatW rtol2, float[] w, float[] werr, float[] wgap, int[] iblock, int[] indexw, float[] gers, float[] z, int ldz, int[] isuppz, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLARRV computes the eigenvectors of the tridiagonal matrix
T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L
The input eigenvalues should have been computed by SLARRE.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
VL (input) REAL
VU (input) REAL
Lower and upper bounds of the interval that contains the desi
eigenvalues. VL < VU. Needed to compute gaps on the left or r
end of the extremal eigenvalues in the desired RANGE.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the diagonal matrix D.
On exit, D may be overwritten.
L (input/output) REAL array, dimension (N)
On entry, the (N-1) subdiagonal elements of the unit
bidiagonal matrix L are in elements 1 to N-1 of L
(if the matrix is not splitted.) At the end of each block
is stored the corresponding shift as given by SLARRE.
On exit, L is overwritten.
PIVMIN (in) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
M (input) INTEGER
The total number of input eigenvalues. 0 <= M <= N.
DOL (input) INTEGER
DOU (input) INTEGER
If the user wants to compute only selected eigenvectors from
the eigenvalues supplied, he can specify an index range DOL:D
Or else the setting DOL=1, DOU=M should be applied.
Note that DOL and DOU refer to the order in which the eigenva
are stored in W.
If the user wants to compute only selected eigenpairs, then
the columns DOL-1 to DOU+1 of the eigenvector space Z contain
computed eigenvectors. All other columns of Z are set to zero
MINRGP (input) REAL
RTOL1 (input) REAL
RTOL2 (input) REAL
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
W (input/output) REAL array, dimension (N)
The first M elements of W contain the APPROXIMATE eigenvalues
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block ( The output array
W from SLARRE is expected here ). Furthermore, they are with
respect to the shift of the corresponding root representation
for their block. On exit, W holds the eigenvalues of the
UNshifted matrix.
WERR (input/output) REAL array, dimension (N)
The first M elements contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue in W
WGAP (input/output) REAL array, dimension (N)
The separation from the right neighbor eigenvalue in W.
IBLOCK (input) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (input) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in the second bl
GERS (input) REAL array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
be computed from the original UNshifted matrix.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If INFO = 0, the first M columns of Z contain the
orthonormal eigenvectors of the matrix T
corresponding to the input eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The I-th eigenvector
is nonzero only in elements ISUPPZ( 2*I-1 ) through
ISUPPZ( 2*I ).
WORK (workspace) REAL array, dimension (12*N)
IWORK (workspace) INTEGER array, dimension (7*N)
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in SLARRV.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in SLARRB when refining a child's eigenvalues.
=-2: Problem in SLARRF when computing the RRR of a child.
When a child is inside a tight cluster, it can be diffi
to find an RRR. A partial remedy from the user's point
view is to make the parameter MINRGP smaller and recomp
However, as the orthogonality of the computed vectors i
proportional to 1/MINRGP, the user should be aware that
he might be trading in precision when he decreases MINR
=-3: Problem in SLARRB when refining a single eigenvalue
after the Rayleigh correction was rejected.
= 5: The Rayleigh Quotient Iteration failed to converge to
full accuracy in MAXITR steps.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slarrv(int n, float vl, float vu, float[] d, int _d_offset, float[] l, int _l_offset, float pivmin, int[] isplit, int _isplit_offset, int m, int dol, int dou, float minrgp, org.netlib.util.floatW rtol1, org.netlib.util.floatW rtol2, float[] w, int _w_offset, float[] werr, int _werr_offset, float[] wgap, int _wgap_offset, int[] iblock, int _iblock_offset, int[] indexw, int _indexw_offset, float[] gers, int _gers_offset, float[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLARRV computes the eigenvectors of the tridiagonal matrix
T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L
The input eigenvalues should have been computed by SLARRE.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
VL (input) REAL
VU (input) REAL
Lower and upper bounds of the interval that contains the desi
eigenvalues. VL < VU. Needed to compute gaps on the left or r
end of the extremal eigenvalues in the desired RANGE.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the diagonal matrix D.
On exit, D may be overwritten.
L (input/output) REAL array, dimension (N)
On entry, the (N-1) subdiagonal elements of the unit
bidiagonal matrix L are in elements 1 to N-1 of L
(if the matrix is not splitted.) At the end of each block
is stored the corresponding shift as given by SLARRE.
On exit, L is overwritten.
PIVMIN (in) DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
M (input) INTEGER
The total number of input eigenvalues. 0 <= M <= N.
DOL (input) INTEGER
DOU (input) INTEGER
If the user wants to compute only selected eigenvectors from
the eigenvalues supplied, he can specify an index range DOL:D
Or else the setting DOL=1, DOU=M should be applied.
Note that DOL and DOU refer to the order in which the eigenva
are stored in W.
If the user wants to compute only selected eigenpairs, then
the columns DOL-1 to DOU+1 of the eigenvector space Z contain
computed eigenvectors. All other columns of Z are set to zero
MINRGP (input) REAL
RTOL1 (input) REAL
RTOL2 (input) REAL
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
W (input/output) REAL array, dimension (N)
The first M elements of W contain the APPROXIMATE eigenvalues
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block ( The output array
W from SLARRE is expected here ). Furthermore, they are with
respect to the shift of the corresponding root representation
for their block. On exit, W holds the eigenvalues of the
UNshifted matrix.
WERR (input/output) REAL array, dimension (N)
The first M elements contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue in W
WGAP (input/output) REAL array, dimension (N)
The separation from the right neighbor eigenvalue in W.
IBLOCK (input) INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW (input) INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in the second bl
GERS (input) REAL array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
be computed from the original UNshifted matrix.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If INFO = 0, the first M columns of Z contain the
orthonormal eigenvectors of the matrix T
corresponding to the input eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The I-th eigenvector
is nonzero only in elements ISUPPZ( 2*I-1 ) through
ISUPPZ( 2*I ).
WORK (workspace) REAL array, dimension (12*N)
IWORK (workspace) INTEGER array, dimension (7*N)
INFO (output) INTEGER
= 0: successful exit
> 0: A problem occured in SLARRV.
< 0: One of the called subroutines signaled an internal prob
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in SLARRB when refining a child's eigenvalues.
=-2: Problem in SLARRF when computing the RRR of a child.
When a child is inside a tight cluster, it can be diffi
to find an RRR. A partial remedy from the user's point
view is to make the parameter MINRGP smaller and recomp
However, as the orthogonality of the computed vectors i
proportional to 1/MINRGP, the user should be aware that
he might be trading in precision when he decreases MINR
=-3: Problem in SLARRB when refining a single eigenvalue
after the Rayleigh correction was rejected.
= 5: The Rayleigh Quotient Iteration failed to converge to
full accuracy in MAXITR steps.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void slartg(float f, float g, org.netlib.util.floatW cs, org.netlib.util.floatW sn, org.netlib.util.floatW r)
LAPACK
..
Purpose
=======
SLARTG generate a plane rotation so that
[ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
[ -SN CS ] [ G ] [ 0 ]
This is a slower, more accurate version of the BLAS1 routine SROTG,
with the following other differences:
F and G are unchanged on return.
If G=0, then CS=1 and SN=0.
If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
floating point operations (saves work in SBDSQR when
there are zeros on the diagonal).
If F exceeds G in magnitude, CS will be positive.
Arguments
=========
F (input) REAL
The first component of vector to be rotated.
G (input) REAL
The second component of vector to be rotated.
CS (output) REAL
The cosine of the rotation.
SN (output) REAL
The sine of the rotation.
R (output) REAL
The nonzero component of the rotated vector.
This version has a few statements commented out for thread safety
(machine parameters are computed on each entry). 10 feb 03, SJH.
=====================================================================
.. Parameters ..
public void slartv(int n, float[] x, int incx, float[] y, int incy, float[] c, float[] s, int incc)
LAPACK
..
Purpose
=======
SLARTV applies a vector of real plane rotations to elements of the
real vectors x and y. For i = 1,2,...,n
( x(i) ) := ( c(i) s(i) ) ( x(i) )
( y(i) ) ( -s(i) c(i) ) ( y(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector x.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) REAL array,
dimension (1+(N-1)*INCY)
The vector y.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (input) REAL array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) REAL array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void slartv(int n, float[] x, int _x_offset, int incx, float[] y, int _y_offset, int incy, float[] c, int _c_offset, float[] s, int _s_offset, int incc)
LAPACK
..
Purpose
=======
SLARTV applies a vector of real plane rotations to elements of the
real vectors x and y. For i = 1,2,...,n
( x(i) ) := ( c(i) s(i) ) ( x(i) )
( y(i) ) ( -s(i) c(i) ) ( y(i) )
Arguments
=========
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) REAL array,
dimension (1+(N-1)*INCX)
The vector x.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) REAL array,
dimension (1+(N-1)*INCY)
The vector y.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (input) REAL array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) REAL array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
=====================================================================
.. Local Scalars ..
public void slaruv(int[] iseed, int n, float[] x)
LAPACK
..
Purpose
=======
SLARUV returns a vector of n random real numbers from a uniform (0,1)
distribution (n <= 128).
This is an auxiliary routine called by SLARNV and CLARNV.
Arguments
=========
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated. N <= 128.
X (output) REAL array, dimension (N)
The generated random numbers.
Further Details
===============
This routine uses a multiplicative congruential method with modulus
2**48 and multiplier 33952834046453 (see G.S.Fishman,
'Multiplicative congruential random number generators with modulus
2**b: an exhaustive analysis for b = 32 and a partial analysis for
b = 48', Math. Comp. 189, pp 331-344, 1990).
48-bit integers are stored in 4 integer array elements with 12 bits
per element. Hence the routine is portable across machines with
integers of 32 bits or more.
=====================================================================
.. Parameters ..
public void slaruv(int[] iseed, int _iseed_offset, int n, float[] x, int _x_offset)
LAPACK
..
Purpose
=======
SLARUV returns a vector of n random real numbers from a uniform (0,1)
distribution (n <= 128).
This is an auxiliary routine called by SLARNV and CLARNV.
Arguments
=========
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
N (input) INTEGER
The number of random numbers to be generated. N <= 128.
X (output) REAL array, dimension (N)
The generated random numbers.
Further Details
===============
This routine uses a multiplicative congruential method with modulus
2**48 and multiplier 33952834046453 (see G.S.Fishman,
'Multiplicative congruential random number generators with modulus
2**b: an exhaustive analysis for b = 32 and a partial analysis for
b = 48', Math. Comp. 189, pp 331-344, 1990).
48-bit integers are stored in 4 integer array elements with 12 bits
per element. Hence the routine is portable across machines with
integers of 32 bits or more.
=====================================================================
.. Parameters ..
public void slarz(String side, int m, int n, int l, float[] v, int incv, float tau, float[] c, int Ldc, float[] work)
LAPACK
..
Purpose
=======
SLARZ applies a real elementary reflector H to a real M-by-N
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
H is a product of k elementary reflectors as returned by STZRZF.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
L (input) INTEGER
The number of entries of the vector V containing
the meaningful part of the Householder vectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) REAL array, dimension (1+(L-1)*abs(INCV))
The vector v in the representation of H as returned by
STZRZF. V is not used if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) REAL
The value tau in the representation of H.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void slarz(String side, int m, int n, int l, float[] v, int _v_offset, int incv, float tau, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLARZ applies a real elementary reflector H to a real M-by-N
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v'
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
H is a product of k elementary reflectors as returned by STZRZF.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
L (input) INTEGER
The number of entries of the vector V containing
the meaningful part of the Householder vectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) REAL array, dimension (1+(L-1)*abs(INCV))
The vector v in the representation of H as returned by
STZRZF. V is not used if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
TAU (input) REAL
The value tau in the representation of H.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void slarzb(String side, String trans, String direct, String storev, int m, int n, int k, int l, float[] v, int ldv, float[] t, int ldt, float[] c, int Ldc, float[] work, int ldwork)
LAPACK
..
Purpose
=======
SLARZB applies a real block reflector H or its transpose H**T to
a real distributed M-by-N C from the left or the right.
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise (not supported yet)
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
L (input) INTEGER
The number of columns of the matrix V containing the
meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) REAL array, dimension (LDV,NV).
If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
T (input) REAL array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void slarzb(String side, String trans, String direct, String storev, int m, int n, int k, int l, float[] v, int _v_offset, int ldv, float[] t, int _t_offset, int ldt, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int ldwork)
LAPACK
..
Purpose
=======
SLARZB applies a real block reflector H or its transpose H**T to
a real distributed M-by-N C from the left or the right.
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right
TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H' (Transpose)
DIRECT (input) CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise (not supported yet)
= 'R': Rowwise
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
K (input) INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
L (input) INTEGER
The number of columns of the matrix V containing the
meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V (input) REAL array, dimension (LDV,NV).
If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
T (input) REAL array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension (LDWORK,K)
LDWORK (input) INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void slarzt(String direct, String storev, int n, int k, float[] v, int ldv, float[] tau, float[] t, int ldt)
LAPACK
..
Purpose
=======
SLARZT forms the triangular factor T of a real block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) REAL array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
=====================================================================
.. Parameters ..
public void slarzt(String direct, String storev, int n, int k, float[] v, int _v_offset, int ldv, float[] tau, int _tau_offset, float[] t, int _t_offset, int ldt)
LAPACK
..
Purpose
=======
SLARZT forms the triangular factor T of a real block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) REAL array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
=====================================================================
.. Parameters ..
public void slas2(float f, float g, float h, org.netlib.util.floatW ssmin, org.netlib.util.floatW ssmax)
LAPACK
..
Purpose
=======
SLAS2 computes the singular values of the 2-by-2 matrix
[ F G ]
[ 0 H ].
On return, SSMIN is the smaller singular value and SSMAX is the
larger singular value.
Arguments
=========
F (input) REAL
The (1,1) element of the 2-by-2 matrix.
G (input) REAL
The (1,2) element of the 2-by-2 matrix.
H (input) REAL
The (2,2) element of the 2-by-2 matrix.
SSMIN (output) REAL
The smaller singular value.
SSMAX (output) REAL
The larger singular value.
Further Details
===============
Barring over/underflow, all output quantities are correct to within
a few units in the last place (ulps), even in the absence of a guard
digit in addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself
overflows, or is within a few ulps of overflow. (On machines with
partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results
may correspond to a matrix modified by perturbations of size near
the underflow threshold.
====================================================================
.. Parameters ..
public void slascl(String type, int kl, int ku, float cfrom, float cto, int m, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASCL multiplies the M by N real matrix A by the real scalar
CTO/CFROM. This is done without over/underflow as long as the final
result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
A may be full, upper triangular, lower triangular, upper Hessenberg,
or banded.
Arguments
=========
TYPE (input) CHARACTER*1
TYPE indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the lower
half stored.
= 'Q': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the upper
half stored.
= 'Z': A is a band matrix with lower bandwidth KL and upper
bandwidth KU.
KL (input) INTEGER
The lower bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
KU (input) INTEGER
The upper bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
CFROM (input) REAL
CTO (input) REAL
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
without over/underflow if the final result CTO*A(I,J)/CFROM
can be represented without over/underflow. CFROM must be
nonzero.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
The matrix to be multiplied by CTO/CFROM. See TYPE for the
storage type.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
0 - successful exit
<0 - if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void slascl(String type, int kl, int ku, float cfrom, float cto, int m, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASCL multiplies the M by N real matrix A by the real scalar
CTO/CFROM. This is done without over/underflow as long as the final
result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
A may be full, upper triangular, lower triangular, upper Hessenberg,
or banded.
Arguments
=========
TYPE (input) CHARACTER*1
TYPE indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the lower
half stored.
= 'Q': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the upper
half stored.
= 'Z': A is a band matrix with lower bandwidth KL and upper
bandwidth KU.
KL (input) INTEGER
The lower bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
KU (input) INTEGER
The upper bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
CFROM (input) REAL
CTO (input) REAL
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
without over/underflow if the final result CTO*A(I,J)/CFROM
can be represented without over/underflow. CFROM must be
nonzero.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
The matrix to be multiplied by CTO/CFROM. See TYPE for the
storage type.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
0 - successful exit
<0 - if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void slasd0(int n, int sqre, float[] d, float[] e, float[] u, int ldu, float[] vt, int ldvt, int smlsiz, int[] iwork, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, SLASD0 computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M
matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
The algorithm computes orthogonal matrices U and VT such that
B = U * S * VT. The singular values S are overwritten on D.
A related subroutine, SLASDA, computes only the singular values,
and optionally, the singular vectors in compact form.
Arguments
=========
N (input) INTEGER
On entry, the row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N+1;
D (input/output) REAL array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix.
On exit D, if INFO = 0, contains its singular values.
E (input) REAL array, dimension (M-1)
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) REAL array, dimension at least (LDQ, N)
On exit, U contains the left singular vectors.
LDU (input) INTEGER
On entry, leading dimension of U.
VT (output) REAL array, dimension at least (LDVT, M)
On exit, VT' contains the right singular vectors.
LDVT (input) INTEGER
On entry, leading dimension of VT.
SMLSIZ (input) INTEGER
On entry, maximum size of the subproblems at the
bottom of the computation tree.
IWORK (workspace) INTEGER array, dimension (8*N)
WORK (workspace) REAL array, dimension (3*M**2+2*M)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void slasd0(int n, int sqre, float[] d, int _d_offset, float[] e, int _e_offset, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int ldvt, int smlsiz, int[] iwork, int _iwork_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, SLASD0 computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M
matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
The algorithm computes orthogonal matrices U and VT such that
B = U * S * VT. The singular values S are overwritten on D.
A related subroutine, SLASDA, computes only the singular values,
and optionally, the singular vectors in compact form.
Arguments
=========
N (input) INTEGER
On entry, the row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N+1;
D (input/output) REAL array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix.
On exit D, if INFO = 0, contains its singular values.
E (input) REAL array, dimension (M-1)
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) REAL array, dimension at least (LDQ, N)
On exit, U contains the left singular vectors.
LDU (input) INTEGER
On entry, leading dimension of U.
VT (output) REAL array, dimension at least (LDVT, M)
On exit, VT' contains the right singular vectors.
LDVT (input) INTEGER
On entry, leading dimension of VT.
SMLSIZ (input) INTEGER
On entry, maximum size of the subproblems at the
bottom of the computation tree.
IWORK (workspace) INTEGER array, dimension (8*N)
WORK (workspace) REAL array, dimension (3*M**2+2*M)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Local Scalars ..
public void slasd1(int nl, int nr, int sqre, float[] d, org.netlib.util.floatW alpha, org.netlib.util.floatW beta, float[] u, int ldu, float[] vt, int ldvt, int[] idxq, int[] iwork, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
where N = NL + NR + 1 and M = N + SQRE. SLASD1 is called from SLASD0.
A related subroutine SLASD7 handles the case in which the singular
values (and the singular vectors in factored form) are desired.
SLASD1 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The left singular vectors of the original matrix are stored in U, and
the transpose of the right singular vectors are stored in VT, and the
singular values are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or when there are zeros in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLASD2.
The second stage consists of calculating the updated
singular values. This is done by finding the square roots of the
roots of the secular equation via the routine SLASD4 (as called
by SLASD3). This routine also calculates the singular vectors of
the current problem.
The final stage consists of computing the updated singular vectors
directly using the updated singular values. The singular vectors
for the current problem are multiplied with the singular vectors
from the overall problem.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) REAL array, dimension (NL+NR+1).
N = NL+NR+1
On entry D(1:NL,1:NL) contains the singular values of the
upper block; and D(NL+2:N) contains the singular values of
the lower block. On exit D(1:N) contains the singular values
of the modified matrix.
ALPHA (input/output) REAL
Contains the diagonal element associated with the added row.
BETA (input/output) REAL
Contains the off-diagonal element associated with the added
row.
U (input/output) REAL array, dimension (LDU,N)
On entry U(1:NL, 1:NL) contains the left singular vectors of
the upper block; U(NL+2:N, NL+2:N) contains the left singular
vectors of the lower block. On exit U contains the left
singular vectors of the bidiagonal matrix.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max( 1, N ).
VT (input/output) REAL array, dimension (LDVT,M)
where M = N + SQRE.
On entry VT(1:NL+1, 1:NL+1)' contains the right singular
vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
the right singular vectors of the lower block. On exit
VT' contains the right singular vectors of the
bidiagonal matrix.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= max( 1, M ).
IDXQ (output) INTEGER array, dimension (N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
IWORK (workspace) INTEGER array, dimension (4*N)
WORK (workspace) REAL array, dimension (3*M**2+2*M)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd1(int nl, int nr, int sqre, float[] d, int _d_offset, org.netlib.util.floatW alpha, org.netlib.util.floatW beta, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int ldvt, int[] idxq, int _idxq_offset, int[] iwork, int _iwork_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
where N = NL + NR + 1 and M = N + SQRE. SLASD1 is called from SLASD0.
A related subroutine SLASD7 handles the case in which the singular
values (and the singular vectors in factored form) are desired.
SLASD1 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The left singular vectors of the original matrix are stored in U, and
the transpose of the right singular vectors are stored in VT, and the
singular values are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or when there are zeros in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLASD2.
The second stage consists of calculating the updated
singular values. This is done by finding the square roots of the
roots of the secular equation via the routine SLASD4 (as called
by SLASD3). This routine also calculates the singular vectors of
the current problem.
The final stage consists of computing the updated singular vectors
directly using the updated singular values. The singular vectors
for the current problem are multiplied with the singular vectors
from the overall problem.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) REAL array, dimension (NL+NR+1).
N = NL+NR+1
On entry D(1:NL,1:NL) contains the singular values of the
upper block; and D(NL+2:N) contains the singular values of
the lower block. On exit D(1:N) contains the singular values
of the modified matrix.
ALPHA (input/output) REAL
Contains the diagonal element associated with the added row.
BETA (input/output) REAL
Contains the off-diagonal element associated with the added
row.
U (input/output) REAL array, dimension (LDU,N)
On entry U(1:NL, 1:NL) contains the left singular vectors of
the upper block; U(NL+2:N, NL+2:N) contains the left singular
vectors of the lower block. On exit U contains the left
singular vectors of the bidiagonal matrix.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max( 1, N ).
VT (input/output) REAL array, dimension (LDVT,M)
where M = N + SQRE.
On entry VT(1:NL+1, 1:NL+1)' contains the right singular
vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
the right singular vectors of the lower block. On exit
VT' contains the right singular vectors of the
bidiagonal matrix.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= max( 1, M ).
IDXQ (output) INTEGER array, dimension (N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
IWORK (workspace) INTEGER array, dimension (4*N)
WORK (workspace) REAL array, dimension (3*M**2+2*M)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd2(int nl, int nr, int sqre, org.netlib.util.intW k, float[] d, float[] z, float alpha, float beta, float[] u, int ldu, float[] vt, int ldvt, float[] dsigma, float[] u2, int ldu2, float[] vt2, int ldvt2, int[] idxp, int[] idx, int[] idxc, int[] idxq, int[] coltyp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD2 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
singular values are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
SLASD2 is called from SLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
D (input/output) REAL array, dimension (N)
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) REAL array, dimension (N)
On exit Z contains the updating row vector in the secular
equation.
ALPHA (input) REAL
Contains the diagonal element associated with the added row.
BETA (input) REAL
Contains the off-diagonal element associated with the added
row.
U (input/output) REAL array, dimension (LDU,N)
On entry U contains the left singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL, NL), and (NL+2, NL+2), (N,N).
On exit U contains the trailing (N-K) updated left singular
vectors (those which were deflated) in its last N-K columns.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
VT (input/output) REAL array, dimension (LDVT,M)
On entry VT' contains the right singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL+1, NL+1), and (NL+2, NL+2), (M,M).
On exit VT' contains the trailing (N-K) updated right singular
vectors (those which were deflated) in its last N-K columns.
In case SQRE =1, the last row of VT spans the right null
space.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= M.
DSIGMA (output) REAL array, dimension (N)
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
U2 (output) REAL array, dimension (LDU2,N)
Contains a copy of the first K-1 left singular vectors which
will be used by SLASD3 in a matrix multiply (SGEMM) to solve
for the new left singular vectors. U2 is arranged into four
blocks. The first block contains a column with 1 at NL+1 and
zero everywhere else; the second block contains non-zero
entries only at and above NL; the third contains non-zero
entries only below NL+1; and the fourth is dense.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT2 (output) REAL array, dimension (LDVT2,N)
VT2' contains a copy of the first K right singular vectors
which will be used by SLASD3 in a matrix multiply (SGEMM) to
solve for the new right singular vectors. VT2 is arranged into
three blocks. The first block contains a row that corresponds
to the special 0 diagonal element in SIGMA; the second block
contains non-zeros only at and before NL +1; the third block
contains non-zeros only at and after NL +2.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= M.
IDXP (workspace) INTEGER array, dimension (N)
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDX (workspace) INTEGER array, dimension (N)
This will contain the permutation used to sort the contents of
D into ascending order.
IDXC (output) INTEGER array, dimension (N)
This will contain the permutation used to arrange the columns
of the deflated U matrix into three groups: the first group
contains non-zero entries only at and above NL, the second
contains non-zero entries only below NL+2, and the third is
dense.
IDXQ (input/output) INTEGER array, dimension (N)
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first hlaf of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
COLTYP (workspace/output) INTEGER array, dimension (N)
As workspace, this will contain a label which will indicate
which of the following types a column in the U2 matrix or a
row in the VT2 matrix is:
1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated
On exit, it is an array of dimension 4, with COLTYP(I) being
the dimension of the I-th type columns.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd2(int nl, int nr, int sqre, org.netlib.util.intW k, float[] d, int _d_offset, float[] z, int _z_offset, float alpha, float beta, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int ldvt, float[] dsigma, int _dsigma_offset, float[] u2, int _u2_offset, int ldu2, float[] vt2, int _vt2_offset, int ldvt2, int[] idxp, int _idxp_offset, int[] idx, int _idx_offset, int[] idxc, int _idxc_offset, int[] idxq, int _idxq_offset, int[] coltyp, int _coltyp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD2 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
singular values are close together or if there is a tiny entry in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.
SLASD2 is called from SLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
D (input/output) REAL array, dimension (N)
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) REAL array, dimension (N)
On exit Z contains the updating row vector in the secular
equation.
ALPHA (input) REAL
Contains the diagonal element associated with the added row.
BETA (input) REAL
Contains the off-diagonal element associated with the added
row.
U (input/output) REAL array, dimension (LDU,N)
On entry U contains the left singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL, NL), and (NL+2, NL+2), (N,N).
On exit U contains the trailing (N-K) updated left singular
vectors (those which were deflated) in its last N-K columns.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
VT (input/output) REAL array, dimension (LDVT,M)
On entry VT' contains the right singular vectors of two
submatrices in the two square blocks with corners at (1,1),
(NL+1, NL+1), and (NL+2, NL+2), (M,M).
On exit VT' contains the trailing (N-K) updated right singular
vectors (those which were deflated) in its last N-K columns.
In case SQRE =1, the last row of VT spans the right null
space.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= M.
DSIGMA (output) REAL array, dimension (N)
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
U2 (output) REAL array, dimension (LDU2,N)
Contains a copy of the first K-1 left singular vectors which
will be used by SLASD3 in a matrix multiply (SGEMM) to solve
for the new left singular vectors. U2 is arranged into four
blocks. The first block contains a column with 1 at NL+1 and
zero everywhere else; the second block contains non-zero
entries only at and above NL; the third contains non-zero
entries only below NL+1; and the fourth is dense.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT2 (output) REAL array, dimension (LDVT2,N)
VT2' contains a copy of the first K right singular vectors
which will be used by SLASD3 in a matrix multiply (SGEMM) to
solve for the new right singular vectors. VT2 is arranged into
three blocks. The first block contains a row that corresponds
to the special 0 diagonal element in SIGMA; the second block
contains non-zeros only at and before NL +1; the third block
contains non-zeros only at and after NL +2.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= M.
IDXP (workspace) INTEGER array, dimension (N)
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDX (workspace) INTEGER array, dimension (N)
This will contain the permutation used to sort the contents of
D into ascending order.
IDXC (output) INTEGER array, dimension (N)
This will contain the permutation used to arrange the columns
of the deflated U matrix into three groups: the first group
contains non-zero entries only at and above NL, the second
contains non-zero entries only below NL+2, and the third is
dense.
IDXQ (input/output) INTEGER array, dimension (N)
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first hlaf of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
COLTYP (workspace/output) INTEGER array, dimension (N)
As workspace, this will contain a label which will indicate
which of the following types a column in the U2 matrix or a
row in the VT2 matrix is:
1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated
On exit, it is an array of dimension 4, with COLTYP(I) being
the dimension of the I-th type columns.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd3(int nl, int nr, int sqre, int k, float[] d, float[] q, int ldq, float[] dsigma, float[] u, int ldu, float[] u2, int ldu2, float[] vt, int ldvt, float[] vt2, int ldvt2, int[] idxc, int[] ctot, float[] z, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD3 finds all the square roots of the roots of the secular
equation, as defined by the values in D and Z. It makes the
appropriate calls to SLASD4 and then updates the singular
vectors by matrix multiplication.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
SLASD3 is called from SLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (input) INTEGER
The size of the secular equation, 1 =< K = < N.
D (output) REAL array, dimension(K)
On exit the square roots of the roots of the secular equation,
in ascending order.
Q (workspace) REAL array,
dimension at least (LDQ,K).
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= K.
DSIGMA (input/output) REAL array, dimension(K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
U (output) REAL array, dimension (LDU, N)
The last N - K columns of this matrix contain the deflated
left singular vectors.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
U2 (input) REAL array, dimension (LDU2, N)
The first K columns of this matrix contain the non-deflated
left singular vectors for the split problem.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT (output) REAL array, dimension (LDVT, M)
The last M - K columns of VT' contain the deflated
right singular vectors.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= N.
VT2 (input/output) REAL array, dimension (LDVT2, N)
The first K columns of VT2' contain the non-deflated
right singular vectors for the split problem.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= N.
IDXC (input) INTEGER array, dimension (N)
The permutation used to arrange the columns of U (and rows of
VT) into three groups: the first group contains non-zero
entries only at and above (or before) NL +1; the second
contains non-zero entries only at and below (or after) NL+2;
and the third is dense. The first column of U and the row of
VT are treated separately, however.
The rows of the singular vectors found by SLASD4
must be likewise permuted before the matrix multiplies can
take place.
CTOT (input) INTEGER array, dimension (4)
A count of the total number of the various types of columns
in U (or rows in VT), as described in IDXC. The fourth column
type is any column which has been deflated.
Z (input/output) REAL array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd3(int nl, int nr, int sqre, int k, float[] d, int _d_offset, float[] q, int _q_offset, int ldq, float[] dsigma, int _dsigma_offset, float[] u, int _u_offset, int ldu, float[] u2, int _u2_offset, int ldu2, float[] vt, int _vt_offset, int ldvt, float[] vt2, int _vt2_offset, int ldvt2, int[] idxc, int _idxc_offset, int[] ctot, int _ctot_offset, float[] z, int _z_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD3 finds all the square roots of the roots of the secular
equation, as defined by the values in D and Z. It makes the
appropriate calls to SLASD4 and then updates the singular
vectors by matrix multiplication.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
SLASD3 is called from SLASD1.
Arguments
=========
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (input) INTEGER
The size of the secular equation, 1 =< K = < N.
D (output) REAL array, dimension(K)
On exit the square roots of the roots of the secular equation,
in ascending order.
Q (workspace) REAL array,
dimension at least (LDQ,K).
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= K.
DSIGMA (input/output) REAL array, dimension(K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
U (output) REAL array, dimension (LDU, N)
The last N - K columns of this matrix contain the deflated
left singular vectors.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= N.
U2 (input) REAL array, dimension (LDU2, N)
The first K columns of this matrix contain the non-deflated
left singular vectors for the split problem.
LDU2 (input) INTEGER
The leading dimension of the array U2. LDU2 >= N.
VT (output) REAL array, dimension (LDVT, M)
The last M - K columns of VT' contain the deflated
right singular vectors.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= N.
VT2 (input/output) REAL array, dimension (LDVT2, N)
The first K columns of VT2' contain the non-deflated
right singular vectors for the split problem.
LDVT2 (input) INTEGER
The leading dimension of the array VT2. LDVT2 >= N.
IDXC (input) INTEGER array, dimension (N)
The permutation used to arrange the columns of U (and rows of
VT) into three groups: the first group contains non-zero
entries only at and above (or before) NL +1; the second
contains non-zero entries only at and below (or after) NL+2;
and the third is dense. The first column of U and the row of
VT are treated separately, however.
The rows of the singular vectors found by SLASD4
must be likewise permuted before the matrix multiplies can
take place.
CTOT (input) INTEGER array, dimension (4)
A count of the total number of the various types of columns
in U (or rows in VT), as described in IDXC. The fourth column
type is any column which has been deflated.
Z (input/output) REAL array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd4(int n, int i, float[] d, float[] z, float[] delta, float rho, org.netlib.util.floatW sigma, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th updated
eigenvalue of a positive symmetric rank-one modification to
a positive diagonal matrix whose entries are given as the squares
of the corresponding entries in the array d, and that
0 <= D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) REAL array, dimension ( N )
The original eigenvalues. It is assumed that they are in
order, 0 <= D(I) < D(J) for I < J.
Z (input) REAL array, dimension (N)
The components of the updating vector.
DELTA (output) REAL array, dimension (N)
If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
component. If N = 1, then DELTA(1) = 1. The vector DELTA
contains the information necessary to construct the
(singular) eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
SIGMA (output) REAL
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) REAL array, dimension (N)
If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
component. If N = 1, then WORK( 1 ) = 1.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd4(int n, int i, float[] d, int _d_offset, float[] z, int _z_offset, float[] delta, int _delta_offset, float rho, org.netlib.util.floatW sigma, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th updated
eigenvalue of a positive symmetric rank-one modification to
a positive diagonal matrix whose entries are given as the squares
of the corresponding entries in the array d, and that
0 <= D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.
Arguments
=========
N (input) INTEGER
The length of all arrays.
I (input) INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D (input) REAL array, dimension ( N )
The original eigenvalues. It is assumed that they are in
order, 0 <= D(I) < D(J) for I < J.
Z (input) REAL array, dimension (N)
The components of the updating vector.
DELTA (output) REAL array, dimension (N)
If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
component. If N = 1, then DELTA(1) = 1. The vector DELTA
contains the information necessary to construct the
(singular) eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
SIGMA (output) REAL
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) REAL array, dimension (N)
If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
component. If N = 1, then WORK( 1 ) = 1.
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.
Internal Parameters
===================
Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd5(int i, float[] d, float[] z, float[] delta, float rho, org.netlib.util.floatW dsigma, float[] work)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume 0 <= D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
Contains (D(j) - sigma_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DSIGMA (output) REAL
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) REAL array, dimension (2)
WORK contains (D(j) + sigma_I) in its j-th component.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd5(int i, float[] d, int _d_offset, float[] z, int _z_offset, float[] delta, int _delta_offset, float rho, org.netlib.util.floatW dsigma, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume 0 <= D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
Contains (D(j) - sigma_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DSIGMA (output) REAL
The computed sigma_I, the I-th updated eigenvalue.
WORK (workspace) REAL array, dimension (2)
WORK contains (D(j) + sigma_I) in its j-th component.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd6(int icompq, int nl, int nr, int sqre, float[] d, float[] vf, float[] vl, org.netlib.util.floatW alpha, org.netlib.util.floatW beta, int[] idxq, int[] perm, org.netlib.util.intW givptr, int[] givcol, int ldgcol, float[] givnum, int ldgnum, float[] poles, float[] difl, float[] difr, float[] z, org.netlib.util.intW k, org.netlib.util.floatW c, org.netlib.util.floatW s, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD6 computes the SVD of an updated upper bidiagonal matrix B
obtained by merging two smaller ones by appending a row. This
routine is used only for the problem which requires all singular
values and optionally singular vector matrices in factored form.
B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
A related subroutine, SLASD1, handles the case in which all singular
values and singular vectors of the bidiagonal matrix are desired.
SLASD6 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The singular values of B can be computed using D1, D2, the first
components of all the right singular vectors of the lower block, and
the last components of all the right singular vectors of the upper
block. These components are stored and updated in VF and VL,
respectively, in SLASD6. Hence U and VT are not explicitly
referenced.
The singular values are stored in D. The algorithm consists of two
stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or if there is a zero
in the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLASD7.
The second stage consists of calculating the updated
singular values. This is done by finding the roots of the
secular equation via the routine SLASD4 (as called by SLASD8).
This routine also updates VF and VL and computes the distances
between the updated singular values and the old singular
values.
SLASD6 is called from SLASDA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) REAL array, dimension (NL+NR+1).
On entry D(1:NL,1:NL) contains the singular values of the
upper block, and D(NL+2:N) contains the singular values
of the lower block. On exit D(1:N) contains the singular
values of the modified matrix.
VF (input/output) REAL array, dimension (M)
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VL (input/output) REAL array, dimension (M)
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors of
the lower block. On exit, VL contains the last components of
all right singular vectors of the bidiagonal matrix.
ALPHA (input/output) REAL
Contains the diagonal element associated with the added row.
BETA (input/output) REAL
Contains the off-diagonal element associated with the added
row.
IDXQ (output) INTEGER array, dimension (N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
leading dimension of GIVCOL, must be at least N.
GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM and POLES, must be at least N.
POLES (output) REAL array, dimension ( LDGNUM, 2 )
On exit, POLES(1,*) is an array containing the new singular
values obtained from solving the secular equation, and
POLES(2,*) is an array containing the poles in the secular
equation. Not referenced if ICOMPQ = 0.
DIFL (output) REAL array, dimension ( N )
On exit, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (output) REAL array,
dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
On exit, DIFR(I, 1) is the distance between I-th updated
(undeflated) singular value and the I+1-th (undeflated) old
singular value.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
See SLASD8 for details on DIFL and DIFR.
Z (output) REAL array, dimension ( M )
The first elements of this array contain the components
of the deflation-adjusted updating row vector.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (output) REAL
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) REAL
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) REAL array, dimension ( 4 * M )
IWORK (workspace) INTEGER array, dimension ( 3 * N )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd6(int icompq, int nl, int nr, int sqre, float[] d, int _d_offset, float[] vf, int _vf_offset, float[] vl, int _vl_offset, org.netlib.util.floatW alpha, org.netlib.util.floatW beta, int[] idxq, int _idxq_offset, int[] perm, int _perm_offset, org.netlib.util.intW givptr, int[] givcol, int _givcol_offset, int ldgcol, float[] givnum, int _givnum_offset, int ldgnum, float[] poles, int _poles_offset, float[] difl, int _difl_offset, float[] difr, int _difr_offset, float[] z, int _z_offset, org.netlib.util.intW k, org.netlib.util.floatW c, org.netlib.util.floatW s, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD6 computes the SVD of an updated upper bidiagonal matrix B
obtained by merging two smaller ones by appending a row. This
routine is used only for the problem which requires all singular
values and optionally singular vector matrices in factored form.
B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
A related subroutine, SLASD1, handles the case in which all singular
values and singular vectors of the bidiagonal matrix are desired.
SLASD6 computes the SVD as follows:
( D1(in) 0 0 0 )
B = U(in) * ( Z1' a Z2' b ) * VT(in)
( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
elsewhere; and the entry b is empty if SQRE = 0.
The singular values of B can be computed using D1, D2, the first
components of all the right singular vectors of the lower block, and
the last components of all the right singular vectors of the upper
block. These components are stored and updated in VF and VL,
respectively, in SLASD6. Hence U and VT are not explicitly
referenced.
The singular values are stored in D. The algorithm consists of two
stages:
The first stage consists of deflating the size of the problem
when there are multiple singular values or if there is a zero
in the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLASD7.
The second stage consists of calculating the updated
singular values. This is done by finding the roots of the
secular equation via the routine SLASD4 (as called by SLASD8).
This routine also updates VF and VL and computes the distances
between the updated singular values and the old singular
values.
SLASD6 is called from SLASDA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D (input/output) REAL array, dimension (NL+NR+1).
On entry D(1:NL,1:NL) contains the singular values of the
upper block, and D(NL+2:N) contains the singular values
of the lower block. On exit D(1:N) contains the singular
values of the modified matrix.
VF (input/output) REAL array, dimension (M)
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VL (input/output) REAL array, dimension (M)
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors of
the lower block. On exit, VL contains the last components of
all right singular vectors of the bidiagonal matrix.
ALPHA (input/output) REAL
Contains the diagonal element associated with the added row.
BETA (input/output) REAL
Contains the off-diagonal element associated with the added
row.
IDXQ (output) INTEGER array, dimension (N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
leading dimension of GIVCOL, must be at least N.
GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM and POLES, must be at least N.
POLES (output) REAL array, dimension ( LDGNUM, 2 )
On exit, POLES(1,*) is an array containing the new singular
values obtained from solving the secular equation, and
POLES(2,*) is an array containing the poles in the secular
equation. Not referenced if ICOMPQ = 0.
DIFL (output) REAL array, dimension ( N )
On exit, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR (output) REAL array,
dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
On exit, DIFR(I, 1) is the distance between I-th updated
(undeflated) singular value and the I+1-th (undeflated) old
singular value.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
See SLASD8 for details on DIFL and DIFR.
Z (output) REAL array, dimension ( M )
The first elements of this array contain the components
of the deflation-adjusted updating row vector.
K (output) INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C (output) REAL
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) REAL
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK (workspace) REAL array, dimension ( 4 * M )
IWORK (workspace) INTEGER array, dimension ( 3 * N )
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd7(int icompq, int nl, int nr, int sqre, org.netlib.util.intW k, float[] d, float[] z, float[] zw, float[] vf, float[] vfw, float[] vl, float[] vlw, float alpha, float beta, float[] dsigma, int[] idx, int[] idxp, int[] idxq, int[] perm, org.netlib.util.intW givptr, int[] givcol, int ldgcol, float[] givnum, int ldgnum, org.netlib.util.floatW c, org.netlib.util.floatW s, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD7 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem. There
are two ways in which deflation can occur: when two or more singular
values are close together or if there is a tiny entry in the Z
vector. For each such occurrence the order of the related
secular equation problem is reduced by one.
SLASD7 is called from SLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper
bidiagonal matrix in compact form.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix, this is
the order of the related secular equation. 1 <= K <=N.
D (input/output) REAL array, dimension ( N )
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) REAL array, dimension ( M )
On exit Z contains the updating row vector in the secular
equation.
ZW (workspace) REAL array, dimension ( M )
Workspace for Z.
VF (input/output) REAL array, dimension ( M )
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VFW (workspace) REAL array, dimension ( M )
Workspace for VF.
VL (input/output) REAL array, dimension ( M )
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors
of the lower block. On exit, VL contains the last components
of all right singular vectors of the bidiagonal matrix.
VLW (workspace) REAL array, dimension ( M )
Workspace for VL.
ALPHA (input) REAL
Contains the diagonal element associated with the added row.
BETA (input) REAL
Contains the off-diagonal element associated with the added
row.
DSIGMA (output) REAL array, dimension ( N )
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
IDX (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to sort the contents of
D into ascending order.
IDXP (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDXQ (input) INTEGER array, dimension ( N )
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first half of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each singular block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM, must be at least N.
C (output) REAL
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) REAL
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd7(int icompq, int nl, int nr, int sqre, org.netlib.util.intW k, float[] d, int _d_offset, float[] z, int _z_offset, float[] zw, int _zw_offset, float[] vf, int _vf_offset, float[] vfw, int _vfw_offset, float[] vl, int _vl_offset, float[] vlw, int _vlw_offset, float alpha, float beta, float[] dsigma, int _dsigma_offset, int[] idx, int _idx_offset, int[] idxp, int _idxp_offset, int[] idxq, int _idxq_offset, int[] perm, int _perm_offset, org.netlib.util.intW givptr, int[] givcol, int _givcol_offset, int ldgcol, float[] givnum, int _givnum_offset, int ldgnum, org.netlib.util.floatW c, org.netlib.util.floatW s, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD7 merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem. There
are two ways in which deflation can occur: when two or more singular
values are close together or if there is a tiny entry in the Z
vector. For each such occurrence the order of the related
secular equation problem is reduced by one.
SLASD7 is called from SLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper
bidiagonal matrix in compact form.
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
K (output) INTEGER
Contains the dimension of the non-deflated matrix, this is
the order of the related secular equation. 1 <= K <=N.
D (input/output) REAL array, dimension ( N )
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
Z (output) REAL array, dimension ( M )
On exit Z contains the updating row vector in the secular
equation.
ZW (workspace) REAL array, dimension ( M )
Workspace for Z.
VF (input/output) REAL array, dimension ( M )
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VFW (workspace) REAL array, dimension ( M )
Workspace for VF.
VL (input/output) REAL array, dimension ( M )
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors
of the lower block. On exit, VL contains the last components
of all right singular vectors of the bidiagonal matrix.
VLW (workspace) REAL array, dimension ( M )
Workspace for VL.
ALPHA (input) REAL
Contains the diagonal element associated with the added row.
BETA (input) REAL
Contains the off-diagonal element associated with the added
row.
DSIGMA (output) REAL array, dimension ( N )
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
IDX (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to sort the contents of
D into ascending order.
IDXP (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
IDXQ (input) INTEGER array, dimension ( N )
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first half of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each singular block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM, must be at least N.
C (output) REAL
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S (output) REAL
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd8(int icompq, int k, float[] d, float[] z, float[] vf, float[] vl, float[] difl, float[] difr, int lddifr, float[] dsigma, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD8 finds the square roots of the roots of the secular equation,
as defined by the values in DSIGMA and Z. It makes the appropriate
calls to SLASD4, and stores, for each element in D, the distance
to its two nearest poles (elements in DSIGMA). It also updates
the arrays VF and VL, the first and last components of all the
right singular vectors of the original bidiagonal matrix.
SLASD8 is called from SLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form in the calling routine:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
K (input) INTEGER
The number of terms in the rational function to be solved
by SLASD4. K >= 1.
D (output) REAL array, dimension ( K )
On output, D contains the updated singular values.
Z (input) REAL array, dimension ( K )
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
VF (input/output) REAL array, dimension ( K )
On entry, VF contains information passed through DBEDE8.
On exit, VF contains the first K components of the first
components of all right singular vectors of the bidiagonal
matrix.
VL (input/output) REAL array, dimension ( K )
On entry, VL contains information passed through DBEDE8.
On exit, VL contains the first K components of the last
components of all right singular vectors of the bidiagonal
matrix.
DIFL (output) REAL array, dimension ( K )
On exit, DIFL(I) = D(I) - DSIGMA(I).
DIFR (output) REAL array,
dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
dimension ( K ) if ICOMPQ = 0.
On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
defined and will not be referenced.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
LDDIFR (input) INTEGER
The leading dimension of DIFR, must be at least K.
DSIGMA (input) REAL array, dimension ( K )
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
WORK (workspace) REAL array, dimension at least 3 * K
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasd8(int icompq, int k, float[] d, int _d_offset, float[] z, int _z_offset, float[] vf, int _vf_offset, float[] vl, int _vl_offset, float[] difl, int _difl_offset, float[] difr, int _difr_offset, int lddifr, float[] dsigma, int _dsigma_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASD8 finds the square roots of the roots of the secular equation,
as defined by the values in DSIGMA and Z. It makes the appropriate
calls to SLASD4, and stores, for each element in D, the distance
to its two nearest poles (elements in DSIGMA). It also updates
the arrays VF and VL, the first and last components of all the
right singular vectors of the original bidiagonal matrix.
SLASD8 is called from SLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form in the calling routine:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
K (input) INTEGER
The number of terms in the rational function to be solved
by SLASD4. K >= 1.
D (output) REAL array, dimension ( K )
On output, D contains the updated singular values.
Z (input) REAL array, dimension ( K )
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
VF (input/output) REAL array, dimension ( K )
On entry, VF contains information passed through DBEDE8.
On exit, VF contains the first K components of the first
components of all right singular vectors of the bidiagonal
matrix.
VL (input/output) REAL array, dimension ( K )
On entry, VL contains information passed through DBEDE8.
On exit, VL contains the first K components of the last
components of all right singular vectors of the bidiagonal
matrix.
DIFL (output) REAL array, dimension ( K )
On exit, DIFL(I) = D(I) - DSIGMA(I).
DIFR (output) REAL array,
dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
dimension ( K ) if ICOMPQ = 0.
On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
defined and will not be referenced.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
LDDIFR (input) INTEGER
The leading dimension of DIFR, must be at least K.
DSIGMA (input) REAL array, dimension ( K )
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
WORK (workspace) REAL array, dimension at least 3 * K
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasda(int icompq, int smlsiz, int n, int sqre, float[] d, float[] e, float[] u, int ldu, float[] vt, int[] k, float[] difl, float[] difr, float[] z, float[] poles, int[] givptr, int[] givcol, int ldgcol, int[] perm, float[] givnum, float[] c, float[] s, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, SLASDA computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
B with diagonal D and offdiagonal E, where M = N + SQRE. The
algorithm computes the singular values in the SVD B = U * S * VT.
The orthogonal matrices U and VT are optionally computed in
compact form.
A related subroutine, SLASD0, computes the singular values and
the singular vectors in explicit form.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal
matrix in compact form.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row dimension of the upper bidiagonal matrix. This is
also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N + 1.
D (input/output) REAL array, dimension ( N )
On entry D contains the main diagonal of the bidiagonal
matrix. On exit D, if INFO = 0, contains its singular values.
E (input) REAL array, dimension ( M-1 )
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) REAL array,
dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
singular vector matrices of all subproblems at the bottom
level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
GIVNUM, and Z.
VT (output) REAL array,
dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
singular vector matrices of all subproblems at the bottom
level.
K (output) INTEGER array, dimension ( N )
if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
secular equation on the computation tree.
DIFL (output) REAL array, dimension ( LDU, NLVL ),
where NLVL = floor(log_2 (N/SMLSIZ))).
DIFR (output) REAL array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
record distances between singular values on the I-th
level and singular values on the (I -1)-th level, and
DIFR(1:N, 2 * I ) contains the normalizing factors for
the right singular vector matrix. See SLASD8 for details.
Z (output) REAL array,
dimension ( LDU, NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
The first K elements of Z(1, I) contain the components of
the deflation-adjusted updating row vector for subproblems
on the I-th level.
POLES (output) REAL array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
POLES(1, 2*I) contain the new and old singular values
involved in the secular equations on the I-th level.
GIVPTR (output) INTEGER array,
dimension ( N ) if ICOMPQ = 1, and not referenced if
ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
the number of Givens rotations performed on the I-th
problem on the computation tree.
GIVCOL (output) INTEGER array,
dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
of Givens rotations performed on the I-th level on the
computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (output) INTEGER array, dimension ( LDGCOL, NLVL )
if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
permutations done on the I-th level of the computation tree.
GIVNUM (output) REAL array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
values of Givens rotations performed on the I-th level on
the computation tree.
C (output) REAL array,
dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (output) REAL array, dimension ( N ) if
ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
and the I-th subproblem is not square, on exit, S( I )
contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) REAL array, dimension
(6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
IWORK (workspace) INTEGER array, dimension (7*N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasda(int icompq, int smlsiz, int n, int sqre, float[] d, int _d_offset, float[] e, int _e_offset, float[] u, int _u_offset, int ldu, float[] vt, int _vt_offset, int[] k, int _k_offset, float[] difl, int _difl_offset, float[] difr, int _difr_offset, float[] z, int _z_offset, float[] poles, int _poles_offset, int[] givptr, int _givptr_offset, int[] givcol, int _givcol_offset, int ldgcol, int[] perm, int _perm_offset, float[] givnum, int _givnum_offset, float[] c, int _c_offset, float[] s, int _s_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Using a divide and conquer approach, SLASDA computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
B with diagonal D and offdiagonal E, where M = N + SQRE. The
algorithm computes the singular values in the SVD B = U * S * VT.
The orthogonal matrices U and VT are optionally computed in
compact form.
A related subroutine, SLASD0, computes the singular values and
the singular vectors in explicit form.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal
matrix in compact form.
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row dimension of the upper bidiagonal matrix. This is
also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N + 1.
D (input/output) REAL array, dimension ( N )
On entry D contains the main diagonal of the bidiagonal
matrix. On exit D, if INFO = 0, contains its singular values.
E (input) REAL array, dimension ( M-1 )
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
U (output) REAL array,
dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
singular vector matrices of all subproblems at the bottom
level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
GIVNUM, and Z.
VT (output) REAL array,
dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
singular vector matrices of all subproblems at the bottom
level.
K (output) INTEGER array, dimension ( N )
if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
secular equation on the computation tree.
DIFL (output) REAL array, dimension ( LDU, NLVL ),
where NLVL = floor(log_2 (N/SMLSIZ))).
DIFR (output) REAL array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
record distances between singular values on the I-th
level and singular values on the (I -1)-th level, and
DIFR(1:N, 2 * I ) contains the normalizing factors for
the right singular vector matrix. See SLASD8 for details.
Z (output) REAL array,
dimension ( LDU, NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
The first K elements of Z(1, I) contain the components of
the deflation-adjusted updating row vector for subproblems
on the I-th level.
POLES (output) REAL array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
POLES(1, 2*I) contain the new and old singular values
involved in the secular equations on the I-th level.
GIVPTR (output) INTEGER array,
dimension ( N ) if ICOMPQ = 1, and not referenced if
ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
the number of Givens rotations performed on the I-th
problem on the computation tree.
GIVCOL (output) INTEGER array,
dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
of Givens rotations performed on the I-th level on the
computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (output) INTEGER array, dimension ( LDGCOL, NLVL )
if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
permutations done on the I-th level of the computation tree.
GIVNUM (output) REAL array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
values of Givens rotations performed on the I-th level on
the computation tree.
C (output) REAL array,
dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (output) REAL array, dimension ( N ) if
ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
and the I-th subproblem is not square, on exit, S( I )
contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) REAL array, dimension
(6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
IWORK (workspace) INTEGER array, dimension (7*N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasdq(String uplo, int sqre, int n, int ncvt, int nru, int ncc, float[] d, float[] e, float[] vt, int ldvt, float[] u, int ldu, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASDQ computes the singular value decomposition (SVD) of a real
(upper or lower) bidiagonal matrix with diagonal D and offdiagonal
E, accumulating the transformations if desired. Letting B denote
the input bidiagonal matrix, the algorithm computes orthogonal
matrices Q and P such that B = Q * S * P' (P' denotes the transpose
of P). The singular values S are overwritten on D.
The input matrix U is changed to U * Q if desired.
The input matrix VT is changed to P' * VT if desired.
The input matrix C is changed to Q' * C if desired.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3, for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
On entry, UPLO specifies whether the input bidiagonal matrix
is upper or lower bidiagonal, and wether it is square are
not.
UPLO = 'U' or 'u' B is upper bidiagonal.
UPLO = 'L' or 'l' B is lower bidiagonal.
SQRE (input) INTEGER
= 0: then the input matrix is N-by-N.
= 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
(N+1)-by-N if UPLU = 'L'.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
N (input) INTEGER
On entry, N specifies the number of rows and columns
in the matrix. N must be at least 0.
NCVT (input) INTEGER
On entry, NCVT specifies the number of columns of
the matrix VT. NCVT must be at least 0.
NRU (input) INTEGER
On entry, NRU specifies the number of rows of
the matrix U. NRU must be at least 0.
NCC (input) INTEGER
On entry, NCC specifies the number of columns of
the matrix C. NCC must be at least 0.
D (input/output) REAL array, dimension (N)
On entry, D contains the diagonal entries of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in ascending order.
E (input/output) REAL array.
dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
On entry, the entries of E contain the offdiagonal entries
of the bidiagonal matrix whose SVD is desired. On normal
exit, E will contain 0. If the algorithm does not converge,
D and E will contain the diagonal and superdiagonal entries
of a bidiagonal matrix orthogonally equivalent to the one
given as input.
VT (input/output) REAL array, dimension (LDVT, NCVT)
On entry, contains a matrix which on exit has been
premultiplied by P', dimension N-by-NCVT if SQRE = 0
and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
LDVT (input) INTEGER
On entry, LDVT specifies the leading dimension of VT as
declared in the calling (sub) program. LDVT must be at
least 1. If NCVT is nonzero LDVT must also be at least N.
U (input/output) REAL array, dimension (LDU, N)
On entry, contains a matrix which on exit has been
postmultiplied by Q, dimension NRU-by-N if SQRE = 0
and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
LDU (input) INTEGER
On entry, LDU specifies the leading dimension of U as
declared in the calling (sub) program. LDU must be at
least max( 1, NRU ) .
C (input/output) REAL array, dimension (LDC, NCC)
On entry, contains an N-by-NCC matrix which on exit
has been premultiplied by Q' dimension N-by-NCC if SQRE = 0
and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
LDC (input) INTEGER
On entry, LDC specifies the leading dimension of C as
declared in the calling (sub) program. LDC must be at
least 1. If NCC is nonzero, LDC must also be at least N.
WORK (workspace) REAL array, dimension (4*N)
Workspace. Only referenced if one of NCVT, NRU, or NCC is
nonzero, and if N is at least 2.
INFO (output) INTEGER
On exit, a value of 0 indicates a successful exit.
If INFO < 0, argument number -INFO is illegal.
If INFO > 0, the algorithm did not converge, and INFO
specifies how many superdiagonals did not converge.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasdq(String uplo, int sqre, int n, int ncvt, int nru, int ncc, float[] d, int _d_offset, float[] e, int _e_offset, float[] vt, int _vt_offset, int ldvt, float[] u, int _u_offset, int ldu, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASDQ computes the singular value decomposition (SVD) of a real
(upper or lower) bidiagonal matrix with diagonal D and offdiagonal
E, accumulating the transformations if desired. Letting B denote
the input bidiagonal matrix, the algorithm computes orthogonal
matrices Q and P such that B = Q * S * P' (P' denotes the transpose
of P). The singular values S are overwritten on D.
The input matrix U is changed to U * Q if desired.
The input matrix VT is changed to P' * VT if desired.
The input matrix C is changed to Q' * C if desired.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3, for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
On entry, UPLO specifies whether the input bidiagonal matrix
is upper or lower bidiagonal, and wether it is square are
not.
UPLO = 'U' or 'u' B is upper bidiagonal.
UPLO = 'L' or 'l' B is lower bidiagonal.
SQRE (input) INTEGER
= 0: then the input matrix is N-by-N.
= 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
(N+1)-by-N if UPLU = 'L'.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
N (input) INTEGER
On entry, N specifies the number of rows and columns
in the matrix. N must be at least 0.
NCVT (input) INTEGER
On entry, NCVT specifies the number of columns of
the matrix VT. NCVT must be at least 0.
NRU (input) INTEGER
On entry, NRU specifies the number of rows of
the matrix U. NRU must be at least 0.
NCC (input) INTEGER
On entry, NCC specifies the number of columns of
the matrix C. NCC must be at least 0.
D (input/output) REAL array, dimension (N)
On entry, D contains the diagonal entries of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in ascending order.
E (input/output) REAL array.
dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
On entry, the entries of E contain the offdiagonal entries
of the bidiagonal matrix whose SVD is desired. On normal
exit, E will contain 0. If the algorithm does not converge,
D and E will contain the diagonal and superdiagonal entries
of a bidiagonal matrix orthogonally equivalent to the one
given as input.
VT (input/output) REAL array, dimension (LDVT, NCVT)
On entry, contains a matrix which on exit has been
premultiplied by P', dimension N-by-NCVT if SQRE = 0
and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
LDVT (input) INTEGER
On entry, LDVT specifies the leading dimension of VT as
declared in the calling (sub) program. LDVT must be at
least 1. If NCVT is nonzero LDVT must also be at least N.
U (input/output) REAL array, dimension (LDU, N)
On entry, contains a matrix which on exit has been
postmultiplied by Q, dimension NRU-by-N if SQRE = 0
and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
LDU (input) INTEGER
On entry, LDU specifies the leading dimension of U as
declared in the calling (sub) program. LDU must be at
least max( 1, NRU ) .
C (input/output) REAL array, dimension (LDC, NCC)
On entry, contains an N-by-NCC matrix which on exit
has been premultiplied by Q' dimension N-by-NCC if SQRE = 0
and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
LDC (input) INTEGER
On entry, LDC specifies the leading dimension of C as
declared in the calling (sub) program. LDC must be at
least 1. If NCC is nonzero, LDC must also be at least N.
WORK (workspace) REAL array, dimension (4*N)
Workspace. Only referenced if one of NCVT, NRU, or NCC is
nonzero, and if N is at least 2.
INFO (output) INTEGER
On exit, a value of 0 indicates a successful exit.
If INFO < 0, argument number -INFO is illegal.
If INFO > 0, the algorithm did not converge, and INFO
specifies how many superdiagonals did not converge.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasdt(int n, org.netlib.util.intW lvl, org.netlib.util.intW nd, int[] inode, int[] ndiml, int[] ndimr, int msub)
LAPACK
..
Purpose
=======
SLASDT creates a tree of subproblems for bidiagonal divide and
conquer.
Arguments
=========
N (input) INTEGER
On entry, the number of diagonal elements of the
bidiagonal matrix.
LVL (output) INTEGER
On exit, the number of levels on the computation tree.
ND (output) INTEGER
On exit, the number of nodes on the tree.
INODE (output) INTEGER array, dimension ( N )
On exit, centers of subproblems.
NDIML (output) INTEGER array, dimension ( N )
On exit, row dimensions of left children.
NDIMR (output) INTEGER array, dimension ( N )
On exit, row dimensions of right children.
MSUB (input) INTEGER.
On entry, the maximum row dimension each subproblem at the
bottom of the tree can be of.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slasdt(int n, org.netlib.util.intW lvl, org.netlib.util.intW nd, int[] inode, int _inode_offset, int[] ndiml, int _ndiml_offset, int[] ndimr, int _ndimr_offset, int msub)
LAPACK
..
Purpose
=======
SLASDT creates a tree of subproblems for bidiagonal divide and
conquer.
Arguments
=========
N (input) INTEGER
On entry, the number of diagonal elements of the
bidiagonal matrix.
LVL (output) INTEGER
On exit, the number of levels on the computation tree.
ND (output) INTEGER
On exit, the number of nodes on the tree.
INODE (output) INTEGER array, dimension ( N )
On exit, centers of subproblems.
NDIML (output) INTEGER array, dimension ( N )
On exit, row dimensions of left children.
NDIMR (output) INTEGER array, dimension ( N )
On exit, row dimensions of right children.
MSUB (input) INTEGER.
On entry, the maximum row dimension each subproblem at the
bottom of the tree can be of.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void slaset(String uplo, int m, int n, float alpha, float beta, float[] a, int lda)
LAPACK
..
Purpose
=======
SLASET initializes an m-by-n matrix A to BETA on the diagonal and
ALPHA on the offdiagonals.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be set.
= 'U': Upper triangular part is set; the strictly lower
triangular part of A is not changed.
= 'L': Lower triangular part is set; the strictly upper
triangular part of A is not changed.
Otherwise: All of the matrix A is set.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
ALPHA (input) REAL
The constant to which the offdiagonal elements are to be set.
BETA (input) REAL
The constant to which the diagonal elements are to be set.
A (input/output) REAL array, dimension (LDA,N)
On exit, the leading m-by-n submatrix of A is set as follows:
if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Local Scalars ..
public void slaset(String uplo, int m, int n, float alpha, float beta, float[] a, int _a_offset, int lda)
LAPACK
..
Purpose
=======
SLASET initializes an m-by-n matrix A to BETA on the diagonal and
ALPHA on the offdiagonals.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies the part of the matrix A to be set.
= 'U': Upper triangular part is set; the strictly lower
triangular part of A is not changed.
= 'L': Lower triangular part is set; the strictly upper
triangular part of A is not changed.
Otherwise: All of the matrix A is set.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
ALPHA (input) REAL
The constant to which the offdiagonal elements are to be set.
BETA (input) REAL
The constant to which the diagonal elements are to be set.
A (input/output) REAL array, dimension (LDA,N)
On exit, the leading m-by-n submatrix of A is set as follows:
if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Local Scalars ..
public void slasq1(int n, float[] d, float[] e, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASQ1 computes the singular values of a real N-by-N bidiagonal
matrix with diagonal D and off-diagonal E. The singular values
are computed to high relative accuracy, in the absence of
denormalization, underflow and overflow. The algorithm was first
presented in
"Accurate singular values and differential qd algorithms" by K. V.
Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
1994,
and the present implementation is described in "An implementation of
the dqds Algorithm (Positive Case)", LAPACK Working Note.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, D contains the diagonal elements of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in decreasing order.
E (input/output) REAL array, dimension (N)
On entry, elements E(1:N-1) contain the off-diagonal elements
of the bidiagonal matrix whose SVD is desired.
On exit, E is overwritten.
WORK (workspace) REAL array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
=====================================================================
.. Parameters ..
public void slasq1(int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASQ1 computes the singular values of a real N-by-N bidiagonal
matrix with diagonal D and off-diagonal E. The singular values
are computed to high relative accuracy, in the absence of
denormalization, underflow and overflow. The algorithm was first
presented in
"Accurate singular values and differential qd algorithms" by K. V.
Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
1994,
and the present implementation is described in "An implementation of
the dqds Algorithm (Positive Case)", LAPACK Working Note.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, D contains the diagonal elements of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in decreasing order.
E (input/output) REAL array, dimension (N)
On entry, elements E(1:N-1) contain the off-diagonal elements
of the bidiagonal matrix whose SVD is desired.
On exit, E is overwritten.
WORK (workspace) REAL array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
=====================================================================
.. Parameters ..
public void slasq2(int n, float[] z, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASQ2 computes all the eigenvalues of the symmetric positive
definite tridiagonal matrix associated with the qd array Z to high
relative accuracy are computed to high relative accuracy, in the
absence of denormalization, underflow and overflow.
To see the relation of Z to the tridiagonal matrix, let L be a
unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
let U be an upper bidiagonal matrix with 1's above and diagonal
Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
symmetric tridiagonal to which it is similar.
Note : SLASQ2 defines a logical variable, IEEE, which is true
on machines which follow ieee-754 floating-point standard in their
handling of infinities and NaNs, and false otherwise. This variable
is passed to SLAZQ3.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
Z (workspace) REAL array, dimension (4*N)
On entry Z holds the qd array. On exit, entries 1 to N hold
the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
shifts that failed.
INFO (output) INTEGER
= 0: successful exit
< 0: if the i-th argument is a scalar and had an illegal
value, then INFO = -i, if the i-th argument is an
array and the j-entry had an illegal value, then
INFO = -(i*100+j)
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
Further Details
===============
Local Variables: I0:N0 defines a current unreduced segment of Z.
The shifts are accumulated in SIGMA. Iteration count is in ITER.
Ping-pong is controlled by PP (alternates between 0 and 1).
=====================================================================
.. Parameters ..
public void slasq2(int n, float[] z, int _z_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASQ2 computes all the eigenvalues of the symmetric positive
definite tridiagonal matrix associated with the qd array Z to high
relative accuracy are computed to high relative accuracy, in the
absence of denormalization, underflow and overflow.
To see the relation of Z to the tridiagonal matrix, let L be a
unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
let U be an upper bidiagonal matrix with 1's above and diagonal
Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
symmetric tridiagonal to which it is similar.
Note : SLASQ2 defines a logical variable, IEEE, which is true
on machines which follow ieee-754 floating-point standard in their
handling of infinities and NaNs, and false otherwise. This variable
is passed to SLAZQ3.
Arguments
=========
N (input) INTEGER
The number of rows and columns in the matrix. N >= 0.
Z (workspace) REAL array, dimension (4*N)
On entry Z holds the qd array. On exit, entries 1 to N hold
the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
shifts that failed.
INFO (output) INTEGER
= 0: successful exit
< 0: if the i-th argument is a scalar and had an illegal
value, then INFO = -i, if the i-th argument is an
array and the j-entry had an illegal value, then
INFO = -(i*100+j)
> 0: the algorithm failed
= 1, a split was marked by a positive value in E
= 2, current block of Z not diagonalized after 30*N
iterations (in inner while loop)
= 3, termination criterion of outer while loop not met
(program created more than N unreduced blocks)
Further Details
===============
Local Variables: I0:N0 defines a current unreduced segment of Z.
The shifts are accumulated in SIGMA. Iteration count is in ITER.
Ping-pong is controlled by PP (alternates between 0 and 1).
=====================================================================
.. Parameters ..
public void slasq3(int i0, org.netlib.util.intW n0, float[] z, int pp, org.netlib.util.floatW dmin, org.netlib.util.floatW sigma, org.netlib.util.floatW desig, org.netlib.util.floatW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee)
LAPACK
..
Purpose
=======
SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) REAL
Minimum value of d.
SIGMA (output) REAL
Sum of shifts used in current segment.
DESIG (input/output) REAL
Lower order part of SIGMA
QMAX (input) REAL
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
TTYPE (output) INTEGER
Shift type.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to SLASQ5).
=====================================================================
.. Parameters ..
public void slasq3(int i0, org.netlib.util.intW n0, float[] z, int _z_offset, int pp, org.netlib.util.floatW dmin, org.netlib.util.floatW sigma, org.netlib.util.floatW desig, org.netlib.util.floatW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee)
LAPACK
..
Purpose
=======
SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) REAL
Minimum value of d.
SIGMA (output) REAL
Sum of shifts used in current segment.
DESIG (input/output) REAL
Lower order part of SIGMA
QMAX (input) REAL
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
TTYPE (output) INTEGER
Shift type.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to SLASQ5).
=====================================================================
.. Parameters ..
public void slasq4(int i0, int n0, float[] z, int pp, int n0in, float dmin, float dmin1, float dmin2, float dn, float dn1, float dn2, org.netlib.util.floatW tau, org.netlib.util.intW ttype)
LAPACK
..
Purpose
=======
SLASQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) REAL
Minimum value of d.
DMIN1 (input) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (input) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) REAL
d(N)
DN1 (input) REAL
d(N-1)
DN2 (input) REAL
d(N-2)
TAU (output) REAL
This is the shift.
TTYPE (output) INTEGER
Shift type.
Further Details
===============
CNST1 = 9/16
=====================================================================
.. Parameters ..
public void slasq4(int i0, int n0, float[] z, int _z_offset, int pp, int n0in, float dmin, float dmin1, float dmin2, float dn, float dn1, float dn2, org.netlib.util.floatW tau, org.netlib.util.intW ttype)
LAPACK
..
Purpose
=======
SLASQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) REAL
Minimum value of d.
DMIN1 (input) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (input) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) REAL
d(N)
DN1 (input) REAL
d(N-1)
DN2 (input) REAL
d(N-2)
TAU (output) REAL
This is the shift.
TTYPE (output) INTEGER
Shift type.
Further Details
===============
CNST1 = 9/16
=====================================================================
.. Parameters ..
public void slasq5(int i0, int n0, float[] z, int pp, float tau, org.netlib.util.floatW dmin, org.netlib.util.floatW dmin1, org.netlib.util.floatW dmin2, org.netlib.util.floatW dn, org.netlib.util.floatW dnm1, org.netlib.util.floatW dnm2, boolean ieee)
LAPACK
..
Purpose
=======
SLASQ5 computes one dqds transform in ping-pong form, one
version for IEEE machines another for non IEEE machines.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
TAU (input) REAL
This is the shift.
DMIN (output) REAL
Minimum value of d.
DMIN1 (output) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (output) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) REAL
d(N0), the last value of d.
DNM1 (output) REAL
d(N0-1).
DNM2 (output) REAL
d(N0-2).
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic.
=====================================================================
.. Parameter ..
public void slasq5(int i0, int n0, float[] z, int _z_offset, int pp, float tau, org.netlib.util.floatW dmin, org.netlib.util.floatW dmin1, org.netlib.util.floatW dmin2, org.netlib.util.floatW dn, org.netlib.util.floatW dnm1, org.netlib.util.floatW dnm2, boolean ieee)
LAPACK
..
Purpose
=======
SLASQ5 computes one dqds transform in ping-pong form, one
version for IEEE machines another for non IEEE machines.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
TAU (input) REAL
This is the shift.
DMIN (output) REAL
Minimum value of d.
DMIN1 (output) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (output) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) REAL
d(N0), the last value of d.
DNM1 (output) REAL
d(N0-1).
DNM2 (output) REAL
d(N0-2).
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic.
=====================================================================
.. Parameter ..
public void slasq6(int i0, int n0, float[] z, int pp, org.netlib.util.floatW dmin, org.netlib.util.floatW dmin1, org.netlib.util.floatW dmin2, org.netlib.util.floatW dn, org.netlib.util.floatW dnm1, org.netlib.util.floatW dnm2)
LAPACK
..
Purpose
=======
SLASQ6 computes one dqd (shift equal to zero) transform in
ping-pong form, with protection against underflow and overflow.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) REAL
Minimum value of d.
DMIN1 (output) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (output) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) REAL
d(N0), the last value of d.
DNM1 (output) REAL
d(N0-1).
DNM2 (output) REAL
d(N0-2).
=====================================================================
.. Parameter ..
public void slasq6(int i0, int n0, float[] z, int _z_offset, int pp, org.netlib.util.floatW dmin, org.netlib.util.floatW dmin1, org.netlib.util.floatW dmin2, org.netlib.util.floatW dn, org.netlib.util.floatW dnm1, org.netlib.util.floatW dnm2)
LAPACK
..
Purpose
=======
SLASQ6 computes one dqd (shift equal to zero) transform in
ping-pong form, with protection against underflow and overflow.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
an extra argument.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) REAL
Minimum value of d.
DMIN1 (output) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (output) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (output) REAL
d(N0), the last value of d.
DNM1 (output) REAL
d(N0-1).
DNM2 (output) REAL
d(N0-2).
=====================================================================
.. Parameter ..
public void slasr(String side, String pivot, String direct, int m, int n, float[] c, float[] s, float[] a, int lda)
LAPACK
..
Purpose
=======
SLASR applies a sequence of plane rotations to a real matrix A,
from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.
Arguments
=========
SIDE (input) CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T
PIVOT (input) CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)
DIRECT (input) CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)
M (input) INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.
N (input) INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.
C (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.
S (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).
A (input/output) REAL array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P**T if SIDE = 'L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Parameters ..
public void slasr(String side, String pivot, String direct, int m, int n, float[] c, int _c_offset, float[] s, int _s_offset, float[] a, int _a_offset, int lda)
LAPACK
..
Purpose
=======
SLASR applies a sequence of plane rotations to a real matrix A,
from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.
Arguments
=========
SIDE (input) CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T
PIVOT (input) CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)
DIRECT (input) CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)
M (input) INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.
N (input) INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.
C (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.
S (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).
A (input/output) REAL array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P**T if SIDE = 'L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
=====================================================================
.. Parameters ..
public void slasrt(String id, int n, float[] d, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Sort the numbers in D in increasing order (if ID = 'I') or
in decreasing order (if ID = 'D' ).
Use Quick Sort, reverting to Insertion sort on arrays of
size <= 20. Dimension of STACK limits N to about 2**32.
Arguments
=========
ID (input) CHARACTER*1
= 'I': sort D in increasing order;
= 'D': sort D in decreasing order.
N (input) INTEGER
The length of the array D.
D (input/output) REAL array, dimension (N)
On entry, the array to be sorted.
On exit, D has been sorted into increasing order
(D(1) <= ... <= D(N) ) or into decreasing order
(D(1) >= ... >= D(N) ), depending on ID.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void slasrt(String id, int n, float[] d, int _d_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
Sort the numbers in D in increasing order (if ID = 'I') or
in decreasing order (if ID = 'D' ).
Use Quick Sort, reverting to Insertion sort on arrays of
size <= 20. Dimension of STACK limits N to about 2**32.
Arguments
=========
ID (input) CHARACTER*1
= 'I': sort D in increasing order;
= 'D': sort D in decreasing order.
N (input) INTEGER
The length of the array D.
D (input/output) REAL array, dimension (N)
On entry, the array to be sorted.
On exit, D has been sorted into increasing order
(D(1) <= ... <= D(N) ) or into decreasing order
(D(1) >= ... >= D(N) ), depending on ID.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void slassq(int n, float[] x, int incx, org.netlib.util.floatW scale, org.netlib.util.floatW sumsq)
LAPACK
..
Purpose
=======
SLASSQ returns the values scl and smsq such that
( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
assumed to be non-negative and scl returns the value
scl = max( scale, abs( x( i ) ) ).
scale and sumsq must be supplied in SCALE and SUMSQ and
scl and smsq are overwritten on SCALE and SUMSQ respectively.
The routine makes only one pass through the vector x.
Arguments
=========
N (input) INTEGER
The number of elements to be used from the vector X.
X (input) REAL array, dimension (N)
The vector for which a scaled sum of squares is computed.
x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
INCX (input) INTEGER
The increment between successive values of the vector X.
INCX > 0.
SCALE (input/output) REAL
On entry, the value scale in the equation above.
On exit, SCALE is overwritten with scl , the scaling factor
for the sum of squares.
SUMSQ (input/output) REAL
On entry, the value sumsq in the equation above.
On exit, SUMSQ is overwritten with smsq , the basic sum of
squares from which scl has been factored out.
=====================================================================
.. Parameters ..
public void slassq(int n, float[] x, int _x_offset, int incx, org.netlib.util.floatW scale, org.netlib.util.floatW sumsq)
LAPACK
..
Purpose
=======
SLASSQ returns the values scl and smsq such that
( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
assumed to be non-negative and scl returns the value
scl = max( scale, abs( x( i ) ) ).
scale and sumsq must be supplied in SCALE and SUMSQ and
scl and smsq are overwritten on SCALE and SUMSQ respectively.
The routine makes only one pass through the vector x.
Arguments
=========
N (input) INTEGER
The number of elements to be used from the vector X.
X (input) REAL array, dimension (N)
The vector for which a scaled sum of squares is computed.
x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
INCX (input) INTEGER
The increment between successive values of the vector X.
INCX > 0.
SCALE (input/output) REAL
On entry, the value scale in the equation above.
On exit, SCALE is overwritten with scl , the scaling factor
for the sum of squares.
SUMSQ (input/output) REAL
On entry, the value sumsq in the equation above.
On exit, SUMSQ is overwritten with smsq , the basic sum of
squares from which scl has been factored out.
=====================================================================
.. Parameters ..
public void slasv2(float f, float g, float h, org.netlib.util.floatW ssmin, org.netlib.util.floatW ssmax, org.netlib.util.floatW snr, org.netlib.util.floatW csr, org.netlib.util.floatW snl, org.netlib.util.floatW csl)
LAPACK
..
Purpose
=======
SLASV2 computes the singular value decomposition of a 2-by-2
triangular matrix
[ F G ]
[ 0 H ].
On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
right singular vectors for abs(SSMAX), giving the decomposition
[ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
[-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
Arguments
=========
F (input) REAL
The (1,1) element of the 2-by-2 matrix.
G (input) REAL
The (1,2) element of the 2-by-2 matrix.
H (input) REAL
The (2,2) element of the 2-by-2 matrix.
SSMIN (output) REAL
abs(SSMIN) is the smaller singular value.
SSMAX (output) REAL
abs(SSMAX) is the larger singular value.
SNL (output) REAL
CSL (output) REAL
The vector (CSL, SNL) is a unit left singular vector for the
singular value abs(SSMAX).
SNR (output) REAL
CSR (output) REAL
The vector (CSR, SNR) is a unit right singular vector for the
singular value abs(SSMAX).
Further Details
===============
Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all
output quantities are correct to within a few units in the last
place (ulps).
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself
overflows or is within a few ulps of overflow. (On machines with
partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results
may correspond to a matrix modified by perturbations of size near
the underflow threshold.
=====================================================================
.. Parameters ..
public void slaswp(int n, float[] a, int lda, int k1, int k2, int[] ipiv, int incx)
LAPACK
..
Purpose
=======
SLASWP performs a series of row interchanges on the matrix A.
One row interchange is initiated for each of rows K1 through K2 of A.
Arguments
=========
N (input) INTEGER
The number of columns of the matrix A.
A (input/output) REAL array, dimension (LDA,N)
On entry, the matrix of column dimension N to which the row
interchanges will be applied.
On exit, the permuted matrix.
LDA (input) INTEGER
The leading dimension of the array A.
K1 (input) INTEGER
The first element of IPIV for which a row interchange will
be done.
K2 (input) INTEGER
The last element of IPIV for which a row interchange will
be done.
IPIV (input) INTEGER array, dimension (K2*abs(INCX))
The vector of pivot indices. Only the elements in positions
K1 through K2 of IPIV are accessed.
IPIV(K) = L implies rows K and L are to be interchanged.
INCX (input) INTEGER
The increment between successive values of IPIV. If IPIV
is negative, the pivots are applied in reverse order.
Further Details
===============
Modified by
R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void slaswp(int n, float[] a, int _a_offset, int lda, int k1, int k2, int[] ipiv, int _ipiv_offset, int incx)
LAPACK
..
Purpose
=======
SLASWP performs a series of row interchanges on the matrix A.
One row interchange is initiated for each of rows K1 through K2 of A.
Arguments
=========
N (input) INTEGER
The number of columns of the matrix A.
A (input/output) REAL array, dimension (LDA,N)
On entry, the matrix of column dimension N to which the row
interchanges will be applied.
On exit, the permuted matrix.
LDA (input) INTEGER
The leading dimension of the array A.
K1 (input) INTEGER
The first element of IPIV for which a row interchange will
be done.
K2 (input) INTEGER
The last element of IPIV for which a row interchange will
be done.
IPIV (input) INTEGER array, dimension (K2*abs(INCX))
The vector of pivot indices. Only the elements in positions
K1 through K2 of IPIV are accessed.
IPIV(K) = L implies rows K and L are to be interchanged.
INCX (input) INTEGER
The increment between successive values of IPIV. If IPIV
is negative, the pivots are applied in reverse order.
Further Details
===============
Modified by
R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void slasy2(boolean ltranl, boolean ltranr, int isgn, int n1, int n2, float[] tl, int ldtl, float[] tr, int ldtr, float[] b, int ldb, org.netlib.util.floatW scale, float[] x, int ldx, org.netlib.util.floatW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
op(TL)*X + ISGN*X*op(TR) = SCALE*B,
where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
-1. op(T) = T or T', where T' denotes the transpose of T.
Arguments
=========
LTRANL (input) LOGICAL
On entry, LTRANL specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE., op(TL) = TL'.
LTRANR (input) LOGICAL
On entry, LTRANR specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE., op(TR) = TR'.
ISGN (input) INTEGER
On entry, ISGN specifies the sign of the equation
as described before. ISGN may only be 1 or -1.
N1 (input) INTEGER
On entry, N1 specifies the order of matrix TL.
N1 may only be 0, 1 or 2.
N2 (input) INTEGER
On entry, N2 specifies the order of matrix TR.
N2 may only be 0, 1 or 2.
TL (input) REAL array, dimension (LDTL,2)
On entry, TL contains an N1 by N1 matrix.
LDTL (input) INTEGER
The leading dimension of the matrix TL. LDTL >= max(1,N1).
TR (input) REAL array, dimension (LDTR,2)
On entry, TR contains an N2 by N2 matrix.
LDTR (input) INTEGER
The leading dimension of the matrix TR. LDTR >= max(1,N2).
B (input) REAL array, dimension (LDB,2)
On entry, the N1 by N2 matrix B contains the right-hand
side of the equation.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1,N1).
SCALE (output) REAL
On exit, SCALE contains the scale factor. SCALE is chosen
less than or equal to 1 to prevent the solution overflowing.
X (output) REAL array, dimension (LDX,2)
On exit, X contains the N1 by N2 solution.
LDX (input) INTEGER
The leading dimension of the matrix X. LDX >= max(1,N1).
XNORM (output) REAL
On exit, XNORM is the infinity-norm of the solution.
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: TL and TR have too close eigenvalues, so TL or
TR is perturbed to get a nonsingular equation.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void slasy2(boolean ltranl, boolean ltranr, int isgn, int n1, int n2, float[] tl, int _tl_offset, int ldtl, float[] tr, int _tr_offset, int ldtr, float[] b, int _b_offset, int ldb, org.netlib.util.floatW scale, float[] x, int _x_offset, int ldx, org.netlib.util.floatW xnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
op(TL)*X + ISGN*X*op(TR) = SCALE*B,
where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
-1. op(T) = T or T', where T' denotes the transpose of T.
Arguments
=========
LTRANL (input) LOGICAL
On entry, LTRANL specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE., op(TL) = TL'.
LTRANR (input) LOGICAL
On entry, LTRANR specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE., op(TR) = TR'.
ISGN (input) INTEGER
On entry, ISGN specifies the sign of the equation
as described before. ISGN may only be 1 or -1.
N1 (input) INTEGER
On entry, N1 specifies the order of matrix TL.
N1 may only be 0, 1 or 2.
N2 (input) INTEGER
On entry, N2 specifies the order of matrix TR.
N2 may only be 0, 1 or 2.
TL (input) REAL array, dimension (LDTL,2)
On entry, TL contains an N1 by N1 matrix.
LDTL (input) INTEGER
The leading dimension of the matrix TL. LDTL >= max(1,N1).
TR (input) REAL array, dimension (LDTR,2)
On entry, TR contains an N2 by N2 matrix.
LDTR (input) INTEGER
The leading dimension of the matrix TR. LDTR >= max(1,N2).
B (input) REAL array, dimension (LDB,2)
On entry, the N1 by N2 matrix B contains the right-hand
side of the equation.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1,N1).
SCALE (output) REAL
On exit, SCALE contains the scale factor. SCALE is chosen
less than or equal to 1 to prevent the solution overflowing.
X (output) REAL array, dimension (LDX,2)
On exit, X contains the N1 by N2 solution.
LDX (input) INTEGER
The leading dimension of the matrix X. LDX >= max(1,N1).
XNORM (output) REAL
On exit, XNORM is the infinity-norm of the solution.
INFO (output) INTEGER
On exit, INFO is set to
0: successful exit.
1: TL and TR have too close eigenvalues, so TL or
TR is perturbed to get a nonsingular equation.
NOTE: In the interests of speed, this routine does not
check the inputs for errors.
=====================================================================
.. Parameters ..
public void slasyf(String uplo, int n, int nb, org.netlib.util.intW kb, float[] a, int lda, int[] ipiv, float[] w, int ldw, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASYF computes a partial factorization of a real symmetric matrix A
using the Bunch-Kaufman diagonal pivoting method. The partial
factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12' U22' )
A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
SLASYF is an auxiliary routine called by SSYTRF. It uses blocked code
(calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
A22 (if UPLO = 'L').
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
NB (input) INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB (output) INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U', only the last KB elements of IPIV are set;
if UPLO = 'L', only the first KB elements are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W (workspace) REAL array, dimension (LDW,NB)
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
=====================================================================
.. Parameters ..
public void slasyf(String uplo, int n, int nb, org.netlib.util.intW kb, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] w, int _w_offset, int ldw, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLASYF computes a partial factorization of a real symmetric matrix A
using the Bunch-Kaufman diagonal pivoting method. The partial
factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12' U22' )
A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
SLASYF is an auxiliary routine called by SSYTRF. It uses blocked code
(calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
A22 (if UPLO = 'L').
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
NB (input) INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB (output) INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U', only the last KB elements of IPIV are set;
if UPLO = 'L', only the first KB elements are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W (workspace) REAL array, dimension (LDW,NB)
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
=====================================================================
.. Parameters ..
public void slatbs(String uplo, String trans, String diag, String normin, int n, int kd, float[] ab, int ldab, float[] x, org.netlib.util.floatW scale, float[] cnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLATBS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular band matrix. Here A' denotes the transpose of A, x and b
are n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine STBSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of subdiagonals or superdiagonals in the
triangular matrix A. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first KD+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
X (input/output) REAL array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) REAL
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, STBSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine STBSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STBSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void slatbs(String uplo, String trans, String diag, String normin, int n, int kd, float[] ab, int _ab_offset, int ldab, float[] x, int _x_offset, org.netlib.util.floatW scale, float[] cnorm, int _cnorm_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLATBS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular band matrix. Here A' denotes the transpose of A, x and b
are n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine STBSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of subdiagonals or superdiagonals in the
triangular matrix A. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first KD+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
X (input/output) REAL array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) REAL
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, STBSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine STBSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STBSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void slatdf(int ijob, int n, float[] z, int ldz, float[] rhs, org.netlib.util.floatW rdsum, org.netlib.util.floatW rdscal, int[] ipiv, int[] jpiv)
LAPACK
..
Purpose
=======
SLATDF uses the LU factorization of the n-by-n matrix Z computed by
SGETC2 and computes a contribution to the reciprocal Dif-estimate
by solving Z * x = b for x, and choosing the r.h.s. b such that
the norm of x is as large as possible. On entry RHS = b holds the
contribution from earlier solved sub-systems, and on return RHS = x.
The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q,
where P and Q are permutation matrices. L is lower triangular with
unit diagonal elements and U is upper triangular.
Arguments
=========
IJOB (input) INTEGER
IJOB = 2: First compute an approximative null-vector e
of Z using SGECON, e is normalized and solve for
Zx = +-e - f with the sign giving the greater value
of 2-norm(x). About 5 times as expensive as Default.
IJOB .ne. 2: Local look ahead strategy where all entries of
the r.h.s. b is choosen as either +1 or -1 (Default).
N (input) INTEGER
The number of columns of the matrix Z.
Z (input) REAL array, dimension (LDZ, N)
On entry, the LU part of the factorization of the n-by-n
matrix Z computed by SGETC2: Z = P * L * U * Q
LDZ (input) INTEGER
The leading dimension of the array Z. LDA >= max(1, N).
RHS (input/output) REAL array, dimension N.
On entry, RHS contains contributions from other subsystems.
On exit, RHS contains the solution of the subsystem with
entries acoording to the value of IJOB (see above).
RDSUM (input/output) REAL
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by STGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
RDSCAL (input/output) REAL
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when STGSY2 is called by
STGSYL.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
This routine is a further developed implementation of algorithm
BSOLVE in [1] using complete pivoting in the LU factorization.
[1] Bo Kagstrom and Lars Westin,
Generalized Schur Methods with Condition Estimators for
Solving the Generalized Sylvester Equation, IEEE Transactions
on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
[2] Peter Poromaa,
On Efficient and Robust Estimators for the Separation
between two Regular Matrix Pairs with Applications in
Condition Estimation. Report IMINF-95.05, Departement of
Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
=====================================================================
.. Parameters ..
public void slatdf(int ijob, int n, float[] z, int _z_offset, int ldz, float[] rhs, int _rhs_offset, org.netlib.util.floatW rdsum, org.netlib.util.floatW rdscal, int[] ipiv, int _ipiv_offset, int[] jpiv, int _jpiv_offset)
LAPACK
..
Purpose
=======
SLATDF uses the LU factorization of the n-by-n matrix Z computed by
SGETC2 and computes a contribution to the reciprocal Dif-estimate
by solving Z * x = b for x, and choosing the r.h.s. b such that
the norm of x is as large as possible. On entry RHS = b holds the
contribution from earlier solved sub-systems, and on return RHS = x.
The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q,
where P and Q are permutation matrices. L is lower triangular with
unit diagonal elements and U is upper triangular.
Arguments
=========
IJOB (input) INTEGER
IJOB = 2: First compute an approximative null-vector e
of Z using SGECON, e is normalized and solve for
Zx = +-e - f with the sign giving the greater value
of 2-norm(x). About 5 times as expensive as Default.
IJOB .ne. 2: Local look ahead strategy where all entries of
the r.h.s. b is choosen as either +1 or -1 (Default).
N (input) INTEGER
The number of columns of the matrix Z.
Z (input) REAL array, dimension (LDZ, N)
On entry, the LU part of the factorization of the n-by-n
matrix Z computed by SGETC2: Z = P * L * U * Q
LDZ (input) INTEGER
The leading dimension of the array Z. LDA >= max(1, N).
RHS (input/output) REAL array, dimension N.
On entry, RHS contains contributions from other subsystems.
On exit, RHS contains the solution of the subsystem with
entries acoording to the value of IJOB (see above).
RDSUM (input/output) REAL
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by STGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
RDSCAL (input/output) REAL
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when STGSY2 is called by
STGSYL.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
This routine is a further developed implementation of algorithm
BSOLVE in [1] using complete pivoting in the LU factorization.
[1] Bo Kagstrom and Lars Westin,
Generalized Schur Methods with Condition Estimators for
Solving the Generalized Sylvester Equation, IEEE Transactions
on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
[2] Peter Poromaa,
On Efficient and Robust Estimators for the Separation
between two Regular Matrix Pairs with Applications in
Condition Estimation. Report IMINF-95.05, Departement of
Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
=====================================================================
.. Parameters ..
public void slatps(String uplo, String trans, String diag, String normin, int n, float[] ap, float[] x, org.netlib.util.floatW scale, float[] cnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLATPS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular matrix stored in packed form. Here A' denotes the
transpose of A, x and b are n-element vectors, and s is a scaling
factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the
unscaled problem will not cause overflow, the Level 2 BLAS routine
STPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
X (input/output) REAL array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) REAL
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, STPSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine STPSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STPSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void slatps(String uplo, String trans, String diag, String normin, int n, float[] ap, int _ap_offset, float[] x, int _x_offset, org.netlib.util.floatW scale, float[] cnorm, int _cnorm_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLATPS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular matrix stored in packed form. Here A' denotes the
transpose of A, x and b are n-element vectors, and s is a scaling
factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the
unscaled problem will not cause overflow, the Level 2 BLAS routine
STPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
X (input/output) REAL array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) REAL
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, STPSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine STPSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STPSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void slatrd(String uplo, int n, int nb, float[] a, int lda, float[] e, float[] tau, float[] w, int ldw)
LAPACK
..
Purpose
=======
SLATRD reduces NB rows and columns of a real symmetric matrix A to
symmetric tridiagonal form by an orthogonal similarity
transformation Q' * A * Q, and returns the matrices V and W which are
needed to apply the transformation to the unreduced part of A.
If UPLO = 'U', SLATRD reduces the last NB rows and columns of a
matrix, of which the upper triangle is supplied;
if UPLO = 'L', SLATRD reduces the first NB rows and columns of a
matrix, of which the lower triangle is supplied.
This is an auxiliary routine called by SSYTRD.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A.
NB (input) INTEGER
The number of rows and columns to be reduced.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit:
if UPLO = 'U', the last NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements above the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors;
if UPLO = 'L', the first NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements below the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= (1,N).
E (output) REAL array, dimension (N-1)
If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
elements of the last NB columns of the reduced matrix;
if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
the first NB columns of the reduced matrix.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors, stored in
TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
See Further Details.
W (output) REAL array, dimension (LDW,NB)
The n-by-nb matrix W required to update the unreduced part
of A.
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n) H(n-1) . . . H(n-nb+1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
and tau in TAU(i-1).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and tau in TAU(i).
The elements of the vectors v together form the n-by-nb matrix V
which is needed, with W, to apply the transformation to the unreduced
part of the matrix, using a symmetric rank-2k update of the form:
A := A - V*W' - W*V'.
The contents of A on exit are illustrated by the following examples
with n = 5 and nb = 2:
if UPLO = 'U': if UPLO = 'L':
( a a a v4 v5 ) ( d )
( a a v4 v5 ) ( 1 d )
( a 1 v5 ) ( v1 1 a )
( d 1 ) ( v1 v2 a a )
( d ) ( v1 v2 a a a )
where d denotes a diagonal element of the reduced matrix, a denotes
an element of the original matrix that is unchanged, and vi denotes
an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void slatrd(String uplo, int n, int nb, float[] a, int _a_offset, int lda, float[] e, int _e_offset, float[] tau, int _tau_offset, float[] w, int _w_offset, int ldw)
LAPACK
..
Purpose
=======
SLATRD reduces NB rows and columns of a real symmetric matrix A to
symmetric tridiagonal form by an orthogonal similarity
transformation Q' * A * Q, and returns the matrices V and W which are
needed to apply the transformation to the unreduced part of A.
If UPLO = 'U', SLATRD reduces the last NB rows and columns of a
matrix, of which the upper triangle is supplied;
if UPLO = 'L', SLATRD reduces the first NB rows and columns of a
matrix, of which the lower triangle is supplied.
This is an auxiliary routine called by SSYTRD.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A.
NB (input) INTEGER
The number of rows and columns to be reduced.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit:
if UPLO = 'U', the last NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements above the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors;
if UPLO = 'L', the first NB columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of A; the elements below the diagonal
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors.
See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= (1,N).
E (output) REAL array, dimension (N-1)
If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
elements of the last NB columns of the reduced matrix;
if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
the first NB columns of the reduced matrix.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors, stored in
TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
See Further Details.
W (output) REAL array, dimension (LDW,NB)
The n-by-nb matrix W required to update the unreduced part
of A.
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n) H(n-1) . . . H(n-nb+1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
and tau in TAU(i-1).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
and tau in TAU(i).
The elements of the vectors v together form the n-by-nb matrix V
which is needed, with W, to apply the transformation to the unreduced
part of the matrix, using a symmetric rank-2k update of the form:
A := A - V*W' - W*V'.
The contents of A on exit are illustrated by the following examples
with n = 5 and nb = 2:
if UPLO = 'U': if UPLO = 'L':
( a a a v4 v5 ) ( d )
( a a v4 v5 ) ( 1 d )
( a 1 v5 ) ( v1 1 a )
( d 1 ) ( v1 v2 a a )
( d ) ( v1 v2 a a a )
where d denotes a diagonal element of the reduced matrix, a denotes
an element of the original matrix that is unchanged, and vi denotes
an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void slatrs(String uplo, String trans, String diag, String normin, int n, float[] a, int lda, float[] x, org.netlib.util.floatW scale, float[] cnorm, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLATRS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A' denotes the transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine STRSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max (1,N).
X (input/output) REAL array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) REAL
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, STRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine STRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void slatrs(String uplo, String trans, String diag, String normin, int n, float[] a, int _a_offset, int lda, float[] x, int _x_offset, org.netlib.util.floatW scale, float[] cnorm, int _cnorm_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLATRS solves one of the triangular systems
A *x = s*b or A'*x = s*b
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A' denotes the transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine STRSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A'* x = s*b (Transpose)
= 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN (input) CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max (1,N).
X (input/output) REAL array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE (output) REAL
The scaling factor s for the triangular system
A * x = s*b or A'* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM (input or output) REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
Further Details
======= =======
A rough bound on x is computed; if that is less than overflow, STRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine STRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A'*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
.. Parameters ..
public void slatrz(int m, int n, int l, float[] a, int lda, float[] tau, float[] work)
LAPACK
..
Purpose
=======
SLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
[ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means
of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal
matrix and, R and A1 are M-by-M upper triangular matrices.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
L (input) INTEGER
The number of columns of the matrix A containing the
meaningful part of the Householder vectors. N-M >= L >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements N-L+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace) REAL array, dimension (M)
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an l element vector. tau and z( k )
are chosen to annihilate the elements of the kth row of A2.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A2, such that the elements of z( k ) are
in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A1.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void slatrz(int m, int n, int l, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
SLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
[ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means
of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal
matrix and, R and A1 are M-by-M upper triangular matrices.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
L (input) INTEGER
The number of columns of the matrix A containing the
meaningful part of the Householder vectors. N-M >= L >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements N-L+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace) REAL array, dimension (M)
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an l element vector. tau and z( k )
are chosen to annihilate the elements of the kth row of A2.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A2, such that the elements of z( k ) are
in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A1.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void slatzm(String side, int m, int n, float[] v, int incv, float tau, float[] c1, float[] c2, int Ldc, float[] work)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SORMRZ.
SLATZM applies a Householder matrix generated by STZRQF to a matrix.
Let P = I - tau*u*u', u = ( 1 ),
( v )
where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
SIDE = 'R'.
If SIDE equals 'L', let
C = [ C1 ] 1
[ C2 ] m-1
n
Then C is overwritten by P*C.
If SIDE equals 'R', let
C = [ C1, C2 ] m
1 n-1
Then C is overwritten by C*P.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form P * C
= 'R': form C * P
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) REAL array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
(1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of P. V is not used
if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0
TAU (input) REAL
The value tau in the representation of P.
C1 (input/output) REAL array, dimension
(LDC,N) if SIDE = 'L'
(M,1) if SIDE = 'R'
On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
if SIDE = 'R'.
On exit, the first row of P*C if SIDE = 'L', or the first
column of C*P if SIDE = 'R'.
C2 (input/output) REAL array, dimension
(LDC, N) if SIDE = 'L'
(LDC, N-1) if SIDE = 'R'
On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
m x (n - 1) matrix C2 if SIDE = 'R'.
On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the arrays C1 and C2. LDC >= (1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void slatzm(String side, int m, int n, float[] v, int _v_offset, int incv, float tau, float[] c1, int _c1_offset, float[] c2, int _c2_offset, int Ldc, float[] work, int _work_offset)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine SORMRZ.
SLATZM applies a Householder matrix generated by STZRQF to a matrix.
Let P = I - tau*u*u', u = ( 1 ),
( v )
where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
SIDE = 'R'.
If SIDE equals 'L', let
C = [ C1 ] 1
[ C2 ] m-1
n
Then C is overwritten by P*C.
If SIDE equals 'R', let
C = [ C1, C2 ] m
1 n-1
Then C is overwritten by C*P.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': form P * C
= 'R': form C * P
M (input) INTEGER
The number of rows of the matrix C.
N (input) INTEGER
The number of columns of the matrix C.
V (input) REAL array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
(1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of P. V is not used
if TAU = 0.
INCV (input) INTEGER
The increment between elements of v. INCV <> 0
TAU (input) REAL
The value tau in the representation of P.
C1 (input/output) REAL array, dimension
(LDC,N) if SIDE = 'L'
(M,1) if SIDE = 'R'
On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
if SIDE = 'R'.
On exit, the first row of P*C if SIDE = 'L', or the first
column of C*P if SIDE = 'R'.
C2 (input/output) REAL array, dimension
(LDC, N) if SIDE = 'L'
(LDC, N-1) if SIDE = 'R'
On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
m x (n - 1) matrix C2 if SIDE = 'R'.
On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
if SIDE = 'R'.
LDC (input) INTEGER
The leading dimension of the arrays C1 and C2. LDC >= (1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
=====================================================================
.. Parameters ..
public void slauu2(String uplo, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAUU2 computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the unblocked form of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void slauu2(String uplo, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAUU2 computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the unblocked form of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void slauum(String uplo, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAUUM computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the blocked form of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void slauum(String uplo, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SLAUUM computes the product U * U' or L' * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
This is the blocked form of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void slazq3(int i0, org.netlib.util.intW n0, float[] z, int pp, org.netlib.util.floatW dmin, org.netlib.util.floatW sigma, org.netlib.util.floatW desig, org.netlib.util.floatW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee, org.netlib.util.intW ttype, org.netlib.util.floatW dmin1, org.netlib.util.floatW dmin2, org.netlib.util.floatW dn, org.netlib.util.floatW dn1, org.netlib.util.floatW dn2, org.netlib.util.floatW tau)
LAPACK
..
Purpose
=======
SLAZQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) REAL
Minimum value of d.
SIGMA (output) REAL
Sum of shifts used in current segment.
DESIG (input/output) REAL
Lower order part of SIGMA
QMAX (input) REAL
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to SLASQ5).
TTYPE (input/output) INTEGER
Shift type. TTYPE is passed as an argument in order to save
its value between calls to SLAZQ3
DMIN1 (input/output) REAL
DMIN2 (input/output) REAL
DN (input/output) REAL
DN1 (input/output) REAL
DN2 (input/output) REAL
TAU (input/output) REAL
These are passed as arguments in order to save their values
between calls to SLAZQ3
This is a thread safe version of SLASQ3, which passes TTYPE, DMIN1,
DMIN2, DN, DN1. DN2 and TAU through the argument list in place of
declaring them in a SAVE statment.
=====================================================================
.. Parameters ..
public void slazq3(int i0, org.netlib.util.intW n0, float[] z, int _z_offset, int pp, org.netlib.util.floatW dmin, org.netlib.util.floatW sigma, org.netlib.util.floatW desig, org.netlib.util.floatW qmax, org.netlib.util.intW nfail, org.netlib.util.intW iter, org.netlib.util.intW ndiv, boolean ieee, org.netlib.util.intW ttype, org.netlib.util.floatW dmin1, org.netlib.util.floatW dmin2, org.netlib.util.floatW dn, org.netlib.util.floatW dn1, org.netlib.util.floatW dn2, org.netlib.util.floatW tau)
LAPACK
..
Purpose
=======
SLAZQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
Arguments
=========
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
DMIN (output) REAL
Minimum value of d.
SIGMA (output) REAL
Sum of shifts used in current segment.
DESIG (input/output) REAL
Lower order part of SIGMA
QMAX (input) REAL
Maximum value of q.
NFAIL (output) INTEGER
Number of times shift was too big.
ITER (output) INTEGER
Number of iterations.
NDIV (output) INTEGER
Number of divisions.
IEEE (input) LOGICAL
Flag for IEEE or non IEEE arithmetic (passed to SLASQ5).
TTYPE (input/output) INTEGER
Shift type. TTYPE is passed as an argument in order to save
its value between calls to SLAZQ3
DMIN1 (input/output) REAL
DMIN2 (input/output) REAL
DN (input/output) REAL
DN1 (input/output) REAL
DN2 (input/output) REAL
TAU (input/output) REAL
These are passed as arguments in order to save their values
between calls to SLAZQ3
This is a thread safe version of SLASQ3, which passes TTYPE, DMIN1,
DMIN2, DN, DN1. DN2 and TAU through the argument list in place of
declaring them in a SAVE statment.
=====================================================================
.. Parameters ..
public void slazq4(int i0, int n0, float[] z, int pp, int n0in, float dmin, float dmin1, float dmin2, float dn, float dn1, float dn2, org.netlib.util.floatW tau, org.netlib.util.intW ttype, org.netlib.util.floatW g)
LAPACK
..
Purpose
=======
SLAZQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) REAL
Minimum value of d.
DMIN1 (input) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (input) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) REAL
d(N)
DN1 (input) REAL
d(N-1)
DN2 (input) REAL
d(N-2)
TAU (output) REAL
This is the shift.
TTYPE (output) INTEGER
Shift type.
G (input/output) REAL
G is passed as an argument in order to save its value between
calls to SLAZQ4
Further Details
===============
CNST1 = 9/16
This is a thread safe version of SLASQ4, which passes G through the
argument list in place of declaring G in a SAVE statment.
=====================================================================
.. Parameters ..
public void slazq4(int i0, int n0, float[] z, int _z_offset, int pp, int n0in, float dmin, float dmin1, float dmin2, float dn, float dn1, float dn2, org.netlib.util.floatW tau, org.netlib.util.intW ttype, org.netlib.util.floatW g)
LAPACK
..
Purpose
=======
SLAZQ4 computes an approximation TAU to the smallest eigenvalue
using values of d from the previous transform.
I0 (input) INTEGER
First index.
N0 (input) INTEGER
Last index.
Z (input) REAL array, dimension ( 4*N )
Z holds the qd array.
PP (input) INTEGER
PP=0 for ping, PP=1 for pong.
N0IN (input) INTEGER
The value of N0 at start of EIGTEST.
DMIN (input) REAL
Minimum value of d.
DMIN1 (input) REAL
Minimum value of d, excluding D( N0 ).
DMIN2 (input) REAL
Minimum value of d, excluding D( N0 ) and D( N0-1 ).
DN (input) REAL
d(N)
DN1 (input) REAL
d(N-1)
DN2 (input) REAL
d(N-2)
TAU (output) REAL
This is the shift.
TTYPE (output) INTEGER
Shift type.
G (input/output) REAL
G is passed as an argument in order to save its value between
calls to SLAZQ4
Further Details
===============
CNST1 = 9/16
This is a thread safe version of SLASQ4, which passes G through the
argument list in place of declaring G in a SAVE statment.
=====================================================================
.. Parameters ..
public void sopgtr(String uplo, int n, float[] ap, float[] tau, float[] q, int ldq, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SOPGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors H(i) of order n, as returned by
SSPTRD using packed storage:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to SSPTRD;
= 'L': Lower triangular packed storage used in previous
call to SSPTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The vectors which define the elementary reflectors, as
returned by SSPTRD.
TAU (input) REAL array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSPTRD.
Q (output) REAL array, dimension (LDQ,N)
The N-by-N orthogonal matrix Q.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
WORK (workspace) REAL array, dimension (N-1)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sopgtr(String uplo, int n, float[] ap, int _ap_offset, float[] tau, int _tau_offset, float[] q, int _q_offset, int ldq, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SOPGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors H(i) of order n, as returned by
SSPTRD using packed storage:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to SSPTRD;
= 'L': Lower triangular packed storage used in previous
call to SSPTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The vectors which define the elementary reflectors, as
returned by SSPTRD.
TAU (input) REAL array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSPTRD.
Q (output) REAL array, dimension (LDQ,N)
The N-by-N orthogonal matrix Q.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
WORK (workspace) REAL array, dimension (N-1)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sopmtr(String side, String uplo, String trans, int m, int n, float[] ap, float[] tau, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SOPMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by SSPTRD using packed
storage:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to SSPTRD;
= 'L': Lower triangular packed storage used in previous
call to SSPTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
AP (input) REAL array, dimension
(M*(M+1)/2) if SIDE = 'L'
(N*(N+1)/2) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SSPTRD. AP is modified by the routine but
restored on exit.
TAU (input) REAL array, dimension (M-1) if SIDE = 'L'
or (N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSPTRD.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sopmtr(String side, String uplo, String trans, int m, int n, float[] ap, int _ap_offset, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SOPMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by SSPTRD using packed
storage:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to SSPTRD;
= 'L': Lower triangular packed storage used in previous
call to SSPTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
AP (input) REAL array, dimension
(M*(M+1)/2) if SIDE = 'L'
(N*(N+1)/2) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SSPTRD. AP is modified by the routine but
restored on exit.
TAU (input) REAL array, dimension (M-1) if SIDE = 'L'
or (N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSPTRD.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorg2l(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORG2L generates an m by n real matrix Q with orthonormal columns,
which is defined as the last n columns of a product of k elementary
reflectors of order m
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQLF in the last k columns of its array
argument A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorg2l(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORG2L generates an m by n real matrix Q with orthonormal columns,
which is defined as the last n columns of a product of k elementary
reflectors of order m
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQLF in the last k columns of its array
argument A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorg2r(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORG2R generates an m by n real matrix Q with orthonormal columns,
which is defined as the first n columns of a product of k elementary
reflectors of order m
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQRF in the first k columns of its array
argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorg2r(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORG2R generates an m by n real matrix Q with orthonormal columns,
which is defined as the first n columns of a product of k elementary
reflectors of order m
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQRF in the first k columns of its array
argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgbr(String vect, int m, int n, int k, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGBR generates one of the real orthogonal matrices Q or P**T
determined by SGEBRD when reducing a real matrix A to bidiagonal
form: A = Q * B * P**T. Q and P**T are defined as products of
elementary reflectors H(i) or G(i) respectively.
If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
is of order M:
if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
columns of Q, where m >= n >= k;
if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
M-by-M matrix.
If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
is of order N:
if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
rows of P**T, where n >= m >= k;
if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
an N-by-N matrix.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether the matrix Q or the matrix P**T is
required, as defined in the transformation applied by SGEBRD:
= 'Q': generate Q;
= 'P': generate P**T.
M (input) INTEGER
The number of rows of the matrix Q or P**T to be returned.
M >= 0.
N (input) INTEGER
The number of columns of the matrix Q or P**T to be returned.
N >= 0.
If VECT = 'Q', M >= N >= min(M,K);
if VECT = 'P', N >= M >= min(N,K).
K (input) INTEGER
If VECT = 'Q', the number of columns in the original M-by-K
matrix reduced by SGEBRD.
If VECT = 'P', the number of rows in the original K-by-N
matrix reduced by SGEBRD.
K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by SGEBRD.
On exit, the M-by-N matrix Q or P**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension
(min(M,K)) if VECT = 'Q'
(min(N,K)) if VECT = 'P'
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P**T, as
returned by SGEBRD in its array argument TAUQ or TAUP.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,min(M,N)).
For optimum performance LWORK >= min(M,N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorgbr(String vect, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGBR generates one of the real orthogonal matrices Q or P**T
determined by SGEBRD when reducing a real matrix A to bidiagonal
form: A = Q * B * P**T. Q and P**T are defined as products of
elementary reflectors H(i) or G(i) respectively.
If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
is of order M:
if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
columns of Q, where m >= n >= k;
if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
M-by-M matrix.
If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
is of order N:
if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
rows of P**T, where n >= m >= k;
if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
an N-by-N matrix.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether the matrix Q or the matrix P**T is
required, as defined in the transformation applied by SGEBRD:
= 'Q': generate Q;
= 'P': generate P**T.
M (input) INTEGER
The number of rows of the matrix Q or P**T to be returned.
M >= 0.
N (input) INTEGER
The number of columns of the matrix Q or P**T to be returned.
N >= 0.
If VECT = 'Q', M >= N >= min(M,K);
if VECT = 'P', N >= M >= min(N,K).
K (input) INTEGER
If VECT = 'Q', the number of columns in the original M-by-K
matrix reduced by SGEBRD.
If VECT = 'P', the number of rows in the original K-by-N
matrix reduced by SGEBRD.
K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by SGEBRD.
On exit, the M-by-N matrix Q or P**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension
(min(M,K)) if VECT = 'Q'
(min(N,K)) if VECT = 'P'
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P**T, as
returned by SGEBRD in its array argument TAUQ or TAUP.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,min(M,N)).
For optimum performance LWORK >= min(M,N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorghr(int n, int ilo, int ihi, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGHR generates a real orthogonal matrix Q which is defined as the
product of IHI-ILO elementary reflectors of order N, as returned by
SGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
N (input) INTEGER
The order of the matrix Q. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of SGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by SGEHRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) REAL array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEHRD.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= IHI-ILO.
For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorghr(int n, int ilo, int ihi, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGHR generates a real orthogonal matrix Q which is defined as the
product of IHI-ILO elementary reflectors of order N, as returned by
SGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
N (input) INTEGER
The order of the matrix Q. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of SGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by SGEHRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) REAL array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEHRD.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= IHI-ILO.
For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorgl2(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGL2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the first m rows of a product of k elementary
reflectors of order n
Q = H(k) . . . H(2) H(1)
as returned by SGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by SGELQF in the first k rows of its array argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgl2(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGL2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the first m rows of a product of k elementary
reflectors of order n
Q = H(k) . . . H(2) H(1)
as returned by SGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by SGELQF in the first k rows of its array argument A.
On exit, the m-by-n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorglq(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGLQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the first M rows of a product of K elementary
reflectors of order N
Q = H(k) . . . H(2) H(1)
as returned by SGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by SGELQF in the first k rows of its array argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorglq(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGLQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the first M rows of a product of K elementary
reflectors of order N
Q = H(k) . . . H(2) H(1)
as returned by SGELQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th row must contain the vector which defines
the elementary reflector H(i), for i = 1,2,...,k, as returned
by SGELQF in the first k rows of its array argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgql(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGQL generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the last N columns of a product of K elementary
reflectors of order M
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQLF in the last k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgql(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGQL generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the last N columns of a product of K elementary
reflectors of order M
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQLF in the last k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgqr(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGQR generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the first N columns of a product of K elementary
reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQRF in the first k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgqr(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGQR generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the first N columns of a product of K elementary
reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. M >= N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGEQRF in the first k columns of its array
argument A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgr2(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGR2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the last m rows of a product of k elementary
reflectors of order n
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGERQF in the last k rows of its array argument
A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgr2(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGR2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the last m rows of a product of k elementary
reflectors of order n
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGERQF in the last k rows of its array argument
A.
On exit, the m by n matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
WORK (workspace) REAL array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgrq(int m, int n, int k, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGRQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the last M rows of a product of K elementary
reflectors of order N
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGERQF in the last k rows of its array argument
A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgrq(int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGRQ generates an M-by-N real matrix Q with orthonormal rows,
which is defined as the last M rows of a product of K elementary
reflectors of order N
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by SGERQF in the last k rows of its array argument
A.
On exit, the M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >= max(1,M).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
=====================================================================
.. Parameters ..
public void sorgtr(String uplo, int n, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors of order N, as returned by
SSYTRD:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from SSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from SSYTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by SSYTRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) REAL array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSYTRD.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N-1).
For optimum performance LWORK >= (N-1)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorgtr(String uplo, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors of order N, as returned by
SSYTRD:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from SSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from SSYTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by SSYTRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) REAL array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSYTRD.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N-1).
For optimum performance LWORK >= (N-1)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorm2l(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORM2L overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorm2l(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORM2L overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorm2r(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORM2R overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorm2r(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORM2R overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormbr(String vect, String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'T': P**T * C C * P**T
Here Q and P**T are the orthogonal matrices determined by SGEBRD when
reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
P**T are defined as products of elementary reflectors H(i) and G(i)
respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
order of the orthogonal matrix Q or P**T that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).
Arguments
=========
VECT (input) CHARACTER*1
= 'Q': apply Q or Q**T;
= 'P': apply P or P**T.
SIDE (input) CHARACTER*1
= 'L': apply Q, Q**T, P or P**T from the Left;
= 'R': apply Q, Q**T, P or P**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q or P;
= 'T': Transpose, apply Q**T or P**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
If VECT = 'Q', the number of columns in the original
matrix reduced by SGEBRD.
If VECT = 'P', the number of rows in the original
matrix reduced by SGEBRD.
K >= 0.
A (input) REAL array, dimension
(LDA,min(nq,K)) if VECT = 'Q'
(LDA,nq) if VECT = 'P'
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by SGEBRD.
LDA (input) INTEGER
The leading dimension of the array A.
If VECT = 'Q', LDA >= max(1,nq);
if VECT = 'P', LDA >= max(1,min(nq,K)).
TAU (input) REAL array, dimension (min(nq,K))
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i) which determines Q or P, as returned
by SGEBRD in the array argument TAUQ or TAUP.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
or P*C or P**T*C or C*P or C*P**T.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sormbr(String vect, String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'T': P**T * C C * P**T
Here Q and P**T are the orthogonal matrices determined by SGEBRD when
reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
P**T are defined as products of elementary reflectors H(i) and G(i)
respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
order of the orthogonal matrix Q or P**T that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).
Arguments
=========
VECT (input) CHARACTER*1
= 'Q': apply Q or Q**T;
= 'P': apply P or P**T.
SIDE (input) CHARACTER*1
= 'L': apply Q, Q**T, P or P**T from the Left;
= 'R': apply Q, Q**T, P or P**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q or P;
= 'T': Transpose, apply Q**T or P**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
If VECT = 'Q', the number of columns in the original
matrix reduced by SGEBRD.
If VECT = 'P', the number of rows in the original
matrix reduced by SGEBRD.
K >= 0.
A (input) REAL array, dimension
(LDA,min(nq,K)) if VECT = 'Q'
(LDA,nq) if VECT = 'P'
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by SGEBRD.
LDA (input) INTEGER
The leading dimension of the array A.
If VECT = 'Q', LDA >= max(1,nq);
if VECT = 'P', LDA >= max(1,min(nq,K)).
TAU (input) REAL array, dimension (min(nq,K))
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i) which determines Q or P, as returned
by SGEBRD in the array argument TAUQ or TAUP.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
or P*C or P**T*C or C*P or C*P**T.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sormhr(String side, String trans, int m, int n, int ilo, int ihi, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMHR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
IHI-ILO elementary reflectors, as returned by SGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of SGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
ILO = 1 and IHI = 0, if M = 0;
if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
ILO = 1 and IHI = 0, if N = 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SGEHRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEHRD.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sormhr(String side, String trans, int m, int n, int ilo, int ihi, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMHR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
IHI-ILO elementary reflectors, as returned by SGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
ILO and IHI must have the same values as in the previous call
of SGEHRD. Q is equal to the unit matrix except in the
submatrix Q(ilo+1:ihi,ilo+1:ihi).
If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
ILO = 1 and IHI = 0, if M = 0;
if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
ILO = 1 and IHI = 0, if N = 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SGEHRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEHRD.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sorml2(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORML2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sorml2(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORML2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormlq(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormlq(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormql(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMQL overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormql(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMQL overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQLF in the last k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQLF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormqr(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormqr(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormr2(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMR2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGERQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormr2(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMR2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGERQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormr3(String side, String trans, int m, int n, int k, int l, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMR3 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by STZRZF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
STZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by STZRZF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m-by-n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void sormr3(String side, String trans, int m, int n, int k, int l, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMR3 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by STZRZF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
STZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by STZRZF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the m-by-n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Local Scalars ..
public void sormrq(String side, String trans, int m, int n, int k, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMRQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormrq(String side, String trans, int m, int n, int k, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMRQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sormrz(String side, String trans, int m, int n, int k, int l, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMRZ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by STZRZF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
STZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by STZRZF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void sormrz(String side, String trans, int m, int n, int k, int l, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMRZ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by STZRZF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L (input) INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
STZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by STZRZF.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
=====================================================================
.. Parameters ..
public void sormtr(String side, String uplo, String trans, int m, int n, float[] a, int lda, float[] tau, float[] c, int Ldc, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by SSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from SSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from SSYTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SSYTRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSYTRD.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sormtr(String side, String uplo, String trans, int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] c, int _c_offset, int Ldc, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by SSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from SSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from SSYTRD.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
A (input) REAL array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SSYTRD.
LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSYTRD.
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void spbcon(String uplo, int n, int kd, float[] ab, int ldab, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite band matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
ANORM (input) REAL
The 1-norm (or infinity-norm) of the symmetric band matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void spbcon(String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite band matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
ANORM (input) REAL
The 1-norm (or infinity-norm) of the symmetric band matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void spbequ(String uplo, int n, int kd, float[] ab, int ldab, float[] s, org.netlib.util.floatW scond, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBEQU computes row and column scalings intended to equilibrate a
symmetric positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S (output) REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void spbequ(String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, float[] s, int _s_offset, org.netlib.util.floatW scond, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBEQU computes row and column scalings intended to equilibrate a
symmetric positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S (output) REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void spbrfs(String uplo, int n, int kd, int nrhs, float[] ab, int ldab, float[] afb, int ldafb, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and banded, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
AFB (input) REAL array, dimension (LDAFB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A as computed by
SPBTRF, in the same storage format as A (see AB).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void spbrfs(String uplo, int n, int kd, int nrhs, float[] ab, int _ab_offset, int ldab, float[] afb, int _afb_offset, int ldafb, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and banded, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
AFB (input) REAL array, dimension (LDAFB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A as computed by
SPBTRF, in the same storage format as A (see AB).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPBTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void spbstf(String uplo, int n, int kd, float[] ab, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBSTF computes a split Cholesky factorization of a real
symmetric positive definite band matrix A.
This routine is designed to be used in conjunction with SSBGST.
The factorization has the form A = S**T*S where S is a band matrix
of the same bandwidth as A and the following structure:
S = ( U )
( M L )
where U is upper triangular of order m = (n+kd)/2, and L is lower
triangular of order n-m.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first kd+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the factor S from the split Cholesky
factorization A = S**T*S. See Further Details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the factorization could not be completed,
because the updated element a(i,i) was negative; the
matrix A is not positive definite.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 7, KD = 2:
S = ( s11 s12 s13 )
( s22 s23 s24 )
( s33 s34 )
( s44 )
( s53 s54 s55 )
( s64 s65 s66 )
( s75 s76 s77 )
If UPLO = 'U', the array AB holds:
on entry: on exit:
* * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75
* a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
If UPLO = 'L', the array AB holds:
on entry: on exit:
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 *
a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void spbstf(String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBSTF computes a split Cholesky factorization of a real
symmetric positive definite band matrix A.
This routine is designed to be used in conjunction with SSBGST.
The factorization has the form A = S**T*S where S is a band matrix
of the same bandwidth as A and the following structure:
S = ( U )
( M L )
where U is upper triangular of order m = (n+kd)/2, and L is lower
triangular of order n-m.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first kd+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the factor S from the split Cholesky
factorization A = S**T*S. See Further Details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the factorization could not be completed,
because the updated element a(i,i) was negative; the
matrix A is not positive definite.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 7, KD = 2:
S = ( s11 s12 s13 )
( s22 s23 s24 )
( s33 s34 )
( s44 )
( s53 s54 s55 )
( s64 s65 s66 )
( s75 s76 s77 )
If UPLO = 'U', the array AB holds:
on entry: on exit:
* * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75
* a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
If UPLO = 'L', the array AB holds:
on entry: on exit:
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 *
a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void spbsv(String uplo, int n, int kd, int nrhs, float[] ab, int ldab, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. External Functions ..
public void spbsv(String uplo, int n, int kd, int nrhs, float[] ab, int _ab_offset, int ldab, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A. The factored form of A is then used to solve the
system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. External Functions ..
public void spbsvx(String fact, String uplo, int n, int kd, int nrhs, float[] ab, int ldab, float[] afb, int ldafb, org.netlib.util.StringW equed, float[] s, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AB and AFB will not
be modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right-hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array, except
if FACT = 'F' and EQUED = 'Y', then A must contain the
equilibrated matrix diag(S)*A*diag(S). The j-th column of A
is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
AFB (input or output) REAL array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the band matrix
A, in the same storage format as A (see AB). If EQUED = 'Y',
then AFB is the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
If FACT = 'E', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 a46
a55 a56
(aij=conjg(aji)) a66
Band storage of the upper triangle of A:
* * a13 a24 a35 a46
* a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
Similarly, if UPLO = 'L' the format of A is as follows:
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void spbsvx(String fact, String uplo, int n, int kd, int nrhs, float[] ab, int _ab_offset, int ldab, float[] afb, int _afb_offset, int ldafb, org.netlib.util.StringW equed, float[] s, int _s_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AB and AFB will not
be modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right-hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array, except
if FACT = 'F' and EQUED = 'Y', then A must contain the
equilibrated matrix diag(S)*A*diag(S). The j-th column of A
is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
AFB (input or output) REAL array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the band matrix
A, in the same storage format as A (see AB). If EQUED = 'Y',
then AFB is the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
If FACT = 'E', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 a46
a55 a56
(aij=conjg(aji)) a66
Band storage of the upper triangle of A:
* * a13 a24 a35 a46
* a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
Similarly, if UPLO = 'L' the format of A is as follows:
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void spbtf2(String uplo, int n, int kd, float[] ab, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBTF2 computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix, U' is the transpose of U, and
L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void spbtf2(String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBTF2 computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix, U' is the transpose of U, and
L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of super-diagonals of the matrix A if UPLO = 'U',
or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
=====================================================================
.. Parameters ..
public void spbtrf(String uplo, int n, int kd, float[] ab, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBTRF computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
Contributed by
Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
=====================================================================
.. Parameters ..
public void spbtrf(String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBTRF computes the Cholesky factorization of a real symmetric
positive definite band matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
===============
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
Contributed by
Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
=====================================================================
.. Parameters ..
public void spbtrs(String uplo, int n, int kd, int nrhs, float[] ab, int ldab, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBTRS solves a system of linear equations A*X = B with a symmetric
positive definite band matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by SPBTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void spbtrs(String uplo, int n, int kd, int nrhs, float[] ab, int _ab_offset, int ldab, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPBTRS solves a system of linear equations A*X = B with a symmetric
positive definite band matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by SPBTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void spocon(String uplo, int n, float[] a, int lda, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) REAL
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void spocon(String uplo, int n, float[] a, int _a_offset, int lda, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite matrix using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
ANORM (input) REAL
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void spoequ(int n, float[] a, int lda, float[] s, org.netlib.util.floatW scond, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The N-by-N symmetric positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S (output) REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void spoequ(int n, float[] a, int _a_offset, int lda, float[] s, int _s_offset, org.netlib.util.floatW scond, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The N-by-N symmetric positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S (output) REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void sporfs(String uplo, int n, int nrhs, float[] a, int lda, float[] af, int ldaf, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite,
and provides error bounds and backward error estimates for the
solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) REAL array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPOTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sporfs(String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, float[] af, int _af_offset, int ldaf, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite,
and provides error bounds and backward error estimates for the
solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) REAL array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPOTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sposv(String uplo, int n, int nrhs, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
=====================================================================
.. External Functions ..
public void sposv(String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
=====================================================================
.. External Functions ..
public void sposvx(String fact, String uplo, int n, int nrhs, float[] a, int lda, float[] af, int ldaf, org.netlib.util.StringW equed, float[] s, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. A and AF will not
be modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A, except if FACT = 'F' and
EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) REAL array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A. If EQUED .ne. 'N', then AF is the factored form
of the equilibrated matrix diag(S)*A*diag(S).
If FACT = 'N', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the original
matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void sposvx(String fact, String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, float[] af, int _af_offset, int ldaf, org.netlib.util.StringW equed, float[] s, int _s_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. A and AF will not
be modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A, except if FACT = 'F' and
EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) REAL array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A. If EQUED .ne. 'N', then AF is the factored form
of the equilibrated matrix diag(S)*A*diag(S).
If FACT = 'N', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the original
matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void spotf2(String uplo, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTF2 computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U'*U or A = L*L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void spotf2(String uplo, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTF2 computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U'*U or A = L*L'.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void spotrf(String uplo, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the block version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void spotrf(String uplo, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the block version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
=====================================================================
.. Parameters ..
public void spotri(String uplo, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by SPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, as computed by
SPOTRF.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. External Functions ..
public void spotri(String uplo, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by SPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, as computed by
SPOTRF.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. External Functions ..
public void spotrs(String uplo, int n, int nrhs, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by SPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void spotrs(String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPOTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by SPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sppcon(String uplo, int n, float[] ap, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite packed matrix using
the Cholesky factorization A = U**T*U or A = L*L**T computed by
SPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM (input) REAL
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sppcon(String uplo, int n, float[] ap, int _ap_offset, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite packed matrix using
the Cholesky factorization A = U**T*U or A = L*L**T computed by
SPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM (input) REAL
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sppequ(String uplo, int n, float[] ap, float[] s, org.netlib.util.floatW scond, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S (output) REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void sppequ(String uplo, int n, float[] ap, int _ap_offset, float[] s, int _s_offset, org.netlib.util.floatW scond, org.netlib.util.floatW amax, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S (output) REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output) REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output) REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
=====================================================================
.. Parameters ..
public void spprfs(String uplo, int n, int nrhs, float[] ap, float[] afp, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPPTRF/CPPTRF,
packed columnwise in a linear array in the same format as A
(see AP).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void spprfs(String uplo, int n, int nrhs, float[] ap, int _ap_offset, float[] afp, int _afp_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPPTRF/CPPTRF,
packed columnwise in a linear array in the same format as A
(see AP).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sppsv(String uplo, int n, int nrhs, float[] ap, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void sppsv(String uplo, int n, int nrhs, float[] ap, int _ap_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void sppsvx(String fact, String uplo, int n, int nrhs, float[] ap, float[] afp, org.netlib.util.StringW equed, float[] s, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFP contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AP and AFP will not
be modified.
= 'N': The matrix A will be copied to AFP and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array, except if FACT = 'F'
and EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). The j-th column of A is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
AFP (input or output) REAL array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L', in the same storage
format as A. If EQUED .ne. 'N', then AFP is the factored
form of the equilibrated matrix A.
If FACT = 'N', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the original matrix A.
If FACT = 'E', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the equilibrated
matrix A (see the description of AP for the form of the
equilibrated matrix).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void sppsvx(String fact, String uplo, int n, int nrhs, float[] ap, int _ap_offset, float[] afp, int _afp_offset, org.netlib.util.StringW equed, float[] s, int _s_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
compute the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFP contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AP and AFP will not
be modified.
= 'N': The matrix A will be copied to AFP and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array, except if FACT = 'F'
and EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). The j-th column of A is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
AFP (input or output) REAL array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L', in the same storage
format as A. If EQUED .ne. 'N', then AFP is the factored
form of the equilibrated matrix A.
If FACT = 'N', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the original matrix A.
If FACT = 'E', then AFP is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U'*U or A = L*L' of the equilibrated
matrix A (see the description of AP for the form of the
equilibrated matrix).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S (input or output) REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void spptrf(String uplo, int n, float[] ap, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A stored in packed format.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
======= =======
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void spptrf(String uplo, int n, float[] ap, int _ap_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A stored in packed format.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
======= =======
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void spptri(String uplo, int n, float[] ap, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by SPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor is stored in AP;
= 'L': Lower triangular factor is stored in AP.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, packed columnwise as
a linear array. The j-th column of U or L is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. Parameters ..
public void spptri(String uplo, int n, float[] ap, int _ap_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPTRI computes the inverse of a real symmetric positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by SPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangular factor is stored in AP;
= 'L': Lower triangular factor is stored in AP.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, packed columnwise as
a linear array. The j-th column of U or L is stored in the
array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
=====================================================================
.. Parameters ..
public void spptrs(String uplo, int n, int nrhs, float[] ap, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A in packed storage using the Cholesky
factorization A = U**T*U or A = L*L**T computed by SPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void spptrs(String uplo, int n, int nrhs, float[] ap, int _ap_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPPTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A in packed storage using the Cholesky
factorization A = U**T*U or A = L*L**T computed by SPPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sptcon(int n, float[] d, float[] e, float anorm, org.netlib.util.floatW rcond, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTCON computes the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite tridiagonal matrix
using the factorization A = L*D*L**T or A = U**T*D*U computed by
SPTTRF.
Norm(inv(A)) is computed by a direct method, and the reciprocal of
the condition number is computed as
RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization of A, as computed by SPTTRF.
E (input) REAL array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal factor
U or L from the factorization of A, as computed by SPTTRF.
ANORM (input) REAL
The 1-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The method used is described in Nicholas J. Higham, "Efficient
Algorithms for Computing the Condition Number of a Tridiagonal
Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
=====================================================================
.. Parameters ..
public void sptcon(int n, float[] d, int _d_offset, float[] e, int _e_offset, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTCON computes the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite tridiagonal matrix
using the factorization A = L*D*L**T or A = U**T*D*U computed by
SPTTRF.
Norm(inv(A)) is computed by a direct method, and the reciprocal of
the condition number is computed as
RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization of A, as computed by SPTTRF.
E (input) REAL array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal factor
U or L from the factorization of A, as computed by SPTTRF.
ANORM (input) REAL
The 1-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The method used is described in Nicholas J. Higham, "Efficient
Algorithms for Computing the Condition Number of a Tridiagonal
Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
=====================================================================
.. Parameters ..
public void spteqr(String compz, int n, float[] d, float[] e, float[] z, int ldz, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric positive definite tridiagonal matrix by first factoring the
matrix using SPTTRF, and then calling SBDSQR to compute the singular
values of the bidiagonal factor.
This routine computes the eigenvalues of the positive definite
tridiagonal matrix to high relative accuracy. This means that if the
eigenvalues range over many orders of magnitude in size, then the
small eigenvalues and corresponding eigenvectors will be computed
more accurately than, for example, with the standard QR method.
The eigenvectors of a full or band symmetric positive definite matrix
can also be found if SSYTRD, SSPTRD, or SSBTRD has been used to
reduce this matrix to tridiagonal form. (The reduction to tridiagonal
form, however, may preclude the possibility of obtaining high
relative accuracy in the small eigenvalues of the original matrix, if
these eigenvalues range over many orders of magnitude.)
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvectors of original symmetric
matrix also. Array Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
= 'I': Compute eigenvectors of tridiagonal matrix also.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal
matrix.
On normal exit, D contains the eigenvalues, in descending
order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix used in the
reduction to tridiagonal form.
On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
original symmetric matrix;
if COMPZ = 'I', the orthonormal eigenvectors of the
tridiagonal matrix.
If INFO > 0 on exit, Z contains the eigenvectors associated
with only the stored eigenvalues.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
COMPZ = 'V' or 'I', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is:
<= N the Cholesky factorization of the matrix could
not be performed because the i-th principal minor
was not positive definite.
> N the SVD algorithm failed to converge;
if INFO = N+i, i off-diagonal elements of the
bidiagonal factor did not converge to zero.
=====================================================================
.. Parameters ..
public void spteqr(String compz, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric positive definite tridiagonal matrix by first factoring the
matrix using SPTTRF, and then calling SBDSQR to compute the singular
values of the bidiagonal factor.
This routine computes the eigenvalues of the positive definite
tridiagonal matrix to high relative accuracy. This means that if the
eigenvalues range over many orders of magnitude in size, then the
small eigenvalues and corresponding eigenvectors will be computed
more accurately than, for example, with the standard QR method.
The eigenvectors of a full or band symmetric positive definite matrix
can also be found if SSYTRD, SSPTRD, or SSBTRD has been used to
reduce this matrix to tridiagonal form. (The reduction to tridiagonal
form, however, may preclude the possibility of obtaining high
relative accuracy in the small eigenvalues of the original matrix, if
these eigenvalues range over many orders of magnitude.)
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvectors of original symmetric
matrix also. Array Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
= 'I': Compute eigenvectors of tridiagonal matrix also.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal
matrix.
On normal exit, D contains the eigenvalues, in descending
order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix used in the
reduction to tridiagonal form.
On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
original symmetric matrix;
if COMPZ = 'I', the orthonormal eigenvectors of the
tridiagonal matrix.
If INFO > 0 on exit, Z contains the eigenvectors associated
with only the stored eigenvalues.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
COMPZ = 'V' or 'I', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is:
<= N the Cholesky factorization of the matrix could
not be performed because the i-th principal minor
was not positive definite.
> N the SVD algorithm failed to converge;
if INFO = N+i, i off-diagonal elements of the
bidiagonal factor did not converge to zero.
=====================================================================
.. Parameters ..
public void sptrfs(int n, int nrhs, float[] d, float[] e, float[] df, float[] ef, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by SPTTRF.
EF (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by SPTTRF.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sptrfs(int n, int nrhs, float[] d, int _d_offset, float[] e, int _e_offset, float[] df, int _df_offset, float[] ef, int _ef_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by SPTTRF.
EF (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by SPTTRF.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPTTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sptsv(int n, int nrhs, float[] d, float[] e, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTSV computes the solution to a real system of linear equations
A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**T, and the factored form of A is then
used to solve the system of equations.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**T.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**T factorization of
A. (E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**T*D*U factorization of A.)
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the solution has not been
computed. The factorization has not been completed
unless i = N.
=====================================================================
.. External Subroutines ..
public void sptsv(int n, int nrhs, float[] d, int _d_offset, float[] e, int _e_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTSV computes the solution to a real system of linear equations
A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**T, and the factored form of A is then
used to solve the system of equations.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**T.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**T factorization of
A. (E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**T*D*U factorization of A.)
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the solution has not been
computed. The factorization has not been completed
unless i = N.
=====================================================================
.. External Subroutines ..
public void sptsvx(String fact, int n, int nrhs, float[] d, float[] e, float[] df, float[] ef, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTSVX uses the factorization A = L*D*L**T to compute the solution
to a real system of linear equations A*X = B, where A is an N-by-N
symmetric positive definite tridiagonal matrix and X and B are
N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
is a unit lower bidiagonal matrix and D is diagonal. The
factorization can also be regarded as having the form
A = U**T*D*U.
2. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, DF and EF contain the factored form of A.
D, E, DF, and EF will not be modified.
= 'N': The matrix A will be copied to DF and EF and
factored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input or output) REAL array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
EF (input or output) REAL array, dimension (N-1)
If FACT = 'F', then EF is an input argument and on entry
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
If FACT = 'N', then EF is an output argument and on exit
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The reciprocal condition number of the matrix A. If RCOND
is less than the machine precision (in particular, if
RCOND = 0), the matrix is singular to working precision.
This condition is indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in any
element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void sptsvx(String fact, int n, int nrhs, float[] d, int _d_offset, float[] e, int _e_offset, float[] df, int _df_offset, float[] ef, int _ef_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTSVX uses the factorization A = L*D*L**T to compute the solution
to a real system of linear equations A*X = B, where A is an N-by-N
symmetric positive definite tridiagonal matrix and X and B are
N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
is a unit lower bidiagonal matrix and D is diagonal. The
factorization can also be regarded as having the form
A = U**T*D*U.
2. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, DF and EF contain the factored form of A.
D, E, DF, and EF will not be modified.
= 'N': The matrix A will be copied to DF and EF and
factored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input or output) REAL array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the diagonal matrix D
from the L*D*L**T factorization of A.
EF (input or output) REAL array, dimension (N-1)
If FACT = 'F', then EF is an input argument and on entry
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
If FACT = 'N', then EF is an output argument and on exit
contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the L*D*L**T factorization of A.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The reciprocal condition number of the matrix A. If RCOND
is less than the machine precision (in particular, if
RCOND = 0), the matrix is singular to working precision.
This condition is indicated by a return code of INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in any
element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void spttrf(int n, float[] d, float[] e, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTTRF computes the L*D*L' factorization of a real symmetric
positive definite tridiagonal matrix A. The factorization may also
be regarded as having the form A = U'*D*U.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the L*D*L' factorization of A.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L' factorization of A.
E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U'*D*U factorization of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite; if k < N, the factorization could not
be completed, while if k = N, the factorization was
completed, but D(N) <= 0.
=====================================================================
.. Parameters ..
public void spttrf(int n, float[] d, int _d_offset, float[] e, int _e_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTTRF computes the L*D*L' factorization of a real symmetric
positive definite tridiagonal matrix A. The factorization may also
be regarded as having the form A = U'*D*U.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the L*D*L' factorization of A.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L' factorization of A.
E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U'*D*U factorization of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not
positive definite; if k < N, the factorization could not
be completed, while if k = N, the factorization was
completed, but D(N) <= 0.
=====================================================================
.. Parameters ..
public void spttrs(int n, int nrhs, float[] d, float[] e, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTTRS solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by SPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void spttrs(int n, int nrhs, float[] d, int _d_offset, float[] e, int _e_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SPTTRS solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by SPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Local Scalars ..
public void sptts2(int n, int nrhs, float[] d, float[] e, float[] b, int ldb)
LAPACK
..
Purpose
=======
SPTTS2 solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by SPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void sptts2(int n, int nrhs, float[] d, int _d_offset, float[] e, int _e_offset, float[] b, int _b_offset, int ldb)
LAPACK
..
Purpose
=======
SPTTS2 solves a tridiagonal system of the form
A * X = B
using the L*D*L' factorization of A computed by SPTTRF. D is a
diagonal matrix specified in the vector D, L is a unit bidiagonal
matrix whose subdiagonal is specified in the vector E, and X and B
are N by NRHS matrices.
Arguments
=========
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
L*D*L' factorization of A.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the L*D*L' factorization of A. E can also be regarded
as the superdiagonal of the unit bidiagonal factor U from the
factorization A = U'*D*U.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
=====================================================================
.. Local Scalars ..
public void srscl(int n, float sa, float[] sx, int incx)
LAPACK
..
Purpose
=======
SRSCL multiplies an n-element real vector x by the real scalar 1/a.
This is done without overflow or underflow as long as
the final result x/a does not overflow or underflow.
Arguments
=========
N (input) INTEGER
The number of components of the vector x.
SA (input) REAL
The scalar a which is used to divide each component of x.
SA must be >= 0, or the subroutine will divide by zero.
SX (input/output) REAL array, dimension
(1+(N-1)*abs(INCX))
The n-element vector x.
INCX (input) INTEGER
The increment between successive values of the vector SX.
> 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
=====================================================================
.. Parameters ..
public void srscl(int n, float sa, float[] sx, int _sx_offset, int incx)
LAPACK
..
Purpose
=======
SRSCL multiplies an n-element real vector x by the real scalar 1/a.
This is done without overflow or underflow as long as
the final result x/a does not overflow or underflow.
Arguments
=========
N (input) INTEGER
The number of components of the vector x.
SA (input) REAL
The scalar a which is used to divide each component of x.
SA must be >= 0, or the subroutine will divide by zero.
SX (input/output) REAL array, dimension
(1+(N-1)*abs(INCX))
The n-element vector x.
INCX (input) INTEGER
The increment between successive values of the vector SX.
> 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
=====================================================================
.. Parameters ..
public void ssbev(String jobz, String uplo, int n, int kd, float[] ab, int ldab, float[] w, float[] z, int ldz, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBEV computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (max(1,3*N-2))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void ssbev(String jobz, String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBEV computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (max(1,3*N-2))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void ssbevd(String jobz, String uplo, int n, int kd, float[] ab, int ldab, float[] w, float[] z, int ldz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBEVD computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A. If eigenvectors are desired, it uses
a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
IF N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 2, LWORK must be at least
( 1 + 5*N + 2*N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array LIWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void ssbevd(String jobz, String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBEVD computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A. If eigenvectors are desired, it uses
a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
IF N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 2, LWORK must be at least
( 1 + 5*N + 2*N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array LIWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void ssbevx(String jobz, String range, String uplo, int n, int kd, float[] ab, int ldab, float[] q, int ldq, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, float[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric band matrix A. Eigenvalues and eigenvectors can
be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
Q (output) REAL array, dimension (LDQ, N)
If JOBZ = 'V', the N-by-N orthogonal matrix used in the
reduction to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'V', then
LDQ >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AB to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (7*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void ssbevx(String jobz, String range, String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, float[] q, int _q_offset, int ldq, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric band matrix A. Eigenvalues and eigenvectors can
be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
Q (output) REAL array, dimension (LDQ, N)
If JOBZ = 'V', the N-by-N orthogonal matrix used in the
reduction to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'V', then
LDQ >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AB to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (7*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void ssbgst(String vect, String uplo, int n, int ka, int kb, float[] ab, int ldab, float[] bb, int ldbb, float[] x, int ldx, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGST reduces a real symmetric-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by SPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**T*A*X, where
X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the
bandwidth of A.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**T*A*X, stored in the same
format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input) REAL array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by SPBSTF, stored in the first KB+1 rows of
the array.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
X (output) REAL array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.
LDX (input) INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
WORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void ssbgst(String vect, String uplo, int n, int ka, int kb, float[] ab, int _ab_offset, int ldab, float[] bb, int _bb_offset, int ldbb, float[] x, int _x_offset, int ldx, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGST reduces a real symmetric-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by SPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**T*A*X, where
X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the
bandwidth of A.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**T*A*X, stored in the same
format as A.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input) REAL array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by SPBSTF, stored in the first KB+1 rows of
the array.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
X (output) REAL array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.
LDX (input) INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
WORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void ssbgv(String jobz, String uplo, int n, int ka, int kb, float[] ab, int ldab, float[] bb, int ldbb, float[] w, float[] z, int ldz, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) REAL array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by SPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so that Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= N.
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then SPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void ssbgv(String jobz, String uplo, int n, int ka, int kb, float[] ab, int _ab_offset, int ldab, float[] bb, int _bb_offset, int ldbb, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) REAL array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by SPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so that Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= N.
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then SPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void ssbgvd(String jobz, String uplo, int n, int ka, int kb, float[] ab, int ldab, float[] bb, int ldbb, float[] w, float[] z, int ldz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the
form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and
banded, and B is also positive definite. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) REAL array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by SPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 3*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then SPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void ssbgvd(String jobz, String uplo, int n, int ka, int kb, float[] ab, int _ab_offset, int ldab, float[] bb, int _bb_offset, int ldbb, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the
form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and
banded, and B is also positive definite. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) REAL array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by SPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 3*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then SPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void ssbgvx(String jobz, String range, String uplo, int n, int ka, int kb, float[] ab, int ldab, float[] bb, int ldbb, float[] q, int ldq, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, float[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either all eigenvalues,
a range of values or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) REAL array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by SPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
Q (output) REAL array, dimension (LDQ, N)
If JOBZ = 'V', the n-by-n matrix used in the reduction of
A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
and consequently C to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'N',
LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (7N)
IWORK (workspace/output) INTEGER array, dimension (5N)
IFAIL (output) INTEGER array, dimension (M)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvalues that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0 : successful exit
< 0 : if INFO = -i, the i-th argument had an illegal value
<= N: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in IFAIL.
> N : SPBSTF returned an error code; i.e.,
if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void ssbgvx(String jobz, String range, String uplo, int n, int ka, int kb, float[] ab, int _ab_offset, int ldab, float[] bb, int _bb_offset, int ldbb, float[] q, int _q_offset, int ldq, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of
the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
and banded, and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either all eigenvalues,
a range of values or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) REAL array, dimension (LDAB, N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) REAL array, dimension (LDBB, N)
On entry, the upper or lower triangle of the symmetric band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**T*S, as returned by SPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
Q (output) REAL array, dimension (LDQ, N)
If JOBZ = 'V', the n-by-n matrix used in the reduction of
A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
and consequently C to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. If JOBZ = 'N',
LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so Z**T*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (7N)
IWORK (workspace/output) INTEGER array, dimension (5N)
IFAIL (output) INTEGER array, dimension (M)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvalues that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0 : successful exit
< 0 : if INFO = -i, the i-th argument had an illegal value
<= N: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in IFAIL.
> N : SPBSTF returned an error code; i.e.,
if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void ssbtrd(String vect, String uplo, int n, int kd, float[] ab, int ldab, float[] d, float[] e, float[] q, int ldq, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Modified by Linda Kaufman, Bell Labs.
=====================================================================
.. Parameters ..
public void ssbtrd(String vect, String uplo, int n, int kd, float[] ab, int _ab_offset, int ldab, float[] d, int _d_offset, float[] e, int _e_offset, float[] q, int _q_offset, int ldq, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
VECT (input) CHARACTER*1
= 'N': do not form Q;
= 'V': form Q;
= 'U': update a matrix X, by forming X*Q.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, the diagonal elements of AB are overwritten by the
diagonal elements of the tridiagonal matrix T; if KD > 0, the
elements on the first superdiagonal (if UPLO = 'U') or the
first subdiagonal (if UPLO = 'L') are overwritten by the
off-diagonal elements of T; the rest of AB is overwritten by
values generated during the reduction.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T.
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if VECT = 'U', then Q must contain an N-by-N
matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit:
if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
if VECT = 'U', Q contains the product X*Q;
if VECT = 'N', the array Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Modified by Linda Kaufman, Bell Labs.
=====================================================================
.. Parameters ..
public void sspcon(String uplo, int n, float[] ap, int[] ipiv, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric packed matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
ANORM (input) REAL
The 1-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sspcon(String uplo, int n, float[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric packed matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
ANORM (input) REAL
The 1-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sspev(String jobz, String uplo, int n, float[] ap, float[] w, float[] z, int ldz, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPEV computes all the eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A in packed storage.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void sspev(String jobz, String uplo, int n, float[] ap, int _ap_offset, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPEV computes all the eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A in packed storage.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void sspevd(String jobz, String uplo, int n, float[] ap, float[] w, float[] z, int ldz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPEVD computes all the eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void sspevd(String jobz, String uplo, int n, float[] ap, int _ap_offset, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPEVD computes all the eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. If eigenvectors are
desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void sspevx(String jobz, String range, String uplo, int n, float[] ap, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, float[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. Eigenvalues/vectors
can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AP to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
If INFO = 0, the selected eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void sspevx(String jobz, String range, String uplo, int n, float[] ap, int _ap_offset, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A in packed storage. Eigenvalues/vectors
can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AP to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
If INFO = 0, the selected eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void sspgst(int itype, String uplo, int n, float[] ap, float[] bp, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGST reduces a real symmetric-definite generalized eigenproblem
to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by SPPTRF.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sspgst(int itype, String uplo, int n, float[] ap, int _ap_offset, float[] bp, int _bp_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGST reduces a real symmetric-definite generalized eigenproblem
to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP (input) REAL array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by SPPTRF.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sspgv(int itype, String jobz, String uplo, int n, float[] ap, float[] bp, float[] w, float[] z, int ldz, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGV computes all the eigenvalues and, optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric, stored in packed format,
and B is also positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) REAL array, dimension
(N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPPTRF or SSPEV returned an error code:
<= N: if INFO = i, SSPEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.
> N: if INFO = n + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void sspgv(int itype, String jobz, String uplo, int n, float[] ap, int _ap_offset, float[] bp, int _bp_offset, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGV computes all the eigenvalues and, optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric, stored in packed format,
and B is also positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) REAL array, dimension
(N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPPTRF or SSPEV returned an error code:
<= N: if INFO = i, SSPEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.
> N: if INFO = n + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Local Scalars ..
public void sspgvd(int itype, String jobz, String uplo, int n, float[] ap, float[] bp, float[] w, float[] z, int ldz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPPTRF or SSPEVD returned an error code:
<= N: if INFO = i, SSPEVD failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void sspgvd(int itype, String jobz, String uplo, int n, float[] ap, int _ap_offset, float[] bp, int _bp_offset, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPPTRF or SSPEVD returned an error code:
<= N: if INFO = i, SSPEVD failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void sspgvx(int itype, String jobz, String range, String uplo, int n, float[] ap, float[] bp, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, float[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric, stored in packed storage, and B
is also positive definite. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPPTRF or SSPEVX returned an error code:
<= N: if INFO = i, SSPEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Local Scalars ..
public void sspgvx(int itype, String jobz, String range, String uplo, int n, float[] ap, int _ap_offset, float[] bp, int _bp_offset, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric, stored in packed storage, and B
is also positive definite. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (8*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPPTRF or SSPEVX returned an error code:
<= N: if INFO = i, SSPEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Local Scalars ..
public void ssprfs(String uplo, int n, int nrhs, float[] ap, float[] afp, int[] ipiv, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) REAL array, dimension (N*(N+1)/2)
The factored form of the matrix A. AFP contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by SSPTRF, stored as a packed
triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SSPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void ssprfs(String uplo, int n, int nrhs, float[] ap, int _ap_offset, float[] afp, int _afp_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite
and packed, and provides error bounds and backward error estimates
for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
AFP (input) REAL array, dimension (N*(N+1)/2)
The factored form of the matrix A. AFP contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by SSPTRF, stored as a packed
triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SSPTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void sspsv(String uplo, int n, int nrhs, float[] ap, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is symmetric and block diagonal with 1-by-1
and 2-by-2 diagonal blocks. The factored form of A is then used to
solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by SSPTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be
computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void sspsv(String uplo, int n, int nrhs, float[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is symmetric and block diagonal with 1-by-1
and 2-by-2 diagonal blocks. The factored form of A is then used to
solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by SSPTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be
computed.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. External Functions ..
public void sspsvx(String fact, String uplo, int n, int nrhs, float[] ap, float[] afp, int[] ipiv, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
A = L*D*L**T to compute the solution to a real system of linear
equations A * X = B, where A is an N-by-N symmetric matrix stored
in packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AFP and IPIV contain the factored form of
A. AP, AFP and IPIV will not be modified.
= 'N': The matrix A will be copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
AFP (input or output) REAL array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
a packed triangular matrix in the same storage format as A.
If FACT = 'N', then AFP is an output argument and on exit
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by SSPTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by SSPTRF.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void sspsvx(String fact, String uplo, int n, int nrhs, float[] ap, int _ap_offset, float[] afp, int _afp_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
A = L*D*L**T to compute the solution to a real system of linear
equations A * X = B, where A is an N-by-N symmetric matrix stored
in packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AFP and IPIV contain the factored form of
A. AP, AFP and IPIV will not be modified.
= 'N': The matrix A will be copied to AFP and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
AFP (input or output) REAL array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
a packed triangular matrix in the same storage format as A.
If FACT = 'N', then AFP is an output argument and on exit
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by SSPTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by SSPTRF.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Further Details
===============
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
.. Parameters ..
public void ssptrd(String uplo, int n, float[] ap, float[] d, float[] e, float[] tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRD reduces a real symmetric matrix A stored in packed form to
symmetric tridiagonal form T by an orthogonal similarity
transformation: Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
overwriting A(i+2:n,i), and tau is stored in TAU(i).
=====================================================================
.. Parameters ..
public void ssptrd(String uplo, int n, float[] ap, int _ap_offset, float[] d, int _d_offset, float[] e, int _e_offset, float[] tau, int _tau_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRD reduces a real symmetric matrix A stored in packed form to
symmetric tridiagonal form T by an orthogonal similarity
transformation: Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
overwriting A(i+2:n,i), and tau is stored in TAU(i).
=====================================================================
.. Parameters ..
public void ssptrf(String uplo, int n, float[] ap, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRF computes the factorization of a real symmetric matrix A stored
in packed format using the Bunch-Kaufman diagonal pivoting method:
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L, stored as a packed triangular
matrix overwriting A (see below for further details).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
5-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void ssptrf(String uplo, int n, float[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRF computes the factorization of a real symmetric matrix A stored
in packed format using the Bunch-Kaufman diagonal pivoting method:
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L, stored as a packed triangular
matrix overwriting A (see below for further details).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
5-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void ssptri(String uplo, int n, float[] ap, int[] ipiv, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRI computes the inverse of a real symmetric indefinite matrix
A in packed storage using the factorization A = U*D*U**T or
A = L*D*L**T computed by SSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by SSPTRF,
stored as a packed triangular matrix.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix, stored as a packed triangular matrix. The j-th column
of inv(A) is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
if UPLO = 'L',
AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void ssptri(String uplo, int n, float[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRI computes the inverse of a real symmetric indefinite matrix
A in packed storage using the factorization A = U*D*U**T or
A = L*D*L**T computed by SSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by SSPTRF,
stored as a packed triangular matrix.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix, stored as a packed triangular matrix. The j-th column
of inv(A) is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
if UPLO = 'L',
AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void ssptrs(String uplo, int n, int nrhs, float[] ap, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRS solves a system of linear equations A*X = B with a real
symmetric matrix A stored in packed format using the factorization
A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void ssptrs(String uplo, int n, int nrhs, float[] ap, int _ap_offset, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSPTRS solves a system of linear equations A*X = B with a real
symmetric matrix A stored in packed format using the factorization
A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSPTRF, stored as a
packed triangular matrix.
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSPTRF.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void sstebz(String range, String order, int n, float vl, float vu, int il, int iu, float abstol, float[] d, float[] e, org.netlib.util.intW m, org.netlib.util.intW nsplit, float[] w, int[] iblock, int[] isplit, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEBZ computes the eigenvalues of a symmetric tridiagonal
matrix T. The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER*1
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER*1
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute tolerance for the eigenvalues. An eigenvalue
(or cluster) is considered to be located if it has been
determined to lie in an interval whose width is ABSTOL or
less. If ABSTOL is less than or equal to zero, then ULP*|T|
will be used, where |T| means the 1-norm of T.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
NSPLIT (output) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
W (output) REAL array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalues. (SSTEBZ may use the remaining N-M elements as
workspace.)
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (SSTEBZ may use the remaining N-M elements as
workspace.)
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
WORK (workspace) REAL array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
RELFAC REAL, default = 2.0e0
The relative tolerance. An interval (a,b] lies within
"relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
where "ulp" is the machine precision (distance from 1 to
the next larger floating point number.)
FUDGE REAL, default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
=====================================================================
.. Parameters ..
public void sstebz(String range, String order, int n, float vl, float vu, int il, int iu, float abstol, float[] d, int _d_offset, float[] e, int _e_offset, org.netlib.util.intW m, org.netlib.util.intW nsplit, float[] w, int _w_offset, int[] iblock, int _iblock_offset, int[] isplit, int _isplit_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEBZ computes the eigenvalues of a symmetric tridiagonal
matrix T. The user may ask for all eigenvalues, all eigenvalues
in the half-open interval (VL, VU], or the IL-th through IU-th
eigenvalues.
To avoid overflow, the matrix must be scaled so that its
largest element is no greater than overflow**(1/2) *
underflow**(1/4) in absolute value, and for greatest
accuracy, it should not be much smaller than that.
See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
Matrix", Report CS41, Computer Science Dept., Stanford
University, July 21, 1966.
Arguments
=========
RANGE (input) CHARACTER*1
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(VL, VU] will be found.
= 'I': ("Index") the IL-th through IU-th eigenvalues (of the
entire matrix) will be found.
ORDER (input) CHARACTER*1
= 'B': ("By Block") the eigenvalues will be grouped by
split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within
the block.
= 'E': ("Entire matrix")
the eigenvalues for the entire matrix
will be ordered from smallest to
largest.
N (input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. Eigenvalues less than or equal
to VL, or greater than VU, will not be returned. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute tolerance for the eigenvalues. An eigenvalue
(or cluster) is considered to be located if it has been
determined to lie in an interval whose width is ABSTOL or
less. If ABSTOL is less than or equal to zero, then ULP*|T|
will be used, where |T| means the 1-norm of T.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix T.
M (output) INTEGER
The actual number of eigenvalues found. 0 <= M <= N.
(See also the description of INFO=2,3.)
NSPLIT (output) INTEGER
The number of diagonal blocks in the matrix T.
1 <= NSPLIT <= N.
W (output) REAL array, dimension (N)
On exit, the first M elements of W will contain the
eigenvalues. (SSTEBZ may use the remaining N-M elements as
workspace.)
IBLOCK (output) INTEGER array, dimension (N)
At each row/column j where E(j) is zero or small, the
matrix T is considered to split into a block diagonal
matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
block (from 1 to the number of blocks) the eigenvalue W(i)
belongs. (SSTEBZ may use the remaining N-M elements as
workspace.)
ISPLIT (output) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to ISPLIT(1),
the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
etc., and the NSPLIT-th consists of rows/columns
ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
(Only the first NSPLIT elements will actually be used, but
since the user cannot know a priori what value NSPLIT will
have, N words must be reserved for ISPLIT.)
WORK (workspace) REAL array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: some or all of the eigenvalues failed to converge or
were not computed:
=1 or 3: Bisection failed to converge for some
eigenvalues; these eigenvalues are flagged by a
negative block number. The effect is that the
eigenvalues may not be as accurate as the
absolute and relative tolerances. This is
generally caused by unexpectedly inaccurate
arithmetic.
=2 or 3: RANGE='I' only: Not all of the eigenvalues
IL:IU were found.
Effect: M < IU+1-IL
Cause: non-monotonic arithmetic, causing the
Sturm sequence to be non-monotonic.
Cure: recalculate, using RANGE='A', and pick
out eigenvalues IL:IU. In some cases,
increasing the PARAMETER "FUDGE" may
make things work.
= 4: RANGE='I', and the Gershgorin interval
initially used was too small. No eigenvalues
were computed.
Probable cause: your machine has sloppy
floating-point arithmetic.
Cure: Increase the PARAMETER "FUDGE",
recompile, and try again.
Internal Parameters
===================
RELFAC REAL, default = 2.0e0
The relative tolerance. An interval (a,b] lies within
"relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
where "ulp" is the machine precision (distance from 1 to
the next larger floating point number.)
FUDGE REAL, default = 2
A "fudge factor" to widen the Gershgorin intervals. Ideally,
a value of 1 should work, but on machines with sloppy
arithmetic, this needs to be larger. The default for
publicly released versions should be large enough to handle
the worst machine around. Note that this has no effect
on accuracy of the solution.
=====================================================================
.. Parameters ..
public void sstedc(String compz, int n, float[] d, float[] e, float[] z, int ldz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEDC computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric matrix can also be
found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this
matrix to tridiagonal form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See SLAED3 for details.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'I': Compute eigenvectors of tridiagonal matrix also.
= 'V': Compute eigenvectors of original dense symmetric
matrix also. On entry, Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LWORK must be at least
( 1 + 3*N + 2*N*lg N + 3*N**2 ),
where lg( N ) = smallest integer k such
that 2**k >= N.
If COMPZ = 'I' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LWORK need
only be max(1,2*(N-1)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LIWORK must be at least
( 6 + 6*N + 5*N*lg N ).
If COMPZ = 'I' and N > 1 then LIWORK must be at least
( 3 + 5*N ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LIWORK
need only be 1.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void sstedc(String compz, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEDC computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric matrix can also be
found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this
matrix to tridiagonal form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See SLAED3 for details.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'I': Compute eigenvectors of tridiagonal matrix also.
= 'V': Compute eigenvectors of original dense symmetric
matrix also. On entry, Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LWORK must be at least
( 1 + 3*N + 2*N*lg N + 3*N**2 ),
where lg( N ) = smallest integer k such
that 2**k >= N.
If COMPZ = 'I' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LWORK need
only be max(1,2*(N-1)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LIWORK must be at least
( 6 + 6*N + 5*N*lg N ).
If COMPZ = 'I' and N > 1 then LIWORK must be at least
( 3 + 5*N ).
Note that for COMPZ = 'I' or 'V', then if N is less than or
equal to the minimum divide size, usually 25, then LIWORK
need only be 1.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
.. Parameters ..
public void sstegr(String jobz, String range, int n, float[] d, float[] e, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, int[] isuppz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEGR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
SSTEGR is a compatability wrapper around the improved SSTEMR routine.
See SSTEMR for further details.
One important change is that the ABSTOL parameter no longer provides
benefit and hence is no longer used.
Note : SSTEGR and SSTEMR work only on machines which follow
IEEE-754 floating-point standard in their handling of infinities and
NaNs. Normal execution may create these exceptiona values and hence
may abort due to a floating point exception in environments which
do not conform to the IEEE-754 standard.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) REAL array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
Unused. Was the absolute error tolerance for the
eigenvalues/eigenvectors in previous versions.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in SLARRE,
if INFO = 2X, internal error in SLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by SLARRE or
SLARRV, respectively.
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, LBNL/NERSC, USA
=====================================================================
.. Local Scalars ..
public void sstegr(String jobz, String range, int n, float[] d, int _d_offset, float[] e, int _e_offset, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEGR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
SSTEGR is a compatability wrapper around the improved SSTEMR routine.
See SSTEMR for further details.
One important change is that the ABSTOL parameter no longer provides
benefit and hence is no longer used.
Note : SSTEGR and SSTEMR work only on machines which follow
IEEE-754 floating-point standard in their handling of infinities and
NaNs. Normal execution may create these exceptiona values and hence
may abort due to a floating point exception in environments which
do not conform to the IEEE-754 standard.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) REAL array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
Unused. Was the absolute error tolerance for the
eigenvalues/eigenvectors in previous versions.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in SLARRE,
if INFO = 2X, internal error in SLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by SLARRE or
SLARRV, respectively.
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, LBNL/NERSC, USA
=====================================================================
.. Local Scalars ..
public void sstein(int n, float[] d, float[] e, int m, float[] w, int[] iblock, int[] isplit, float[] z, int ldz, float[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEIN computes the eigenvectors of a real symmetric tridiagonal
matrix T corresponding to specified eigenvalues, using inverse
iteration.
The maximum number of iterations allowed for each eigenvector is
specified by an internal parameter MAXITS (currently set to 5).
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix
T, in elements 1 to N-1.
M (input) INTEGER
The number of eigenvectors to be found. 0 <= M <= N.
W (input) REAL array, dimension (N)
The first M elements of W contain the eigenvalues for
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block. ( The output array
W from SSTEBZ with ORDER = 'B' is expected here. )
IBLOCK (input) INTEGER array, dimension (N)
The submatrix indices associated with the corresponding
eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
the first submatrix from the top, =2 if W(i) belongs to
the second submatrix, etc. ( The output array IBLOCK
from SSTEBZ is expected here. )
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
( The output array ISPLIT from SSTEBZ is expected here. )
Z (output) REAL array, dimension (LDZ, M)
The computed eigenvectors. The eigenvector associated
with the eigenvalue W(i) is stored in the i-th column of
Z. Any vector which fails to converge is set to its current
iterate after MAXITS iterations.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (N)
IFAIL (output) INTEGER array, dimension (M)
On normal exit, all elements of IFAIL are zero.
If one or more eigenvectors fail to converge after
MAXITS iterations, then their indices are stored in
array IFAIL.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge
in MAXITS iterations. Their indices are stored in
array IFAIL.
Internal Parameters
===================
MAXITS INTEGER, default = 5
The maximum number of iterations performed.
EXTRA INTEGER, default = 2
The number of iterations performed after norm growth
criterion is satisfied, should be at least 1.
=====================================================================
.. Parameters ..
public void sstein(int n, float[] d, int _d_offset, float[] e, int _e_offset, int m, float[] w, int _w_offset, int[] iblock, int _iblock_offset, int[] isplit, int _isplit_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEIN computes the eigenvectors of a real symmetric tridiagonal
matrix T corresponding to specified eigenvalues, using inverse
iteration.
The maximum number of iterations allowed for each eigenvector is
specified by an internal parameter MAXITS (currently set to 5).
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix T.
E (input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix
T, in elements 1 to N-1.
M (input) INTEGER
The number of eigenvectors to be found. 0 <= M <= N.
W (input) REAL array, dimension (N)
The first M elements of W contain the eigenvalues for
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block. ( The output array
W from SSTEBZ with ORDER = 'B' is expected here. )
IBLOCK (input) INTEGER array, dimension (N)
The submatrix indices associated with the corresponding
eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
the first submatrix from the top, =2 if W(i) belongs to
the second submatrix, etc. ( The output array IBLOCK
from SSTEBZ is expected here. )
ISPLIT (input) INTEGER array, dimension (N)
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
( The output array ISPLIT from SSTEBZ is expected here. )
Z (output) REAL array, dimension (LDZ, M)
The computed eigenvectors. The eigenvector associated
with the eigenvalue W(i) is stored in the i-th column of
Z. Any vector which fails to converge is set to its current
iterate after MAXITS iterations.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (N)
IFAIL (output) INTEGER array, dimension (M)
On normal exit, all elements of IFAIL are zero.
If one or more eigenvectors fail to converge after
MAXITS iterations, then their indices are stored in
array IFAIL.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge
in MAXITS iterations. Their indices are stored in
array IFAIL.
Internal Parameters
===================
MAXITS INTEGER, default = 5
The maximum number of iterations performed.
EXTRA INTEGER, default = 2
The number of iterations performed after norm growth
criterion is satisfied, should be at least 1.
=====================================================================
.. Parameters ..
public void sstemr(String jobz, String range, int n, float[] d, float[] e, float vl, float vu, int il, int iu, org.netlib.util.intW m, float[] w, float[] z, int ldz, int nzc, int[] isuppz, org.netlib.util.booleanW tryrac, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEMR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
Depending on the number of desired eigenvalues, these are computed ei
by bisection or the dqds algorithm. Numerically orthogonal eigenvecto
computed by the use of various suitable L D L^T factorizations near c
of close eigenvalues (referred to as RRRs, Relatively Robust
Representations). An informal sketch of the algorithm follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
For more details, see:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Notes:
1.SSTEMR works only on machines which follow IEEE-754
floating-point standard in their handling of infinities and NaNs.
This permits the use of efficient inner loops avoiding a check for
zero divisors.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) REAL array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and can be computed with a workspace
query by setting NZC = -1, see below.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
NZC (input) INTEGER
The number of eigenvectors to be held in the array Z.
If RANGE = 'A', then NZC >= max(1,N).
If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,
If RANGE = 'I', then NZC >= IU-IL+1.
If NZC = -1, then a workspace query is assumed; the
routine calculates the number of columns of the array Z that
are needed to hold the eigenvectors.
This value is returned as the first entry of the Z array, and
no error message related to NZC is issued by XERBLA.
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
TRYRAC (input/output) LOGICAL
If TRYRAC.EQ..TRUE., indicates that the code should check whe
the tridiagonal matrix defines its eigenvalues to high relati
accuracy. If so, the code uses relative-accuracy preserving
algorithms that might be (a bit) slower depending on the matr
If the matrix does not define its eigenvalues to high relativ
accuracy, the code can uses possibly faster algorithms.
If TRYRAC.EQ..FALSE., the code is not required to guarantee
relatively accurate eigenvalues and can use the fastest possi
techniques.
On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
does not define its eigenvalues to high relative accuracy.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in SLARRE,
if INFO = 2X, internal error in SLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by SLARRE or
SLARRV, respectively.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void sstemr(String jobz, String range, int n, float[] d, int _d_offset, float[] e, int _e_offset, float vl, float vu, int il, int iu, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, int nzc, int[] isuppz, int _isuppz_offset, org.netlib.util.booleanW tryrac, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEMR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix h
a well defined set of pairwise different real eigenvalues, the corres
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specif
either an interval (VL,VU] or a range of indices IL:IU for the desire
eigenvalues.
Depending on the number of desired eigenvalues, these are computed ei
by bisection or the dqds algorithm. Numerically orthogonal eigenvecto
computed by the use of various suitable L D L^T factorizations near c
of close eigenvalues (referred to as RRRs, Relatively Robust
Representations). An informal sketch of the algorithm follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
For more details, see:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Notes:
1.SSTEMR works only on machines which follow IEEE-754
floating-point standard in their handling of infinities and NaNs.
This permits the use of efficient inner loops avoiding a check for
zero divisors.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E (input/output) REAL array, dimension (N)
On entry, the (N-1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N-1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and can be computed with a workspace
query by setting NZC = -1, see below.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
NZC (input) INTEGER
The number of eigenvectors to be held in the array Z.
If RANGE = 'A', then NZC >= max(1,N).
If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,
If RANGE = 'I', then NZC >= IU-IL+1.
If NZC = -1, then a workspace query is assumed; the
routine calculates the number of columns of the array Z that
are needed to hold the eigenvectors.
This value is returned as the first entry of the Z array, and
no error message related to NZC is issued by XERBLA.
ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th computed eigen
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
TRYRAC (input/output) LOGICAL
If TRYRAC.EQ..TRUE., indicates that the code should check whe
the tridiagonal matrix defines its eigenvalues to high relati
accuracy. If so, the code uses relative-accuracy preserving
algorithms that might be (a bit) slower depending on the matr
If the matrix does not define its eigenvalues to high relativ
accuracy, the code can uses possibly faster algorithms.
If TRYRAC.EQ..FALSE., the code is not required to guarantee
relatively accurate eigenvalues and can use the fastest possi
techniques.
On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
does not define its eigenvalues to high relative accuracy.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = 1X, internal error in SLARRE,
if INFO = 2X, internal error in SLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by SLARRE or
SLARRV, respectively.
Further Details
===============
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
=====================================================================
.. Parameters ..
public void ssteqr(String compz, int n, float[] d, float[] e, float[] z, int ldz, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the implicit QL or QR method.
The eigenvectors of a full or band symmetric matrix can also be found
if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to
tridiagonal form.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvalues and eigenvectors of the original
symmetric matrix. On entry, Z must contain the
orthogonal matrix used to reduce the original matrix
to tridiagonal form.
= 'I': Compute eigenvalues and eigenvectors of the
tridiagonal matrix. Z is initialized to the identity
matrix.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (max(1,2*N-2))
If COMPZ = 'N', then WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm has failed to find all the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero; on exit, D
and E contain the elements of a symmetric tridiagonal
matrix which is orthogonally similar to the original
matrix.
=====================================================================
.. Parameters ..
public void ssteqr(String compz, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the implicit QL or QR method.
The eigenvectors of a full or band symmetric matrix can also be found
if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to
tridiagonal form.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvalues and eigenvectors of the original
symmetric matrix. On entry, Z must contain the
orthogonal matrix used to reduce the original matrix
to tridiagonal form.
= 'I': Compute eigenvalues and eigenvectors of the
tridiagonal matrix. Z is initialized to the identity
matrix.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (max(1,2*N-2))
If COMPZ = 'N', then WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm has failed to find all the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero; on exit, D
and E contain the elements of a symmetric tridiagonal
matrix which is orthogonally similar to the original
matrix.
=====================================================================
.. Parameters ..
public void ssterf(int n, float[] d, float[] e, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTERF computes all eigenvalues of a symmetric tridiagonal matrix
using the Pal-Walker-Kahan variant of the QL or QR algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed to find all of the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero.
=====================================================================
.. Parameters ..
public void ssterf(int n, float[] d, int _d_offset, float[] e, int _e_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTERF computes all eigenvalues of a symmetric tridiagonal matrix
using the Pal-Walker-Kahan variant of the QL or QR algorithm.
Arguments
=========
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm failed to find all of the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero.
=====================================================================
.. Parameters ..
public void sstev(String jobz, int n, float[] d, float[] e, float[] z, int ldz, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (max(1,2*N-2))
If JOBZ = 'N', WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void sstev(String jobz, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (max(1,2*N-2))
If JOBZ = 'N', WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void sstevd(String jobz, int n, float[] d, float[] e, float[] z, int ldz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void sstevd(String jobz, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
=====================================================================
.. Parameters ..
public void sstevr(String jobz, String range, int n, float[] d, float[] e, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, int[] isuppz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Whenever possible, SSTEVR calls SSTEMR to compute the
eigenspectrum using Relatively Robust Representations. SSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows. For the i-th
unreduced block of T,
(a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
is a relatively robust representation,
(b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
relative accuracy by the dqds algorithm,
(c) If there is a cluster of close eigenvalues, "choose" sigma_i
close to the cluster, and go to step (a),
(d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
compute the corresponding eigenvector by forming a
rank-revealing twisted factorization.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
Computer Science Division Technical Report No. UCB//CSD-97-971,
UC Berkeley, May 1997.
Note 1 : SSTEVR calls SSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of SSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
SSTEIN are called
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) REAL array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
SLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal (and
minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 20*N.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal (and
minimal) LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= 10*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
Jason Riedy, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void sstevr(String jobz, String range, int n, float[] d, int _d_offset, float[] e, int _e_offset, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Whenever possible, SSTEVR calls SSTEMR to compute the
eigenspectrum using Relatively Robust Representations. SSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows. For the i-th
unreduced block of T,
(a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
is a relatively robust representation,
(b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
relative accuracy by the dqds algorithm,
(c) If there is a cluster of close eigenvalues, "choose" sigma_i
close to the cluster, and go to step (a),
(d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
compute the corresponding eigenvector by forming a
rank-revealing twisted factorization.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
Computer Science Division Technical Report No. UCB//CSD-97-971,
UC Berkeley, May 1997.
Note 1 : SSTEVR calls SSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of SSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
SSTEIN are called
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) REAL array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
SLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal (and
minimal) LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 20*N.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal (and
minimal) LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= 10*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
Jason Riedy, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void sstevx(String jobz, String range, int n, float[] d, float[] e, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, float[] work, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix A. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) REAL array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less
than or equal to zero, then EPS*|T| will be used in
its place, where |T| is the 1-norm of the tridiagonal
matrix.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge (INFO > 0), then that
column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in IFAIL. If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void sstevx(String jobz, String range, int n, float[] d, int _d_offset, float[] e, int _e_offset, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSTEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix A. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
E (input/output) REAL array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less
than or equal to zero, then EPS*|T| will be used in
its place, where |T| is the 1-norm of the tridiagonal
matrix.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge (INFO > 0), then that
column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in IFAIL. If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void ssycon(String uplo, int n, float[] a, int lda, int[] ipiv, float anorm, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by SSYTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
ANORM (input) REAL
The 1-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void ssycon(String uplo, int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float anorm, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by SSYTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
ANORM (input) REAL
The 1-norm of the original matrix A.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK (workspace) REAL array, dimension (2*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void ssyev(String jobz, String uplo, int n, float[] a, int lda, float[] w, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for SSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void ssyev(String jobz, String uplo, int n, float[] a, int _a_offset, int lda, float[] w, int _w_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for SSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
.. Parameters ..
public void ssyevd(String jobz, String uplo, int n, float[] a, int lda, float[] w, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A. If eigenvectors are desired, it uses a
divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Because of large use of BLAS of level 3, SSYEVD needs N**2 more
workspace than SSYEVX.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK must be at least 1.
If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i and JOBZ = 'N', then the algorithm failed
to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
if INFO = i and JOBZ = 'V', then the algorithm failed
to compute an eigenvalue while working on the submatrix
lying in rows and columns INFO/(N+1) through
mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
Modified description of INFO. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void ssyevd(String jobz, String uplo, int n, float[] a, int _a_offset, int lda, float[] w, int _w_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A. If eigenvectors are desired, it uses a
divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Because of large use of BLAS of level 3, SSYEVD needs N**2 more
workspace than SSYEVX.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK must be at least 1.
If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i and JOBZ = 'N', then the algorithm failed
to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
if INFO = i and JOBZ = 'V', then the algorithm failed
to compute an eigenvalue while working on the submatrix
lying in rows and columns INFO/(N+1) through
mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
Modified description of INFO. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void ssyevr(String jobz, String range, String uplo, int n, float[] a, int lda, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, int[] isuppz, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
SSYEVR first reduces the matrix A to tridiagonal form T with a call
to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute
the eigenspectrum using Relatively Robust Representations. SSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see SSTEMR's documentation and:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of SSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
SSTEIN are called
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
SLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,26*N).
For optimal efficiency, LWORK >= (NB+6)*N,
where NB is the max of the blocksize for SSYTRD and SORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
Jason Riedy, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void ssyevr(String jobz, String range, String uplo, int n, float[] a, int _a_offset, int lda, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEVR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
SSYEVR first reduces the matrix A to tridiagonal form T with a call
to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute
the eigenspectrum using Relatively Robust Representations. SSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) an
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refi
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation co
the corresponding eigenvector by forming a rank revealing twis
factorization. Go back to (c) for any clusters that remain.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see SSTEMR's documentation and:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representat
to compute orthogonal eigenvectors of symmetric tridiagonal matrice
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors an
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, V
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of SSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
SSTEIN are called
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
If high relative accuracy is important, set ABSTOL to
SLAMCH( 'Safe minimum' ). Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases. The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,26*N).
For optimal efficiency, LWORK >= (NB+6)*N,
where NB is the max of the blocksize for SSYTRD and SORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: Internal error
Further Details
===============
Based on contributions by
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
Jason Riedy, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
.. Parameters ..
public void ssyevx(String jobz, String range, String uplo, int n, float[] a, int lda, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, float[] work, int lwork, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= 1, when N <= 1;
otherwise 8*N.
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the max of the blocksize for SSYTRD and SORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void ssyevx(String jobz, String range, String uplo, int n, float[] a, int _a_offset, int lda, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= 1, when N <= 1;
otherwise 8*N.
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the max of the blocksize for SSYTRD and SORMTR
returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
=====================================================================
.. Parameters ..
public void ssygs2(int itype, String uplo, int n, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGS2 reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
B must have been previously factorized as U'*U or L*L' by SPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
= 2 or 3: compute U*A*U' or L'*A*L.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored, and how B has been factorized.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by SPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void ssygs2(int itype, String uplo, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGS2 reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
B must have been previously factorized as U'*U or L*L' by SPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
= 2 or 3: compute U*A*U' or L'*A*L.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored, and how B has been factorized.
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by SPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
.. Parameters ..
public void ssygst(int itype, String uplo, int n, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGST reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by SPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by SPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void ssygst(int itype, String uplo, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGST reduces a real symmetric-definite generalized eigenproblem
to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by SPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by SPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void ssygv(int itype, String jobz, String uplo, int n, float[] a, int lda, float[] b, int ldb, float[] w, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric and B is also
positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the symmetric positive definite matrix B.
If UPLO = 'U', the leading N-by-N upper triangular part of B
contains the upper triangular part of the matrix B.
If UPLO = 'L', the leading N-by-N lower triangular part of B
contains the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for SSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPOTRF or SSYEV returned an error code:
<= N: if INFO = i, SSYEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Parameters ..
public void ssygv(int itype, String jobz, String uplo, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] w, int _w_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric and B is also
positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the symmetric positive definite matrix B.
If UPLO = 'U', the leading N-by-N upper triangular part of B
contains the upper triangular part of the matrix B.
If UPLO = 'L', the leading N-by-N lower triangular part of B
contains the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for SSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPOTRF or SSYEV returned an error code:
<= N: if INFO = i, SSYEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
.. Parameters ..
public void ssygvd(int itype, String jobz, String uplo, int n, float[] a, int lda, float[] b, int ldb, float[] w, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK >= 1.
If JOBZ = 'N' and N > 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPOTRF or SSYEVD returned an error code:
<= N: if INFO = i and JOBZ = 'N', then the algorithm
failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to
zero;
if INFO = i and JOBZ = 'V', then the algorithm
failed to compute an eigenvalue while working on
the submatrix lying in rows and columns INFO/(N+1)
through mod(INFO,N+1);
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Modified so that no backsubstitution is performed if SSYEVD fails to
converge (NEIG in old code could be greater than N causing out of
bounds reference to A - reported by Ralf Meyer). Also corrected the
description of INFO and the test on ITYPE. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void ssygvd(int itype, String jobz, String uplo, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] w, int _w_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK >= 1.
If JOBZ = 'N' and N > 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPOTRF or SSYEVD returned an error code:
<= N: if INFO = i and JOBZ = 'N', then the algorithm
failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to
zero;
if INFO = i and JOBZ = 'V', then the algorithm
failed to compute an eigenvalue while working on
the submatrix lying in rows and columns INFO/(N+1)
through mod(INFO,N+1);
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Modified so that no backsubstitution is performed if SSYEVD fails to
converge (NEIG in old code could be greater than N causing out of
bounds reference to A - reported by Ralf Meyer). Also corrected the
description of INFO and the test on ITYPE. Sven, 16 Feb 05.
=====================================================================
.. Parameters ..
public void ssygvx(int itype, String jobz, String range, String uplo, int n, float[] a, int lda, float[] b, int ldb, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, float[] z, int ldz, float[] work, int lwork, int[] iwork, int[] ifail, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,8*N).
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the blocksize for SSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPOTRF or SSYEVX returned an error code:
<= N: if INFO = i, SSYEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void ssygvx(int itype, String jobz, String range, String uplo, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float vl, float vu, int il, int iu, float abstol, org.netlib.util.intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
and B are assumed to be symmetric and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A and B are stored;
= 'L': Lower triangle of A and B are stored.
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,8*N).
For optimal efficiency, LWORK >= (NB+3)*N,
where NB is the blocksize for SSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPOTRF or SSYEVX returned an error code:
<= N: if INFO = i, SSYEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Further Details
===============
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
=====================================================================
.. Parameters ..
public void ssyrfs(String uplo, int n, int nrhs, float[] a, int lda, float[] af, int ldaf, int[] ipiv, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite, and
provides error bounds and backward error estimates for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) REAL array, dimension (LDAF,N)
The factored form of the matrix A. AF contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by SSYTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SSYTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void ssyrfs(String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, float[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite, and
provides error bounds and backward error estimates for the solution.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input) REAL array, dimension (LDAF,N)
The factored form of the matrix A. AF contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by SSYTRF.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SSYTRS.
On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
.. Parameters ..
public void ssysv(String uplo, int n, int nrhs, float[] a, int lda, int[] ipiv, float[] b, int ldb, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
used to solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
SSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by SSYTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
SSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.
=====================================================================
.. Local Scalars ..
public void ssysv(String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
used to solve the system of equations A * X = B.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
SSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by SSYTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
SSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.
=====================================================================
.. Local Scalars ..
public void ssysvx(String fact, String uplo, int n, int nrhs, float[] a, int lda, float[] af, int ldaf, int[] ipiv, float[] b, int ldb, float[] x, int ldx, org.netlib.util.floatW rcond, float[] ferr, float[] berr, float[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYSVX uses the diagonal pivoting factorization to compute the
solution to a real system of linear equations A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A.
The form of the factorization is
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AF and IPIV contain the factored form of
A. AF and IPIV will not be modified.
= 'N': The matrix A will be copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) REAL array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.
If FACT = 'N', then AF is an output argument and on exit
returns the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by SSYTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by SSYTRF.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= max(1,3*N), and for best
performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
NB is the optimal blocksize for SSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void ssysvx(String fact, String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, float[] af, int _af_offset, int ldaf, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, org.netlib.util.floatW rcond, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYSVX uses the diagonal pivoting factorization to compute the
solution to a real system of linear equations A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description
===========
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A.
The form of the factorization is
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Arguments
=========
FACT (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AF and IPIV contain the factored form of
A. AF and IPIV will not be modified.
= 'N': The matrix A will be copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) REAL array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.
If FACT = 'N', then AF is an output argument and on exit
returns the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T.
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by SSYTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by SSYTRF.
B (input) REAL array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) REAL array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >= max(1,3*N), and for best
performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
NB is the optimal blocksize for SSYTRF.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
=====================================================================
.. Parameters ..
public void ssytd2(String uplo, int n, float[] a, int lda, float[] d, float[] e, float[] tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
form T by an orthogonal similarity transformation: Q' * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void ssytd2(String uplo, int n, float[] a, int _a_offset, int lda, float[] d, int _d_offset, float[] e, int _e_offset, float[] tau, int _tau_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
form T by an orthogonal similarity transformation: Q' * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void ssytf2(String uplo, int n, float[] a, int lda, int[] ipiv, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTF2 computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method:
A = U*D*U' or A = L*D*L'
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, U' is the transpose of U, and D is symmetric and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
09-29-06 - patch from
Bobby Cheng, MathWorks
Replace l.204 and l.372
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
by
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN
01-01-96 - Based on modifications by
J. Lewis, Boeing Computer Services Company
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
1-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void ssytf2(String uplo, int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTF2 computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method:
A = U*D*U' or A = L*D*L'
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, U' is the transpose of U, and D is symmetric and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
09-29-06 - patch from
Bobby Cheng, MathWorks
Replace l.204 and l.372
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
by
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN
01-01-96 - Based on modifications by
J. Lewis, Boeing Computer Services Company
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
1-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Parameters ..
public void ssytrd(String uplo, int n, float[] a, int lda, float[] d, float[] e, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRD reduces a real symmetric matrix A to real symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void ssytrd(String uplo, int n, float[] a, int _a_offset, int lda, float[] d, int _d_offset, float[] e, int _e_offset, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRD reduces a real symmetric matrix A to real symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
.. Parameters ..
public void ssytrf(String uplo, int n, float[] a, int lda, int[] ipiv, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRF computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method. The form of the
factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >=1. For best performance
LWORK >= N*NB, where NB is the block size returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Local Scalars ..
public void ssytrf(String uplo, int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRF computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method. The form of the
factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of WORK. LWORK >=1. For best performance
LWORK >= N*NB, where NB is the block size returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
.. Local Scalars ..
public void ssytri(String uplo, int n, float[] a, int lda, int[] ipiv, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRI computes the inverse of a real symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
SSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by SSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void ssytri(String uplo, int n, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRI computes the inverse of a real symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
SSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by SSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
=====================================================================
.. Parameters ..
public void ssytrs(String uplo, int n, int nrhs, float[] a, int lda, int[] ipiv, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRS solves a system of linear equations A*X = B with a real
symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by SSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void ssytrs(String uplo, int n, int nrhs, float[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
SSYTRS solves a system of linear equations A*X = B with a real
symmetric matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by SSYTRF.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSYTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stbcon(String norm, String uplo, String diag, int n, int kd, float[] ab, int ldab, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STBCON estimates the reciprocal of the condition number of a
triangular band matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stbcon(String norm, String uplo, String diag, int n, int kd, float[] ab, int _ab_offset, int ldab, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STBCON estimates the reciprocal of the condition number of a
triangular band matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stbrfs(String uplo, String trans, String diag, int n, int kd, int nrhs, float[] ab, int ldab, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STBRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular band
coefficient matrix.
The solution matrix X must be computed by STBTRS or some other
means before entering this routine. STBRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stbrfs(String uplo, String trans, String diag, int n, int kd, int nrhs, float[] ab, int _ab_offset, int ldab, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STBRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular band
coefficient matrix.
The solution matrix X must be computed by STBTRS or some other
means before entering this routine. STBRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stbtrs(String uplo, String trans, String diag, int n, int kd, int nrhs, float[] ab, int ldab, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STBTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular band matrix of order N, and B is an
N-by NRHS matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void stbtrs(String uplo, String trans, String diag, int n, int kd, int nrhs, float[] ab, int _ab_offset, int ldab, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STBTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular band matrix of order N, and B is an
N-by NRHS matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of AB. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void stgevc(String side, String howmny, boolean[] select, int n, float[] s, int lds, float[] p, int ldp, float[] vl, int ldvl, float[] vr, int ldvr, int mm, org.netlib.util.intW m, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGEVC computes some or all of the right and/or left eigenvectors of
a pair of real matrices (S,P), where S is a quasi-triangular matrix
and P is upper triangular. Matrix pairs of this type are produced by
the generalized Schur factorization of a matrix pair (A,B):
A = Q*S*Z**T, B = Q*P*Z**T
as computed by SGGHRD + SHGEQZ.
The right eigenvector x and the left eigenvector y of (S,P)
corresponding to an eigenvalue w are defined by:
S*x = w*P*x, (y**H)*S = w*(y**H)*P,
where y**H denotes the conjugate tranpose of y.
The eigenvalues are not input to this routine, but are computed
directly from the diagonal blocks of S and P.
This routine returns the matrices X and/or Y of right and left
eigenvectors of (S,P), or the products Z*X and/or Q*Y,
where Z and Q are input matrices.
If Q and Z are the orthogonal factors from the generalized Schur
factorization of a matrix pair (A,B), then Z*X and Q*Y
are the matrices of right and left eigenvectors of (A,B).
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed. If w(j) is a real eigenvalue, the corresponding
real eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector
is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
set to .FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrices S and P. N >= 0.
S (input) REAL array, dimension (LDS,N)
The upper quasi-triangular matrix S from a generalized Schur
factorization, as computed by SHGEQZ.
LDS (input) INTEGER
The leading dimension of array S. LDS >= max(1,N).
P (input) REAL array, dimension (LDP,N)
The upper triangular matrix P from a generalized Schur
factorization, as computed by SHGEQZ.
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
of S must be in positive diagonal form.
LDP (input) INTEGER
The leading dimension of array P. LDP >= max(1,N).
VL (input/output) REAL array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of left Schur vectors returned by SHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
SELECT, stored consecutively in the columns of
VL, in the same order as their eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) REAL array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Z (usually the orthogonal matrix Z
of right Schur vectors returned by SHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
if HOWMNY = 'B' or 'b', the matrix Z*X;
if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
specified by SELECT, stored consecutively in the
columns of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected real eigenvector occupies one
column and each selected complex eigenvector occupies two
columns.
WORK (workspace) REAL array, dimension (6*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the 2-by-2 block (INFO:INFO+1) does not have a complex
eigenvalue.
Further Details
===============
Allocation of workspace:
---------- -- ---------
WORK( j ) = 1-norm of j-th column of A, above the diagonal
WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
WORK( 2*N+1:3*N ) = real part of eigenvector
WORK( 3*N+1:4*N ) = imaginary part of eigenvector
WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
Rowwise vs. columnwise solution methods:
------- -- ---------- -------- -------
Finding a generalized eigenvector consists basically of solving the
singular triangular system
(A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)
Consider finding the i-th right eigenvector (assume all eigenvalues
are real). The equation to be solved is:
n i
0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
k=j k=j
where C = (A - w B) (The components v(i+1:n) are 0.)
The "rowwise" method is:
(1) v(i) := 1
for j = i-1,. . .,1:
i
(2) compute s = - sum C(j,k) v(k) and
k=j+1
(3) v(j) := s / C(j,j)
Step 2 is sometimes called the "dot product" step, since it is an
inner product between the j-th row and the portion of the eigenvector
that has been computed so far.
The "columnwise" method consists basically in doing the sums
for all the rows in parallel. As each v(j) is computed, the
contribution of v(j) times the j-th column of C is added to the
partial sums. Since FORTRAN arrays are stored columnwise, this has
the advantage that at each step, the elements of C that are accessed
are adjacent to one another, whereas with the rowwise method, the
elements accessed at a step are spaced LDS (and LDP) words apart.
When finding left eigenvectors, the matrix in question is the
transpose of the one in storage, so the rowwise method then
actually accesses columns of A and B at each step, and so is the
preferred method.
=====================================================================
.. Parameters ..
public void stgevc(String side, String howmny, boolean[] select, int _select_offset, int n, float[] s, int _s_offset, int lds, float[] p, int _p_offset, int ldp, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, int mm, org.netlib.util.intW m, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGEVC computes some or all of the right and/or left eigenvectors of
a pair of real matrices (S,P), where S is a quasi-triangular matrix
and P is upper triangular. Matrix pairs of this type are produced by
the generalized Schur factorization of a matrix pair (A,B):
A = Q*S*Z**T, B = Q*P*Z**T
as computed by SGGHRD + SHGEQZ.
The right eigenvector x and the left eigenvector y of (S,P)
corresponding to an eigenvalue w are defined by:
S*x = w*P*x, (y**H)*S = w*(y**H)*P,
where y**H denotes the conjugate tranpose of y.
The eigenvalues are not input to this routine, but are computed
directly from the diagonal blocks of S and P.
This routine returns the matrices X and/or Y of right and left
eigenvectors of (S,P), or the products Z*X and/or Q*Y,
where Z and Q are input matrices.
If Q and Z are the orthogonal factors from the generalized Schur
factorization of a matrix pair (A,B), then Z*X and Q*Y
are the matrices of right and left eigenvectors of (A,B).
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed. If w(j) is a real eigenvalue, the corresponding
real eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector
is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
set to .FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrices S and P. N >= 0.
S (input) REAL array, dimension (LDS,N)
The upper quasi-triangular matrix S from a generalized Schur
factorization, as computed by SHGEQZ.
LDS (input) INTEGER
The leading dimension of array S. LDS >= max(1,N).
P (input) REAL array, dimension (LDP,N)
The upper triangular matrix P from a generalized Schur
factorization, as computed by SHGEQZ.
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
of S must be in positive diagonal form.
LDP (input) INTEGER
The leading dimension of array P. LDP >= max(1,N).
VL (input/output) REAL array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of left Schur vectors returned by SHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
SELECT, stored consecutively in the columns of
VL, in the same order as their eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) REAL array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Z (usually the orthogonal matrix Z
of right Schur vectors returned by SHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
if HOWMNY = 'B' or 'b', the matrix Z*X;
if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
specified by SELECT, stored consecutively in the
columns of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected real eigenvector occupies one
column and each selected complex eigenvector occupies two
columns.
WORK (workspace) REAL array, dimension (6*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: the 2-by-2 block (INFO:INFO+1) does not have a complex
eigenvalue.
Further Details
===============
Allocation of workspace:
---------- -- ---------
WORK( j ) = 1-norm of j-th column of A, above the diagonal
WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
WORK( 2*N+1:3*N ) = real part of eigenvector
WORK( 3*N+1:4*N ) = imaginary part of eigenvector
WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
Rowwise vs. columnwise solution methods:
------- -- ---------- -------- -------
Finding a generalized eigenvector consists basically of solving the
singular triangular system
(A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)
Consider finding the i-th right eigenvector (assume all eigenvalues
are real). The equation to be solved is:
n i
0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
k=j k=j
where C = (A - w B) (The components v(i+1:n) are 0.)
The "rowwise" method is:
(1) v(i) := 1
for j = i-1,. . .,1:
i
(2) compute s = - sum C(j,k) v(k) and
k=j+1
(3) v(j) := s / C(j,j)
Step 2 is sometimes called the "dot product" step, since it is an
inner product between the j-th row and the portion of the eigenvector
that has been computed so far.
The "columnwise" method consists basically in doing the sums
for all the rows in parallel. As each v(j) is computed, the
contribution of v(j) times the j-th column of C is added to the
partial sums. Since FORTRAN arrays are stored columnwise, this has
the advantage that at each step, the elements of C that are accessed
are adjacent to one another, whereas with the rowwise method, the
elements accessed at a step are spaced LDS (and LDP) words apart.
When finding left eigenvectors, the matrix in question is the
transpose of the one in storage, so the rowwise method then
actually accesses columns of A and B at each step, and so is the
preferred method.
=====================================================================
.. Parameters ..
public void stgex2(boolean wantq, boolean wantz, int n, float[] a, int lda, float[] b, int ldb, float[] q, int ldq, float[] z, int ldz, int j1, int n1, int n2, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
(A, B) by an orthogonal equivalence transformation.
(A, B) must be in generalized real Schur canonical form (as returned
by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL arrays, dimensions (LDA,N)
On entry, the matrix A in the pair (A, B).
On exit, the updated matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL arrays, dimensions (LDB,N)
On entry, the matrix B in the pair (A, B).
On exit, the updated matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
Not referenced if WANTQ = .FALSE..
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
Not referenced if WANTZ = .FALSE..
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
J1 (input) INTEGER
The index to the first block (A11, B11). 1 <= J1 <= N.
N1 (input) INTEGER
The order of the first block (A11, B11). N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block (A22, B22). N2 = 0, 1 or 2.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)).
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 )
INFO (output) INTEGER
=0: Successful exit
>0: If INFO = 1, the transformed matrix (A, B) would be
too far from generalized Schur form; the blocks are
not swapped and (A, B) and (Q, Z) are unchanged.
The problem of swapping is too ill-conditioned.
<0: If INFO = -16: LWORK is too small. Appropriate value
for LWORK is returned in WORK(1).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
In the current code both weak and strong stability tests are
performed. The user can omit the strong stability test by changing
the internal logical parameter WANDS to .FALSE.. See ref. [2] for
details.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
=====================================================================
Replaced various illegal calls to SCOPY by calls to SLASET, or by DO
loops. Sven Hammarling, 1/5/02.
.. Parameters ..
public void stgex2(boolean wantq, boolean wantz, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] q, int _q_offset, int ldq, float[] z, int _z_offset, int ldz, int j1, int n1, int n2, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
(A, B) by an orthogonal equivalence transformation.
(A, B) must be in generalized real Schur canonical form (as returned
by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL arrays, dimensions (LDA,N)
On entry, the matrix A in the pair (A, B).
On exit, the updated matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL arrays, dimensions (LDB,N)
On entry, the matrix B in the pair (A, B).
On exit, the updated matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
Not referenced if WANTQ = .FALSE..
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
Not referenced if WANTZ = .FALSE..
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
J1 (input) INTEGER
The index to the first block (A11, B11). 1 <= J1 <= N.
N1 (input) INTEGER
The order of the first block (A11, B11). N1 = 0, 1 or 2.
N2 (input) INTEGER
The order of the second block (A22, B22). N2 = 0, 1 or 2.
WORK (workspace) REAL array, dimension (MAX(1,LWORK)).
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 )
INFO (output) INTEGER
=0: Successful exit
>0: If INFO = 1, the transformed matrix (A, B) would be
too far from generalized Schur form; the blocks are
not swapped and (A, B) and (Q, Z) are unchanged.
The problem of swapping is too ill-conditioned.
<0: If INFO = -16: LWORK is too small. Appropriate value
for LWORK is returned in WORK(1).
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
In the current code both weak and strong stability tests are
performed. The user can omit the strong stability test by changing
the internal logical parameter WANDS to .FALSE.. See ref. [2] for
details.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
=====================================================================
Replaced various illegal calls to SCOPY by calls to SLASET, or by DO
loops. Sven Hammarling, 1/5/02.
.. Parameters ..
public void stgexc(boolean wantq, boolean wantz, int n, float[] a, int lda, float[] b, int ldb, float[] q, int ldq, float[] z, int ldz, org.netlib.util.intW ifst, org.netlib.util.intW ilst, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGEXC reorders the generalized real Schur decomposition of a real
matrix pair (A,B) using an orthogonal equivalence transformation
(A, B) = Q * (A, B) * Z',
so that the diagonal block of (A, B) with row index IFST is moved
to row ILST.
(A, B) must be in generalized real Schur canonical form (as returned
by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the matrix A in generalized real Schur canonical
form.
On exit, the updated matrix A, again in generalized
real Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,N)
On entry, the matrix B in generalized real Schur canonical
form (A,B).
On exit, the updated matrix B, again in generalized
real Schur canonical form (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
On exit, if IFST pointed on entry to the second row of
a 2-by-2 block, it is changed to point to the first row;
ILST always points to the first row of the block in its
final position (which may differ from its input value by
+1 or -1). 1 <= IFST, ILST <= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
=0: successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
=====================================================================
.. Parameters ..
public void stgexc(boolean wantq, boolean wantz, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] q, int _q_offset, int ldq, float[] z, int _z_offset, int ldz, org.netlib.util.intW ifst, org.netlib.util.intW ilst, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGEXC reorders the generalized real Schur decomposition of a real
matrix pair (A,B) using an orthogonal equivalence transformation
(A, B) = Q * (A, B) * Z',
so that the diagonal block of (A, B) with row index IFST is moved
to row ILST.
(A, B) must be in generalized real Schur canonical form (as returned
by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
Arguments
=========
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the matrix A in generalized real Schur canonical
form.
On exit, the updated matrix A, again in generalized
real Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,N)
On entry, the matrix B in generalized real Schur canonical
form (A,B).
On exit, the updated matrix B, again in generalized
real Schur canonical form (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
On exit, if IFST pointed on entry to the second row of
a 2-by-2 block, it is changed to point to the first row;
ILST always points to the first row of the block in its
final position (which may differ from its input value by
+1 or -1). 1 <= IFST, ILST <= N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
=0: successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
=====================================================================
.. Parameters ..
public void stgsen(int ijob, boolean wantq, boolean wantz, boolean[] select, int n, float[] a, int lda, float[] b, int ldb, float[] alphar, float[] alphai, float[] beta, float[] q, int ldq, float[] z, int ldz, org.netlib.util.intW m, org.netlib.util.floatW pl, org.netlib.util.floatW pr, float[] dif, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSEN reorders the generalized real Schur decomposition of a real
matrix pair (A, B) (in terms of an orthonormal equivalence trans-
formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the upper quasi-triangular
matrix A and the upper triangular B. The leading columns of Q and
Z form orthonormal bases of the corresponding left and right eigen-
spaces (deflating subspaces). (A, B) must be in generalized real
Schur canonical form (as returned by SGGES), i.e. A is block upper
triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
triangular.
STGSEN also computes the generalized eigenvalues
w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
of the reordered matrix pair (A, B).
Optionally, STGSEN computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of "projections" onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.
Arguments
=========
IJOB (input) INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of "projections" onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster.
To select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension(LDA,N)
On entry, the upper quasi-triangular matrix A, with (A, B) in
generalized real Schur canonical form.
On exit, A is overwritten by the reordered matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension(LDB,N)
On entry, the upper triangular matrix B, with (A, B) in
generalized real Schur canonical form.
On exit, B is overwritten by the reordered matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real generalized Schur form of (A,B) were further reduced
to triangular form using complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1;
and if WANTQ = .TRUE., LDQ >= N.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.
M (output) INTEGER
The dimension of the specified pair of left and right eigen-
spaces (deflating subspaces). 0 <= M <= N.
PL (output) REAL
PR (output) REAL
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of "projections" onto left and right
eigenspaces with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3, PL and PR are not referenced.
DIF (output) REAL array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 4*N+16.
If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
IF IJOB = 0, IWORK is not referenced. Otherwise,
on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+6.
If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.
Further Details
===============
STGSEN first collects the selected eigenvalues by computing
orthogonal U and W that move them to the top left corner of (A, B).
In other words, the selected eigenvalues are the eigenvalues of
(A11, B11) in:
U'*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U' means the transpose of U. The first n1 columns
of U and W span the specified pair of left and right eigenspaces
(deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
reordered generalized real Schur form of (C, D) is given by
(C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22', In1) ]
[ kron(In2, B11) -kron(B22', In1) ].
Here, Inx is the identity matrix of size nx and A22' is the
transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see SLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF
(IJOB = 2 will be used)). See STGSYL for more details.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
1996.
=====================================================================
.. Parameters ..
public void stgsen(int ijob, boolean wantq, boolean wantz, boolean[] select, int _select_offset, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] alphar, int _alphar_offset, float[] alphai, int _alphai_offset, float[] beta, int _beta_offset, float[] q, int _q_offset, int ldq, float[] z, int _z_offset, int ldz, org.netlib.util.intW m, org.netlib.util.floatW pl, org.netlib.util.floatW pr, float[] dif, int _dif_offset, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSEN reorders the generalized real Schur decomposition of a real
matrix pair (A, B) (in terms of an orthonormal equivalence trans-
formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the upper quasi-triangular
matrix A and the upper triangular B. The leading columns of Q and
Z form orthonormal bases of the corresponding left and right eigen-
spaces (deflating subspaces). (A, B) must be in generalized real
Schur canonical form (as returned by SGGES), i.e. A is block upper
triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
triangular.
STGSEN also computes the generalized eigenvalues
w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
of the reordered matrix pair (A, B).
Optionally, STGSEN computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of "projections" onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.
Arguments
=========
IJOB (input) INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of "projections" onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ (input) LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster.
To select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension(LDA,N)
On entry, the upper quasi-triangular matrix A, with (A, B) in
generalized real Schur canonical form.
On exit, A is overwritten by the reordered matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension(LDB,N)
On entry, the upper triangular matrix B, with (A, B) in
generalized real Schur canonical form.
On exit, B is overwritten by the reordered matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
ALPHAR (output) REAL array, dimension (N)
ALPHAI (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real generalized Schur form of (A,B) were further reduced
to triangular form using complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1;
and if WANTQ = .TRUE., LDQ >= N.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.
M (output) INTEGER
The dimension of the specified pair of left and right eigen-
spaces (deflating subspaces). 0 <= M <= N.
PL (output) REAL
PR (output) REAL
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of "projections" onto left and right
eigenspaces with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3, PL and PR are not referenced.
DIF (output) REAL array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 4*N+16.
If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
IF IJOB = 0, IWORK is not referenced. Otherwise,
on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+6.
If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.
Further Details
===============
STGSEN first collects the selected eigenvalues by computing
orthogonal U and W that move them to the top left corner of (A, B).
In other words, the selected eigenvalues are the eigenvalues of
(A11, B11) in:
U'*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U' means the transpose of U. The first n1 columns
of U and W span the specified pair of left and right eigenspaces
(deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
reordered generalized real Schur form of (C, D) is given by
(C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22', In1) ]
[ kron(In2, B11) -kron(B22', In1) ].
Here, Inx is the identity matrix of size nx and A22' is the
transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see SLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF
(IJOB = 2 will be used)). See STGSYL for more details.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
1996.
=====================================================================
.. Parameters ..
public void stgsja(String jobu, String jobv, String jobq, int m, int p, int n, int k, int l, float[] a, int lda, float[] b, int ldb, float tola, float tolb, float[] alpha, float[] beta, float[] u, int ldu, float[] v, int ldv, float[] q, int ldq, float[] work, org.netlib.util.intW ncycle, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSJA computes the generalized singular value decomposition (GSVD)
of two real upper triangular (or trapezoidal) matrices A and B.
On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine SGGSVP
from a general M-by-N matrix A and P-by-N matrix B:
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
B = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.
On exit,
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
where U, V and Q are orthogonal matrices, Z' denotes the transpose
of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
``diagonal'' matrices, which are of the following structures:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 ) K
L ( 0 0 R22 ) L
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The computation of the orthogonal transformation matrices U, V or Q
is optional. These matrices may either be formed explicitly, or they
may be postmultiplied into input matrices U1, V1, or Q1.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': U must contain an orthogonal matrix U1 on entry, and
the product U1*U is returned;
= 'I': U is initialized to the unit matrix, and the
orthogonal matrix U is returned;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': V must contain an orthogonal matrix V1 on entry, and
the product V1*V is returned;
= 'I': V is initialized to the unit matrix, and the
orthogonal matrix V is returned;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Q must contain an orthogonal matrix Q1 on entry, and
the product Q1*Q is returned;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
K (input) INTEGER
L (input) INTEGER
K and L specify the subblocks in the input matrices A and B:
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
of A and B, whose GSVD is going to be computed by STGSJA.
See Further details.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
matrix R or part of R. See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
a part of R. See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) REAL
TOLB (input) REAL
TOLA and TOLB are the convergence criteria for the Jacobi-
Kogbetliantz iteration procedure. Generally, they are the
same as used in the preprocessing step, say
TOLA = max(M,N)*norm(A)*MACHEPS,
TOLB = max(P,N)*norm(B)*MACHEPS.
ALPHA (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = diag(C),
BETA(K+1:K+L) = diag(S),
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
Furthermore, if K+L < N,
ALPHA(K+L+1:N) = 0 and
BETA(K+L+1:N) = 0.
U (input/output) REAL array, dimension (LDU,M)
On entry, if JOBU = 'U', U must contain a matrix U1 (usually
the orthogonal matrix returned by SGGSVP).
On exit,
if JOBU = 'I', U contains the orthogonal matrix U;
if JOBU = 'U', U contains the product U1*U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (input/output) REAL array, dimension (LDV,P)
On entry, if JOBV = 'V', V must contain a matrix V1 (usually
the orthogonal matrix returned by SGGSVP).
On exit,
if JOBV = 'I', V contains the orthogonal matrix V;
if JOBV = 'V', V contains the product V1*V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
the orthogonal matrix returned by SGGSVP).
On exit,
if JOBQ = 'I', Q contains the orthogonal matrix Q;
if JOBQ = 'Q', Q contains the product Q1*Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) REAL array, dimension (2*N)
NCYCLE (output) INTEGER
The number of cycles required for convergence.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the procedure does not converge after MAXIT cycles.
Internal Parameters
===================
MAXIT INTEGER
MAXIT specifies the total loops that the iterative procedure
may take. If after MAXIT cycles, the routine fails to
converge, we return INFO = 1.
Further Details
===============
STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
matrix B13 to the form:
U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
of Z. C1 and S1 are diagonal matrices satisfying
C1**2 + S1**2 = I,
and R1 is an L-by-L nonsingular upper triangular matrix.
=====================================================================
.. Parameters ..
public void stgsja(String jobu, String jobv, String jobq, int m, int p, int n, int k, int l, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float tola, float tolb, float[] alpha, int _alpha_offset, float[] beta, int _beta_offset, float[] u, int _u_offset, int ldu, float[] v, int _v_offset, int ldv, float[] q, int _q_offset, int ldq, float[] work, int _work_offset, org.netlib.util.intW ncycle, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSJA computes the generalized singular value decomposition (GSVD)
of two real upper triangular (or trapezoidal) matrices A and B.
On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine SGGSVP
from a general M-by-N matrix A and P-by-N matrix B:
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
B = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.
On exit,
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
where U, V and Q are orthogonal matrices, Z' denotes the transpose
of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
``diagonal'' matrices, which are of the following structures:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 ) K
L ( 0 0 R22 ) L
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The computation of the orthogonal transformation matrices U, V or Q
is optional. These matrices may either be formed explicitly, or they
may be postmultiplied into input matrices U1, V1, or Q1.
Arguments
=========
JOBU (input) CHARACTER*1
= 'U': U must contain an orthogonal matrix U1 on entry, and
the product U1*U is returned;
= 'I': U is initialized to the unit matrix, and the
orthogonal matrix U is returned;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': V must contain an orthogonal matrix V1 on entry, and
the product V1*V is returned;
= 'I': V is initialized to the unit matrix, and the
orthogonal matrix V is returned;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Q must contain an orthogonal matrix Q1 on entry, and
the product Q1*Q is returned;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
K (input) INTEGER
L (input) INTEGER
K and L specify the subblocks in the input matrices A and B:
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
of A and B, whose GSVD is going to be computed by STGSJA.
See Further details.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
matrix R or part of R. See Purpose for details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
a part of R. See Purpose for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA (input) REAL
TOLB (input) REAL
TOLA and TOLB are the convergence criteria for the Jacobi-
Kogbetliantz iteration procedure. Generally, they are the
same as used in the preprocessing step, say
TOLA = max(M,N)*norm(A)*MACHEPS,
TOLB = max(P,N)*norm(B)*MACHEPS.
ALPHA (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = diag(C),
BETA(K+1:K+L) = diag(S),
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
Furthermore, if K+L < N,
ALPHA(K+L+1:N) = 0 and
BETA(K+L+1:N) = 0.
U (input/output) REAL array, dimension (LDU,M)
On entry, if JOBU = 'U', U must contain a matrix U1 (usually
the orthogonal matrix returned by SGGSVP).
On exit,
if JOBU = 'I', U contains the orthogonal matrix U;
if JOBU = 'U', U contains the product U1*U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V (input/output) REAL array, dimension (LDV,P)
On entry, if JOBV = 'V', V must contain a matrix V1 (usually
the orthogonal matrix returned by SGGSVP).
On exit,
if JOBV = 'I', V contains the orthogonal matrix V;
if JOBV = 'V', V contains the product V1*V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
the orthogonal matrix returned by SGGSVP).
On exit,
if JOBQ = 'I', Q contains the orthogonal matrix Q;
if JOBQ = 'Q', Q contains the product Q1*Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) REAL array, dimension (2*N)
NCYCLE (output) INTEGER
The number of cycles required for convergence.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the procedure does not converge after MAXIT cycles.
Internal Parameters
===================
MAXIT INTEGER
MAXIT specifies the total loops that the iterative procedure
may take. If after MAXIT cycles, the routine fails to
converge, we return INFO = 1.
Further Details
===============
STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
matrix B13 to the form:
U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
of Z. C1 and S1 are diagonal matrices satisfying
C1**2 + S1**2 = I,
and R1 is an L-by-L nonsingular upper triangular matrix.
=====================================================================
.. Parameters ..
public void stgsna(String job, String howmny, boolean[] select, int n, float[] a, int lda, float[] b, int ldb, float[] vl, int ldvl, float[] vr, int ldvr, float[] s, float[] dif, int mm, org.netlib.util.intW m, float[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSNA estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a matrix pair (A, B) in
generalized real Schur canonical form (or of any matrix pair
(Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where
Z' denotes the transpose of Z.
(A, B) must be in generalized real Schur form (as returned by SGGES),
i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
blocks. B is upper triangular.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (DIF):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (DIF);
= 'B': for both eigenvalues and eigenvectors (S and DIF).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the square matrix pair (A, B). N >= 0.
A (input) REAL array, dimension (LDA,N)
The upper quasi-triangular matrix A in the pair (A,B).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,N)
The upper triangular matrix B in the pair (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) REAL array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by STGEVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1.
If JOB = 'E' or 'B', LDVL >= N.
VR (input) REAL array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns ov VR, as returned by STGEVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1.
If JOB = 'E' or 'B', LDVR >= N.
S (output) REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), DIF(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
DIF (output) REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of DIF are set to the same value. If
the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', DIF is not referenced.
MM (input) INTEGER
The number of elements in the arrays S and DIF. MM >= M.
M (output) INTEGER
The number of elements of the arrays S and DIF used to store
the specified condition numbers; for each selected real
eigenvalue one element is used, and for each selected complex
conjugate pair of eigenvalues, two elements are used.
If HOWMNY = 'A', M is set to N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N + 6)
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of a generalized eigenvalue
w = (a, b) is defined as
S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))
where u and v are the left and right eigenvectors of (A, B)
corresponding to w; |z| denotes the absolute value of the complex
number, and norm(u) denotes the 2-norm of the vector u.
The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv)
of the matrix pair (A, B). If both a and b equal zero, then (A B) is
singular and S(I) = -1 is returned.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(A, B) / S(I)
where EPS is the machine precision.
The reciprocal of the condition number DIF(i) of right eigenvector u
and left eigenvector v corresponding to the generalized eigenvalue w
is defined as follows:
a) If the i-th eigenvalue w = (a,b) is real
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1
( 0 S22 ),( 0 T22 ) n-1
1 n-1 1 n-1
Then the reciprocal condition number DIF(i) is
Difl((a, b), (S22, T22)) = sigma-min( Zl ),
where sigma-min(Zl) denotes the smallest singular value of the
2(n-1)-by-2(n-1) matrix
Zl = [ kron(a, In-1) -kron(1, S22) ]
[ kron(b, In-1) -kron(1, T22) ] .
Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
Kronecker product between the matrices X and Y.
Note that if the default method for computing DIF(i) is wanted
(see SLATDF), then the parameter DIFDRI (see below) should be
changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)).
See STGSYL for more details.
b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2
( 0 S22 ),( 0 T22) n-2
2 n-2 2 n-2
and (S11, T11) corresponds to the complex conjugate eigenvalue
pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
that
U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 )
( 0 s22 ) ( 0 t22 )
where the generalized eigenvalues w = s11/t11 and
conjg(w) = s22/t22.
Then the reciprocal condition number DIF(i) is bounded by
min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
Z1 is the complex 2-by-2 matrix
Z1 = [ s11 -s22 ]
[ t11 -t22 ],
This is done by computing (using real arithmetic) the
roots of the characteristical polynomial det(Z1' * Z1 - lambda I),
where Z1' denotes the conjugate transpose of Z1 and det(X) denotes
the determinant of X.
and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
Z2 = [ kron(S11', In-2) -kron(I2, S22) ]
[ kron(T11', In-2) -kron(I2, T22) ]
Note that if the default method for computing DIF is wanted (see
SLATDF), then the parameter DIFDRI (see below) should be changed
from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL
for more details.
For each eigenvalue/vector specified by SELECT, DIF stores a
Frobenius norm-based estimate of Difl.
An approximate error bound for the i-th computed eigenvector VL(i) or
VR(i) is given by
EPS * norm(A, B) / DIF(i).
See ref. [2-3] for more details and further references.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
=====================================================================
.. Parameters ..
public void stgsna(String job, String howmny, boolean[] select, int _select_offset, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, float[] s, int _s_offset, float[] dif, int _dif_offset, int mm, org.netlib.util.intW m, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSNA estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a matrix pair (A, B) in
generalized real Schur canonical form (or of any matrix pair
(Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where
Z' denotes the transpose of Z.
(A, B) must be in generalized real Schur form (as returned by SGGES),
i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
blocks. B is upper triangular.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (DIF):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (DIF);
= 'B': for both eigenvalues and eigenvectors (S and DIF).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the square matrix pair (A, B). N >= 0.
A (input) REAL array, dimension (LDA,N)
The upper quasi-triangular matrix A in the pair (A,B).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,N)
The upper triangular matrix B in the pair (A,B).
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
VL (input) REAL array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by STGEVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1.
If JOB = 'E' or 'B', LDVL >= N.
VR (input) REAL array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns ov VR, as returned by STGEVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1.
If JOB = 'E' or 'B', LDVR >= N.
S (output) REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), DIF(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
DIF (output) REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of DIF are set to the same value. If
the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', DIF is not referenced.
MM (input) INTEGER
The number of elements in the arrays S and DIF. MM >= M.
M (output) INTEGER
The number of elements of the arrays S and DIF used to store
the specified condition numbers; for each selected real
eigenvalue one element is used, and for each selected complex
conjugate pair of eigenvalues, two elements are used.
If HOWMNY = 'A', M is set to N.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (N + 6)
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of a generalized eigenvalue
w = (a, b) is defined as
S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))
where u and v are the left and right eigenvectors of (A, B)
corresponding to w; |z| denotes the absolute value of the complex
number, and norm(u) denotes the 2-norm of the vector u.
The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv)
of the matrix pair (A, B). If both a and b equal zero, then (A B) is
singular and S(I) = -1 is returned.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(A, B) / S(I)
where EPS is the machine precision.
The reciprocal of the condition number DIF(i) of right eigenvector u
and left eigenvector v corresponding to the generalized eigenvalue w
is defined as follows:
a) If the i-th eigenvalue w = (a,b) is real
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1
( 0 S22 ),( 0 T22 ) n-1
1 n-1 1 n-1
Then the reciprocal condition number DIF(i) is
Difl((a, b), (S22, T22)) = sigma-min( Zl ),
where sigma-min(Zl) denotes the smallest singular value of the
2(n-1)-by-2(n-1) matrix
Zl = [ kron(a, In-1) -kron(1, S22) ]
[ kron(b, In-1) -kron(1, T22) ] .
Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
Kronecker product between the matrices X and Y.
Note that if the default method for computing DIF(i) is wanted
(see SLATDF), then the parameter DIFDRI (see below) should be
changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)).
See STGSYL for more details.
b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2
( 0 S22 ),( 0 T22) n-2
2 n-2 2 n-2
and (S11, T11) corresponds to the complex conjugate eigenvalue
pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
that
U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 )
( 0 s22 ) ( 0 t22 )
where the generalized eigenvalues w = s11/t11 and
conjg(w) = s22/t22.
Then the reciprocal condition number DIF(i) is bounded by
min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
Z1 is the complex 2-by-2 matrix
Z1 = [ s11 -s22 ]
[ t11 -t22 ],
This is done by computing (using real arithmetic) the
roots of the characteristical polynomial det(Z1' * Z1 - lambda I),
where Z1' denotes the conjugate transpose of Z1 and det(X) denotes
the determinant of X.
and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
Z2 = [ kron(S11', In-2) -kron(I2, S22) ]
[ kron(T11', In-2) -kron(I2, T22) ]
Note that if the default method for computing DIF is wanted (see
SLATDF), then the parameter DIFDRI (see below) should be changed
from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL
for more details.
For each eigenvalue/vector specified by SELECT, DIF stores a
Frobenius norm-based estimate of Difl.
An approximate error bound for the i-th computed eigenvector VL(i) or
VR(i) is given by
EPS * norm(A, B) / DIF(i).
See ref. [2-3] for more details and further references.
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
References
==========
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
=====================================================================
.. Parameters ..
public void stgsy2(String trans, int ijob, int m, int n, float[] a, int lda, float[] b, int ldb, float[] c, int Ldc, float[] d, int ldd, float[] e, int lde, float[] f, int ldf, org.netlib.util.floatW scale, org.netlib.util.floatW rdsum, org.netlib.util.floatW rdscal, int[] iwork, org.netlib.util.intW pq, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSY2 solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F,
using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
(A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
must be in generalized Schur canonical form, i.e. A, B are upper
quasi triangular and D, E are upper triangular. The solution (R, L)
overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
chosen to avoid overflow.
In matrix notation solving equation (1) corresponds to solve
Z*x = scale*b, where Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ],
Ik is the identity matrix of size k and X' is the transpose of X.
kron(X, Y) is the Kronecker product between the matrices X and Y.
In the process of solving (1), we solve a number of such systems
where Dim(In), Dim(In) = 1 or 2.
If TRANS = 'T', solve the transposed system Z'*y = scale*b for y,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * -F
This case is used to compute an estimate of Dif[(A, D), (B, E)] =
sigma_min(Z) using reverse communicaton with SLACON.
STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL
of an upper bound on the separation between to matrix pairs. Then
the input (A, D), (B, E) are sub-pencils of the matrix pair in
STGSYL. See STGSYL for details.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T': solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
= 0: solve (1) only.
= 1: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (look ahead strategy is used).
= 2: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (SGECON on sub-systems is used.)
Not referenced if TRANS = 'T'.
M (input) INTEGER
On entry, M specifies the order of A and D, and the row
dimension of C, F, R and L.
N (input) INTEGER
On entry, N specifies the order of B and E, and the column
dimension of C, F, R and L.
A (input) REAL array, dimension (LDA, M)
On entry, A contains an upper quasi triangular matrix.
LDA (input) INTEGER
The leading dimension of the matrix A. LDA >= max(1, M).
B (input) REAL array, dimension (LDB, N)
On entry, B contains an upper quasi triangular matrix.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1, N).
C (input/output) REAL array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1).
On exit, if IJOB = 0, C has been overwritten by the
solution R.
LDC (input) INTEGER
The leading dimension of the matrix C. LDC >= max(1, M).
D (input) REAL array, dimension (LDD, M)
On entry, D contains an upper triangular matrix.
LDD (input) INTEGER
The leading dimension of the matrix D. LDD >= max(1, M).
E (input) REAL array, dimension (LDE, N)
On entry, E contains an upper triangular matrix.
LDE (input) INTEGER
The leading dimension of the matrix E. LDE >= max(1, N).
F (input/output) REAL array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1).
On exit, if IJOB = 0, F has been overwritten by the
solution L.
LDF (input) INTEGER
The leading dimension of the matrix F. LDF >= max(1, M).
SCALE (output) REAL
On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
R and L (C and F on entry) will hold the solutions to a
slightly perturbed system but the input matrices A, B, D and
E have not been changed. If SCALE = 0, R and L will hold the
solutions to the homogeneous system with C = F = 0. Normally,
SCALE = 1.
RDSUM (input/output) REAL
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by STGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
RDSCAL (input/output) REAL
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when STGSY2 is called by
STGSYL.
IWORK (workspace) INTEGER array, dimension (M+N+2)
PQ (output) INTEGER
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
8-by-8) solved by this routine.
INFO (output) INTEGER
On exit, if INFO is set to
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: The matrix pairs (A, D) and (B, E) have common or very
close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
Replaced various illegal calls to SCOPY by calls to SLASET.
Sven Hammarling, 27/5/02.
.. Parameters ..
public void stgsy2(String trans, int ijob, int m, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] c, int _c_offset, int Ldc, float[] d, int _d_offset, int ldd, float[] e, int _e_offset, int lde, float[] f, int _f_offset, int ldf, org.netlib.util.floatW scale, org.netlib.util.floatW rdsum, org.netlib.util.floatW rdscal, int[] iwork, int _iwork_offset, org.netlib.util.intW pq, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSY2 solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F,
using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
(A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
must be in generalized Schur canonical form, i.e. A, B are upper
quasi triangular and D, E are upper triangular. The solution (R, L)
overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
chosen to avoid overflow.
In matrix notation solving equation (1) corresponds to solve
Z*x = scale*b, where Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ],
Ik is the identity matrix of size k and X' is the transpose of X.
kron(X, Y) is the Kronecker product between the matrices X and Y.
In the process of solving (1), we solve a number of such systems
where Dim(In), Dim(In) = 1 or 2.
If TRANS = 'T', solve the transposed system Z'*y = scale*b for y,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * -F
This case is used to compute an estimate of Dif[(A, D), (B, E)] =
sigma_min(Z) using reverse communicaton with SLACON.
STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL
of an upper bound on the separation between to matrix pairs. Then
the input (A, D), (B, E) are sub-pencils of the matrix pair in
STGSYL. See STGSYL for details.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T': solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
= 0: solve (1) only.
= 1: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (look ahead strategy is used).
= 2: A contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix
pairs is computed. (SGECON on sub-systems is used.)
Not referenced if TRANS = 'T'.
M (input) INTEGER
On entry, M specifies the order of A and D, and the row
dimension of C, F, R and L.
N (input) INTEGER
On entry, N specifies the order of B and E, and the column
dimension of C, F, R and L.
A (input) REAL array, dimension (LDA, M)
On entry, A contains an upper quasi triangular matrix.
LDA (input) INTEGER
The leading dimension of the matrix A. LDA >= max(1, M).
B (input) REAL array, dimension (LDB, N)
On entry, B contains an upper quasi triangular matrix.
LDB (input) INTEGER
The leading dimension of the matrix B. LDB >= max(1, N).
C (input/output) REAL array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1).
On exit, if IJOB = 0, C has been overwritten by the
solution R.
LDC (input) INTEGER
The leading dimension of the matrix C. LDC >= max(1, M).
D (input) REAL array, dimension (LDD, M)
On entry, D contains an upper triangular matrix.
LDD (input) INTEGER
The leading dimension of the matrix D. LDD >= max(1, M).
E (input) REAL array, dimension (LDE, N)
On entry, E contains an upper triangular matrix.
LDE (input) INTEGER
The leading dimension of the matrix E. LDE >= max(1, N).
F (input/output) REAL array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1).
On exit, if IJOB = 0, F has been overwritten by the
solution L.
LDF (input) INTEGER
The leading dimension of the matrix F. LDF >= max(1, M).
SCALE (output) REAL
On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
R and L (C and F on entry) will hold the solutions to a
slightly perturbed system but the input matrices A, B, D and
E have not been changed. If SCALE = 0, R and L will hold the
solutions to the homogeneous system with C = F = 0. Normally,
SCALE = 1.
RDSUM (input/output) REAL
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by STGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
RDSCAL (input/output) REAL
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when STGSY2 is called by
STGSYL.
IWORK (workspace) INTEGER array, dimension (M+N+2)
PQ (output) INTEGER
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
8-by-8) solved by this routine.
INFO (output) INTEGER
On exit, if INFO is set to
=0: Successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: The matrix pairs (A, D) and (B, E) have common or very
close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
=====================================================================
Replaced various illegal calls to SCOPY by calls to SLASET.
Sven Hammarling, 27/5/02.
.. Parameters ..
public void stgsyl(String trans, int ijob, int m, int n, float[] a, int lda, float[] b, int ldb, float[] c, int Ldc, float[] d, int ldd, float[] e, int lde, float[] f, int ldf, org.netlib.util.floatW scale, org.netlib.util.floatW dif, float[] work, int lwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSYL solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F
where R and L are unknown m-by-n matrices, (A, D), (B, E) and
(C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
respectively, with real entries. (A, D) and (B, E) must be in
generalized (real) Schur canonical form, i.e. A, B are upper quasi
triangular and D, E are upper triangular.
The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
scaling factor chosen to avoid overflow.
In matrix notation (1) is equivalent to solve Zx = scale b, where
Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ].
Here Ik is the identity matrix of size k and X' is the transpose of
X. kron(X, Y) is the Kronecker product between the matrices X and Y.
If TRANS = 'T', STGSYL solves the transposed system Z'*y = scale*b,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * (-F)
This case (TRANS = 'T') is used to compute an one-norm-based estimate
of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
and (B,E), using SLACON.
If IJOB >= 1, STGSYL computes a Frobenius norm-based estimate
of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
reciprocal of the smallest singular value of Z. See [1-2] for more
information.
This is a level 3 BLAS algorithm.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T', solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
=0: solve (1) only.
=1: The functionality of 0 and 3.
=2: The functionality of 0 and 4.
=3: Only an estimate of Dif[(A,D), (B,E)] is computed.
(look ahead strategy IJOB = 1 is used).
=4: Only an estimate of Dif[(A,D), (B,E)] is computed.
( SGECON on sub-systems is used ).
Not referenced if TRANS = 'T'.
M (input) INTEGER
The order of the matrices A and D, and the row dimension of
the matrices C, F, R and L.
N (input) INTEGER
The order of the matrices B and E, and the column dimension
of the matrices C, F, R and L.
A (input) REAL array, dimension (LDA, M)
The upper quasi triangular matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, M).
B (input) REAL array, dimension (LDB, N)
The upper quasi triangular matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1, N).
C (input/output) REAL array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, C has been overwritten by
the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
the solution achieved during the computation of the
Dif-estimate.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1, M).
D (input) REAL array, dimension (LDD, M)
The upper triangular matrix D.
LDD (input) INTEGER
The leading dimension of the array D. LDD >= max(1, M).
E (input) REAL array, dimension (LDE, N)
The upper triangular matrix E.
LDE (input) INTEGER
The leading dimension of the array E. LDE >= max(1, N).
F (input/output) REAL array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, F has been overwritten by
the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
the solution achieved during the computation of the
Dif-estimate.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1, M).
DIF (output) REAL
On exit DIF is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e. DIF is an upper bound of
Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
IF IJOB = 0 or TRANS = 'T', DIF is not touched.
SCALE (output) REAL
On exit SCALE is the scaling factor in (1) or (3).
If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
to a slightly perturbed system but the input matrices A, B, D
and E have not been changed. If SCALE = 0, C and F hold the
solutions R and L, respectively, to the homogeneous system
with C = F = 0. Normally, SCALE = 1.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK > = 1.
If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (M+N+6)
INFO (output) INTEGER
=0: successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: (A, D) and (B, E) have common or close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
[2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
Appl., 15(4):1045-1060, 1994
[3] B. Kagstrom and L. Westin, Generalized Schur Methods with
Condition Estimators for Solving the Generalized Sylvester
Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
July 1989, pp 745-751.
=====================================================================
Replaced various illegal calls to SCOPY by calls to SLASET.
Sven Hammarling, 1/5/02.
.. Parameters ..
public void stgsyl(String trans, int ijob, int m, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] c, int _c_offset, int Ldc, float[] d, int _d_offset, int ldd, float[] e, int _e_offset, int lde, float[] f, int _f_offset, int ldf, org.netlib.util.floatW scale, org.netlib.util.floatW dif, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STGSYL solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
D * R - L * E = scale * F
where R and L are unknown m-by-n matrices, (A, D), (B, E) and
(C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
respectively, with real entries. (A, D) and (B, E) must be in
generalized (real) Schur canonical form, i.e. A, B are upper quasi
triangular and D, E are upper triangular.
The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
scaling factor chosen to avoid overflow.
In matrix notation (1) is equivalent to solve Zx = scale b, where
Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ].
Here Ik is the identity matrix of size k and X' is the transpose of
X. kron(X, Y) is the Kronecker product between the matrices X and Y.
If TRANS = 'T', STGSYL solves the transposed system Z'*y = scale*b,
which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * (-F)
This case (TRANS = 'T') is used to compute an one-norm-based estimate
of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
and (B,E), using SLACON.
If IJOB >= 1, STGSYL computes a Frobenius norm-based estimate
of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
reciprocal of the smallest singular value of Z. See [1-2] for more
information.
This is a level 3 BLAS algorithm.
Arguments
=========
TRANS (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T', solve the 'transposed' system (3).
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
=0: solve (1) only.
=1: The functionality of 0 and 3.
=2: The functionality of 0 and 4.
=3: Only an estimate of Dif[(A,D), (B,E)] is computed.
(look ahead strategy IJOB = 1 is used).
=4: Only an estimate of Dif[(A,D), (B,E)] is computed.
( SGECON on sub-systems is used ).
Not referenced if TRANS = 'T'.
M (input) INTEGER
The order of the matrices A and D, and the row dimension of
the matrices C, F, R and L.
N (input) INTEGER
The order of the matrices B and E, and the column dimension
of the matrices C, F, R and L.
A (input) REAL array, dimension (LDA, M)
The upper quasi triangular matrix A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, M).
B (input) REAL array, dimension (LDB, N)
The upper quasi triangular matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1, N).
C (input/output) REAL array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, C has been overwritten by
the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
the solution achieved during the computation of the
Dif-estimate.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1, M).
D (input) REAL array, dimension (LDD, M)
The upper triangular matrix D.
LDD (input) INTEGER
The leading dimension of the array D. LDD >= max(1, M).
E (input) REAL array, dimension (LDE, N)
The upper triangular matrix E.
LDE (input) INTEGER
The leading dimension of the array E. LDE >= max(1, N).
F (input/output) REAL array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, F has been overwritten by
the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
the solution achieved during the computation of the
Dif-estimate.
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1, M).
DIF (output) REAL
On exit DIF is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e. DIF is an upper bound of
Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
IF IJOB = 0 or TRANS = 'T', DIF is not touched.
SCALE (output) REAL
On exit SCALE is the scaling factor in (1) or (3).
If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
to a slightly perturbed system but the input matrices A, B, D
and E have not been changed. If SCALE = 0, C and F hold the
solutions R and L, respectively, to the homogeneous system
with C = F = 0. Normally, SCALE = 1.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK > = 1.
If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (M+N+6)
INFO (output) INTEGER
=0: successful exit
<0: If INFO = -i, the i-th argument had an illegal value.
>0: (A, D) and (B, E) have common or close eigenvalues.
Further Details
===============
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
[1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
[2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
Appl., 15(4):1045-1060, 1994
[3] B. Kagstrom and L. Westin, Generalized Schur Methods with
Condition Estimators for Solving the Generalized Sylvester
Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
July 1989, pp 745-751.
=====================================================================
Replaced various illegal calls to SCOPY by calls to SLASET.
Sven Hammarling, 1/5/02.
.. Parameters ..
public void stpcon(String norm, String uplo, String diag, int n, float[] ap, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPCON estimates the reciprocal of the condition number of a packed
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stpcon(String norm, String uplo, String diag, int n, float[] ap, int _ap_offset, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPCON estimates the reciprocal of the condition number of a packed
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stprfs(String uplo, String trans, String diag, int n, int nrhs, float[] ap, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by STPTRS or some other
means before entering this routine. STPRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stprfs(String uplo, String trans, String diag, int n, int nrhs, float[] ap, int _ap_offset, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by STPTRS or some other
means before entering this routine. STPRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void stptri(String uplo, String diag, int n, float[] ap, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPTRI computes the inverse of a real upper or lower triangular
matrix A stored in packed format.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
Further Details
===============
A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE
=====================================================================
.. Parameters ..
public void stptri(String uplo, String diag, int n, float[] ap, int _ap_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPTRI computes the inverse of a real upper or lower triangular
matrix A stored in packed format.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
Further Details
===============
A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE
=====================================================================
.. Parameters ..
public void stptrs(String uplo, String trans, String diag, int n, int nrhs, float[] ap, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N stored in packed format,
and B is an N-by-NRHS matrix. A check is made to verify that A is
nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void stptrs(String uplo, String trans, String diag, int n, int nrhs, float[] ap, int _ap_offset, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STPTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N stored in packed format,
and B is an N-by-NRHS matrix. A check is made to verify that A is
nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
=====================================================================
.. Parameters ..
public void strcon(String norm, String uplo, String diag, int n, float[] a, int lda, org.netlib.util.floatW rcond, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRCON estimates the reciprocal of the condition number of a
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void strcon(String norm, String uplo, String diag, int n, float[] a, int _a_offset, int lda, org.netlib.util.floatW rcond, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRCON estimates the reciprocal of the condition number of a
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
=========
NORM (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
RCOND (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void strevc(String side, String howmny, boolean[] select, int n, float[] t, int ldt, float[] vl, int ldvl, float[] vr, int ldvr, int mm, org.netlib.util.intW m, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STREVC computes some or all of the right and/or left eigenvectors of
a real upper quasi-triangular matrix T.
Matrices of this type are produced by the Schur factorization of
a real general matrix: A = Q*T*Q**T, as computed by SHSEQR.
The right eigenvector x and the left eigenvector y of T corresponding
to an eigenvalue w are defined by:
T*x = w*x, (y**H)*T = w*(y**H)
where y**H denotes the conjugate transpose of y.
The eigenvalues are not input to this routine, but are read directly
from the diagonal blocks of T.
This routine returns the matrices X and/or Y of right and left
eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
input matrix. If Q is the orthogonal factor that reduces a matrix
A to Schur form T, then Q*X and Q*Y are the matrices of right and
left eigenvectors of A.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
as indicated by the logical array SELECT.
SELECT (input/output) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenvectors to be
computed.
If w(j) is a real eigenvalue, the corresponding real
eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector is
computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
.FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) REAL array, dimension (LDT,N)
The upper quasi-triangular matrix T in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input/output) REAL array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by SHSEQR).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VL, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) REAL array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by SHSEQR).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of T;
if HOWMNY = 'B', the matrix Q*X;
if HOWMNY = 'S', the right eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors.
If HOWMNY = 'A' or 'B', M is set to N.
Each selected real eigenvector occupies one column and each
selected complex eigenvector occupies two columns.
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The algorithm used in this program is basically backward (forward)
substitution, with scaling to make the the code robust against
possible overflow.
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
=====================================================================
.. Parameters ..
public void strevc(String side, String howmny, boolean[] select, int _select_offset, int n, float[] t, int _t_offset, int ldt, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, int mm, org.netlib.util.intW m, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STREVC computes some or all of the right and/or left eigenvectors of
a real upper quasi-triangular matrix T.
Matrices of this type are produced by the Schur factorization of
a real general matrix: A = Q*T*Q**T, as computed by SHSEQR.
The right eigenvector x and the left eigenvector y of T corresponding
to an eigenvalue w are defined by:
T*x = w*x, (y**H)*T = w*(y**H)
where y**H denotes the conjugate transpose of y.
The eigenvalues are not input to this routine, but are read directly
from the diagonal blocks of T.
This routine returns the matrices X and/or Y of right and left
eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
input matrix. If Q is the orthogonal factor that reduces a matrix
A to Schur form T, then Q*X and Q*Y are the matrices of right and
left eigenvectors of A.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
as indicated by the logical array SELECT.
SELECT (input/output) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenvectors to be
computed.
If w(j) is a real eigenvalue, the corresponding real
eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector is
computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
.FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) REAL array, dimension (LDT,N)
The upper quasi-triangular matrix T in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input/output) REAL array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by SHSEQR).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VL, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR (input/output) REAL array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by SHSEQR).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of T;
if HOWMNY = 'B', the matrix Q*X;
if HOWMNY = 'S', the right eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors.
If HOWMNY = 'A' or 'B', M is set to N.
Each selected real eigenvector occupies one column and each
selected complex eigenvector occupies two columns.
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The algorithm used in this program is basically backward (forward)
substitution, with scaling to make the the code robust against
possible overflow.
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
=====================================================================
.. Parameters ..
public void strexc(String compq, int n, float[] t, int ldt, float[] q, int ldq, org.netlib.util.intW ifst, org.netlib.util.intW ilst, float[] work, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STREXC reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that the diagonal block of T with row index IFST is
moved to row ILST.
The real Schur form T is reordered by an orthogonal similarity
transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors
is updated by postmultiplying it with Z.
T must be in Schur canonical form (as returned by SHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) REAL array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
Schur canonical form.
On exit, the reordered upper quasi-triangular matrix, again
in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix Z which reorders T.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of T.
The block with row index IFST is moved to row ILST, by a
sequence of transpositions between adjacent blocks.
On exit, if IFST pointed on entry to the second row of a
2-by-2 block, it is changed to point to the first row; ILST
always points to the first row of the block in its final
position (which may differ from its input value by +1 or -1).
1 <= IFST <= N; 1 <= ILST <= N.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: two adjacent blocks were too close to swap (the problem
is very ill-conditioned); T may have been partially
reordered, and ILST points to the first row of the
current position of the block being moved.
=====================================================================
.. Parameters ..
public void strexc(String compq, int n, float[] t, int _t_offset, int ldt, float[] q, int _q_offset, int ldq, org.netlib.util.intW ifst, org.netlib.util.intW ilst, float[] work, int _work_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STREXC reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that the diagonal block of T with row index IFST is
moved to row ILST.
The real Schur form T is reordered by an orthogonal similarity
transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors
is updated by postmultiplying it with Z.
T must be in Schur canonical form (as returned by SHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) REAL array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
Schur canonical form.
On exit, the reordered upper quasi-triangular matrix, again
in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix Z which reorders T.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of T.
The block with row index IFST is moved to row ILST, by a
sequence of transpositions between adjacent blocks.
On exit, if IFST pointed on entry to the second row of a
2-by-2 block, it is changed to point to the first row; ILST
always points to the first row of the block in its final
position (which may differ from its input value by +1 or -1).
1 <= IFST <= N; 1 <= ILST <= N.
WORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: two adjacent blocks were too close to swap (the problem
is very ill-conditioned); T may have been partially
reordered, and ILST points to the first row of the
current position of the block being moved.
=====================================================================
.. Parameters ..
public void strrfs(String uplo, String trans, String diag, int n, int nrhs, float[] a, int lda, float[] b, int ldb, float[] x, int ldx, float[] ferr, float[] berr, float[] work, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular
coefficient matrix.
The solution matrix X must be computed by STRTRS or some other
means before entering this routine. STRRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void strrfs(String uplo, String trans, String diag, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] x, int _x_offset, int ldx, float[] ferr, int _ferr_offset, float[] berr, int _berr_offset, float[] work, int _work_offset, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular
coefficient matrix.
The solution matrix X must be computed by STRTRS or some other
means before entering this routine. STRRFS does not do iterative
refinement because doing so cannot improve the backward error.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
.. Parameters ..
public void strsen(String job, String compq, boolean[] select, int n, float[] t, int ldt, float[] q, int ldq, float[] wr, float[] wi, org.netlib.util.intW m, org.netlib.util.floatW s, org.netlib.util.floatW sep, float[] work, int lwork, int[] iwork, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRSEN reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
the leading diagonal blocks of the upper quasi-triangular matrix T,
and the leading columns of Q form an orthonormal basis of the
corresponding right invariant subspace.
Optionally the routine computes the reciprocal condition numbers of
the cluster of eigenvalues and/or the invariant subspace.
T must be in Schur canonical form (as returned by SHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elemnts equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for the
cluster of eigenvalues (S) or the invariant subspace (SEP):
= 'N': none;
= 'E': for eigenvalues only (S);
= 'V': for invariant subspace only (SEP);
= 'B': for both eigenvalues and invariant subspace (S and
SEP).
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster. To
select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) REAL array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, T is overwritten by the reordered matrix T, again in
Schur canonical form, with the selected eigenvalues in the
leading diagonal blocks.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix which reorders T; the
leading M columns of Q form an orthonormal basis for the
specified invariant subspace.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
The real and imaginary parts, respectively, of the reordered
eigenvalues of T. The eigenvalues are stored in the same
order as on the diagonal of T, with WR(i) = T(i,i) and, if
T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
WI(i+1) = -WI(i). Note that if a complex eigenvalue is
sufficiently ill-conditioned, then its value may differ
significantly from its value before reordering.
M (output) INTEGER
The dimension of the specified invariant subspace.
0 < = M <= N.
S (output) REAL
If JOB = 'E' or 'B', S is a lower bound on the reciprocal
condition number for the selected cluster of eigenvalues.
S cannot underestimate the true reciprocal condition number
by more than a factor of sqrt(N). If M = 0 or N, S = 1.
If JOB = 'N' or 'V', S is not referenced.
SEP (output) REAL
If JOB = 'V' or 'B', SEP is the estimated reciprocal
condition number of the specified invariant subspace. If
M = 0 or N, SEP = norm(T).
If JOB = 'N' or 'E', SEP is not referenced.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOB = 'N', LWORK >= max(1,N);
if JOB = 'E', LWORK >= max(1,M*(N-M));
if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOB = 'N' or 'E', LIWORK >= 1;
if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: reordering of T failed because some eigenvalues are too
close to separate (the problem is very ill-conditioned);
T may have been partially reordered, and WR and WI
contain the eigenvalues in the same order as in T; S and
SEP (if requested) are set to zero.
Further Details
===============
STRSEN first collects the selected eigenvalues by computing an
orthogonal transformation Z to move them to the top left corner of T.
In other words, the selected eigenvalues are the eigenvalues of T11
in:
Z'*T*Z = ( T11 T12 ) n1
( 0 T22 ) n2
n1 n2
where N = n1+n2 and Z' means the transpose of Z. The first n1 columns
of Z span the specified invariant subspace of T.
If T has been obtained from the real Schur factorization of a matrix
A = Q*T*Q', then the reordered real Schur factorization of A is given
by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span
the corresponding invariant subspace of A.
The reciprocal condition number of the average of the eigenvalues of
T11 may be returned in S. S lies between 0 (very badly conditioned)
and 1 (very well conditioned). It is computed as follows. First we
compute R so that
P = ( I R ) n1
( 0 0 ) n2
n1 n2
is the projector on the invariant subspace associated with T11.
R is the solution of the Sylvester equation:
T11*R - R*T22 = T12.
Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
the two-norm of M. Then S is computed as the lower bound
(1 + F-norm(R)**2)**(-1/2)
on the reciprocal of 2-norm(P), the true reciprocal condition number.
S cannot underestimate 1 / 2-norm(P) by more than a factor of
sqrt(N).
An approximate error bound for the computed average of the
eigenvalues of T11 is
EPS * norm(T) / S
where EPS is the machine precision.
The reciprocal condition number of the right invariant subspace
spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
SEP is defined as the separation of T11 and T22:
sep( T11, T22 ) = sigma-min( C )
where sigma-min(C) is the smallest singular value of the
n1*n2-by-n1*n2 matrix
C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
I(m) is an m by m identity matrix, and kprod denotes the Kronecker
product. We estimate sigma-min(C) by the reciprocal of an estimate of
the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
When SEP is small, small changes in T can cause large changes in
the invariant subspace. An approximate bound on the maximum angular
error in the computed right invariant subspace is
EPS * norm(T) / SEP
=====================================================================
.. Parameters ..
public void strsen(String job, String compq, boolean[] select, int _select_offset, int n, float[] t, int _t_offset, int ldt, float[] q, int _q_offset, int ldq, float[] wr, int _wr_offset, float[] wi, int _wi_offset, org.netlib.util.intW m, org.netlib.util.floatW s, org.netlib.util.floatW sep, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRSEN reorders the real Schur factorization of a real matrix
A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
the leading diagonal blocks of the upper quasi-triangular matrix T,
and the leading columns of Q form an orthonormal basis of the
corresponding right invariant subspace.
Optionally the routine computes the reciprocal condition numbers of
the cluster of eigenvalues and/or the invariant subspace.
T must be in Schur canonical form (as returned by SHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elemnts equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for the
cluster of eigenvalues (S) or the invariant subspace (SEP):
= 'N': none;
= 'E': for eigenvalues only (S);
= 'V': for invariant subspace only (SEP);
= 'B': for both eigenvalues and invariant subspace (S and
SEP).
COMPQ (input) CHARACTER*1
= 'V': update the matrix Q of Schur vectors;
= 'N': do not update Q.
SELECT (input) LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster. To
select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) REAL array, dimension (LDT,N)
On entry, the upper quasi-triangular matrix T, in Schur
canonical form.
On exit, T is overwritten by the reordered matrix T, again in
Schur canonical form, with the selected eigenvalues in the
leading diagonal blocks.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
Q (input/output) REAL array, dimension (LDQ,N)
On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
On exit, if COMPQ = 'V', Q has been postmultiplied by the
orthogonal transformation matrix which reorders T; the
leading M columns of Q form an orthonormal basis for the
specified invariant subspace.
If COMPQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q.
LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
The real and imaginary parts, respectively, of the reordered
eigenvalues of T. The eigenvalues are stored in the same
order as on the diagonal of T, with WR(i) = T(i,i) and, if
T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
WI(i+1) = -WI(i). Note that if a complex eigenvalue is
sufficiently ill-conditioned, then its value may differ
significantly from its value before reordering.
M (output) INTEGER
The dimension of the specified invariant subspace.
0 < = M <= N.
S (output) REAL
If JOB = 'E' or 'B', S is a lower bound on the reciprocal
condition number for the selected cluster of eigenvalues.
S cannot underestimate the true reciprocal condition number
by more than a factor of sqrt(N). If M = 0 or N, S = 1.
If JOB = 'N' or 'V', S is not referenced.
SEP (output) REAL
If JOB = 'V' or 'B', SEP is the estimated reciprocal
condition number of the specified invariant subspace. If
M = 0 or N, SEP = norm(T).
If JOB = 'N' or 'E', SEP is not referenced.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If JOB = 'N', LWORK >= max(1,N);
if JOB = 'E', LWORK >= max(1,M*(N-M));
if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOB = 'N' or 'E', LIWORK >= 1;
if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: reordering of T failed because some eigenvalues are too
close to separate (the problem is very ill-conditioned);
T may have been partially reordered, and WR and WI
contain the eigenvalues in the same order as in T; S and
SEP (if requested) are set to zero.
Further Details
===============
STRSEN first collects the selected eigenvalues by computing an
orthogonal transformation Z to move them to the top left corner of T.
In other words, the selected eigenvalues are the eigenvalues of T11
in:
Z'*T*Z = ( T11 T12 ) n1
( 0 T22 ) n2
n1 n2
where N = n1+n2 and Z' means the transpose of Z. The first n1 columns
of Z span the specified invariant subspace of T.
If T has been obtained from the real Schur factorization of a matrix
A = Q*T*Q', then the reordered real Schur factorization of A is given
by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span
the corresponding invariant subspace of A.
The reciprocal condition number of the average of the eigenvalues of
T11 may be returned in S. S lies between 0 (very badly conditioned)
and 1 (very well conditioned). It is computed as follows. First we
compute R so that
P = ( I R ) n1
( 0 0 ) n2
n1 n2
is the projector on the invariant subspace associated with T11.
R is the solution of the Sylvester equation:
T11*R - R*T22 = T12.
Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
the two-norm of M. Then S is computed as the lower bound
(1 + F-norm(R)**2)**(-1/2)
on the reciprocal of 2-norm(P), the true reciprocal condition number.
S cannot underestimate 1 / 2-norm(P) by more than a factor of
sqrt(N).
An approximate error bound for the computed average of the
eigenvalues of T11 is
EPS * norm(T) / S
where EPS is the machine precision.
The reciprocal condition number of the right invariant subspace
spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
SEP is defined as the separation of T11 and T22:
sep( T11, T22 ) = sigma-min( C )
where sigma-min(C) is the smallest singular value of the
n1*n2-by-n1*n2 matrix
C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
I(m) is an m by m identity matrix, and kprod denotes the Kronecker
product. We estimate sigma-min(C) by the reciprocal of an estimate of
the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
When SEP is small, small changes in T can cause large changes in
the invariant subspace. An approximate bound on the maximum angular
error in the computed right invariant subspace is
EPS * norm(T) / SEP
=====================================================================
.. Parameters ..
public void strsna(String job, String howmny, boolean[] select, int n, float[] t, int ldt, float[] vl, int ldvl, float[] vr, int ldvr, float[] s, float[] sep, int mm, org.netlib.util.intW m, float[] work, int ldwork, int[] iwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRSNA estimates reciprocal condition numbers for specified
eigenvalues and/or right eigenvectors of a real upper
quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
orthogonal).
T must be in Schur canonical form (as returned by SHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (SEP);
= 'B': for both eigenvalues and eigenvectors (S and SEP).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) REAL array, dimension (LDT,N)
The upper quasi-triangular matrix T, in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input) REAL array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
SHSEIN or STREVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
VR (input) REAL array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
SHSEIN or STREVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
S (output) REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), SEP(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
SEP (output) REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of SEP are set to the same value. If
the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', SEP is not referenced.
MM (input) INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.
M (output) INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.
WORK (workspace) REAL array, dimension (LDWORK,N+6)
If JOB = 'E', WORK is not referenced.
LDWORK (input) INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
IWORK (workspace) INTEGER array, dimension (2*(N-1))
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of an eigenvalue lambda is
defined as
S(lambda) = |v'*u| / (norm(u)*norm(v))
where u and v are the right and left eigenvectors of T corresponding
to lambda; v' denotes the conjugate-transpose of v, and norm(u)
denotes the Euclidean norm. These reciprocal condition numbers always
lie between zero (very badly conditioned) and one (very well
conditioned). If n = 1, S(lambda) is defined to be 1.
An approximate error bound for a computed eigenvalue W(i) is given by
EPS * norm(T) / S(i)
where EPS is the machine precision.
The reciprocal of the condition number of the right eigenvector u
corresponding to lambda is defined as follows. Suppose
T = ( lambda c )
( 0 T22 )
Then the reciprocal condition number is
SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
where sigma-min denotes the smallest singular value. We approximate
the smallest singular value by the reciprocal of an estimate of the
one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
defined to be abs(T(1,1)).
An approximate error bound for a computed right eigenvector VR(i)
is given by
EPS * norm(T) / SEP(i)
=====================================================================
.. Parameters ..
public void strsna(String job, String howmny, boolean[] select, int _select_offset, int n, float[] t, int _t_offset, int ldt, float[] vl, int _vl_offset, int ldvl, float[] vr, int _vr_offset, int ldvr, float[] s, int _s_offset, float[] sep, int _sep_offset, int mm, org.netlib.util.intW m, float[] work, int _work_offset, int ldwork, int[] iwork, int _iwork_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRSNA estimates reciprocal condition numbers for specified
eigenvalues and/or right eigenvectors of a real upper
quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
orthogonal).
T must be in Schur canonical form (as returned by SHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (SEP);
= 'B': for both eigenvalues and eigenvectors (S and SEP).
HOWMNY (input) CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) REAL array, dimension (LDT,N)
The upper quasi-triangular matrix T, in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input) REAL array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
SHSEIN or STREVC.
If JOB = 'V', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
VR (input) REAL array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
SHSEIN or STREVC.
If JOB = 'V', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
S (output) REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), SEP(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
SEP (output) REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of SEP are set to the same value. If
the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', SEP is not referenced.
MM (input) INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.
M (output) INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.
WORK (workspace) REAL array, dimension (LDWORK,N+6)
If JOB = 'E', WORK is not referenced.
LDWORK (input) INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
IWORK (workspace) INTEGER array, dimension (2*(N-1))
If JOB = 'E', IWORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The reciprocal of the condition number of an eigenvalue lambda is
defined as
S(lambda) = |v'*u| / (norm(u)*norm(v))
where u and v are the right and left eigenvectors of T corresponding
to lambda; v' denotes the conjugate-transpose of v, and norm(u)
denotes the Euclidean norm. These reciprocal condition numbers always
lie between zero (very badly conditioned) and one (very well
conditioned). If n = 1, S(lambda) is defined to be 1.
An approximate error bound for a computed eigenvalue W(i) is given by
EPS * norm(T) / S(i)
where EPS is the machine precision.
The reciprocal of the condition number of the right eigenvector u
corresponding to lambda is defined as follows. Suppose
T = ( lambda c )
( 0 T22 )
Then the reciprocal condition number is
SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
where sigma-min denotes the smallest singular value. We approximate
the smallest singular value by the reciprocal of an estimate of the
one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
defined to be abs(T(1,1)).
An approximate error bound for a computed right eigenvector VR(i)
is given by
EPS * norm(T) / SEP(i)
=====================================================================
.. Parameters ..
public void strsyl(String trana, String tranb, int isgn, int m, int n, float[] a, int lda, float[] b, int ldb, float[] c, int Ldc, org.netlib.util.floatW scale, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRSYL solves the real Sylvester matrix equation:
op(A)*X + X*op(B) = scale*C or
op(A)*X - X*op(B) = scale*C,
where op(A) = A or A**T, and A and B are both upper quasi-
triangular. A is M-by-M and B is N-by-N; the right hand side C and
the solution X are M-by-N; and scale is an output scale factor, set
<= 1 to avoid overflow in X.
A and B must be in Schur canonical form (as returned by SHSEQR), that
is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
each 2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
TRANA (input) CHARACTER*1
Specifies the option op(A):
= 'N': op(A) = A (No transpose)
= 'T': op(A) = A**T (Transpose)
= 'C': op(A) = A**H (Conjugate transpose = Transpose)
TRANB (input) CHARACTER*1
Specifies the option op(B):
= 'N': op(B) = B (No transpose)
= 'T': op(B) = B**T (Transpose)
= 'C': op(B) = B**H (Conjugate transpose = Transpose)
ISGN (input) INTEGER
Specifies the sign in the equation:
= +1: solve op(A)*X + X*op(B) = scale*C
= -1: solve op(A)*X - X*op(B) = scale*C
M (input) INTEGER
The order of the matrix A, and the number of rows in the
matrices X and C. M >= 0.
N (input) INTEGER
The order of the matrix B, and the number of columns in the
matrices X and C. N >= 0.
A (input) REAL array, dimension (LDA,M)
The upper quasi-triangular matrix A, in Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input) REAL array, dimension (LDB,N)
The upper quasi-triangular matrix B, in Schur canonical form.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N right hand side matrix C.
On exit, C is overwritten by the solution matrix X.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M)
SCALE (output) REAL
The scale factor, scale, set <= 1 to avoid overflow in X.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: A and B have common or very close eigenvalues; perturbed
values were used to solve the equation (but the matrices
A and B are unchanged).
=====================================================================
.. Parameters ..
public void strsyl(String trana, String tranb, int isgn, int m, int n, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float[] c, int _c_offset, int Ldc, org.netlib.util.floatW scale, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRSYL solves the real Sylvester matrix equation:
op(A)*X + X*op(B) = scale*C or
op(A)*X - X*op(B) = scale*C,
where op(A) = A or A**T, and A and B are both upper quasi-
triangular. A is M-by-M and B is N-by-N; the right hand side C and
the solution X are M-by-N; and scale is an output scale factor, set
<= 1 to avoid overflow in X.
A and B must be in Schur canonical form (as returned by SHSEQR), that
is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
each 2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Arguments
=========
TRANA (input) CHARACTER*1
Specifies the option op(A):
= 'N': op(A) = A (No transpose)
= 'T': op(A) = A**T (Transpose)
= 'C': op(A) = A**H (Conjugate transpose = Transpose)
TRANB (input) CHARACTER*1
Specifies the option op(B):
= 'N': op(B) = B (No transpose)
= 'T': op(B) = B**T (Transpose)
= 'C': op(B) = B**H (Conjugate transpose = Transpose)
ISGN (input) INTEGER
Specifies the sign in the equation:
= +1: solve op(A)*X + X*op(B) = scale*C
= -1: solve op(A)*X - X*op(B) = scale*C
M (input) INTEGER
The order of the matrix A, and the number of rows in the
matrices X and C. M >= 0.
N (input) INTEGER
The order of the matrix B, and the number of columns in the
matrices X and C. N >= 0.
A (input) REAL array, dimension (LDA,M)
The upper quasi-triangular matrix A, in Schur canonical form.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input) REAL array, dimension (LDB,N)
The upper quasi-triangular matrix B, in Schur canonical form.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N right hand side matrix C.
On exit, C is overwritten by the solution matrix X.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M)
SCALE (output) REAL
The scale factor, scale, set <= 1 to avoid overflow in X.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: A and B have common or very close eigenvalues; perturbed
values were used to solve the equation (but the matrices
A and B are unchanged).
=====================================================================
.. Parameters ..
public void strti2(String uplo, String diag, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRTI2 computes the inverse of a real upper or lower triangular
matrix.
This is the Level 2 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading n by n upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void strti2(String uplo, String diag, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRTI2 computes the inverse of a real upper or lower triangular
matrix.
This is the Level 2 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading n by n upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
=====================================================================
.. Parameters ..
public void strtri(String uplo, String diag, int n, float[] a, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRTRI computes the inverse of a real upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
=====================================================================
.. Parameters ..
public void strtri(String uplo, String diag, int n, float[] a, int _a_offset, int lda, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRTRI computes the inverse of a real upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
=====================================================================
.. Parameters ..
public void strtrs(String uplo, String trans, String diag, int n, int nrhs, float[] a, int lda, float[] b, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions
X have not been computed.
=====================================================================
.. Parameters ..
public void strtrs(String uplo, String trans, String diag, int n, int nrhs, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STRTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions
X have not been computed.
=====================================================================
.. Parameters ..
public void stzrqf(int m, int n, float[] a, int lda, float[] tau, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine STZRZF.
STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) REAL array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (M)
The scalar factors of the elementary reflectors.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void stzrqf(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
This routine is deprecated and has been replaced by routine STZRZF.
STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) REAL array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (M)
The scalar factors of the elementary reflectors.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void stzrzf(int m, int n, float[] a, int lda, float[] tau, float[] work, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) REAL array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public void stzrzf(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, org.netlib.util.intW info)
LAPACK
..
Purpose
=======
STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= M.
A (input/output) REAL array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
orthogonal matrix Z as a product of M elementary reflectors.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (M)
The scalar factors of the elementary reflectors.
WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
=====================================================================
.. Parameters ..
public double dlamch(String cmach)
LAPACK
..
Purpose
=======
DLAMCH determines double precision machine parameters.
Arguments
=========
CMACH (input) CHARACTER*1
Specifies the value to be returned by DLAMCH:
= 'E' or 'e', DLAMCH := eps
= 'S' or 's , DLAMCH := sfmin
= 'B' or 'b', DLAMCH := base
= 'P' or 'p', DLAMCH := eps*base
= 'N' or 'n', DLAMCH := t
= 'R' or 'r', DLAMCH := rnd
= 'M' or 'm', DLAMCH := emin
= 'U' or 'u', DLAMCH := rmin
= 'L' or 'l', DLAMCH := emax
= 'O' or 'o', DLAMCH := rmax
where
eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base**(emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base**emax)*(1-eps)
=====================================================================
.. Parameters ..
public void dlamc1(org.netlib.util.intW beta, org.netlib.util.intW t, org.netlib.util.booleanW rnd, org.netlib.util.booleanW ieee1)
LAPACK
..
Purpose
=======
DLAMC1 determines the machine parameters given by BETA, T, RND, and
IEEE1.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
IEEE1 (output) LOGICAL
Specifies whether rounding appears to be done in the IEEE
'round to nearest' style.
Further Details
===============
The routine is based on the routine ENVRON by Malcolm and
incorporates suggestions by Gentleman and Marovich. See
Malcolm M. A. (1972) Algorithms to reveal properties of
floating-point arithmetic. Comms. of the ACM, 15, 949-951.
Gentleman W. M. and Marovich S. B. (1974) More on algorithms
that reveal properties of floating point arithmetic units.
Comms. of the ACM, 17, 276-277.
=====================================================================
.. Local Scalars ..
public void dlamc2(org.netlib.util.intW beta, org.netlib.util.intW t, org.netlib.util.booleanW rnd, org.netlib.util.doubleW eps, org.netlib.util.intW emin, org.netlib.util.doubleW rmin, org.netlib.util.intW emax, org.netlib.util.doubleW rmax)
LAPACK
..
Purpose
=======
DLAMC2 determines the machine parameters specified in its argument
list.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
EPS (output) DOUBLE PRECISION
The smallest positive number such that
fl( 1.0 - EPS ) .LT. 1.0,
where fl denotes the computed value.
EMIN (output) INTEGER
The minimum exponent before (gradual) underflow occurs.
RMIN (output) DOUBLE PRECISION
The smallest normalized number for the machine, given by
BASE**( EMIN - 1 ), where BASE is the floating point value
of BETA.
EMAX (output) INTEGER
The maximum exponent before overflow occurs.
RMAX (output) DOUBLE PRECISION
The largest positive number for the machine, given by
BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
value of BETA.
Further Details
===============
The computation of EPS is based on a routine PARANOIA by
W. Kahan of the University of California at Berkeley.
=====================================================================
.. Local Scalars ..
public double dlamc3(double a, double b)
LAPACK
..
Purpose
=======
DLAMC3 is intended to force A and B to be stored prior to doing
the addition of A and B , for use in situations where optimizers
might hold one of these in a register.
Arguments
=========
A (input) DOUBLE PRECISION
B (input) DOUBLE PRECISION
The values A and B.
=====================================================================
.. Executable Statements ..
public void dlamc4(org.netlib.util.intW emin, double start, int base)
LAPACK
..
Purpose
=======
DLAMC4 is a service routine for DLAMC2.
Arguments
=========
EMIN (output) INTEGER
The minimum exponent before (gradual) underflow, computed by
setting A = START and dividing by BASE until the previous A
can not be recovered.
START (input) DOUBLE PRECISION
The starting point for determining EMIN.
BASE (input) INTEGER
The base of the machine.
=====================================================================
.. Local Scalars ..
public void dlamc5(int beta, int p, int emin, boolean ieee, org.netlib.util.intW emax, org.netlib.util.doubleW rmax)
LAPACK
..
Purpose
=======
DLAMC5 attempts to compute RMAX, the largest machine floating-point
number, without overflow. It assumes that EMAX + abs(EMIN) sum
approximately to a power of 2. It will fail on machines where this
assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
EMAX = 28718). It will also fail if the value supplied for EMIN is
too large (i.e. too close to zero), probably with overflow.
Arguments
=========
BETA (input) INTEGER
The base of floating-point arithmetic.
P (input) INTEGER
The number of base BETA digits in the mantissa of a
floating-point value.
EMIN (input) INTEGER
The minimum exponent before (gradual) underflow.
IEEE (input) LOGICAL
A logical flag specifying whether or not the arithmetic
system is thought to comply with the IEEE standard.
EMAX (output) INTEGER
The largest exponent before overflow
RMAX (output) DOUBLE PRECISION
The largest machine floating-point number.
=====================================================================
.. Parameters ..
public double dsecnd()
LAPACK
-- LAPACK auxiliary routine (version 3.1.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
February 2007
Purpose
=======
DSECND returns the user time for a process in seconds.
This version gets the time from the EXTERNAL system function ETIME.
=====================================================================
.. Local Scalars ..
public boolean lsame(String ca, String cb)
LAPACK
..
Purpose
=======
LSAME returns .TRUE. if CA is the same letter as CB regardless of
case.
Arguments
=========
CA (input) CHARACTER*1
CB (input) CHARACTER*1
CA and CB specify the single characters to be compared.
=====================================================================
.. Intrinsic Functions ..
public float second()
LAPACK
-- LAPACK auxiliary routine (version 3.1.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
February 2007
Purpose
=======
SECOND returns the user time for a process in seconds.
This version gets the time from the EXTERNAL system function ETIME.
=====================================================================
.. Local Scalars ..
public float slamch(String cmach)
LAPACK
..
Purpose
=======
SLAMCH determines single precision machine parameters.
Arguments
=========
CMACH (input) CHARACTER*1
Specifies the value to be returned by SLAMCH:
= 'E' or 'e', SLAMCH := eps
= 'S' or 's , SLAMCH := sfmin
= 'B' or 'b', SLAMCH := base
= 'P' or 'p', SLAMCH := eps*base
= 'N' or 'n', SLAMCH := t
= 'R' or 'r', SLAMCH := rnd
= 'M' or 'm', SLAMCH := emin
= 'U' or 'u', SLAMCH := rmin
= 'L' or 'l', SLAMCH := emax
= 'O' or 'o', SLAMCH := rmax
where
eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base**(emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base**emax)*(1-eps)
=====================================================================
.. Parameters ..
public void slamc1(org.netlib.util.intW beta, org.netlib.util.intW t, org.netlib.util.booleanW rnd, org.netlib.util.booleanW ieee1)
LAPACK
..
Purpose
=======
SLAMC1 determines the machine parameters given by BETA, T, RND, and
IEEE1.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
IEEE1 (output) LOGICAL
Specifies whether rounding appears to be done in the IEEE
'round to nearest' style.
Further Details
===============
The routine is based on the routine ENVRON by Malcolm and
incorporates suggestions by Gentleman and Marovich. See
Malcolm M. A. (1972) Algorithms to reveal properties of
floating-point arithmetic. Comms. of the ACM, 15, 949-951.
Gentleman W. M. and Marovich S. B. (1974) More on algorithms
that reveal properties of floating point arithmetic units.
Comms. of the ACM, 17, 276-277.
=====================================================================
.. Local Scalars ..
public void slamc2(org.netlib.util.intW beta, org.netlib.util.intW t, org.netlib.util.booleanW rnd, org.netlib.util.floatW eps, org.netlib.util.intW emin, org.netlib.util.floatW rmin, org.netlib.util.intW emax, org.netlib.util.floatW rmax)
LAPACK
..
Purpose
=======
SLAMC2 determines the machine parameters specified in its argument
list.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
EPS (output) REAL
The smallest positive number such that
fl( 1.0 - EPS ) .LT. 1.0,
where fl denotes the computed value.
EMIN (output) INTEGER
The minimum exponent before (gradual) underflow occurs.
RMIN (output) REAL
The smallest normalized number for the machine, given by
BASE**( EMIN - 1 ), where BASE is the floating point value
of BETA.
EMAX (output) INTEGER
The maximum exponent before overflow occurs.
RMAX (output) REAL
The largest positive number for the machine, given by
BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
value of BETA.
Further Details
===============
The computation of EPS is based on a routine PARANOIA by
W. Kahan of the University of California at Berkeley.
=====================================================================
.. Local Scalars ..
public float slamc3(float a, float b)
LAPACK
..
Purpose
=======
SLAMC3 is intended to force A and B to be stored prior to doing
the addition of A and B , for use in situations where optimizers
might hold one of these in a register.
Arguments
=========
A (input) REAL
B (input) REAL
The values A and B.
=====================================================================
.. Executable Statements ..
public void slamc4(org.netlib.util.intW emin, float start, int base)
LAPACK
..
Purpose
=======
SLAMC4 is a service routine for SLAMC2.
Arguments
=========
EMIN (output) INTEGER
The minimum exponent before (gradual) underflow, computed by
setting A = START and dividing by BASE until the previous A
can not be recovered.
START (input) REAL
The starting point for determining EMIN.
BASE (input) INTEGER
The base of the machine.
=====================================================================
.. Local Scalars ..
public void slamc5(int beta, int p, int emin, boolean ieee, org.netlib.util.intW emax, org.netlib.util.floatW rmax)
LAPACK
..
Purpose
=======
SLAMC5 attempts to compute RMAX, the largest machine floating-point
number, without overflow. It assumes that EMAX + abs(EMIN) sum
approximately to a power of 2. It will fail on machines where this
assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
EMAX = 28718). It will also fail if the value supplied for EMIN is
too large (i.e. too close to zero), probably with overflow.
Arguments
=========
BETA (input) INTEGER
The base of floating-point arithmetic.
P (input) INTEGER
The number of base BETA digits in the mantissa of a
floating-point value.
EMIN (input) INTEGER
The minimum exponent before (gradual) underflow.
IEEE (input) LOGICAL
A logical flag specifying whether or not the arithmetic
system is thought to comply with the IEEE standard.
EMAX (output) INTEGER
The largest exponent before overflow
RMAX (output) REAL
The largest machine floating-point number.
=====================================================================
.. Parameters ..
Copyright © 2013. All Rights Reserved.