
ktrain: A Low-Code Library for Augmented Machine Learning

ktrain: A Low-Code Library for
Augmented Machine Learning

Arun S. Maiya amaiya@ida.org

Institute for Defense Analyses

Alexandria, VA, USA

Abstract

We present ktrain, a low-code Python library that makes machine learning more ac-
cessible and easier to apply. As a wrapper to TensorFlow and many other libraries
(e.g., transformers, scikit-learn, stellargraph), it is designed to make sophis-
ticated, state-of-the-art machine learning models simple to build, train, inspect, and apply
by both beginners and experienced practitioners. Featuring modules that support text
data (e.g., text classification, sequence tagging, open-domain question-answering), vision
data (e.g., image classification), graph data (e.g., node classification, link prediction), and
tabular data, ktrain presents a simple unified interface enabling one to quickly solve a
wide range of tasks in as little as three or four “commands” or lines of code.

1. Introduction

Machine learning workflows can be quite involved and challenging for newcomers to master.
Consider the following steps.

1) Model-Building. The training data may reside in a number of different formats from
files in folders to CSVs or pandas dataframes. If the data is large, it must be wrapped in a
generator. Data must be preprocessed in specific ways depending on different factors such as
the language of training texts (e.g., English vs. Chinese) and whether or not transfer learn-
ing is being employed. Learning rates, learning rate schedules, number of epochs, weight
decay, and many other hyperparameters and settings must be selected or implemented.
2) Model-Inspection. Once trained, a model is inspected in terms of both its successes
and failures. This may include classification reports on validation performance, easily iden-
tifying examples that the model is getting the most wrong, and Explainable AI methods to
understand why mistakes were made.
3) Model-Application. Both the model and the potentially complex set of steps re-
quired to preprocess raw data into the format expected by the model must be easily saved,
transferred to, and executed on new data in a production environment.

ktrain is a Python library for machine learning with the goal of presenting a simple,
unified interface to easily perform the above steps regardless of the type of data (i.e., text vs.
images vs. graphs). Moreover, each of the three steps above can be accomplished in as little
as three or four lines of code, which we refer to as “low-code” machine learning. ktrain can
be used with any machine learning model implemented in TensorFlow Keras (tf.keras).
In addition, ktrain currently includes out-of-the-box support for the following data types
and tasks:
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Text Data:

• Text Classification: auto-categorize documents across different dimensions

• Text Regression: predict numerical values (e.g., prices) from textual descriptions

• Sequence Tagging: extract sequences of words that represent some concept of interest
(e.g., Named Entity Recognition or NER)

• Unsupervised Topic Modeling: discover latent themes buried in large document sets

• Document Similarity with One-Class Learning: find and score new documents
based on thematic similarity to a set of seed documents

• Document Recommendation: recommend or return documents that are semantically-
related to given text (i.e., semantic search)

• Text Summarization: generate short summaries of long documents

• Open-Domain Question-Answering: submit questions to a large text corpus and
receive exact answers

Vision Data:

• Image Classification: auto-categorize images across various dimensions

• Image Regression: predict numerical values (e.g., age of person) from photos

Graph Data:

• Node Classification: auto-categorize nodes in a graph (e.g., social media accounts)

• Link Prediction: predict missing links in social networks (e.g., friend suggestions)

Tabular Data: classification and regression (and causal inference) on data stored in tables

Many of the tasks above allow users to either choose from a menu of state-of-the-art
models or employ a custom model. With respect to text classification, for example, available
models include cutting-edge Transformer models like BERT (Devlin et al., 2018; Wolf et al.,
2019) in addition to fast models such as fastText (Joulin et al., 2016) and NBSVM (Wang
and Manning, 2012) that are amenable to being trained on a standard laptop CPU. Other
features include a learning-rate-finder to estimate an optimal learning rate (Smith, 2018),
easy-to-access learning rate schedules like the 1cycle policy (Smith, 2018) and Stochastic
Gradient Descent with Restarts (SGDR) (Loshchilov and Hutter, 2016), state-of-the-art
optimizers like AdamW (Loshchilov and Hutter, 2017), ability to easily inspect classifica-
tions through Explainable AI and other methods, and a simple prediction API for use in
deployment scenarios. ktrain is also bundled with pretrained, ready-to-use NER models
for English, Chinese, and Russian. ktrain is open-source, free to use under a permissive
Apache license, and available on GitHub at: https://github.com/amaiya/ktrain.
In the next section, we compare and contrast our work with AutoML approaches.

2. Augmented ML

Automatic machine learning (AutoML) solutions typically place a strong emphasis on au-
tomating subsets of the model-building process such as architecture search and model selec-
tion (He et al., 2019). By contrast, ktrain places less emphasis on this aspect of automation
and instead focuses on either partially or fully automating other aspects of the machine
learning (ML) workflow. For these reasons, ktrain is less of a traditional AutoML platform
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and more of what might be called a “low-code” ML platform. Through automation or
semi-automation, ktrain facilitates the full machine learning workflow from curating and
preprocessing inputs (i.e., ground-truth-labeled training data) to training, tuning, trou-
bleshooting, and applying models. In this way, ktrain is well-suited for domain experts
who may have less experience with machine learning and software coding. Where possible,
ktrain automates (either algorithmically or through setting well-performing defaults), but
also allows users to make choices that best fit their unique application requirements. In this
way, ktrain uses automation to augment and complement human engineers rather than
attempting to entirely replace them. In doing so, the strengths of both are better exploited.
Following inspiration from a blog post1 by Rachel Thomas of fast.ai (Howard and Gug-
ger, 2020), we refer to this as Augmented Machine Learning or AugML. For the remainder
of this short paper, we will provide code examples to demonstrate ease-of-use.

3. Building Models

Supervised learning tasks in ktrain follow a standard, easy-to-use template, which we now
describe.

STEP 1: Load and Preprocess Data. This step involves loading data from different
sources and preprocessing it in a way that is expected by the model. In the case of text,
this may involve language-specific preprocessing (e.g., tokenization). In the case of images,
this may involve auto-normalizing pixel values in a way that a chosen model expects. In
the case of graphs, this may involve compiling attributes of nodes and links in the network
(Data61, 2018). All preprocessing methods in ktrain return a Preprocessor instance
that encapsulates all the preprocessing steps for a particular task, which can be employed
when using the model to make predictions on new, unseen data.

STEP 2: Create Model. Users can create and customize their own model using tf.keras
or select a pre-canned model with well-chosen defaults (e.g., pretrained BERT text clas-
sifier (Devlin et al., 2018), models for sequence tagging (Lample et al., 2016), pretrained
Residual Networks (He et al., 2015) for image classification). In the latter case, the model
is automatically configured by inspecting the data (e.g., number of classes, multilabel vs.
multi-classification). At this stage, both the model and the datasets are wrapped in a
ktrain.Learner instance, which is an abstraction to facilitate training.

STEP 3: Estimate Learning Rate. Users can employ the use of a learning rate range
test (Smith, 2018) to estimate the optimal learning rate given the model and data. Some
models like BERT have default learning rates that work well, so this step is optional.

STEP 4: Train Model. The ktrain package allows one to easily try different learn-
ing rate schedules. For instance, the fit_onecycle method employs a 1cycle policy
(Smith, 2018). The autofit method employs a triangular learning rate schedule (Smith,
2018) with automatic early stopping and reduction of maximal learning rate upon plateau.
Thus, specifying the number of epochs is optional in autofit. The fit method, when

1. https://www.fast.ai/2018/07/16/auto-ml2/
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supplied with the cycle_len parameter, decays the learning rate each cycle using cosine
annealing. Users can easily experiment with what works best for a particular problem.

To illustrate ease of use, we provide fully-complete examples for two different tasks.

3.1 Example: Text Classification

The first example is Chinese text classification. More specifically, we train a Chinese-
language sentiment-analyzer on a dataset of hotel reviews.2

Fine-Tuning a BERT Text Classifier for Chinese:

import ktrain
from ktrain text as txt
# STEP 1 : load and prep roce s s data
trn , val , preproc = txt . texts_from_folder ( 'ChnSentiCorp ' , maxlen=75,

preprocess_mode= ' bert ' )
# STEP 2 : load model and wrap in Learner
model = txt . text_classifier ( ' bert ' , trn , preproc=preproc )
learner = ktrain . get_learner (model , train_data=trn , val_data=val )
# STEP 3 : e s t imate l e a rn i ng ra t e
learner . lr_find (show_plot=True )
# STEP 4 : t r a i n model
learner . fit_onecycle (2e−5, 4)

Notice here that there is nothing special we need to do to support Chinese versus other
languages like English. The language and character encoding are auto-detected and pro-
cessing proceeds accordingly. Moreover, models are configured automatically through data
inspection. For instance, the data is automatically analyzed to determine the number of cat-
egories, whether or not categories are mutually-exclusive or not, and if targets are numerical
or categorical. The model is then auto-configured appropriately.

3.2 Example: Image Classification

In the next example, we build an image classifier on the Dogs vs. Cats dataset3 with a
standard ResNet50 model pretrained on ImageNet. As you can see in the code example
below, the steps are very similar to the previous text classification example despite the task
being completely different.

Fine-Tuning a Pretrained ResNet50 Image Classifier:

import ktrain
from ktrain import vision as vis
# STEP 1 : load and prep roce s s data
data_aug = vis . get_data_aug (horizontal_flip=True )
(trn , val , preproc )=vis . images_from_folder (datadir= ' data/ dogscat s ' ,data_aug=data_aug ,

train_test_names=[ ' t r a i n ' , ' va l i d ' ] )
# STEP 2 : load model and wrap in Learner
model = vis . image_classifier ( ' p r e t r a i n ed r e s n e t 5 0 ' , trn , val , freeze_layers=15)
learner = ktrain . get_learner (model=model , train_data=trn , val_data=val , batch_size=64)
# STEP 3 : f i nd good l e a rn i ng ra t e
learner . lr_find (show_plot=True )
# STEP 4 : t r a i n
learner . autofit (1e−4)

2. https://github.com/Tony607/Chinese_sentiment_analysis
3. https://www.kaggle.com/c/dogs-vs-cats
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A unified interface to different and disparate machine learning tasks reduces cognitive
load and allows users to focus on more important tasks that may require domain expertise
or are less amenable to automation.

4. Evaluating and Applying Models

Once a model is trained, we would like to evaluate how well it learned what it was supposed
to learn. ktrain provides a simple interface to perform various analyses to this end. To
compute detailed validation (or test) metrics, the evaluate method can be invoked. We
can also easily identify the examples that the model got the most wrong by viewing exam-
ples with the highest validation (or test) loss using view_top_losses:

Evaluating and Inspecting Models:

# compute va l i d a t i o n metr ics , con fu s i on matr ices , and show repor t
learner . evaluate ( )
# example output o f eva luate ( uses v a l i d a t i o n s e t by d e f au l t )
# p r e c i s i o n r e c a l l f1−s c o r e
#
# a l t . atheism 0.92 0 .93 0 .93
# comp . g raph i c s 0 .97 0 .97 0 .97
# s c i .med 0 .97 0 .95 0 .96
#soc . r e l i g i o n . c h r i s t i a n 0 .96 0 .96 0 .96
#
# accuracy 0 .96
# macro avg 0 .95 0 .96 0 .95
# weighted avg 0 .96 0 .96 0 .96

# view va l i d a t i o n examples with h i ghe s t l o s s
learner . view_top_losses ( )

ktrain also features a simple and easy-to-use prediction API to make predictions on new and
unseen examples. A Predictor instance encapsulates both the model (i.e., the underlying
tf.keras model) and the preprocessing steps (i.e., a Preprocessor instance) required
to transform raw data into the format expected by the model. The Predictor instance
can easily be saved and reloaded for deployments to production environments.

Making Predictions on New Data:

predictor = ktrain . get_predictor (learner . model , preproc ) # c r ea t e p r ed i c t o r
predictor . predict (raw_data ) # make p r e d i c t i o n s
predictor . save ( ' /tmp/mypredictor ' ) # save p r ed i c t o r
predictor = ktrain . load_predictor ( ' /tmp/mypredictor ' ) # re l oad p r ed i c t o r

For a subset of tasks like text classification and image classification, Predictor in-
stances expose an explain method that will attempt to explain how a model arrived at
a decision for a particular example: predictor.explain(raw_data). This can shed
light on why certain decisions were successfully or unsuccessfully made by the model. Ex-
plainable AI in ktrain is powered by libraries such as shap (Lundberg and Lee, 2017) and
eli5 with lime (Ribeiro et al., 2016).

5. Non-Supervised ML Tasks

All the examples covered thus far involve supervised machine learning. Other tasks such as
training unsupervised topic models to discover latent themes in document sets or using pre-
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trained NER models follow slightly different steps than those described previously. Despite
involving a different pipeline, these non-supervised tasks also employ a low-code API and
can be implemented in as little as three lines of code. To illustrate this, we provide a code
example for a fully-functional, end-to-end, open-domain question-answering system
using the well-studied 20 Newsgroups dataset.4 We will first load the dataset into a Python
list called docs using scikit-learn (Pedregosa et al., 2011) (see Appendix A). The
basic idea here is to use the document set as a knowledge base that can be issued natural
language questions to receive exact answers. In this case, we would like to issue questions
about the subject matter buried in the 20 Newsgroups dataset and receive exact answers.
To accomplish this, the following steps are performed:

1. Index documents to a search engine.

2. Use the search index to locate documents that contain words in the question.

3. Extract paragraphs from these documents for use as contexts and use a BERT model
pretrained on the SQuAD dataset to parse out candidate answers.

4. Sort and prune candidate answers by confidence scores and returns results.

This entire workflow to build an end-to-end, open-domain question-answering (QA) sys-
tem can be implemented with a surprisingly minimal amount of code with ktrain:

Building an End-to-End Open-Domain QA System in ktrain

# bui ld open−domain QA system
from ktrain import text
text . SimpleQA . initialize_index ( ' /tmp/myindex ' )
text . SimpleQA . index_from_list (docs , ' /tmp/myindex ' , commit_every=len (docs ) )
qa = text . SimpleQA ( ' /tmp/myindex ' )

# ask a ques t i on
qa . ask ( 'When did the Cas s in i probe launch ? ' ) # re tu rn s ”October o f 1997”

As shown above, upon building the QA system in only 3 lines of code, we can submit
natural language questions and receive exact answers. In the example shown, we use the ask
method to submit the question, “When did the Cassini probe launch?”. The candidate
answer with the highest confidence score returned by the ask method is the correct answer
of “October of 1997” (see Appendix B). Note that, for document sets that are too large
to fit into a Python list, one can index documents using index_from_folder instead of
index_from_list. See Appendix C for some additional low-code ML examples.

6. Conclusion

This work presented ktrain, a low-code platform for machine learning. ktrain currently
includes out-of-the-box support for training models on text, vision, and graph data.
As a simple wrapper to TensorFlow Keras, it is also sufficiently flexible for use with custom
models and data formats, as well. Inspired by other low-code (and no-code) open-source ML
libraries such as fastai (Howard and Gugger, 2020) and ludwig (Molino et al., 2019),
ktrain is intended to help further democratize machine learning by enabling beginners and
domain experts with minimal programming or data science experience to build sophisticated

4. http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
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machine learning models with minimal coding. It is also a useful toolbox for experienced
practitioners needing to rapidly prototype deep learning solutions.
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Appendix A. Loading the 20 Newsgroups Dataset

For the open-domain question-answering code example, we load the 20 Newsgroups Dataset
using scikit-learn.

# load 20newsgroups datase t i n to a Python l i s t
from sklearn . datasets import fetch_20newsgroups
remove = ( ' headers ' , ' f o o t e r s ' , ' quotes ' )
newsgroups_train = fetch_20newsgroups (subset= ' t r a i n ' , remove=remove )
newsgroups_test = fetch_20newsgroups (subset= ' t e s t ' , remove=remove )
docs = newsgroups_train . data + newsgroups_test . data

Appendix B. Open-Domain Question-Answering Example

We include a screenshot of a Jupyter notebook showing results from the question-answering
API in ktrain.

We use the qa.display method to format and display answers within a Jupyter note-
book. The top candidate answer indicates that the Cassini space probe was launched in
October of 1997, which is correct. The specific answer within its context is highlighted in
red under the column Context. Since we used index_from_list to index documents,
the last column (populated from the reference field in the returned answers dictio-
naries) shows the list index associated with the newsgroup posting containing the answer.
This reference field can be used to peruse the entire document containing the answer
with print(docs[59]). If using index_from_folder to index documents, then the
reference field will be populated with the relative file path of the document instead.
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Appendix C. Additional Low-Code ML Examples

In this final section, we include some additional low-code examples of both supervised and
non-supervised machine learning tasks in ktrain to further illustrate ease-of-use.

Named Entity Recognition with BioBERT embeddings:

import ktrain
from ktrain import text as txt
x_train= [ [ ' IL−2 ' , ' r e spon s i v ene s s ' , ' r e qu i r e s ' , . . . ] , . . . ]
y_train=[[ 'B−pro t e in ' , 'O ' , 'O ' , . . . ] , . . . ]
(trn , val , preproc ) = txt . entities_from_array (x_train , y_train )
model = txt . sequence_tagger ( ' bi lstm−bert ' , preproc ,

bert_model= 'monologg/ b i obe r t v1 . 1 pubmed ' )
learner = ktrain . get_learner (model , train_data=trn , val_data=val , batch_size=128)
learner . fit ( 0 . 0 1 , 1 , cycle_len=5) # decays l r with co s i n e annea l ing

Node Classification with Graph Neural Networks:

import ktrain
from ktrain import graph as gr
# STEP 1 : load and prep roce s s data
(trn , val , preproc ) = gr . graph_nodes_from_csv ( ' cora . content ' , ' cora . c i t e s ' ,sep= ' \ t ' )
# STEP 2 : load model and wrap in Learner
model = gr . graph_node_classifier ( ' graphsage ' , trn )
learner = ktrain . get_learner (model , train_data=trn , val_data=val batch_size=64)
# STEP 3 : e s t imate l e a rn i ng ra t e
learner . lr_find (max_epochs=50, show_plot=True )
# STEP 4 : t r a i n model
learner . autofit ( 0 . 0 1 ) # t r i a n gu l a r l r s chedu le with ea r l y stopping

Document Recommendation Engine: (no labeled training examples required)

import ktrain
tm = ktrain . text . get_topic_model (docs , n_features=10000)
tm . build (docs , threshold=0.25) # documents to s emant i ca l l y meaningful v e c t o r s
tm . train_recommender ( ) # t r a i n s Nearest Neighbors model
rawtext = ”Elon Musk l e ad s Space Explorat ion Techno log ie s ( SpaceX ) , where he . . . ”
tm . recommend (text=rawtext , n=5) # top 5 sugge s t i on s based on thematic s im i l a r i t y

Zero-Shot Topic Classification: (no labeled training examples required)

from ktrain import text
zsl = text . ZeroShotClassifier ( )
topic_strings=[ ' p o l i t i c s ' , ' e l e c t i o n s ' , ' spo r t s ' , ' f i lm s ' , ' t e l e v i s i o n ' ]
doc = ” I am unhappy with d e c i s i o n s o f government and w i l l vote in 2020 . ”
zsl . predict (doc , topic_strings=topic_strings , include_labels=True )
# output :
# [ ( ' p o l i t i c s ' , 0 . 9829) , ' e l e c t i o n s ' , 0 . 9881) ,
# ( ' spo r t s ' , 0 . 0003) , ( ' f i lm s ' , 0 . 0008) , ( ' t e l e v i s i o n ' , 0 . 0004) ]
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