Module ktrain.vision.models

Expand source code
from ..imports import *
from .. import utils as U
from .wrn import create_wide_residual_network




PRETRAINED_RESNET50 = 'pretrained_resnet50'
PRETRAINED_MOBILENET = 'pretrained_mobilenet'
PRETRAINED_INCEPTION = 'pretrained_inception'
RESNET50 = 'resnet50'
MOBILENET = 'mobilenet'
INCEPTION = 'inception'
CNN = 'default_cnn'
WRN22 = 'wrn22'
PRETRAINED_MODELS = [PRETRAINED_RESNET50, PRETRAINED_MOBILENET, PRETRAINED_INCEPTION]
PREDEFINED_MODELS = PRETRAINED_MODELS + [RESNET50, MOBILENET, INCEPTION]
IMAGE_CLASSIFIERS = {
                     PRETRAINED_RESNET50: '50-layer Residual Network (pretrained on ImageNet)',
                     RESNET50:  '50-layer Resididual Network (randomly initialized)',
                     PRETRAINED_MOBILENET: 'MobileNet Neural Network (pretrained on ImageNet)',
                     MOBILENET:  'MobileNet Neural Network (randomly initialized)',
                     PRETRAINED_INCEPTION: 'Inception Version 3  (pretrained on ImageNet)',
                     INCEPTION:  'Inception Version 3 (randomly initialized)',
                     WRN22: '22-layer Wide Residual Network (randomly initialized)',
                     CNN : 'a default LeNet-like Convolutional Neural Network'}

def print_image_classifiers():
    for k,v in IMAGE_CLASSIFIERS.items():
        print("%s: %s" % (k,v))


def print_image_regression_models():
    for k,v in IMAGE_CLASSIFIERS.items():
        print("%s: %s" % (k,v))


def pretrained_datagen(data, name):
    if not data or not U.is_iter(data): return
    idg = data.image_data_generator
    if name == PRETRAINED_RESNET50:
        idg.preprocessing_function = pre_resnet50
        idg.ktrain_preproc = 'resnet50'
        idg.rescale=None
        idg.featurewise_center=False
        idg.samplewise_center=False
        idg.featurewise_std_normalization=False
        idg.samplewise_std_normalization=False
        idg.zca_whitening = False
    elif name == PRETRAINED_MOBILENET:
        idg.preprocessing_function = pre_mobilenet
        idg.ktrain_preproc = 'mobilenet'
        idg.rescale=None
        idg.featurewise_center=False
        idg.samplewise_center=False
        idg.featurewise_std_normalization=False
        idg.samplewise_std_normalization=False
        idg.zca_whitening = False
    elif name == PRETRAINED_INCEPTION:
        idg.preprocessing_function = pre_inception
        idg.ktrain_preproc = 'inception'
        idg.rescale=None
        idg.featurewise_center=False
        idg.samplewise_center=False
        idg.featurewise_std_normalization=False
        idg.samplewise_std_normalization=False
        idg.zca_whitening = False

    return



def image_classifier(name,
                     train_data,
                     val_data=None,
                     freeze_layers=None, 
                     metrics=['accuracy'],
                     optimizer_name = U.DEFAULT_OPT,
                     multilabel=None,
                     pt_fc = [],
                     pt_ps = [],
                     verbose=1):

    """
    ```
    Returns a pre-trained ResNet50 model ready to be fine-tuned
    for multi-class classification. By default, all layers are
    trainable/unfrozen.


    Args:
        name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
        train_data (image.Iterator): train data. Note: Will be manipulated here!
        val_data (image.Iterator): validation data.  Note: Will be manipulated here!
        freeze_layers (int):  number of beginning layers to make untrainable
                            If None, then all layers except new Dense layers
                            will be frozen/untrainable.
        metrics (list):  metrics to use
        optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
        multilabel(bool):  If True, model will be build to support
                           multilabel classificaiton (labels are not mutually exclusive).
                           If False, binary/multiclassification model will be returned.
                           If None, multilabel status will be inferred from data.
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        pt_ps (list of floats): dropout probabilities to use before
                                each extra Dense layer in pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        verbose (int):         verbosity
    Return:
        model(Model):  the compiled model ready to be fine-tuned/trained

    ```
    """
    return image_model(name, train_data, val_data=val_data, freeze_layers=freeze_layers,
                       metrics=metrics, optimizer_name=optimizer_name, multilabel=multilabel,
                       pt_fc=pt_fc, pt_ps=pt_ps, verbose=verbose)




def image_regression_model(name,
                          train_data,
                          val_data=None,
                          freeze_layers=None, 
                          metrics=['mae'],
                          optimizer_name = U.DEFAULT_OPT,
                          pt_fc = [],
                          pt_ps = [],
                          verbose=1):

    """
    ```
    Returns a pre-trained ResNet50 model ready to be fine-tuned
    for multi-class classification. By default, all layers are
    trainable/unfrozen.


    Args:
        name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
        train_data (image.Iterator): train data. Note: Will be manipulated here!
        val_data (image.Iterator): validation data.  Note: Will be manipulated here!
        freeze_layers (int):  number of beginning layers to make untrainable
                            If None, then all layers except new Dense layers
                            will be frozen/untrainable.
        metrics (list):  metrics to use
        optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
        multilabel(bool):  If True, model will be build to support
                           multilabel classificaiton (labels are not mutually exclusive).
                           If False, binary/multiclassification model will be returned.
                           If None, multilabel status will be inferred from data.
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        pt_ps (list of floats): dropout probabilities to use before
                                each extra Dense layer in pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        verbose (int):         verbosity
    Return:
        model(Model):  the compiled model ready to be fine-tuned/trained

    ```   
    """


    return image_model(name, train_data, val_data=val_data, freeze_layers=freeze_layers,
                       metrics=metrics, optimizer_name=optimizer_name, multilabel=False,
                       pt_fc=pt_fc, pt_ps=pt_ps, verbose=verbose)



def image_model( name,
                 train_data,
                 val_data=None,
                 freeze_layers=None, 
                 metrics=['accuracy'],
                 optimizer_name = U.DEFAULT_OPT,
                 multilabel=None,
                 pt_fc = [],
                 pt_ps = [],
                 verbose=1):

    """
    ```
    Returns a pre-trained ResNet50 model ready to be fine-tuned
    for multi-class classification or regression. By default, all layers are
    trainable/unfrozen.


    Args:
        name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
        train_data (image.Iterator): train data. Note: Will be manipulated here!
        val_data (image.Iterator): validation data.  Note: Will be manipulated here!
        freeze_layers (int):  number of beginning layers to make untrainable
                            If None, then all layers except new Dense layers
                            will be frozen/untrainable.
        metrics (list):  metrics to use
        optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
        multilabel(bool):  If True, model will be build to support
                           multilabel classificaiton (labels are not mutually exclusive).
                           If False, binary/multiclassification model will be returned.
                           If None, multilabel status will be inferred from data.
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        pt_ps (list of floats): dropout probabilities to use before
                                each extra Dense layer in pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        verbose (int):         verbosity
    Return:
        model(Model):  the compiled model ready to be fine-tuned/trained

    ```   
    """
    # arg check
    U.data_arg_check(train_data=train_data, train_required=True)
    if name not in list(IMAGE_CLASSIFIERS.keys()):
        raise ValueError('Unknown or unsupported model: %s' % (name))


    if not U.is_iter(train_data):
        raise ValueError('train_data must be an Keras iterator ' +\
                         '(e.g., DirectoryIterator, DataframIterator, '+ \
                         'NumpyArrayIterator) - please use the ktrain.data.images_from* ' +\
                         'functions')



    # set pretrained flag
    pretrained = True if name in PRETRAINED_MODELS else False

    # adjust freeze_layers with warning
    if not pretrained and freeze_layers is not None and freeze_layers > 0:
        warnings.warn('Only pretrained models (e.g., pretrained_resnet50) support freeze_layers. ' +\
                      'Setting freeze_layers to 0. Use one of the following models if' +\
                      'desiring a model pretrained on ImageNet: %s' % (PRETRAINED_MODELS))
        freeze_layers = 0

    if pretrained and val_data is None:
        raise ValueError('val_data is required if selecting a pretrained model, '+\
                         'as normalization scheme will be altered.')

    # adjust the data augmentation based on model selected
    if pretrained:
        pretrained_datagen(train_data, name)
        pretrained_datagen(val_data, name)
        U.vprint('The normalization scheme has been changed for use with a %s' % (name) +\
                ' model. If you decide to use a different model, please reload your' +\
                ' dataset with a ktrain.vision.data.images_from* function.\n', verbose=verbose)

    # determine if multilabel
    if multilabel is None:
        multilabel = U.is_multilabel(train_data)
    is_regression=False
    if not multilabel and len(train_data[0][-1].shape) == 1: is_regression=True

    # set loss and acivations
    loss_func = 'categorical_crossentropy'
    activation = 'softmax'
    if multilabel:
        loss_func = 'binary_crossentropy'
        activation = 'sigmoid'
    elif is_regression:
        loss_func = 'mse'
        activation = None
        if metrics == ['accuracy']: metrics = ['mae']

    U.vprint("Is Multi-Label? %s" % (multilabel), verbose=verbose)
    U.vprint("Is Regression? %s" % (is_regression), verbose=verbose)


    # determine number of classes and shape
    num_classes = 1 if is_regression else U.nclasses_from_data(train_data)
    input_shape = U.shape_from_data(train_data)

    #------------
    # build model
    #------------
    model = build_visionmodel(name,
                              num_classes,
                              input_shape=input_shape,
                              freeze_layers=freeze_layers,
                              activation=activation,
                              pt_fc = pt_fc,
                              pt_ps = pt_ps)
    model.compile(optimizer=optimizer_name, loss=loss_func, metrics=metrics)
    return model


def build_visionmodel(name,
                      num_classes, 
                      input_shape=(224,224,3),
                      freeze_layers=2, 
                      activation='softmax',
                      pt_fc=[],
                      pt_ps = []):

    if name in PREDEFINED_MODELS:
        model = build_predefined(name, num_classes,
                                  input_shape=input_shape,
                                  freeze_layers=freeze_layers,
                                  activation=activation,
                                  pt_fc = pt_fc,
                                  pt_ps = pt_ps)
    elif name == CNN:
        model = build_cnn(num_classes,
                           input_shape=input_shape,
                           activation=activation)
    elif name == WRN22:
        model = create_wide_residual_network(input_shape, nb_classes=num_classes, 
                                             N=3, k=6, dropout=0.00,
                                             activation=activation, verbose=0)
    else:
        raise ValueError('Unknown model: %s' % (name))
    U.vprint('%s model created.' % (name))

    return model



def build_cnn(num_classes, 
              input_shape=(28,28,1),
              activation='softmax'):
    model = Sequential()
    model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',
                     kernel_initializer='he_normal',input_shape=input_shape))
    model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',
                     kernel_initializer='he_normal'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Dropout(0.20))
    model.add(Conv2D(64, (3, 3), activation='relu',padding='same',
                      kernel_initializer='he_normal'))
    model.add(Conv2D(64, (3, 3), activation='relu',padding='same',
                     kernel_initializer='he_normal'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Conv2D(128, (3, 3), activation='relu',padding='same',
                     kernel_initializer='he_normal'))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.25))
    model.add(Dense(num_classes, activation=activation))
    return model


def build_predefined(
                   name,
                   num_classes, 
                   input_shape=(224,224,3),
                   freeze_layers=None, 
                   activation='softmax',
                   pt_fc=[],
                   pt_ps=[]):
    """
    ```
    Builds a pre-defined architecture supported in Keras.

    Args:
        name (str): one of ktrain.vision.model.PREDEFINED_MODELS
        num_classes (int): # of classes
        input_shape (tuple): the input shape including channels
        freeze_layers (int): number of early layers to freeze.
                             Only takes effect if name in PRETRAINED_MODELS.
                             If None and name in PRETRAINED_MODELS,
                             all layers except the "custom head" 
                             fully-connected (Dense) layers are frozen.
        activation (str):    name of the Keras activation to use in final layer
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model
        pt_ps (list of floats): dropout probabilities to use before
                                      each extra Dense layer in pretrained model
    ```
    """

    # default parameters
    include_top = False
    input_tensor = None
    dropout = 0.5 # final dropout

    # setup pretrained
    weights = 'imagenet' if name in PRETRAINED_MODELS else None

    # setup the pretrained network
    if name in [RESNET50, PRETRAINED_RESNET50]:
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            net = ResNet50(include_top=include_top, 
                           weights=weights,
                           input_tensor=input_tensor,
                           input_shape = input_shape)
    elif name in [MOBILENET, PRETRAINED_MOBILENET]:
        net = MobileNet(include_top=include_top, 
                        weights=weights,
                        input_tensor=input_tensor,
                        input_shape = input_shape)
    elif name in [INCEPTION, PRETRAINED_INCEPTION]:
        net = InceptionV3(include_top=include_top, 
                          weights=weights,
                          input_tensor=input_tensor,
                           input_shape = input_shape)
    else:
        raise ValueError('Unsupported model: %s' % (name))


    if freeze_layers is None:
        for layer in net.layers:
            layer.trainable = False

    x = net.output
    x = Flatten()(x)

    # xtra FCs in pretrained model
    if name in PRETRAINED_MODELS:
        if len(pt_fc) != len(pt_ps):
            raise ValueError('size off xtra_fc must match size of fc_dropouts')
        for i, fc in enumerate(pt_fc):
            p = pt_ps[i]
            fc_name = "fc%s" % (i)
            if p is not None:
                x = Dropout(p)(x)
            x = Dense(fc, activation='relu', 
                      kernel_initializer='he_normal', name=fc_name)(x)


    # final FC
    x = Dropout(dropout)(x)
    output_layer = Dense(num_classes, activation=activation, name=activation)(x)
    model = Model(inputs=net.input, outputs=output_layer)

    if freeze_layers is not None:
        # set certain earlier layers as non-trainable
        for layer in model.layers[:freeze_layers]:
            layer.trainable = False
        for layer in model.layers[freeze_layers:]:
            layer.trainable = True

    # set optimizer, loss, and metrics and return model
    return model

Functions

def build_cnn(num_classes, input_shape=(28, 28, 1), activation='softmax')
Expand source code
def build_cnn(num_classes, 
              input_shape=(28,28,1),
              activation='softmax'):
    model = Sequential()
    model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',
                     kernel_initializer='he_normal',input_shape=input_shape))
    model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',
                     kernel_initializer='he_normal'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Dropout(0.20))
    model.add(Conv2D(64, (3, 3), activation='relu',padding='same',
                      kernel_initializer='he_normal'))
    model.add(Conv2D(64, (3, 3), activation='relu',padding='same',
                     kernel_initializer='he_normal'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Conv2D(128, (3, 3), activation='relu',padding='same',
                     kernel_initializer='he_normal'))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.25))
    model.add(Dense(num_classes, activation=activation))
    return model
def build_predefined(name, num_classes, input_shape=(224, 224, 3), freeze_layers=None, activation='softmax', pt_fc=[], pt_ps=[])
Builds a pre-defined architecture supported in Keras.

Args:
    name (str): one of ktrain.vision.model.PREDEFINED_MODELS
    num_classes (int): # of classes
    input_shape (tuple): the input shape including channels
    freeze_layers (int): number of early layers to freeze.
                         Only takes effect if name in PRETRAINED_MODELS.
                         If None and name in PRETRAINED_MODELS,
                         all layers except the "custom head" 
                         fully-connected (Dense) layers are frozen.
    activation (str):    name of the Keras activation to use in final layer
    pt_fc (list of ints): number of hidden units in extra Dense layers
                            before final Dense layer of pretrained model
    pt_ps (list of floats): dropout probabilities to use before
                                  each extra Dense layer in pretrained model
Expand source code
def build_predefined(
                   name,
                   num_classes, 
                   input_shape=(224,224,3),
                   freeze_layers=None, 
                   activation='softmax',
                   pt_fc=[],
                   pt_ps=[]):
    """
    ```
    Builds a pre-defined architecture supported in Keras.

    Args:
        name (str): one of ktrain.vision.model.PREDEFINED_MODELS
        num_classes (int): # of classes
        input_shape (tuple): the input shape including channels
        freeze_layers (int): number of early layers to freeze.
                             Only takes effect if name in PRETRAINED_MODELS.
                             If None and name in PRETRAINED_MODELS,
                             all layers except the "custom head" 
                             fully-connected (Dense) layers are frozen.
        activation (str):    name of the Keras activation to use in final layer
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model
        pt_ps (list of floats): dropout probabilities to use before
                                      each extra Dense layer in pretrained model
    ```
    """

    # default parameters
    include_top = False
    input_tensor = None
    dropout = 0.5 # final dropout

    # setup pretrained
    weights = 'imagenet' if name in PRETRAINED_MODELS else None

    # setup the pretrained network
    if name in [RESNET50, PRETRAINED_RESNET50]:
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            net = ResNet50(include_top=include_top, 
                           weights=weights,
                           input_tensor=input_tensor,
                           input_shape = input_shape)
    elif name in [MOBILENET, PRETRAINED_MOBILENET]:
        net = MobileNet(include_top=include_top, 
                        weights=weights,
                        input_tensor=input_tensor,
                        input_shape = input_shape)
    elif name in [INCEPTION, PRETRAINED_INCEPTION]:
        net = InceptionV3(include_top=include_top, 
                          weights=weights,
                          input_tensor=input_tensor,
                           input_shape = input_shape)
    else:
        raise ValueError('Unsupported model: %s' % (name))


    if freeze_layers is None:
        for layer in net.layers:
            layer.trainable = False

    x = net.output
    x = Flatten()(x)

    # xtra FCs in pretrained model
    if name in PRETRAINED_MODELS:
        if len(pt_fc) != len(pt_ps):
            raise ValueError('size off xtra_fc must match size of fc_dropouts')
        for i, fc in enumerate(pt_fc):
            p = pt_ps[i]
            fc_name = "fc%s" % (i)
            if p is not None:
                x = Dropout(p)(x)
            x = Dense(fc, activation='relu', 
                      kernel_initializer='he_normal', name=fc_name)(x)


    # final FC
    x = Dropout(dropout)(x)
    output_layer = Dense(num_classes, activation=activation, name=activation)(x)
    model = Model(inputs=net.input, outputs=output_layer)

    if freeze_layers is not None:
        # set certain earlier layers as non-trainable
        for layer in model.layers[:freeze_layers]:
            layer.trainable = False
        for layer in model.layers[freeze_layers:]:
            layer.trainable = True

    # set optimizer, loss, and metrics and return model
    return model
def build_visionmodel(name, num_classes, input_shape=(224, 224, 3), freeze_layers=2, activation='softmax', pt_fc=[], pt_ps=[])
Expand source code
def build_visionmodel(name,
                      num_classes, 
                      input_shape=(224,224,3),
                      freeze_layers=2, 
                      activation='softmax',
                      pt_fc=[],
                      pt_ps = []):

    if name in PREDEFINED_MODELS:
        model = build_predefined(name, num_classes,
                                  input_shape=input_shape,
                                  freeze_layers=freeze_layers,
                                  activation=activation,
                                  pt_fc = pt_fc,
                                  pt_ps = pt_ps)
    elif name == CNN:
        model = build_cnn(num_classes,
                           input_shape=input_shape,
                           activation=activation)
    elif name == WRN22:
        model = create_wide_residual_network(input_shape, nb_classes=num_classes, 
                                             N=3, k=6, dropout=0.00,
                                             activation=activation, verbose=0)
    else:
        raise ValueError('Unknown model: %s' % (name))
    U.vprint('%s model created.' % (name))

    return model
def image_classifier(name, train_data, val_data=None, freeze_layers=None, metrics=['accuracy'], optimizer_name='adam', multilabel=None, pt_fc=[], pt_ps=[], verbose=1)
Returns a pre-trained ResNet50 model ready to be fine-tuned
for multi-class classification. By default, all layers are
trainable/unfrozen.


Args:
    name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
    train_data (image.Iterator): train data. Note: Will be manipulated here!
    val_data (image.Iterator): validation data.  Note: Will be manipulated here!
    freeze_layers (int):  number of beginning layers to make untrainable
                        If None, then all layers except new Dense layers
                        will be frozen/untrainable.
    metrics (list):  metrics to use
    optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
    multilabel(bool):  If True, model will be build to support
                       multilabel classificaiton (labels are not mutually exclusive).
                       If False, binary/multiclassification model will be returned.
                       If None, multilabel status will be inferred from data.
    pt_fc (list of ints): number of hidden units in extra Dense layers
                            before final Dense layer of pretrained model.
                            Only takes effect if name in PRETRAINED_MODELS
    pt_ps (list of floats): dropout probabilities to use before
                            each extra Dense layer in pretrained model.
                            Only takes effect if name in PRETRAINED_MODELS
    verbose (int):         verbosity
Return:
    model(Model):  the compiled model ready to be fine-tuned/trained

Expand source code
def image_classifier(name,
                     train_data,
                     val_data=None,
                     freeze_layers=None, 
                     metrics=['accuracy'],
                     optimizer_name = U.DEFAULT_OPT,
                     multilabel=None,
                     pt_fc = [],
                     pt_ps = [],
                     verbose=1):

    """
    ```
    Returns a pre-trained ResNet50 model ready to be fine-tuned
    for multi-class classification. By default, all layers are
    trainable/unfrozen.


    Args:
        name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
        train_data (image.Iterator): train data. Note: Will be manipulated here!
        val_data (image.Iterator): validation data.  Note: Will be manipulated here!
        freeze_layers (int):  number of beginning layers to make untrainable
                            If None, then all layers except new Dense layers
                            will be frozen/untrainable.
        metrics (list):  metrics to use
        optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
        multilabel(bool):  If True, model will be build to support
                           multilabel classificaiton (labels are not mutually exclusive).
                           If False, binary/multiclassification model will be returned.
                           If None, multilabel status will be inferred from data.
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        pt_ps (list of floats): dropout probabilities to use before
                                each extra Dense layer in pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        verbose (int):         verbosity
    Return:
        model(Model):  the compiled model ready to be fine-tuned/trained

    ```
    """
    return image_model(name, train_data, val_data=val_data, freeze_layers=freeze_layers,
                       metrics=metrics, optimizer_name=optimizer_name, multilabel=multilabel,
                       pt_fc=pt_fc, pt_ps=pt_ps, verbose=verbose)
def image_model(name, train_data, val_data=None, freeze_layers=None, metrics=['accuracy'], optimizer_name='adam', multilabel=None, pt_fc=[], pt_ps=[], verbose=1)
Returns a pre-trained ResNet50 model ready to be fine-tuned
for multi-class classification or regression. By default, all layers are
trainable/unfrozen.


Args:
    name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
    train_data (image.Iterator): train data. Note: Will be manipulated here!
    val_data (image.Iterator): validation data.  Note: Will be manipulated here!
    freeze_layers (int):  number of beginning layers to make untrainable
                        If None, then all layers except new Dense layers
                        will be frozen/untrainable.
    metrics (list):  metrics to use
    optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
    multilabel(bool):  If True, model will be build to support
                       multilabel classificaiton (labels are not mutually exclusive).
                       If False, binary/multiclassification model will be returned.
                       If None, multilabel status will be inferred from data.
    pt_fc (list of ints): number of hidden units in extra Dense layers
                            before final Dense layer of pretrained model.
                            Only takes effect if name in PRETRAINED_MODELS
    pt_ps (list of floats): dropout probabilities to use before
                            each extra Dense layer in pretrained model.
                            Only takes effect if name in PRETRAINED_MODELS
    verbose (int):         verbosity
Return:
    model(Model):  the compiled model ready to be fine-tuned/trained

Expand source code
def image_model( name,
                 train_data,
                 val_data=None,
                 freeze_layers=None, 
                 metrics=['accuracy'],
                 optimizer_name = U.DEFAULT_OPT,
                 multilabel=None,
                 pt_fc = [],
                 pt_ps = [],
                 verbose=1):

    """
    ```
    Returns a pre-trained ResNet50 model ready to be fine-tuned
    for multi-class classification or regression. By default, all layers are
    trainable/unfrozen.


    Args:
        name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
        train_data (image.Iterator): train data. Note: Will be manipulated here!
        val_data (image.Iterator): validation data.  Note: Will be manipulated here!
        freeze_layers (int):  number of beginning layers to make untrainable
                            If None, then all layers except new Dense layers
                            will be frozen/untrainable.
        metrics (list):  metrics to use
        optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
        multilabel(bool):  If True, model will be build to support
                           multilabel classificaiton (labels are not mutually exclusive).
                           If False, binary/multiclassification model will be returned.
                           If None, multilabel status will be inferred from data.
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        pt_ps (list of floats): dropout probabilities to use before
                                each extra Dense layer in pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        verbose (int):         verbosity
    Return:
        model(Model):  the compiled model ready to be fine-tuned/trained

    ```   
    """
    # arg check
    U.data_arg_check(train_data=train_data, train_required=True)
    if name not in list(IMAGE_CLASSIFIERS.keys()):
        raise ValueError('Unknown or unsupported model: %s' % (name))


    if not U.is_iter(train_data):
        raise ValueError('train_data must be an Keras iterator ' +\
                         '(e.g., DirectoryIterator, DataframIterator, '+ \
                         'NumpyArrayIterator) - please use the ktrain.data.images_from* ' +\
                         'functions')



    # set pretrained flag
    pretrained = True if name in PRETRAINED_MODELS else False

    # adjust freeze_layers with warning
    if not pretrained and freeze_layers is not None and freeze_layers > 0:
        warnings.warn('Only pretrained models (e.g., pretrained_resnet50) support freeze_layers. ' +\
                      'Setting freeze_layers to 0. Use one of the following models if' +\
                      'desiring a model pretrained on ImageNet: %s' % (PRETRAINED_MODELS))
        freeze_layers = 0

    if pretrained and val_data is None:
        raise ValueError('val_data is required if selecting a pretrained model, '+\
                         'as normalization scheme will be altered.')

    # adjust the data augmentation based on model selected
    if pretrained:
        pretrained_datagen(train_data, name)
        pretrained_datagen(val_data, name)
        U.vprint('The normalization scheme has been changed for use with a %s' % (name) +\
                ' model. If you decide to use a different model, please reload your' +\
                ' dataset with a ktrain.vision.data.images_from* function.\n', verbose=verbose)

    # determine if multilabel
    if multilabel is None:
        multilabel = U.is_multilabel(train_data)
    is_regression=False
    if not multilabel and len(train_data[0][-1].shape) == 1: is_regression=True

    # set loss and acivations
    loss_func = 'categorical_crossentropy'
    activation = 'softmax'
    if multilabel:
        loss_func = 'binary_crossentropy'
        activation = 'sigmoid'
    elif is_regression:
        loss_func = 'mse'
        activation = None
        if metrics == ['accuracy']: metrics = ['mae']

    U.vprint("Is Multi-Label? %s" % (multilabel), verbose=verbose)
    U.vprint("Is Regression? %s" % (is_regression), verbose=verbose)


    # determine number of classes and shape
    num_classes = 1 if is_regression else U.nclasses_from_data(train_data)
    input_shape = U.shape_from_data(train_data)

    #------------
    # build model
    #------------
    model = build_visionmodel(name,
                              num_classes,
                              input_shape=input_shape,
                              freeze_layers=freeze_layers,
                              activation=activation,
                              pt_fc = pt_fc,
                              pt_ps = pt_ps)
    model.compile(optimizer=optimizer_name, loss=loss_func, metrics=metrics)
    return model
def image_regression_model(name, train_data, val_data=None, freeze_layers=None, metrics=['mae'], optimizer_name='adam', pt_fc=[], pt_ps=[], verbose=1)
Returns a pre-trained ResNet50 model ready to be fine-tuned
for multi-class classification. By default, all layers are
trainable/unfrozen.


Args:
    name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
    train_data (image.Iterator): train data. Note: Will be manipulated here!
    val_data (image.Iterator): validation data.  Note: Will be manipulated here!
    freeze_layers (int):  number of beginning layers to make untrainable
                        If None, then all layers except new Dense layers
                        will be frozen/untrainable.
    metrics (list):  metrics to use
    optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
    multilabel(bool):  If True, model will be build to support
                       multilabel classificaiton (labels are not mutually exclusive).
                       If False, binary/multiclassification model will be returned.
                       If None, multilabel status will be inferred from data.
    pt_fc (list of ints): number of hidden units in extra Dense layers
                            before final Dense layer of pretrained model.
                            Only takes effect if name in PRETRAINED_MODELS
    pt_ps (list of floats): dropout probabilities to use before
                            each extra Dense layer in pretrained model.
                            Only takes effect if name in PRETRAINED_MODELS
    verbose (int):         verbosity
Return:
    model(Model):  the compiled model ready to be fine-tuned/trained

Expand source code
def image_regression_model(name,
                          train_data,
                          val_data=None,
                          freeze_layers=None, 
                          metrics=['mae'],
                          optimizer_name = U.DEFAULT_OPT,
                          pt_fc = [],
                          pt_ps = [],
                          verbose=1):

    """
    ```
    Returns a pre-trained ResNet50 model ready to be fine-tuned
    for multi-class classification. By default, all layers are
    trainable/unfrozen.


    Args:
        name (string): one of {'pretrained_resnet50', 'resnet50', 'default_cnn'}
        train_data (image.Iterator): train data. Note: Will be manipulated here!
        val_data (image.Iterator): validation data.  Note: Will be manipulated here!
        freeze_layers (int):  number of beginning layers to make untrainable
                            If None, then all layers except new Dense layers
                            will be frozen/untrainable.
        metrics (list):  metrics to use
        optimizer_name(str): name of Keras optimizer (e.g., 'adam', 'sgd')
        multilabel(bool):  If True, model will be build to support
                           multilabel classificaiton (labels are not mutually exclusive).
                           If False, binary/multiclassification model will be returned.
                           If None, multilabel status will be inferred from data.
        pt_fc (list of ints): number of hidden units in extra Dense layers
                                before final Dense layer of pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        pt_ps (list of floats): dropout probabilities to use before
                                each extra Dense layer in pretrained model.
                                Only takes effect if name in PRETRAINED_MODELS
        verbose (int):         verbosity
    Return:
        model(Model):  the compiled model ready to be fine-tuned/trained

    ```   
    """


    return image_model(name, train_data, val_data=val_data, freeze_layers=freeze_layers,
                       metrics=metrics, optimizer_name=optimizer_name, multilabel=False,
                       pt_fc=pt_fc, pt_ps=pt_ps, verbose=verbose)
def pretrained_datagen(data, name)
Expand source code
def pretrained_datagen(data, name):
    if not data or not U.is_iter(data): return
    idg = data.image_data_generator
    if name == PRETRAINED_RESNET50:
        idg.preprocessing_function = pre_resnet50
        idg.ktrain_preproc = 'resnet50'
        idg.rescale=None
        idg.featurewise_center=False
        idg.samplewise_center=False
        idg.featurewise_std_normalization=False
        idg.samplewise_std_normalization=False
        idg.zca_whitening = False
    elif name == PRETRAINED_MOBILENET:
        idg.preprocessing_function = pre_mobilenet
        idg.ktrain_preproc = 'mobilenet'
        idg.rescale=None
        idg.featurewise_center=False
        idg.samplewise_center=False
        idg.featurewise_std_normalization=False
        idg.samplewise_std_normalization=False
        idg.zca_whitening = False
    elif name == PRETRAINED_INCEPTION:
        idg.preprocessing_function = pre_inception
        idg.ktrain_preproc = 'inception'
        idg.rescale=None
        idg.featurewise_center=False
        idg.samplewise_center=False
        idg.featurewise_std_normalization=False
        idg.samplewise_std_normalization=False
        idg.zca_whitening = False

    return
def print_image_classifiers()
Expand source code
def print_image_classifiers():
    for k,v in IMAGE_CLASSIFIERS.items():
        print("%s: %s" % (k,v))
def print_image_regression_models()
Expand source code
def print_image_regression_models():
    for k,v in IMAGE_CLASSIFIERS.items():
        print("%s: %s" % (k,v))