Module ktrain.vision.learner
Expand source code
from ..imports import *
from .. import utils as U
from ..core import GenLearner
from .data import show_image
class ImageClassLearner(GenLearner):
"""
```
Main class used to tune and train Keras models for image classification.
Main parameters are:
model (Model): A compiled instance of keras.engine.training.Model
train_data (Iterator): a Iterator instance for training set
val_data (Iterator): A Iterator instance for validation set
```
"""
def __init__(self, model, train_data=None, val_data=None,
batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS,
workers=1, use_multiprocessing=False):
super().__init__(model, train_data=train_data, val_data=val_data,
batch_size=batch_size, eval_batch_size=eval_batch_size,
workers=workers, use_multiprocessing=use_multiprocessing)
return
def view_top_losses(self, n=4, preproc=None, val_data=None):
"""
```
Views observations with top losses in validation set.
Args:
n(int or tuple): a range to select in form of int or tuple
e.g., n=8 is treated as n=(0,8)
preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor.
For some data like text data, a preprocessor
is required to undo the pre-processing
to correctly view raw data.
val_data: optional val_data to use instead of self.val_data
Returns:
list of n tuples where first element is either
filepath or id of validation example and second element
is loss.
```
"""
val = self._check_val(val_data)
# check validation data and arguments
if val_data is not None:
val = val_data
else:
val = self.val_data
if val is None: raise Exception('val_data must be supplied to get_learner or view_top_losses')
# get top losses and associated data
tups = self.top_losses(n=n, val_data=val, preproc=preproc)
# get multilabel status and class names
classes = preproc.get_classes() if preproc is not None else None
# iterate through losses
for tup in tups:
# get data
idx = tup[0]
loss = tup[1]
truth = tup[2]
pred = tup[3]
# Image Classification
if type(val).__name__ in ['DirectoryIterator', 'DataFrameIterator']:
fpath = val.filepaths[tup[0]]
fp = os.path.join(os.path.basename(os.path.dirname(fpath)), os.path.basename(fpath))
plt.figure()
plt.title("%s | loss:%s | true:%s | pred:%s)" % (fp, round(loss,2), truth, pred))
show_image(fpath)
elif type(val).__name__ in ['NumpyArrayIterator']:
obs = val.x[idx]
#if preproc is not None: obs = preproc.undo(obs)
plt.figure()
plt.title("id:%s | loss:%s | true:%s | pred:%s)" % (idx, round(loss,2), truth, pred))
plt.imshow(np.squeeze(obs))
# everything else including text classification
else:
raise Exception('ImageClassLearner.view_top_losses only supports ' +
'DirectoryIterators, DataFrameIterators, and NumpyArrayIterators')
return
Classes
class ImageClassLearner (model, train_data=None, val_data=None, batch_size=32, eval_batch_size=32, workers=1, use_multiprocessing=False)
-
Main class used to tune and train Keras models for image classification. Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set
Expand source code
class ImageClassLearner(GenLearner): """ ``` Main class used to tune and train Keras models for image classification. Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set ``` """ def __init__(self, model, train_data=None, val_data=None, batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS, workers=1, use_multiprocessing=False): super().__init__(model, train_data=train_data, val_data=val_data, batch_size=batch_size, eval_batch_size=eval_batch_size, workers=workers, use_multiprocessing=use_multiprocessing) return def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # check validation data and arguments if val_data is not None: val = val_data else: val = self.val_data if val is None: raise Exception('val_data must be supplied to get_learner or view_top_losses') # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] # Image Classification if type(val).__name__ in ['DirectoryIterator', 'DataFrameIterator']: fpath = val.filepaths[tup[0]] fp = os.path.join(os.path.basename(os.path.dirname(fpath)), os.path.basename(fpath)) plt.figure() plt.title("%s | loss:%s | true:%s | pred:%s)" % (fp, round(loss,2), truth, pred)) show_image(fpath) elif type(val).__name__ in ['NumpyArrayIterator']: obs = val.x[idx] #if preproc is not None: obs = preproc.undo(obs) plt.figure() plt.title("id:%s | loss:%s | true:%s | pred:%s)" % (idx, round(loss,2), truth, pred)) plt.imshow(np.squeeze(obs)) # everything else including text classification else: raise Exception('ImageClassLearner.view_top_losses only supports ' + 'DirectoryIterators, DataFrameIterators, and NumpyArrayIterators') return
Ancestors
- GenLearner
- Learner
- abc.ABC
Methods
def view_top_losses(self, n=4, preproc=None, val_data=None)
-
Views observations with top losses in validation set. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss.
Expand source code
def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # check validation data and arguments if val_data is not None: val = val_data else: val = self.val_data if val is None: raise Exception('val_data must be supplied to get_learner or view_top_losses') # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] # Image Classification if type(val).__name__ in ['DirectoryIterator', 'DataFrameIterator']: fpath = val.filepaths[tup[0]] fp = os.path.join(os.path.basename(os.path.dirname(fpath)), os.path.basename(fpath)) plt.figure() plt.title("%s | loss:%s | true:%s | pred:%s)" % (fp, round(loss,2), truth, pred)) show_image(fpath) elif type(val).__name__ in ['NumpyArrayIterator']: obs = val.x[idx] #if preproc is not None: obs = preproc.undo(obs) plt.figure() plt.title("id:%s | loss:%s | true:%s | pred:%s)" % (idx, round(loss,2), truth, pred)) plt.imshow(np.squeeze(obs)) # everything else including text classification else: raise Exception('ImageClassLearner.view_top_losses only supports ' + 'DirectoryIterators, DataFrameIterators, and NumpyArrayIterators') return
Inherited members