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“ MISSING DATA MANAGEMENT

Incomplete Dataset Imputation Completed data analysis Combining results
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All Features
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1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation,
RandomizedSearch strategy)
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2) TRAIN BEST PERFORMING MODELS

Reduced pipeline with best performing models: Random Forests (Stratified
KFold cross-validation, GridSearch strategy)
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- 3) GLOBAL SURROGATE METHOD
Modelling of Decision Trees on Random Forest model predictions
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3) GLOBAL SURROGATE METHOD

Modelling of Decision Trees on Random Forest model predictions
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- 4) MODEL PERFORMANCE EVALUATION
Accuracy, Precision, Recall, F1 Score, AUC Score, Confusion Matrix
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4) MODEL PERFORMANCE EVALUATION
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Decision Tree

visualisations

True

4 respiratory <0.5 R
gini =0.499
samples =19
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Gather more data!
Improve model

Develop predictive
models of paediatric
COVID-19 severity

Get in touch with
stakeholders that could
make good use of the
generated knowledge
Further projects and
collaborations in the area
(e.g. in talks: develop
predictive models of
adult COVID-19 diagnosis
of a Barcelona GP)
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amascasadesus@gmail.com
GitHub: /amascasadesus
LinkedIn: /amascasadesus




