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Machine Learning classification models to
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2) TRAIN BEST PERFORMING MODELS

Reduced pipeline with best performing models: Random Forests (Stratified

KFold cross-validation, GridSearch strategy)

Best parameters output

Original model

Oversampled model

{'clf__criterion': 'gini', 

'clf__max_depth': 2, 

'clf__min_samples_leaf': 2,

'clf__min_samples_split': 2}

{'clf__criterion': 'entropy', 

'clf__max_depth': 3, 

'clf__min_samples_leaf': 3,

'clf__min_samples_split': 8}
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NEXT STEPS

Gather more data!
Improve model

Develop predictive

models of paediatric

COVID-19 severity

Get in touch with

stakeholders that could

make good use of the

generated knowledge

Further projects and

collaborations in the area

(e.g. in talks: develop
predictive models of

adult COVID-19 diagnosis

of a Barcelona GP)

C NS
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THANKS!

amascasadesus@gmail.com

GitHub: /amascasadesus

LinkedIn: /amascasadesus


