
Druid: Open Source Real-time Analytics at Scale

Fangjin Yang
Metamarkets Group, Inc.

fangjin@metamar-
kets.com

Eric Tschetter
echeddar@gmail.com

Xavier Léauté
Metamarkets Group, Inc.

xavier@metamar-
kets.com

Nishant Bangarwa
Metamarkets Group, Inc.

nishant@metamar-
kets.com

Nelson Ray
ncray86@gmail.com

Gian Merlino
Metamarkets Group, Inc.

gian@metamarkets.com

ABSTRACT
Druid is an open source1 data store built for exploratory
analytics on large data sets. Druid supports fast data ag-
gregation, low latency data ingestion, and arbitrary data
exploration. The system combines a column-oriented stor-
age layout, a distributed, shared-nothing architecture, and
an advanced indexing structure to return queries on billions
of rows in milliseconds. Druid is petabyte scale and is de-
ployed in production at several technology companies.

1. INTRODUCTION
The recent proliferation of internet technology has created

a surge in machine-generated events. Individually, these
events contain minimal useful information and are of low
value. Given the time and resources required to extract
meaning from large collections of events, many companies
were willing to discard this data instead.

A few years ago, Google introduced MapReduce as their
mechanism of leveraging commodity hardware to index the
internet and analyze logs. The Hadoop project soon followed
and was largely patterned after the insights that came out
of the original MapReduce paper. Hadoop has contributed
much to helping companies convert their low-value event
streams into high-value aggregates for a variety of applica-
tions such as business intelligence and A-B testing.

As with a lot of great systems, Hadoop has opened our
eyes to a new space of problems. Specifically, Hadoop ex-
cels at storing and providing access to large amounts of
data, however, it does not make any performance guarantees
around how quickly that data can be accessed. Furthermore,
although Hadoop is a highly available system, performance
degrades under heavy concurrent load. Lastly, while Hadoop
works well for storing data, it is not optimized for ingesting
data and making that data immediately readable.
1https://github.com/metamx/druid

1.1 The Need for Druid
Druid was originally designed to solve problems around in-

gesting and exploring large quantities of transactional events
(log data). This form of timeseries data (OLAP data) is
commonly found in the business intelligence space and the
nature of the data tends to be very append heavy. Events
typically have three distinct components: a timestamp col-
umn indicating when the event occurred, a set of dimension
columns indicating various attributes about the event, and
a set of metric columns containing values (usually numeric)
that can be aggregated. Queries are typically issued for the
sum of some set of metrics, filtered by some set of dimen-
sions, over some span of time.

The Druid project first began out of necessity at Metamar-
kets to power a business intelligence dashboard that allowed
users to arbitrarily explore and visualize event streams. Ex-
isting open source Relational Database Management Sys-
tems, cluster computing frameworks, and NoSQL key/value
stores were unable to provide a low latency data ingestion
and query platform for an interactive dashboard. Queries
needed to return fast enough to allow the data visualizations
in the dashboard to update interactively.

In addition to the query latency needs, the system had
to be multi-tenant and highly available, as the dashboard
is used in a highly concurrent environment. Downtime is
costly and many businesses cannot afford to wait if a system
is unavailable in the face of software upgrades or network
failure. Finally, Metamarkets also wanted to allow users
and alerting systems to be able to make business decisions
in “real-time”. The time from when an event is created to
when that event is queryable determines how fast users and
systems are able to react to potentially catastrophic occur-
rences in their systems.

The problems of data exploration, ingestion, and availabil-
ity span multiple industries. Since Druid was open sourced
in October 2012, it has been deployed as a video, network
monitoring, operations monitoring, and online advertising
analytics platform at multiple companies2.

2. ARCHITECTURE
A Druid cluster consists of different types of nodes and

each node type is designed to perform a specific set of things.
We believe this design separates concerns and simplifies the

2http://druid.io/druid.html

1

https://github.com/metamx/druid
http://druid.io/druid.html


Figure 1: An overview of a Druid cluster and the flow of data through the cluster.

complexity of the system. The different node types operate
fairly independently of each other and there is minimal in-
teraction among them. Hence, intra-cluster communication
failures have minimal impact on data availability. To solve
complex data analysis problems, the different node types
come together to form a fully working system. The compo-
sition of and flow of data in a Druid cluster are shown in
Figure 1. All Druid nodes announce their availability and
the data they are serving over Zookeeper[3].

2.1 Real-time Nodes
Real-time nodes encapsulate the functionality to ingest

and query event streams. Events indexed via these nodes
are immediately available for querying. These nodes are
only concerned with events for some small time range. They
periodically hand off batches of immutable events to other
nodes in the Druid cluster that are specialized in dealing
with batches of immutable events.

Real-time nodes maintain an in-memory index buffer for
all incoming events. These indexes are incrementally pop-
ulated as new events are ingested and the indexes are also
directly queryable. To avoid heap overflow problems, real-
time nodes persist their in-memory indexes to disk either pe-
riodically or after some maximum row limit is reached. This
persist process converts data stored in the in-memory buffer
to a column oriented storage format. Each persisted index is
immutable and real-time nodes load persisted indexes into
off-heap memory such that they can still be queried. On
a periodic basis, each real-time node will schedule a back-
ground task that searches for all locally persisted indexes.
The task merges these indexes together and builds an im-
mutable block of data that contains all the events that have
ingested by a real-time node for some span of time. We
refer to this block of data as a “segment”. During the hand-
off stage, a real-time node uploads this segment to perma-
nent backup storage, typically a distributed file system that
Druid calls “deep storage”.

2.2 Historical Nodes
Historical nodes encapsulate the functionality to load and

serve the immutable blocks of data (segments) created by
real-time nodes. In many real-world workflows, most of the
data loaded in a Druid cluster is immutable and hence his-
torical nodes are typically the main workers of a Druid clus-

ter. Historical nodes follow a shared-nothing architecture
and there is no single point of contention among the nodes.
The nodes have no knowledge of one another and are op-
erationally simple; they only know how to load, drop, and
serve immutable segments.

2.3 Broker Nodes
Broker nodes act as query routers to historical and real-

time nodes. Broker nodes understand what segments are
queryable and where those segments are located. Broker
nodes route incoming queries such that the queries hit the
right historical or real-time nodes. Broker nodes also merge
partial results from historical and real-time nodes before re-
turning a final consolidated result to the caller.

2.4 Coordinator Nodes
Druid coordinator nodes are primarily in charge of data

management and distribution on historical nodes. The co-
ordinator nodes tell historical nodes to load new data, drop
outdated data, replicate data, and move data to load bal-
ance. Coordinator nodes undergo a leader-election process
that determines a single node that runs the coordinator func-
tionality. The remaining coordinator nodes act as redundant
backups.

A coordinator node runs periodically to determine the cur-
rent state of the cluster. It makes decisions by comparing
the expected state of the cluster with the actual state of the
cluster at the time of the run. Coordinator nodes also main-
tain a connection to a MySQL database that contains ad-
ditional operational parameters and configurations. One of
the key pieces of information located in the MySQL database
is a table that contains a list of all segments that should be
served by historical nodes. This table can be updated by
any service that creates segments, such as real-time nodes.

2.5 Query Processing
Data tables in Druid (called data sources) are collections

of timestamped events partitioned into a set of segments,
where each segment is typically 5–10 million rows. Formally,
we define a segment as a collection of rows of data that span
some period in time. Segments represent the fundamental
storage unit in Druid and replication and distribution are
done at a segment level.

2



Timestamp City Revenue
2014-01-01T01:00:00Z San Francisco 25
2014-01-01T01:00:00Z San Francisco 42
2014-01-01T02:00:00Z New York 17
2014-01-01T02:00:00Z New York 170

Table 1: Sample sales data set.

Druid segments are stored in a column orientation. Given
that Druid is best used for aggregating event streams (all
data going into Druid must have a timestamp), the advan-
tages storing aggregate information as columns rather than
rows are well documented [1]. Column storage allows for
more efficient CPU usage as only what is needed is actually
loaded and scanned.

Druid has multiple column types to represent various data
formats. Depending on the column type, different compres-
sion methods are used to reduce the cost of storing a column
in memory and on disk. For example, if an entire column
only contains string values, storing the raw strings is unnec-
essarily costly. String columns can be dictionary encoded
instead. Dictionary encoding is a common method to com-
press data in column stores.

In many real world OLAP workflows, queries are issued for
the aggregated results of some set of metrics where some set
of dimension specifications are met. Consider Table 1. An
example query for this table may ask: “How much revenue
was generated in the first hour of 2014-01-01 in the city
of San Francisco?”. This query is filtering a sales data set
based on a Boolean expression of dimension values. In many
real world data sets, dimension columns contain strings and
metric columns contain numbers. Druid creates additional
lookup indices for string columns such that only those rows
that pertain to a particular query filter are ever scanned.

For each unique city in Table 1, we can form some repre-
sentation indicating in which table rows a particular city is
seen. We can store this information in a binary array where
the array indices represent our rows. If a particular page is
seen in a certain row, that array index is marked as 1. For
example:

San Francisco -> rows [0, 1] -> [1][1][0][0]
New York -> rows [2, 3] -> [0][0][1][1]

San Francisco is seen in rows 0 and 1. This mapping of
column values to row indices forms an inverted index [4]. To
know which rows contain San Francisco or New York, we
can OR together the two arrays.

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1]

This approach of performing Boolean operations on large
bitmap sets is commonly used in search engines. Druid com-
presses each bitmap index using the Concise algorithm [2].
All Boolean operations on top of these Concise sets are done
without decompressing the set.

2.6 Query Capabilities
Druid supports many types of aggregations including dou-

ble sums, long sums, minimums, maximums, and complex
aggregations such as cardinality estimation and approximate
quantile estimation. The results of aggregations can be com-
bined in mathematical expressions to form other aggrega-
tions. Druid supports different query types ranging from
simple aggregates for an interval time, groupBys, and ap-
proximate top-K queries.

0.0

0.5

1.0

Feb 03 Feb 10 Feb 17 Feb 24
time

qu
er

y 
tim

e 
(s

)

datasource

a

b

c

d

e

f

g

h

Mean query latency

Figure 2: Query latencies of production data
sources.

aggregation top−n

0

200

400

600

0

2500

5000

7500

10000

12500

co
un

t_
st

ar
_i

nt
er

va
l

su
m

_a
ll

su
m

_a
ll_

fil
te

r

su
m

_a
ll_

ye
ar

su
m

_p
ric

e

to
p_

10
0_

co
m

m
itd

at
e

to
p_

10
0_

pa
rt

s

to
p_

10
0_

pa
rt

s_
de

ta
ils

to
p_

10
0_

pa
rt

s_
fil

te
r

Query

T
im

e 
(s

ec
on

ds
)

engine

Druid

MySQL

Median Query Time (5 runs) ... 100GB data ... single node

Figure 3: Druid & MySQL benchmarks – 100GB
TPC-H data.

3. PERFORMANCE
Druid runs in production at several organizations, and

to briefly demonstrate its performance, we have chosen to
share some real world numbers for the main production clus-
ter running at Metamarkets in early 2014. For comparison
with other databases we also include results from synthetic
workloads on TPC-H data.

3.1 Query Performance
Query latencies are shown in Figure 2 for a cluster hosting

approximately 10.5TB of data using 1302 processing threads
and 672 total cores (hyperthreaded). There are approxi-
mately 50 billion rows of data in this cluster.

The average queries per minute during this time was ap-
proximately 1000. The number of dimensions the various
data sources vary from 25 to 78 dimensions, and 8 to 35 met-
rics. Across all the various data sources, average query la-
tency is approximately 550 milliseconds, with 90% of queries
returning in less than 1 second, 95% in under 2 seconds, and
99% of queries returning in less than 10 seconds.

Approximately 30% of the queries are standard aggregates
involving different types of metrics and filters, 60% of queries
are ordered group bys over one or more dimensions with ag-
gregates, and 10% of queries are search queries and meta-
data retrieval queries. The number of columns scanned in
aggregate queries roughly follows an exponential distribu-
tion. Queries involving a single column are very frequent,
and queries involving all columns are very rare.

3



0

50,000

100,000

150,000

200,000

250,000

Dec 15 Jan 01 Jan 15 Feb 01 Feb 15 Mar 01
time

ev
en

ts
 / 

s

datasource

s

t

u

v

w

x

y

z

Events per second ... 24h moving average

Figure 4: Combined cluster ingestion rates.

We also present Druid benchmarks on TPC-H data in
Figure ??. Most TPC-H queries do not directly apply to
Druid, so we selected queries more typical of Druid’s work-
load to demonstrate query performance. As a comparison,
we also provide the results of the same queries using MySQL
using the MyISAM engine (InnoDB was slower in our exper-
iments).

We benchmarked Druid’s scan rate at 53,539,211 rows/sec-
ond/core for select count(*) equivalent query over a given
time interval and 36,246,530 rows/second/core for a select
sum(float) type query.

3.2 Data Ingestion Performance
To showcase Druid’s data ingestion latency, we selected

several production datasources of varying dimensions, met-
rics, and event volumes. Druid’s data ingestion latency is
heavily dependent on the complexity of the data set being
ingested. The data complexity is determined by the number
of dimensions in each event, the number of metrics in each
event, and the types of aggregations we want to perform on
those metrics.

For the given datasources, the number of dimensions vary
from 5 to 35, and the number of metrics vary from 2 to
24. The peak ingestion latency we measured in production
was 22914.43 events/second/core on a datasource with 30
dimensions and 19 metrics.

The latency measurements we presented are sufficient to
address the our stated problems of interactivity. We would
prefer the variability in the latencies to be less, which can
be achieved by adding additional hardware, but we have not
chosen to do so because of cost concerns.

4. DEMONSTRATION DETAILS
We would like to do an end-to-end demonstratation of

Druid, from setting up a cluster, ingesting data, structuring
a query, and obtaining results. We would also like to show-
case how to solve real-world data analysis problems with
Druid and demonstrate tools that can be built on top of it,
including interactive data visualizations, approximate algo-
rithms, and machine-learning components. We already use
similar tools in production.

4.1 Setup
Users will be able to set up a local Druid cluster to better

understand the components and architecture of the system.
Druid is designed to run on commodity hardware and Druid
nodes are simply java processes that need to be started up.
The local setup will allow users to ingest data from Twitter’s

public API and query it. We will also provide users access to
an AWS hosted Druid cluster that contains several terabytes
of Twitter data that we have been collecting for over 2 years.
There are over 3 billion tweets in this data set, and new
events are constantly being ingested. We will walk through a
variety of different queries to demonstrate Druid’s arbitrary
data-exploration capabilities.

Finally, we will teach users how to build a simple inter-
active dashboard on top of Druid. The dashboard will use
some of Druid’s more powerful features such as approximate
algorithms for quickly determining the cardinality of sets,
and machine learning algorithms for scientific computing
problems such as anomaly detection. These use cases rep-
resent some of the more interesting problems we use Druid
for in production.

4.2 Goals
We will not only walk users through solving real-world

problems with Druid and different tools that have been
built on top of Druid, but also answer conference-specific
questions such as what are the trending tweets and topics
at VLDB, what netizens are conversing about in the gen-
eral area, and even perform a sentiment analysis of VLDB.
Our goal is to clearly explain why the architecture of Druid
makes it highly optimal for certain types of queries, and the
potential of the system as a real-time analytics platform.

5. ACKNOWLEDGMENTS
Druid could not have been built without the help of many

great people in the community. We want to thank every-
one that has contributed to the Druid codebase for their
invaluable support.

6. ADDITIONAL AUTHORS
Additional authors: Deep Ganguli (Metamarkets Group,

Inc., deep@metamarkets.com), Himadri Singh (Metamarkets
Group, Inc., himadri@metamarkets.com), Igal Levy (Meta-
markets Group, Inc., igal@metamarkets.com)

7. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem.

Column-stores vs. row-stores: How different are they
really? In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages
967–980. ACM, 2008.

[2] A. Colantonio and R. Di Pietro. Concise: Compressed
‘n’composable integer set. Information Processing
Letters, 110(16):644–650, 2010.

[3] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, volume 10, 2010.

[4] A. Tomasic and H. Garcia-Molina. Performance of
inverted indices in shared-nothing distributed text
document information retrieval systems. In Parallel and
Distributed Information Systems, 1993., Proceedings of
the Second International Conference on, pages 8–17.
IEEE, 1993.

4


	Introduction
	The Need for Druid

	Architecture
	Real-time Nodes
	Historical Nodes
	Broker Nodes
	Coordinator Nodes
	Query Processing
	Query Capabilities

	Performance
	Query Performance
	Data Ingestion Performance

	Demonstration Details
	Setup
	Goals

	Acknowledgments
	Additional Authors
	References

