
Contents

Author: Drew Mazurek

Contributors:

• Susan Bramhall
• Howard Gilbert
• Andy Newman
• Andrew Petro

Version: 1.0

Release Date: May 4, 2005

Copyright © 2005, Yale University

1. Introduction

This is the official specification of the CAS 1.0 and 2.0 protocols. It is subject
to change.

1.1. Conventions & Definitions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in RFC
2119[1].

• “Client” refers to the end user and/or the web browser.
• “Server” refers to the Central Authentication Service server.
• “Service” refers to the application the client is trying to access.
• “Back-end service” refers to the application a service is trying to access

on behalf of a client. This can also be referred to as the “target service.”
• <LF> is a bare line feed (ASCII value 0x0a).

2. CAS URIs

CAS is an HTTP[2,3]-based protocol that requires each of its components to be
accessible through specific URIs. This section will discuss each of the URIs.

1

mailto:drew.mazurek@yale.edu
mailto:susan.bramhall@yale.edu
mailto:howard.gilbert@yale.edu
mailto:newman-andy@yale.edu
mailto:andrew.petro@yale.edu

2.1. /login as credential requestor

The /login URI operates with two behaviors: as a credential requestor, and as a
credential acceptor. It responds to credentials by acting as a credential acceptor
and otherwise acts as a credential requestor.

If the client has already established a single sign-on session with CAS, the
web browser presents to CAS a secure cookie containing a string identifying a
ticket-granting ticket. This cookie is called the ticket-granting cookie. If the
ticket-granting cookie keys to a valid ticket-granting ticket, CAS may issue a
service ticket provided all the other conditions in this specification are met. See
Section 3.6 for more information on ticket-granting cookies.

2.1.1. parameters

The following HTTP request parameters may be passed to /login while it is
acting as a credential requestor. They are all case-sensitive, and they all MUST
be handled by /login.

• service [OPTIONAL] - the identifier of the application the client is trying
to access. In almost all cases, this will be the URL of the application.
Note that as an HTTP request parameter, this URL value MUST be
URL-encoded as described in Section 2.2 of RFC 1738[4]. If a service is
not specified and a single sign-on session does not yet exist, CAS SHOULD
request credentials from the user to initiate a single sign-on session. If a
service is not specified and a single sign-on session already exists, CAS
SHOULD display a message notifying the client that it is already logged
in.

• renew [OPTIONAL] - if this parameter is set, single sign-on will be by-
passed. In this case, CAS will require the client to present credentials
regardless of the existence of a single sign-on session with CAS. This pa-
rameter is not compatible with the “gateway” parameter. Services redi-
recting to the /login URI and login form views posting to the /login URI
SHOULD NOT set both the “renew” and “gateway” request parameters.
Behavior is undefined if both are set. It is RECOMMENDED that CAS
implementations ignore the “gateway” parameter if “renew” is set. It
is RECOMMENDED that when the renew parameter is set its value be
“true”.

• gateway [OPTIONAL] - if this parameter is set, CAS will not ask the
client for credentials. If the client has a pre-existing single sign-on session
with CAS, or if a single sign-on session can be established through non-
interactive means (i.e. trust authentication), CAS MAY redirect the client
to the URL specified by the “service” parameter, appending a valid service
ticket. (CAS also MAY interpose an advisory page informing the client
that a CAS authentication has taken place.) If the client does not have

2

a single sign-on session with CAS, and a non-interactive authentication
cannot be established, CAS MUST redirect the client to the URL specified
by the “service” parameter with no “ticket” parameter appended to the
URL. If the “service” parameter is not specified and “gateway” is set,
the behavior of CAS is undefined. It is RECOMMENDED that in this
case, CAS request credentials as if neither parameter was specified. This
parameter is not compatible with the “renew” parameter. Behavior is
undefined if both are set. It is RECOMMENDED that when the gateway
parameter is set its value be “true”.

2.1.2. URL examples of /login

Simple login example:

https://server/cas/login?service=http%3A%2F%2Fwww.service.com

Don’t prompt for username/password:

https://server/cas/login?service=http%3A%2F%2Fwww.service.com&gateway=true

Always prompt for username/password:

https://server/cas/login?service=http%3A%2F%2Fwww.service.com&renew=true

2.1.3. response for username/password authentication

When /login behaves as a credential requestor, the response will vary depending
on the type of credentials it is requesting. In most cases, CAS will respond by
displaying a login screen requesting a username and password. This page MUST
include a form with the parameters, “username”, “password”, and “lt”. The form
MAY also include the parameter, “warn”. If “service” was specified to /login,
“service” MUST also be a parameter of the form, containing the value originally
passed to /login. These parameters are discussed in detail in Section 2.2.1. The
form MUST be submitted through the HTTP POST method to /login which
will then act as a credential acceptor, discussed in Section 2.2.

2.1.4. response for trust authentication

Trust authentication accommodates consideration of arbitrary aspects of the
request as a basis for authentication. The appropriate user experience for trust
authentication will be highly deployer-specific in consideration of local policy
and of the logistics of the particular authentication mechanism implemented.

3

When /login behaves as a credential requestor for trust authentication, its be-
havior will be determined by the type of credentials it will be receiving. If
the credentials are valid, CAS MAY transparently redirect the user to the ser-
vice. Alternately, CAS MAY display a warning that credentials were presented
and allow the client to confirm that it wants to use those credentials. It is
RECOMMENDED that CAS implementations allow the deployer to choose the
preferred behavior. If the credentials are invalid or non-existent, it is REC-
OMMENDED that CAS display to the client the reason authentication failed,
and possibly present the user with alternate means of authentication (e.g. user-
name/password authentication).

2.1.5. response for single sign-on authentication

If the client has already established a single sign-on session with CAS, the
client will have presented its HTTP session cookie to /login and behavior will
be handled as in Section 2.2.4. However, if the “renew” parameter is set, the
behavior will be handled as in Section 2.1.3 or 2.1.4.

2.2. /login as credential acceptor

When a set of accepted credentials are passed to /login, /login acts as a creden-
tial acceptor and its behavior is defined in this section.

2.2.1. parameters common to all types of authentication

The following HTTP request parameters MAY be passed to /login while it is
acting as a credential acceptor. They are all case-sensitive and they all MUST
be handled by /login.

• service [OPTIONAL] - the URL of the application the client is trying
to access. CAS MUST redirect the client to this URL upon successful
authentication. This is discussed in detail in Section 2.2.4.

• warn [OPTIONAL] - if this parameter is set, single sign-on MUST NOT
be transparent. The client MUST be prompted before being authenticated
to another service.

2.2.2. parameters for username/password authentication

In addition to the OPTIONAL parameters specified in Section 2.2.1, the fol-
lowing HTTP request parameters MUST be passed to /login while it is acting
as a credential acceptor for username/password authentication. They are all
case-sensitive.

4

• username [REQUIRED] - the username of the client that is trying to log
in

• password [REQUIRED] - the password of the client that is trying to log
in

• lt [REQUIRED] - a login ticket. This is provided as part of the login form
discussed in Section 2.1.3. The login ticket itself is discussed in Section
3.5.

2.2.3. parameters for trust authentication

There are no REQUIRED HTTP request parameters for trust authentication.
Trust authentication may be based on any aspect of the HTTP request.

2.2.4. response

One of the following responses MUST be provided by /login when it is operating
as a credential acceptor.

• successful login: redirect the client to the URL specified by the “service”
parameter in a manner that will not cause the client’s credentials to be
forwarded to the service. This redirection MUST result in the client is-
suing a GET request to the service. The request MUST include a valid
service ticket, passed as the HTTP request parameter, “ticket”. See Ap-
pendix B for more information. If “service” was not specified, CAS MUST
display a message notifying the client that it has successfully initiated a
single sign-on session.

• failed login: return to /login as a credential requestor. It is RECOM-
MENDED in this case that the CAS server display an error message be
displayed to the user describing why login failed (e.g. bad password, locked
account, etc.), and if appropriate, provide an opportunity for the user to
attempt to login again.

2.3. /logout

/logout destroys a client’s single sign-on CAS session. The ticket-granting cookie
(Section 3.6) is destroyed, and subsequent requests to /login will not obtain
service tickets until the user again presents primary credentials (and thereby
establishes a new single sign-on session).

2.3.1. parameters

The following HTTP request parameter MAY be specified to /logout. It is case
sensitive and SHOULD be handled by /logout.

5

• url [OPTIONAL] - if “url” is specified, the URL specified by “url”
SHOULD be on the logout page with descriptive text. For exam-
ple, “The application you just logged out of has provided a link it
would like you to follow. Please click here to access [http://www.go-
back.edu.“](http://www.go-back.edu.” “http://www.go-back.edu.”“)

2.3.2. response

/logout MUST display a page stating that the user has been logged out. If the
“url” request parameter is implemented, /logout SHOULD also provide a link
to the provided URL as described in Section 2.3.1.

2.4. /validate [CAS 1.0]

/validate checks the validity of a service ticket./validate is part of the CAS
1.0 protocol and thus does not handle proxy authentication. CAS MUST re-
spond with a ticket validation failure response when a proxy ticket is passed to
/validate.

2.4.1. parameters

The following HTTP request parameters MAY be specified to /validate. They
are case sensitive and MUST all be handled by /validate.

• service [REQUIRED] - the identifier of the service for which the ticket was
issued, as discussed in Section 2.2.1.

• ticket [REQUIRED] - the service ticket issued by /login. Service tickets
are described in Section 3.1.

• renew [OPTIONAL] - if this parameter is set, ticket validation will only
succeed if the service ticket was issued from the presentation of the user’s
primary credentials. It will fail if the ticket was issued from a single sign-on
session.

2.4.2. response

/validate will return one of the following two responses:

On ticket validation success:

yes<LF>
username<LF>

On ticket validation failure:

6

no<LF>
<LF>

2.4.3. URL examples of /validate

Simple validation attempt:

https://server/cas/validate?service=http%3A%2F%2Fwww.service.com&ticket=...

Ensure service ticket was issued by presentation of primary credentials:

https://server/cas/validate?service=http%3A%2F%2Fwww.service.com&ticket=...

2.5. /serviceValidate [CAS 2.0]

/serviceValidate checks the validity of a service ticket and returns an XML-
fragment response. /serviceValidate MUST also generate and issue proxy-
granting tickets when requested. /serviceValidate MUST NOT return a suc-
cessful authentication if it receives a proxy ticket. It is RECOMMENDED
that if /serviceValidate receives a proxy ticket, the error message in the XML
response SHOULD explain that validation failed because a proxy ticket was
passed to /serviceValidate.

2.5.1. parameters

The following HTTP request parameters MAY be specified to /serviceValidate.
They are case sensitive and MUST all be handled by /serviceValidate.

• service [REQUIRED] - the identifier of the service for which the ticket was
issued, as discussed in Section 2.2.1.

• ticket [REQUIRED] - the service ticket issued by /login. Service tickets
are described in Section 3.1.

• pgtUrl [OPTIONAL] - the URL of the proxy callback. Discussed in Section
2.5.4.

• renew [OPTIONAL] - if this parameter is set, ticket validation will only
succeed if the service ticket was issued from the presentation of the user’s
primary credentials. It will fail if the ticket was issued from a single sign-on
session.

7

2.5.2. response

/serviceValidate will return an XML-formatted CAS serviceResponse as de-
scribed in the XML schema in Appendix A. Below are example responses:

On ticket validation success:

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
<cas:authenticationSuccess>

<cas:user>username</cas:user>
<cas:proxyGrantingTicket>PGTIOU-84678-8a9d...

</cas:proxyGrantingTicket>
</cas:authenticationSuccess>

</cas:serviceResponse>

On ticket validation failure:

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
<cas:authenticationFailure code="INVALID_TICKET">

Ticket ST-1856339-aA5Yuvrxzpv8Tau1cYQ7 not recognized
</cas:authenticationFailure>

</cas:serviceResponse>

2.5.3. error codes

The following values MAY be used as the “code” attribute of authentication
failure responses. The following is the minimum set of error codes that all CAS
servers MUST implement. Implementations MAY include others.

• INVALID_REQUEST - not all of the required request parameters were
present

• INVALID_TICKET - the ticket provided was not valid, or the ticket did
not come from an initial login and “renew” was set on validation. The body
of the <cas:authenticationFailure> block of the XML response SHOULD
describe the exact details.

• INVALID_SERVICE - the ticket provided was valid, but the service spec-
ified did not match the service associated with the ticket. CAS MUST
invalidate the ticket and disallow future validation of that same ticket.

• INTERNAL_ERROR - an internal error occurred during ticket validation

For all error codes, it is RECOMMENDED that CAS provide a more detailed
message as the body of the <cas:authenticationFailure> block of the XML re-
sponse.

8

2.5.4. proxy callback

If a service wishes to proxy a client’s authentication to a back-end service,
it must acquire a proxy-granting ticket. Acquisition of this ticket is handled
through a proxy callback URL. This URL will uniquely and securely identify
the back-end service that is proxying the client’s authentication. The back-end
service can then decide whether or not to accept the credentials based on the
back-end service’s identifying callback URL.

The proxy callback mechanism works as follows:

1. The service that is requesting a proxy-granting ticket specifies upon ini-
tial service ticket or proxy ticket validation the HTTP request parameter
“pgtUrl” to /serviceValidate (or /proxyValidate). This is a callback URL
of the service to which CAS will connect to verify the service’s identity.
This URL MUST be HTTPS, and CAS MUST verify both that the SSL
certificate is valid and that its name matches that of the service. If the
certificate fails validation, no proxy-granting ticket will be issued, and
the CAS service response as described in Section 2.5.2 MUST NOT con-
tain a <proxyGrantingTicket> block. At this point, the issuance of a
proxy-granting ticket is halted, but service ticket validation will continue,
returning success or failure as appropriate. If certificate validation is suc-
cessful, issuance of a proxy-granting ticket proceeds as in step 2.

2. CAS uses an HTTP GET request to pass the HTTP request parame-
ters “pgtId” and “pgtIou” to the pgtUrl. These entities are discussed in
Sections 3.3 and 3.4, respectively.

3. If the HTTP GET returns an HTTP status code of 200 (OK), CAS MUST
respond to the /serviceValidate (or /proxyValidate) request with a service
response (Section 2.5.2) containing the proxy-granting ticket IOU (Section
3.4) within the <cas:proxyGrantingTicket> block. If the HTTP GET
returns any other status code, excepting HTTP 3xx redirects, CAS MUST
respond to the /serviceValidate (or /proxyValidate) request with a service
response that MUST NOT contain a <cas:proxyGrantingTicket> block.
CAS MAY follow any HTTP redirects issued by the pgtUrl. However, the
identifying callback URL provided upon validation in the <proxy> block
MUST be the same URL that was initially passed to /serviceValidate (or
/proxyValidate) as the “pgtUrl” parameter.

4. The service, having received a proxy-granting ticket IOU in the CAS re-
sponse, and both a proxy-granting ticket and a proxy-granting ticket IOU
from the proxy callback, will use the proxy-granting ticket IOU to corre-
late the proxy-granting ticket with the validation response. The service
will then use the proxy-granting ticket for the acquisition of proxy tickets
as described in Section 2.7.

9

2.5.5. URL examples of /serviceValidate

Simple validation attempt:

https://server/cas/serviceValidate?service=http%3A%2F%2Fwww.service.com&...

Ensure service ticket was issued by presentation of primary credentials:

https://server/cas/serviceValidate?service=http%3A%2F%2Fwww.service.com&... ST-1856339-aA5Yuvrxzpv8Tau1cYQ7&renew=true

Pass in a callback URL for proxying:

https://server/cas/serviceValidate?service=http%3A%2F%2Fwww.service.com&...

2.6. /proxyValidate [CAS 2.0]

/proxyValidate MUST perform the same validation tasks as /serviceValidate
and additionally validate proxy tickets. /proxyValidate MUST be capable of
validating both service tickets and proxy tickets.

2.6.1. parameters

/proxyValidate has the same parameter requirements as /serviceValidate. See
Section 2.5.1.

2.6.2. response

/proxyValidate will return an XML-formatted CAS serviceResponse as
described in the XML schema in Appendix A. Below are example responses:

On ticket validation success:

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
<cas:authenticationSuccess>

<cas:user>username</cas:user>
<cas:proxyGrantingTicket>PGTIOU-84678-8a9d...</cas:proxyGrantingTicket>

<cas:proxies>
<cas:proxy>https://proxy2/pgtUrl</cas:proxy>
<cas:proxy>https://proxy1/pgtUrl</cas:proxy>

</cas:proxies>
</cas:authenticationSuccess>

</cas:serviceResponse>

10

Note that when authentication has proceeded through multiple proxies, the or-
der in which the proxies were traversed MUST be reflected in the <cas:proxies>
block. The most recently-visited proxy MUST be the first proxy listed, and
all the other proxies MUST be shifted down as new proxies are added. In
the above example, the service identified by https://proxy1/pgtUrl was vis-
ited first, and that service proxied authentication to the service identified by
https://proxy2/pgtUrl.
On ticket validation failure:

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
<cas:authenticationFailure code="INVALID_TICKET">

ticket PT-1856376-1HMgO86Z2ZKeByc5XdYD not recognized
</cas:authenticationFailure>

</cas:serviceResponse>

2.6.3 URL examples of /proxyValidate

/proxyValidate accepts the same parameters as /serviceValidate. See Section
2.5.5 for use examples, substituting “proxyValidate” for “serviceValidate”.

2.7. /proxy [CAS 2.0]

/proxy provides proxy tickets to services that have acquired proxy-granting
tickets and will be proxying authentication to back-end services.

2.7.1. parameters

The following HTTP request parameters MUST be specified to /proxy. They
are both case-sensitive.

• pgt [REQUIRED] - the proxy-granting ticket acquired by the service dur-
ing service ticket or proxy ticket validation

• targetService [REQUIRED] - the service identifier of the back-end service.
Note that not all back-end services are web services so this service identifier
will not always be a URL. However, the service identifier specified here
MUST match the “service” parameter specified to /proxyValidate upon
validation of the proxy ticket.

2.7.2. response

/proxy will return an XML-formatted CAS serviceResponse as described in the
XML schema in Appendix A. Below are example responses:
On request success:

11

https://proxy1/pgtUrl
https://proxy2/pgtUrl

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
<cas:proxySuccess>

<cas:proxyTicket>PT-1856392-b98xZrQN4p90ASrw96c8</cas:proxyTicket>
</cas:proxySuccess>

</cas:serviceResponse>

On request failure:

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
<cas:proxyFailure code="INVALID_REQUEST">

'pgt' and 'targetService' parameters are both required
</cas:proxyFailure>

</cas:serviceResponse>

2.7.3. error codes

The following values MAY be used as the “code” attribute of authentication
failure responses. The following is the minimum set of error codes that all CAS
servers MUST implement. Implementations MAY include others.

• INVALID_REQUEST - not all of the required request parameters were
present

• BAD_PGT - the pgt provided was invalid
• INTERNAL_ERROR - an internal error occurred during ticket validation

For all error codes, it is RECOMMENDED that CAS provide a more detailed
message as the body of the <cas:authenticationFailure> block of the XML re-
sponse.

2.7.4. URL example of /proxy

Simple proxy request:

https://server/cas/proxy?targetService=http%3A%2F%2Fwww.service.com&pgt=......

3. CAS Entities

3.1. service ticket

A service ticket is an opaque string that is used by the client as a credential
to obtain access to a service. The service ticket is obtained from CAS upon a
client’s presentation of credentials and a service identifier to /login as described
in Section 2.2.

12

3.1.1. service ticket properties

• Service tickets are only valid for the service identifier that was specified to
/login when they were generated. The service identifier SHOULD NOT
be part of the service ticket.

• Service tickets MUST only be valid for one ticket validation attempt.
Whether or not validation was successful, CAS MUST then invalidate the
ticket, causing all future validation attempts of that same ticket to fail.

• CAS SHOULD expire unvalidated service tickets in a reasonable period of
time after they are issued. If a service presents for validation an expired
service ticket, CAS MUST respond with a validation failure response.
It is RECOMMENDED that the validation response include a descriptive
message explaining why validation failed. It is RECOMMENDED that the
duration a service ticket is valid before it expires be no longer than five
minutes. Local security and CAS usage considerations MAY determine
the optimal lifespan of unvalidated service tickets.

• Service tickets MUST contain adequate secure random data so that a
ticket is not guessable.

• Service tickets MUST begin with the characters, “ST-”.
• Services MUST be able to accept service tickets of up to 32 characters in

length. It is RECOMMENDED that services support service tickets of up
to 256 characters in length.

3.2. proxy ticket

A proxy ticket is an opaque string that a service uses as a credential to obtain
access to a back-end service on behalf of a client. Proxy tickets are obtained
from CAS upon a service’s presentation of a valid proxy-granting ticket (Section
3.3), and a service identifier for the back-end service to which it is connecting.

3.2.1. proxy ticket properties

• Proxy tickets are only valid for the service identifier specified to /proxy
when they were generated. The service identifier SHOULD NOT be part
of the proxy ticket.

• Proxy tickets MUST only be valid for one ticket validation attempt.
Whether or not validation was successful, CAS MUST then invalidate the
ticket, causing all future validation attempts of that same ticket to fail.

• CAS SHOULD expire unvalidated proxy tickets in a reasonable period of
time after they are issued. If a service presents for validation an expired
proxy ticket, CAS MUST respond with a validation failure response. It
is RECOMMENDED that the validation response include a descriptive
message explaining why validation failed. It is RECOMMENDED that
the duration a proxy ticket is valid before it expires be no longer than five

13

minutes. Local security and CAS usage considerations MAY determine
the optimal lifespan of unvalidated proxy tickets.

• Proxy tickets MUST contain adequate secure random data so that a ticket
is not guessable.

• Proxy tickets SHOULD begin with the characters, “PT-”. Proxy tickets
MUST begin with either the characters, “ST-” or “PT-”.

• Back-end services MUST be able to accept proxy tickets of up to 32 char-
acters in length. It is RECOMMENDED that back-end services support
proxy tickets of up to 256 characters in length.

3.3. proxy-granting ticket

A proxy-granting ticket is an opaque string that is used by a service to obtain
proxy tickets for obtaining access to a back-end service on behalf of a client.
Proxy-granting tickets are obtained from CAS upon validation of a service ticket
or a proxy ticket. Proxy-granting ticket issuance is described fully in Section
2.5.4.

3.3.1. proxy-granting ticket properties

• Proxy-granting tickets MAY be used by services to obtain multiple proxy
tickets. Proxy-granting tickets are not one-time-use tickets.

• Proxy-granting tickets MUST expire when the client whose authentication
is being proxied logs out of CAS.

• Proxy-granting tickets MUST contain adequate secure random data so
that a ticket is not guessable in a reasonable period of time through brute-
force attacks.

• Proxy-granting tickets SHOULD begin with the characters, “PGT-”.
• Services MUST be able to handle proxy-granting tickets of up to 64 char-

acters in length. It is RECOMMENDED that services support proxy-
granting tickets of up to 256 characters in length.

3.4. proxy-granting ticket IOU

A proxy-granting ticket IOU is an opaque string that is placed in the response
provided by /serviceValidate and /proxyValidate used to correlate a service
ticket or proxy ticket validation with a particular proxy-granting ticket. See
Section 2.5.4 for a full description of this process.

3.4.1. proxy-granting ticket IOU properties

• Proxy-granting ticket IOUs SHOULD NOT contain any reference to their
associated proxy-granting tickets. Given a particular PGTIOU, it MUST

14

NOT be possible to derive its corresponding PGT through algorithmic
methods in a reasonable period of time.

• Proxy-granting ticket IOUs MUST contain adequate secure random data
so that a ticket is not guessable in a reasonable period of time through
brute-force attacks.

• Proxy-granting ticket IOUs SHOULD begin with the characters,
“PGTIOU-”.

• Services MUST be able to handle PGTIOUs of up to 64 characters in
length. It is RECOMMENDED that services support PGTIOUs of up to
256 characters in length.

3.5. login ticket

A login ticket is a string that is provided by /login as a credential requestor and
passed to /login as a credential acceptor for username/password authentication.
Its purpose is to prevent the replaying of credentials due to bugs in web browsers.

3.5.1. login ticket properties

• Login tickets issued by /login MUST be probabilistically unique.
• Login tickets MUST only be valid for one authentication attempt.

Whether or not authentication was successful, CAS MUST then invali-
date the login ticket, causing all future authentication attempts with that
instance of that login ticket to fail.

• Login tickets SHOULD begin with the characters, “LT-”.

3.6. ticket-granting cookie

A ticket-granting cookie is an HTTP cookie[5] set by CAS upon the establish-
ment of a single sign-on session. This cookie maintains login state for the client,
and while it is valid, the client can present it to CAS in lieu of primary cre-
dentials. Services can opt out of single sign-on through the “renew” parameter
described in Sections 2.1.1, 2.4.1, and 2.5.1.

3.6.1. ticket-granting cookie properties

• Ticket-granting cookies MUST be set to expire at the end of the client’s
browser session.

• CAS MUST set the cookie path to be as restrictive as possible. For ex-
ample, if the CAS server is set up under the path /cas, the cookie path
MUST be set to /cas.

• The value of ticket-granting cookies MUST contain adequate secure ran-
dom data so that a ticket-granting cookie is not guessable in a reasonable
period of time.

15

• The value of ticket-granting cookies SHOULD begin with the characters,
“TGC-”.

3.7. ticket and ticket-granting cookie character set

In addition to the above requirements, all CAS tickets and the value of the
ticket-granting cookie MUST contain only characters from the set {A-Z, a-z,
0-9, and the hyphen character ?-’}.

Appendix A: CAS response XML schema

<!--

The following is the schema for the Yale Central Authentication

Service (CAS) version 2.0 protocol response. This covers the responses

for the following servlets:

/serviceValidate

/proxyValidate

/proxy

This specification is subject to change.

Author: Drew Mazurek

16

Version: $Id: cas2.xsd,v 1.1 2005/02/14 16:19:06 dmazurek Exp $

-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:cas="http://www.yale.edu/tp/cas"

targetNamespace="http://www.yale.edu/tp/cas"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="serviceResponse" type="cas:ServiceResponseType"/>

<xs:complexType name="ServiceResponseType">

<xs:choice>

<xs:element name="authenticationSuccess" type="cas:AuthenticationSuccessType"/>

<xs:element name="authenticationFailure" type="cas:AuthenticationFailureType"/>

17

<xs:element name="proxySuccess" type="cas:ProxySuccessType"/>

<xs:element name="proxyFailure" type="cas:ProxyFailureType"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="AuthenticationSuccessType">

<xs:sequence>

<xs:element name="user" type="xs:string"/>

<xs:element name="proxyGrantingTicket" type="xs:string" minOccurs="0"/>

<xs:element name="proxies" type="cas:ProxiesType" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ProxiesType">

18

<xs:sequence>

<xs:element name="proxy" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AuthenticationFailureType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="code" type="xs:string" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

19

<xs:complexType name="ProxySuccessType">

<xs:sequence>

<xs:element name="proxyTicket" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ProxyFailureType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="code" type="xs:string" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

20

</xs:schema>

Appendix B: Safe redirection

After a successful login, safely redirecting the client from CAS to its final desti-
nation must be handled with care. In most cases, the client has sent credentials
to the CAS server over a POST request. By this specification, the CAS server
must then forward the user to the application with a GET request.

The HTTP/1.1 RFC[3] provides a response code of 303: See Other, which pro-
vides for the desired behavior: a script that receives data through a POST
request can, through a 303 redirection, forward the browser to another URL
through a GET request. However, not all browsers have implemented this be-
havior correctly.

The recommended method of redirection is thus JavaScript. A page containing
a window.location.href in the following manner performs adequately:

<html>

<head>

<title>Yale Central Authentication Service</title>

<script>

window.location.href="https://portal.yale.edu/Login?ticket=ST-..." mce_href="https://portal.yale.edu/Login?ticket=ST-...";

</script>

</head>

21

<body>

<noscript>

<p>CAS login successful.</p>

<p> Click here

to access the service you requested.
 </p>

</noscript>

</body>

</html>

Additionally, CAS should disable browser caching by setting all of the various
cache-related headers:

• Pragma: no-cache
• Cache-Control: no-store
• Expires: [RFC 1123[6] date equal to or before now]

The introduction of the login ticket removed the possibility of CAS accepting
credentials that were cached and replayed by a browser. However, early versions
of Apple’s Safari browser contained a bug where through usage of the Back
button, Safari could be coerced into presenting the client’s credentials to the
service it is trying to access. CAS can prevent this behavior by not automatically

22

redirecting if it detects that the remote browser is one of these early versions of
Safari. Instead, CAS should display a page that states login was successful, and
provide a link to the requested service. The client must then manually click to
proceed.

Appendix C: References

[1] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”,
RFC 2119, Harvard University, March 1997.

[2] Berners-Lee, T., Fielding, R., Frystyk, H., “Hypertext Transfer Protocol -
HTTP/1.0”, RFC 1945, MIT/LCS, UC Irvine, MIT/LCS, May 1996.

[3] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-Lee, T., “Hypertext Transfer Protocol - HTTP/1.1”, RFC 2068, UC
Irvine, Compaq/W3C, Compaq, W3C/MIT, Xerox, Microsoft, W3C/MIT, June
1999.

[4] Berners-Lee, T., Masinter, L., and MaCahill, M., “Uniform Resource Loca-
tors (URL)”, RFC 1738, CERN, Xerox Corporation, University of Minnesota,
December 1994.

[5] Kristol, D., Montulli, L., “HTTP State Management Mechanism”, RFC 2965,
Bell Laboratories/Lucent Technologies, Epinions.com, Inc., October 2000.

[6] Braden, R., “Requirements for Internet Hosts - Application and Support”,
RFC 1123, Internet Engineering Task Force, October 1989.

Appendix D: CAS License

Copyright (c) 2000-2005 Yale University. All rights reserved.

THIS SOFTWARE IS PROVIDED “AS IS,” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE, ARE EXPRESSLY DISCLAIMED. IN NO
EVENT SHALL YALE UNIVERSITY OR ITS EMPLOYEES BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED,
THE COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH DAMAGE.

23

Redistribution and use of this software in source or binary forms, with or without
modification, are permitted, provided that the following conditions are met:

�1. Any redistribution must include the above copyright notice and disclaimer
and this list of conditions in any related documentation and, if feasible, in the
redistributed software.

�2. Any redistribution must include the acknowledgment, “This product includes
software developed by Yale University,” in any related documentation and, if
feasible, in the redistributed software.

�3. The names “Yale” and “Yale University” must not be used to endorse or
promote products derived from this software.

Appendix E: Changes to this Document

May 4, 2005: v1.0 - initial release

March 2, 2012: v1.0.1 - fixed “noscropt” typo. apetro per amazurek with credit
to Faraz Khan at ASU for catching the typo.

24

