
naps - Relaxed SoC Design

Motivation: Rapid Prototyping of FPGA SoC Systems
● FPGA-based systems often require a mix of HDL and software running on CPUs to tackle

non-trivial problems. While FPGAs are great for high-speed interfaces and specialized
computations, CPUs are more suited for control pane tasks.

● Designing such systems is often time consuming and tedious. Even though HDL and software
components are interdependent, they are usually developed using separate languages and
toolchains creating friction in the development process.

● With naps we want to improve developer tooling for building such integrated systems and
enable rapid prototyping as especially enabled using the fast open source FPGA toolchains.

References
whitequark. 2019. “Amaranth HDL (Previously NMigen): A Modern Hardware Definition Language

and Toolchain Based on Python.” 2019. https://github.com/amaranth-lang/amaranth.
Apertus Open Source Cinema. 2019. “naps” 2019.

https://github.com/apertus-open-source-cinema/naps.

Jaro Habiger* (anuejn@apertus.org), Robin Heinemann* (vup@apertus.org)
apertus° Association [*equal contributions]

Example: Mixing HDL and Software
The following code demonstrates the use of the naps framework on the simple example of
measuring the frequency of a clock signal.

Case Studies: Hackable Video Processing
AXIOM micro open source video camera using a Xilinx Zynq 7010 as its main FPGA. Rapid
prototyping and hackability of the code are top-priorities for this project. In this context, a bunch of
open-source IP cores were developed and debugged using naps:
● HDMI output, including support for usage as a Linux framebuffer
● HiSPI input for receiving data from image sensors
● Image convolution such as debayering and focus peeking (edge detection) leveraging

Amaranth HDL metaprogramming

The naps Workflow: Python all the way!
● naps uses Amaranth HDL. This eDSL allows developers to describe gateware in Python

leveraging metaprogramming to build high-level abstractions.
● naps provides building blocks for describing memory mapped peripherals accessible by the

CPU. For example, any signal in the FPGA design can be marked as a CSR (Control and
Status Register) which can be read / written from the CPU.

● naps automatically generates a memory map including all CSRs and other memory mapped
peripherals and automatically connects all peripherals to the SoC bus by creating the
necessary interconnects.

● Software components of the system are also written in Python code - in the same class
hierarchy as the HDL. Functions that run on the CPU are annotated with special decorators.
IDE features such as code completion and linting are directly available for the development of
software.

● Software can transparently access CSRs or memory mapped peripherals using their
Python identifiers. These are automatically resolved to addresses using the generated
memory map.

● An interactive Python shell can be used to interact with the design. It includes
auto-completion and allows for ad-hoc scripting, which helps with debugging designs.

● HDL and software can be co-simulated and unit-tested using standard python tooling.

Memory Mapped Peripherals: Abstracting Buses
● naps provides an interface to describe memory mapped peripherals in a bus-agnostic way

using dynamic code generation.
● This interface is simplified to the bare minimum to reduce implementation complexity. It

consists of only read and write operations of a fixed word size.
● To provide access to the peripherals, naps automatically adds logic implementing a bus

that the CPU can access. Currently, naps supports AXI-Lite and JTAG.
● naps comes with a rich library of pre-made peripherals, such as host-accessible RAM,

cores to read/write (packetized) streams, a bridge for the Xilinx PLL dynamic reconfiguration
port, an Internal Logic Analyzer (ILA), etc.

● Memory mapped peripherals can be used to implement interfaces used by existing linux
kernel drivers, which can automatically be configured and loaded using devicetree overlays.
This can, for example, be used by a peripheral providing a memory-mapped HDMI
framebuffer to configure the linux kernel with the correct address, resolution and data format.

Fatbitstream: Bundling Bitstreams and Software
The bitstream, accompanying (generated) software and support files are bundled
into an executable ZIP file called “fatbitstream”. Fatbitstreams enhance the
development experience by combining all interdependent components into a single
file and initializing both hardware and software to the expected state.

class ClockMeter(Elaboratable):
 def __init__(self):
 self.counter = StatusSignal(64)

 def elaborate(self, platform):
 m = Module()
 m.d.sync += self.counter.eq(self.counter + 1)
 return m

 @driver_property
 def mhz(self, t=0.1):
 from time import sleep
 initial_counter = self.counter
 sleep(t)
 return (self.counter - initial_counter) * (1 / t) / 1e6

Implemented in
FPGA fabric

Running on
CPU

Exploration: A Python Shell for FPGA Designs
An active naps design can be interactively explored using an interactive Python shell. This python
shell exposes all CSRs, memory-mapped peripherals and annotated driver functions with
autocompletion.

Python 3.10.10 (main, Apr 5 2023, 14:58:08) [Clang 11.1.0] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> dut.clock_meter.mhz
100.0012345

AXIOM micro

Realization of the “Merlins Cube” art installation comprising a cube with touchscreens on all six
sides. The installation was powered by a Raspberry-Pi compute module outputting two HDMI
streams to ECP5 based connector boards each driving 3 MIPI-DSI screens. naps was used to
develop the code running on the joint Raspberry-Pi/ECP5 system. More open source IP cores
were developed and debugged using naps:
● HDMI input
● MIPI-DSI output including an interactive terminal for DCS (Display Command Set)

commands

Merlins Cube

https://lucid.app/lucidchart/925d5433-0ed6-406f-ba2a-4722e474fa70/edit?page=0&v=1465&s=996.8486626091905

