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SUMMARY

We propose a new method for estimating common factors of multiple time series. One distinc-
tive feature of the new approach is that it is applicable to some nonstationary time series. The
unobservable, nonstationary factors are identified by expanding the white noise space step by
step, thereby solving a high-dimensional optimization problem by several low-dimensional sub-
problems. Asymptotic properties of the estimation are investigated. The proposed methodology
is illustrated with both simulated and real datasets.

Some key words: Cross-correlation function; Dimension reduction; Factor model; Multivariate time series; Non-
stationarity; Portmanteau test; White noise.

1. INTRODUCTION

An important problem in modelling multivariate time series is to reduce the number of pa-
rameters involved. For example, a vector autoregressive and moving average model (VARMA)
with moderately large order (p, q) is viable in practice only if a parsimonious representation
is identified, by imposing constraints on the coefficient matrices; see Tiao & Tsay (1989),
Reinsel (1997) and references therein. An alternative strategy is to reduce the dimensional-
ity. Attempts along this line include, among others, approaches based on principal component
analysis (Priestley et al., 1974; Brillinger, 1981; Stock & Watson, 2002), canonical correlation
analysis (Box & Tiao, 1977; Geweke, 1977; Geweke & Singleton, 1981; Tiao & Tsay, 1989;
Anderson, 2002), reduced rank regression (Ahn, 1997; Reinsel & Velu, 1998) and factor models
(Engle & Watson, 1981; Peña & Box, 1987; Forni et al., 2000; Bai & Ng, 2002).

In this paper, we revisit factor models. Although the form of the model concerned is the same
as that in, for example, Peña & Box (1987), our approach is novel in three respects. First, we allow
factors to be nonstationary and the nonstationarity is not necessarily driven by unit roots. The
latter was investigated in the context of factor models by, for example, Ahn (1997) and Peña &
Poncela (2006). Secondly, our estimation method is new and it identifies the unobserved factors
by expanding the white noise space step by step, thereby solving a high-dimensional optimization
problem by several low-dimensional subproblems. Finally, we allow dependence between the
factors and the white noise in the model.
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We do not impose distributional assumptions in the model. Instead we use the portmanteau
test to identify the white noise space. The key assumption in the theoretical exploration is that
the sample cross-covariance functions converge in probability to constant limits; see Condition 1
in § 3. This may be implied by the ergodicity of stationary processes, and may also be fulfilled
for some nonstationary mixing processes, purely deterministic trends and random walks; see
Remark 2 in § 3.

2. MODELS AND METHODOLOGY

2·1. Factor models

Let {Yt } be a d × 1 time series satisfying

Yt = AXt + εt , (1)

where Xt is an r × 1 time series with finite second moments, r � d is unknown, A is a d × r
unknown constant matrix, and {εt } is a sequence of vector white noise processes with mean µε

and covariance matrix �ε; that is, εt and εs are uncorrelated for any t � s. Furthermore, we
assume that there exists no linear combination of Xt , which is a white noise process; otherwise
such a linear combination should be part of εt . We only observe Y1, . . . , Yn from model (1). To
simplify the presentation, we assume that

S0 ≡ n−1
n∑

t=1

(Yt − Ȳ )(Yt − Ȳ )T = Id , (2)

where Ȳ = n−1 ∑
1�t�n Yt , and Id denotes the d × d identity matrix. In practice this amounts to

replacing Yt by S−1/2
0 Yt before the analysis.

The component variables of the unobserved Xt are called the factors, and A is called the
factor loading matrix. We may assume that the rank of A is r ; otherwise (1) may be expressed
equivalently in terms of a smaller number of factors. Model (1) is unchanged if we replace (A, Xt )
by (AH, H−1 Xt ) for any invertible r × r matrix H , so we may assume that the column vectors
of A = (a1, . . . , ar ) are orthonormal:

AT A = Ir . (3)

Even with the constraint (3), A and Xt are not uniquely determined in (1), as the aforementioned
replacement is still applicable for any orthogonal H . However, the linear space spanned by the
columns of A, denoted by M(A) and called the factor loading space, is a uniquely defined
r -dimensional subspace in Rd .

Model (1) has been studied by Peña & Box (1987) who assume that εt and Xt+k are uncorrelated
for any integers t and k, and Yt is stationary. Under those conditions, the number of factors r is
the maximum rank of the autocovariance matrices of Yt over all nonzero lags. Furthermore, both
A and r may be estimated via standard eigenanalysis; see Peña & Box (1987).

2·2. Estimation of A and r

Our goal is to estimateM(A), or its orthogonal complement M(B), where B = (b1, . . . , bd−r )
is a d × (d − r ) matrix for which (A, B) forms a d × d orthogonal matrix, i.e. BT A = 0 and
BT B = Id−r ; see also (3). It follows from (1) that

BTYt = BTεt , (4)
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and hence {BTYt , t = 0,±1, . . .} is a (d − r ) × 1 white noise process. Therefore,

corr
(
bT

i Yt , bT
j Yt−k

) = 0, (5)

for any i, j = 1, . . . , d − r and k = 1, . . . , p, where p � 1 is an arbitrary integer. Under
assumption (2), bT

i Skb j is the sample correlation coefficient between bT
i Yt and bT

j Yt−k , where

Sk = n−1
n∑

t=k+1

(Yt − Ȳ )(Yt−k − Ȳ )T. (6)

This suggests that we may estimate B by minimizing

�n(B) ≡
p∑

k=1

||BTSk B||2 =
p∑

k=1

∑
1�i, j�d−r

ρk(bi , bj )
2, (7)

where the matrix norm ||H || is defined as {tr(H T H )}1/2, and ρk(b, a) = bTSka.
Minimizing (7) leads to a constrained optimization problem with d × (d − r ) variables.

Furthermore, r is unknown. Below we present a stepwise expansion algorithm for estimating
the columns of B as well as the the number of columns r . Put

ψ(b) =
p∑

k=1

ρk(b, b)2, ψm(b) =
p∑

k=1

m−1∑
i=1

{ρk(b, b̂i )
2 + ρk(b̂i , b)2},

and let α ∈ (0, 1) be the level of significance tests.

Step 1. Let b̂1 be a unit vector that minimizes ψ(b). Compute the Ljung–Box–Pierce portman-
teau test statistic:

Lp,1 = n(n + 2)
p∑

k=1

ρk(b̂1, b̂1)2

n − k
. (8)

Terminate the algorithm with r̂ = d and B̂ = 0 if Lp,1 is greater than the upper α-point of the χ2
p

distribution. Otherwise proceed to Step 2.

Step 2. For m = 2, . . . , d, let b̂m minimize ψ(b) + ψm(b) subject to the constraints

||b|| = 1, bTb̂i = 0 for i = 1, . . . , m − 1. (9)

Terminate the algorithm with r̂ = d − m + 1 and B̂ = (b̂1, . . . , b̂m−1) if

Lp,m ≡ n2
p∑

k=1

1

n − k

⎡
⎣ρk(b̂m, b̂m)2 +

m−1∑
j=1

{ρk(b̂m, b̂ j )
2 + ρk(b̂ j , b̂m)2}

⎤
⎦ (10)

is greater than the upper α-point of the χ2
p(2m−1) distribution (Reinsel, 1997, pp. 149–50).

Step 3. If Lp,m never exceeds the critical value for all 1 � m � d, let r̂ = 0 and B̂ = Id .

Remark 1. (i) The algorithm increases the dimension of M(B) by 1 each time until a newly
selected direction b̂m does not lead to a white noise process. Note that (9) ensures that all those
b̂ j are orthogonal to each other.

(ii) The minimization problem in Step 2 is d-dimensional subject to constraint (9). It may be
reduced to an unconstrained optimization problem with d − m free variables. Note that the vector

Downloaded from https://academic.oup.com/biomet/article-abstract/95/2/365/230310
by Indian Institute of Science user
on 22 March 2018



368 JIAZHU PAN AND QIWEI YAO

b satisfying (9) is of the form

b = Dmu, (11)

where u is any (d − m + 1) × 1 unit vector, Dm is a d × (d − m + 1) matrix with columns given
by the (d − m + 1) orthonormal eigenvectors of the matrix Id − Bm−1 BT

m−1 corresponding to the

(d − m + 1)-fold eigenvalue 1, where Bm = (b̂1, . . . , b̂m). Also note that any k × 1 unit vector
is of the form uT = (u1, . . . , uk), where

u1 =
k−1∏
j=1

cos θ j , ui = sin θi−1

k−1∏
j=i

cos θ j (i = 2, . . . , k − 1), uk = sin θk−1.

In the above expressions, θ1, . . . , θk−1 are (k − 1) free parameters.
(iii) Note that B̂T B̂ = Id−r̂ . We may let the columns of Â be the r̂ orthonormal eigenvectors

of Id − B̂ B̂T corresponding to the common eigenvalue 1. It holds that ÂT Â = Ir̂ .
(iv) The multivariate portmanteau test statistic Lp,m given in (10) has a normalized constant

n2, which is different from n(n + 2) used in the univariate case (8). For the univariate case, the
modified constant n(n + 2) was suggested to improve the finite-sample accuracy; see Ljung &
Box (1978). For multivariate cases, a different suggestion, proposed by Li & McLeod (1981),
uses

L∗
p,m = Lp,m + p(p + 1)(2m − 1)

2n
(12)

instead of Lp,m as the test statistic. Our numerical experiment indicates that both Lp,m and L∗
p,m

work reasonably well with moderately large sample sizes, unless d � r . For the latter cases, both
Lp,m and L∗

p,m may lead to substantially overestimated r . In our context, an obvious alternative is
to use a more stable univariate version,

L ′
p,m = n(n + 2)

p∑
k=1

ρk(b̂m, b̂m)2

n − k
, (13)

instead of Lp,m in Step 2. Then the critical value of the test is the upper α-point of the χ2
p

distribution.
(v) Although we do not require the processes {Yt } and {Xt } to be stationary, our method rests

on the fact that there is no autocorrelation in the white noise process {εt }. Furthermore, the
asymptotic χ2 distributions of the portmanteau tests used in determining r typically rely on the
assumption that {εt } be independent and identically distributed. An early investigation of these
tests in more general settings is given by Francq et al. (2005).

(vi) When Yt is nonstationary, the sample cross-covariance function Sk is no longer a meaningful
covariance measure. However, since εt is white noise and is stationary, cT

1 Skc2 is the proper sample
covariance between cT

1 Yt and cT
2 Yt−k for any vectors c1, c2 ∈ M(B). In fact our method relies on

the fact that cT
1 Skc2 is close to 0 for any 1 � k � p. This also indicates that in practice we should

not use large p as, for example, cT
1 Spc2 is a poor estimator of cov (cT

1 Yt , cT
2 Yt−p) when p is too

large.
(vii) When the number of factors r is given, we may omit all the test steps, and stop the

algorithm after obtaining b̂1, . . . , b̂r by solving the r optimization problems.

2·3. Modelling with estimated factors

Note that Â ÂT + B̂ B̂T = Id . Once we have obtained Â, it follows from (1) that

Yt = Âξt + et , (14)
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where

ξt = ÂTYt = ÂT AXt + ÂTεt , et = B̂ B̂TYt . (15)

We treat et as a white noise process, and estimate var(et ) by the sample variance of B̂ B̂TYt .
We model the lower-dimensional process ξt by VARMA or state-space models. As we have

pointed out, Â may be replaced by ÂH for any orthogonal H . We may choose Â appropriately
such that ξt admits a simple model; see, for example, Tiao & Tsay (1989). Alternatively, we may
apply principal components analysis to the factors; see Example 3 in § 4. Note that there is no
need to update B̂ now since M( ÂH ) = M( Â), which is the orthogonal complement of B̂.

3. THEORETICAL PROPERTIES

The factor loading matrix A is only identifiable up to M(A), a linear space spanned by its
columns. We are effectively concerned with the estimation for the factor loading space M(A)
rather than A itself. To make our statements clearer, we first introduce some notation.

For r < d, let H be the set consisting of all d × (d − r ) matrices H satisfying the condition
H T H = Id−r . For H1, H2 ∈ H, define

D(H1, H2) = ∥∥(
Id − H1 H T

1

)
H2

∥∥ = {
d − r − tr

(
H1 H T

1 H2 H T
2

)}1/2. (16)

Note that H1 H T
1 is the projection matrix on to the linear space M(H1), and D(H1, H2) = 0 if

and only if M(H1) = M(H2). Therefore, H may be partitioned into the equivalent classes by
D as follows: the D-distance between any two elements in each equivalent class is 0, and the
D-distance between any two elements from two different classes is positive. Denote by HD =
H/D the quotient space consisting of all those equivalent classes; that is, we treat H1 and H2 as
the same element in HD if and only if D(H1, H2) = 0. Then (HD, D) forms a metric space in
the sense that D is a well-defined distance measure on HD; see Lemma A1(i) in the Appendix.
Furthermore, the functions �n(·), defined in (7), and

�(H ) ≡
p∑

k=1

‖H T�k H‖2, (17)

are well defined on HD; see Lemma A1(ii) in the Appendix. In the above expression, the �k are
given in Condition 1 below.

We only consider the asymptotic properties for the estimation of the factor loading space with
r known; it remains open how to establish the theoretical properties when r is unknown. Then
the estimator for B may be defined as

B̂ = arg min
H∈H

�n(H ). (18)

We need the following regularity conditions.

Condition 1. As n → ∞, Sk → �k in probability for k = 0, 1, . . . , p, where �k are nonnega-
tive definite matrices, and �0 = Id .

Condition 2. The matrix B is the unique minimizer of �(·) in the spaceHD; that is, �(·) reaches
its minimum value at B ′ if and only if D(B ′, B) = 0, where B is specified at the beginning of
§ 2·2.

Condition 3. There exist constants a > 0, c > 0 for which �(H ) − �(B) � a{D(H, B)}c for
any H ∈ H.
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Remark 2. (i) Condition 1 does not require that the process Yt be stationary. In fact it may hold
when ESk → �k and Yt is ϕ-mixing in the sense that ϕ(m) → 0 as m → ∞, where

ϕ(m) = sup
k�1

sup
U∈F k−∞, V ∈F∞

m+k , pr (U )>0

|pr(V |U ) − pr(V )|, (19)

and F j
i = σ (Yi , . . . , Y j ); see Lemma A2 in the Appendix. It also gives a sufficient condition,

which ensures that the convergence in Condition 1 is almost sure. Examples of nonstationary
ϕ-mixing processes include, among others, stationary ϕ-mixing processes plus nonconstant
treads, and standardized random walks such as Yt = Yt−1 + n−1/2εt , t = 1, . . . , n, where Y0 ≡ 0
and εt are independent and identically distributed with, for example, E(ε2

t ) < ∞. Condition 1 may
also hold for some purely deterministic processes such as a linear trend Yt = t/n, t = 1, . . . , n.

(ii) Under model (1), �(B) = 0. Condition 2 implies that �(C) � 0 for any C ∈ H and
M(C) ∩ M(A) is not an empty set.

THEOREM 1. Under Conditions 1 and 2, D(B̂, B) → 0 in probability as n → ∞. Furthermore,
D(B̂, B) → 0 almost surely if the convergence in Condition 1 is also almost sure.

THEOREM 2. Let n1/2(E Sk − �k) = O(1), and let Yt be ϕ-mixing with ϕ(m) = O(m−λ) for
λ > p/(p − 2) and supt�1 E‖Yt‖p < ∞ for some p > 2. Then

sup
H∈H

|�n(H ) − �(H )| = OP
(
n−1/2).

If, in addition, Condition 3 also holds, D(B̂, B) = OP (n−1/(2c)).

Theorems 1 and 2 do not require Yt to be a stationary process. Their proofs are given in the
Appendix.

4. NUMERICAL PROPERTIES

We illustrate the methodology proposed in § 2 with two simulated examples, one station-
ary and one nonstationary, and one real dataset. The numerical optimization was solved using
the downhill simplex method; see § 10·4 of Press et al. (1992). In the simulated examples, we
set the significance level at 5% for the portmanteau tests used in our algorithm, and p = 15 in
(8). The results with p = 5, 10 and 20 show similar patterns and, therefore, are not reported. We
measure the errors in estimating the factor loading space M(A) by

D1(A, Â) = ([tr{ ÂT(Id − AAT) Â} + tr(B̂T AAT B̂)]/d)1/2.

It may be shown that D1(A, Â) ∈ [0, 1], and it equals 0 if and only if M(A) = M( Â), and 1 if
and only if M(A) = M(B̂).

Example 1. Let Yti = Xti + εt i for i = 1, 2, 3, and Yti = εti for i = 4, . . . , d, where

Xt1 = 0·8Xt−1,1 + et1, Xt2 = et2 + 0·9et−1,2 + 0·3et−2,2,

Xt3 = −0·5Xt−1,3 − εt3 + 0·8εt−1,3,

and all εt j and et j are independent and standard normal. Because of the presence of εt3 in the
equation for Xt3, Xt and εt are mutually dependent. In this setting, the number of true factors is
r = 3, and the factor loading matrix may be taken as A = (I3, 0)T, where 0 denotes the 3 × (d − 3)
matrix with all elements equal to 0. We set the sample size at n = 300, 600 and 1000, and the
dimension of Yt at d = 5, 10 and 20. For each setting, we generated 1000 samples from this

Downloaded from https://academic.oup.com/biomet/article-abstract/95/2/365/230310
by Indian Institute of Science user
on 22 March 2018



Modelling multiple time series 371

Table 1. Relative frequencies for r̂ taking different values in Example 1.
The true value of r is 3

r̂
d n 0 1 2 3 4 5 � 6
5 300 0·000 0·209 0·444 0·345 0·002 0·000

600 0·000 0·071 0·286 0·633 0·010 0·000
1000 0·000 0·004 0·051 0·933 0·120 0·000

10 300 0·000 0·219 0·524 0·255 0·002 0·000 0·000
600 0·000 0·049 0·290 0·649 0·012 0·000 0·000

1000 0·000 0·007 0·062 0·898 0·033 0·000 0·000
20 300 0·000 0·162 0·543 0·285 0·010 0·000 0·000

600 0·000 0·033 0·305 0·609 0·053 0·000 0·000
1000 0·000 0·004 0·066 0·822 0·103 0·005 0·000

0.0

0.2

0.4

0.6

0.8

n=300 n=600 n=1000

d=5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n=300 n=600 n=1000

d=10

0.80

0.85

0.90

0.95

n=300 n=600 n=1000

d=20(a) (b) (c)

Fig. 1. Example 1. Boxplots of D1(A, Â) for (a) d = 5, (b) d = 10, (c) d = 20.

model. The relative frequencies for r̂ taking different values are reported in Table 1, which shows
that, when the sample size n increases, the estimation of r becomes more accurate. We used L ′

m,p
given in (13) in our simulation, since both Lm,p and L∗

m,p produced substantially overestimated

r -values when d = 10 and 20. Figure 1 presents the boxplots of the errors D1(A, Â). As the
sample size increases, D1(A, Â) decreases. Furthermore, the errors increase when d increases.

Example 2. We use the same setting as in Example 1 but with Xt1, Xt2 and Xt3 replaced by

Xt1 − 2t/n = 0·8(Xt−1,1 − 2t/n) + et1,

Xt2 = 3t/n, (20)

Xt3 = Xt−1,3 + (10/n)1/2et3 with X0,3 ∼ N (0, 1).

Thus Xt1 is an AR(1) process with nonconstant mean, Xt2 is a purely deterministic trend, and Xt3 is
a random walk. None of them is stationary. The relative frequencies for r̂ taking different values
are reported in Table 2. The boxplots of the estimation errors D1(A, Â) are depicted in Fig. 2.
The general pattern observed in the stationary example, Example 1, remains. The quality of our
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Table 2. Relative frequencies for r̂ taking different values in Example 2.
The true value of r is 3

r̂
d n 0 1 2 3 4 5 � 6
5 300 0·000 0·000 0·255 0·743 0·002 0·000

600 0·000 0·000 0·083 0·907 0·010 0·000
1000 0·000 0·000 0·033 0·945 0·022 0·000

10 300 0·000 0·000 0·283 0·695 0·022 0·000 0·000
600 0·000 0·000 0·103 0·842 0·054 0·001 0·000

1000 0·000 0·000 0·051 0·871 0·077 0·001 0·000
20 300 0·000 0·000 0·258 0·663 0·076 0·001 0·002

600 0·000 0·000 0·035 0·673 0·278 0·012 0·002
1000 0·000 0·000 0·099 0·733 0·162 0·006 0·000

0.0

0.1

0.2

0.3

0.4

n=300 n=600 n=1000

d=5

0.3

0.4

0.5

0.6

0.7

n=300 n=600 n=1000

d=10

0.75

0.80

0.85

0.90

n=300 n=600 n=1000

d=20(a) (b) (c)

Fig. 2. Example 2. Boxplots of D1(A, Â) for (a) d = 5, (b) d = 10, (c) d = 20.

estimation improves when sample sizes increase, because of the way in which the nonstationarity
is specified in (20). For example, the sample {Xt2, t = 1, . . . , n} always consists of regular grid-
points on the segment of the line y = 3x between (0, 0) and (1, 3). Therefore, when n increases,
we obtain more information from the same nonstationary system.

Our method rests on the simple fact that the quadratic forms of the sample cross-correlation
function are close to zero along the directions perpendicular to the factor loading space, and
are nonzero along the directions in the factor loading space; see Remarks 1(vi) and 2(ii). The
departure from zero along the directions in the factor loading space in Example 2 is more
pronounced than that in Example 1. This explains why the proposed method performs better in
Example 2 than in Example 1, especially when n = 300 and 600.

Example 3. Figure 3 displays the monthly temperatures in cities of Nanjing, Dongtai, Huoshan,
Hefei, Shanghai, Anqing and Hangzhou in Eastern China in January 1954–December 1986. The
sample size is n = 396 and d = 7. As expected, the data show strong periodic behaviour with
period 12. We fitted the data with factor models (1). With p = 12, the estimated number of factors
is r̂ = 4. We applied principal components analysis to the estimated factors. The variances of the

Downloaded from https://academic.oup.com/biomet/article-abstract/95/2/365/230310
by Indian Institute of Science user
on 22 March 2018



Modelling multiple time series 373

••
•

•

•
•
•
•
•

•
•

•
•

• •

•

•
•
• •

•

•

•
•

•
•
•

•
•

•
•
•
•

•

•

• •
•

•

•

•

•
• •

•

•
•

•
•
•

•

•
•

•
•
•
•

•

•
•
•
•

•
•

•

•
• •

•

•

•

•
•
•
•
•

•

•
•
•
•

•

•

• •
•
•

•

•

•
••

•

•

•

•
•
•
•

•

•

•
• •

•

•

•
•

•
•

•

•

•
•
• •

•

•
•

•

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0

5

15

25

0

5

15

25

0

5

15

25

0

10

20

30

0

5

15

25

0

5

15

25

0

15

25

••
•

•

•
•
•
•

•

•

•

•
•

• •

•

•

•
• •

•

•

•
•

• •
•

•
•

•

•
•
•

•

•

• • •

•

•

•
•

• •

•

•
•

•
•
•
•

•
•

•

•
•
•

•

•
•

•
•

•
•

•

•
• •

•

•

•

•
•
•

•
•

•

•

•
•
•

•

•

• •
•
•

•

•

•
••

•

•

•

•
•
•
•

•

•

•

• •
•

•

•

•

•
•

•

•

•

•

• •
•

•
•

•

•
•
•

•
•
••

•
•

•
•

•
•

• •

•

•
•
• •

•

•

•
•

•
•
•

•
•

•
•
•
•

•

•

• •
•

•

•
•
•

•
•

•
•
•

•
•
•

•

•
•

•
•

•
•

•
•
•
•
•

•

•
•

•

• •

•

•

•
• •

•
•
•

•

•
•
•
•

•

•

• •
•
•

•
•

•
••

•

•
•

•
•

•
•
•

•
•
•
•
•

•

•
•
•
•

•
•

•
•
• •

•

•
•

•

•
•
•

•
•
••

•
•

•
•

•
•

• •

•

•
•
• •

•

•

•
•

•
•
•

•
•

•
•
•
•

•

•

• • •

•

•
•
•
• •

•
•
•

•
•
•

•

•
•

•
•
•
•

•
•
•
•
•

•
•
•

•
• •

•

•

•
• •

•
•
•
•

•
• •

•

•

•

• •
•
•

•
•

•
••

•

•

•

•
•
•
•
•

•
•
• •

•

•

•
•
•
•

•
•

•
•
• •

•

•
•

•

••
•

•

•
•
•
•
•

•
•

•
•

•
•

•

•

•
• •

•

•

•
•

• •
•

•
•

•

•
•
•

•

•

• •
•

•

•

•
•

•
•

•
•
•

•

•
•

•

•
•

•

•
•
•

•

•
•

•
•

•
•

•

•

• •

•

•

•

•
•
•
•
•

•

•

•
•
•

•

•

• •
•

•

•
•

•

••
•

•

•

•

•
•
•

•

•

•

• •
•

•

•

•

•
•

•

•

•
•

• •
•

•
•

•

••
•

•

•
•
•
•
•

•
•

•
•

• •

•

•
•
• •

•

•

•
•

•
•
•

•
•

•
•
•
•

•

•

• •
•

•

•
•

•
• •

•

•
•

•
•
•

•

•
•

•
•
•
•

•
•
•

•
•

•
•
•

•
• •

•

•

•

•
•
•
•
•
•

•
• •

•

•

•

• •
•
•

•
•

•
••

•

•

•

•
•

•
•

•

•
•
• •

•

•

•
•
•
•

•

•

•
•
• •

•

•

•

•

••
•

•

•
•
•
•

•

•
•

•
•

•
•

•

•

•
• •

•

•

•
•

•
•
•

•
•

•
•
•
•

•

•

• •
•

•

•
•

•

•
•

•
•
•

•

•
•

•

•
•

•
•
•
•

•

•
•

•
•

•
•
•

•

• •

•

•

•

•
•
•

•
•

•

•

•
•
•

•

•

• ••

•

•
•

•

••

•

•

•

•

•
•
•

•

•

•

• •
•

•

•

•

•
•

•

•

•
•

• •

•

•
•

•

Fig. 3. Example 3. Time series plots of the monthly temperature in, from top to bottom, Nanjing, Dongtai, Huoshan,
Hefei, Shanghai, Anqing and Hangzhou, corresponding to the first 10-year segments.

four principal component factors are, respectively, 542·08, 1·29, 0·07 and 0·06. The first factor
accounts for over 99% of the total variation of the four factors, and 97·6% of the total variation of
the original seven series. The first four principal component factors are plotted in Fig. 4, and their
cross-correlation functions are displayed in Fig. 5. The periodic annual oscillation in the original
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Fig. 4. Example 3. Time series plots of the first four principal component factors, corresponding to the first
10-year segments.

data is predominately reflected by the fluctuation of the first factor, and to a much less extent by
that of the second factor; see Fig. 4. Furthermore, no periodic pattern is present in the third and
the fourth principal component factors. This suggests that the annual temperature oscillation over
this area may be seen as driven by one, or at most two, ‘common factors’. The first two columns
of the corresponding loading matrix Â are(

0·394 0·386 0·378 0·387 0·363 0·376 0·366
−0·086 0·225 −0·640 −0·271 0·658 −0·014 0·164

)T

,

which indicates that the first principal component factor is effectively the average temperature
over the seven cities. The residuals B̂TYt carry little dynamic information in the data; this is
indicated by the cross-correlation functions, not shown. The sample mean and sample covariance
matrix of et are, respectively,

µ̂e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3·41
2·32
4·39
4·30
3·40
4·91
4·77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �̂e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1·56
1·26 1·05
1·71 1·34 1·91
1·90 1·49 2·10 2·33
1·37 1·16 1·46 1·58 1·37
1·67 1·26 1·91 2·09 1·37 1·97
1·41 1·14 1·58 1·67 1·39 1·56 1·53

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Figure 5 indicates that the first two factors are dominated by periodic components with period
12. We estimated those components simply by taking the averages of all values in each of the
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Fig. 5. Example 3. Sample cross-correlation functions of the first four principal component factors.

twelve months, leading to the estimated periodic components

(g1,1, . . . , g12,1) = (−1·61, 1·33, 11·74, 28·06, 41·88, 54·51, 63·77, 62·14, 49·48,

33·74, 18·29, 3·50),

(g1,2, . . . , g12,2) = (1·67, 1·21, 0·47, 0·17, 0·41, 0·48, 1·37, 2·13, 2·98, 3·05, 2·78, 2·22) (22)

for, respectively, the first and the second factors. The cross-correlation functions of the four
factors after removing the periodic components from the first two factors, not shown, indicate
that the autocorrelation in each of those four series is not very strong, and that cross-correlations
among those four series, at nonzero lag, are weak. We fitted a vector autoregressive model to
those four series with the order 1 determined by the Akaike information criteria (AIC) (Brockwell
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& Davis, 1991, p. 412) with the following estimated coefficients:

ϕ̂0 =

⎛
⎜⎜⎝

0·07
−0·02
−0·11

0·10

⎞
⎟⎟⎠ , 
̂1 =

⎛
⎜⎜⎝

0·27 −0·31 0·72 0·40
0·01 0·36 −0·04 0·04
0·00 −0·01 0·42 −0·02

−0·00 0·03 0·03 0·48

⎞
⎟⎟⎠ , (23)

�̂u =

⎛
⎜⎜⎝

14·24
−0·17 0·23
−0·02 0·03 0·05

0·04 0·01 −0·00 0·05

⎞
⎟⎟⎠ . (24)

The multivariate portmanteau tests, with lag p = 12, of both Li & Mcleod (1981) and Reinsel
(1997, p. 149) for the residuals from the above fitted vector AR(1) model are nonsignificant at the
5% level. The univariate portmanteau test is nonsignificant at the 5% level for three out of the
four component residual series, and is nonsignificant at the 1% level for the other component
residual series. On the other hand, a vector AR(2) model was selected by the AIC for the 4-factor
series with vector AR(1) as its closest competitor. In fact the AIC values are, respectively, 240·03,
0·11, 0·00, 6·38 and 18·76 for the autoregressive order 0, 1, 2, 3 and 4.

Overall, the fitted model for the monthly temperature vector Yt is

Yt = Âξt + et ,

where the white noise et has the mean and covariance matrix given in (21), and the 4 × 1 factor
ξt follows the VAR(1) model

ξt − αt = ϕ̂0 + 
̂1(ξt−1 − αt−1) + ut ,

in which the periodic component αT
t = (gm(t),1, gm(t),2, 0, 0), gt,i is given in (22),

m(t) = {k | 1 � k � 12 and t = 12p + k for some integer p � 0},
and the white noise ut has mean 0 and covariance matrix �̂u given in (23).
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APPENDIX

Proofs

We first introduce two lemmas.

LEMMA A1. (i) It holds for any H1, H2, H3 ∈ H that

D(H1, H3) � D(H1, H2) + D(H2, H3).

(ii) For any H1, H2 ∈ H, �(H1) = �(H2) and �n(H1) = �n(H2) provided that D(H1, H2) = 0.
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Proof . (i) For any symmetric matrices M1, M2 and M3, it follows from the standard triangle inequality
for the matrix norm ‖ · ‖ that ‖M1 − M3‖ � ‖M1 − M2‖ + ‖M2 − M3‖; that is{
tr
(

M2
1 + M2

3 − 2M1 M3

)}1/2 �
{

tr
(

M2
1 + M2

2 − 2M1 M2

)}1/2 + {
tr
(

M2
2 + M2

3 − 2M2 M3

)}1/2
. (A1)

Let M1 = H1 H T
1 , M2 = H2 H T

2 and M3 = H3 H T
3 . Since now tr(M2

i ) = tr(Mi ) = d − r for i = 1, 2, 3, the
inequality required follows from (A1) and (16) directly.

(ii) Under the condition D(H1, H2) = 0, H1 H T
1 = H2 H T

2 as it is the projection matrix onto the linear
space M(H1) = M(H2). Now∥∥H T

1 �k H1

∥∥2 = tr
{(

H T
1 �k H1

)T
H T

1 �k H1

} = tr
(
�T

k H1 H T
1 �k H1 H T

1

) = ∥∥H T
2 �k H2

∥∥2
.

Hence �(H1) = �(H2). The equality for �n may be proved in the same manner. �

LEMMA A2. Let {Yt } be a ϕ-mixing process and let E(Sk) → �k . Suppose that Yt can be represented
as Yt = Ut + Vt , where Ut and Vt are uncorrelated for each t, supt�1 E‖Ut‖h < ∞ for some constant
h > 2, and

1

n

n∑
t=1

Vt → c in probability,
1

n

n∑
t=1

EVt → c, (A2)

where c is a constant vector. It holds that
(i) Sk → �k in probability,

(ii) Sk → �k almost surely provided that the mixing coefficients satisfy the condition

ϕ(m) =
{

O
( (m−b)

(2b−2) − δ
)
, if 1 < b < 2,

O
( (m−3)

(b−δ)

)
, if b � 2,

(A3)

where δ > 0 is a constant, and the convergence in condition (A2) is also almost sure.

Proof . Assertion (i) follows from the the law of large numbers for ϕ-mixing processes; see
Theorem 8·1·1 of Lin & Lu (1997). Applying the result of Chen & Wu (1989) to the sequences {Ut }
and {UtU T

t−i }, and using the almost sure version of Condition (A2), we may obtain (ii). �

Proof of Theorem 1. Applying the Cauchy–Schwarz inequality to the matrix norm, we have

|�n(H ) − �(H )| �
p∑

k=1

|‖H TSk H‖2 − ‖H T�k H‖2|

�
p∑

k=1

‖H T(Sk − �k)H‖(‖H TSk H‖ + ‖H T�k H‖)

� ‖H‖4
p∑

k=1

‖Sk − �k‖(‖Sk‖ + ‖�k‖).

Note that ‖H‖2 = d − r for any H ∈ H, ‖Sk − �k‖ → 0 in probability, which is implied by Condition 1,
and ‖Sk‖ + ‖�k‖ = OP (1). Hence, in probability,

sup
H∈HD

|�n(H ) − �(H )| → 0. (A4)

LEMMA A1. (i) ensures that (HD, D) is a well-defined metric space which is complete. Lemma A1(ii)
guarantees that �n(·) is a well-defined stochastic process indexed by H ∈ HD , and �(·) is a well-defined
function on the metric space (HD, D). It follows from the argmax theorem, see Theorem 3·2·2 and
Corollary 3·2·3 of van der Vaart & Wellner (1996), that D(B̂, B) → 0 in probability.
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To show the convergence with probability 1, note that the convergence in (A4) is with probability
1 provided that Sk → �k with probability 1. Suppose by contradiction that there exists a δ such that
pr{lim supn→∞ D(B̂, B0) > δ} > 0. Let H′

D = HD ∩ {B : D(B, B0) � δ}. Then H′
D is a compact subset

of HD . Note that, if supH∈HD
|�n(H ) − �(H )| → 0 almost surely, then there exists a set of sample points

�′ satisfying �′ ⊂ {lim supn→∞ D(B̂, B0) > δ} and pr(�′) > 0 such that, for each ω ∈ �′, one can find a
subsequence {B̂nk (ω)} ⊂ H′

D with B̂nk (ω) → B ∈ H′
D . Then, by the definition of B̂,

�(B) = lim
k→∞

�nk {B̂nk (ω)} � lim
k→∞

�(B0) = �(B0)

holds for ω ∈ �′ and with positive probability. This is a contradiction to Condition 2. Therefore, it must
hold that D(B̂, B0) → 0 with probability 1. �

Proof of Theorem 2. Denote by s(i, j),k and σ(i, j),k , respectively, the (i, j)th elements of Sk and �k . By the
Central Limit Theorem for ϕ-mixing processes, see Lin & Lu (1997) and an unpublished London School of
Economics dissertation paper by J. Davidson, it holds that n1/2(s(i, j),k − Es(i, j),k) → N(i, j),k in distribution,
where N(i, j),k denotes a Gaussian random variable, i, j = 1, . . . , d. Hence, ‖n1/2(Sk − E Sk)‖ = OP (1). It
holds now that

sup
H∈HD

n1/2|�n(H ) − �(H )|

� sup
H∈HD

n1/2
p∑

k=1

|‖H TSk H‖2 − ‖H T�k H‖2|

� sup
H∈HD

p∑
k=1

∥∥H Tn1/2(Sk − E Sk)H
∥∥(‖H TSk H‖ + ‖H T�k H‖)

+ sup
H∈HD

p∑
k=1

∥∥H T
{

n1/2(E Sk − �k)
}

H
∥∥(‖H TSk H‖ + ‖H T�k H‖)

� p sup
H∈HD ,1�k�p

∥∥H Tn1/2(Sk − E Sk)H
∥∥(‖H TSk H‖ + ‖H T�k H‖)

+ p sup
H∈HD ,1�k�p

∥∥H T
{

n1/2(E Sk − �k)
}

H
∥∥(‖H TSk H‖ + ‖H T�k H‖)

� p(d − r )4

{
sup

1�k�p

∥∥n1/2(Sk − E Sk)
∥∥(‖Sk‖ + ‖�k‖)

+ sup
1�k�p

∥∥n1/2(E Sk − �k)
∥∥(‖Sk‖ + ‖�k‖)

}
= OP (1). (A5)

By Condition 3, (A5) and the definitions of B and B̂, we have that

0 � �n(B) − �n(B̂)

= �(B) − �(B̂) + OP

(
n−1/2

)
� −a{D(B̂, B)}c + OP

(
n−1/2

)
.

Now let n → ∞ in the above expression. It must hold that D(B̂, B) = OP (n−1/(2c)). �
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