This diagram (on the following page) shows the interaction of the Marlin prover and verifier. It is similar to the diagrams
in the paper (Figure 5 in Section 5 and Figure 7 in Appendix E, in the latest ePrint version), but with two changes: it
shows not just the AHP but also the use of the polynomial commitments (the cryptography layer); and it aims to be fully
up-to-date with the recent optimizations to the codebase. This diagram, together with the diagrams in the paper, can act

as a “bridge” between the codebase and the theory that the paper describes.

1 Glossary of notation
F the finite field over which the R1CS instance is defined
T public input
w secret witness
H variable domain
K matrix domain
X domain sized for input (not including witness)
vp(X) vanishing polynomial over domain D
up(X,Y) bivariate derivative of vanishing polynomials over domain D
A B,C R1CS instance matrices
A* B*, O shifted transpose of A, B, C' matries given by M, := My o - up (b,b) Va,b € H

(optimization from Fractal, explained in Claim 6.7 of that paper)

{a, r/OW, C/a}{A*B*7C*}

preprocessed polynomials from A*, B*, C* matrices containing LDEs of (respectively)
row positions, column positions, and values of non-zero matrix elements

ro/vaI{A* R the product polynomial of row and col, given separately for efficiency (namely
o to allow this product to be part of a linear combination)

P prover

1% verifier

Vp V with “oracle” access to polynomial p (via commitments provided

by the indexer, later opened as necessary by P)
b bound on the number of queries
ru(X,Y) an intermediate polynomial defined by 7 (X,Y) = M*(Y, X)




2 Diagram

P(F,H,K,A,B,C,z,w) pval.ou.colioweol} 4+, 5+, (F, H, K, z)

Z = (wi)va = AZ,ZB = Bz
sample w(X) € F<I*I+P[X] and 24(X), 25(X) € F<IHI+b[X]
sample mask poly §(X) € F<3‘H|+2b_2[X] such that >,y 8(k) =0

commitments cmy, cmz,,cm;,, cm;

na,nB,Nc < F

a<+~F\H
na,ns,nc,« €F
compute t(X) =3, nurm (o, X)
sumcheck for §(X) + ug (o, X) Oy vz (X)) —t(X)2(X) over H

let é’c(X) = ,QA(X) . 2B(X)

find g1(X) € FIHI-1[X] and h;(X) such that

s(X) +un (o, X))o ymvzm (X)) —t(X)2(X) = i (X)vg(X) + X1 (X) (%)

commitments cmy, cmg, , cmp,
B+ F\H
BeF
sumcheck for S v (B)vs ()valy- (X) over K

Me{A,B,C} " (B=rowar (O)(ecola- (X))

for M € {A, B, C}, let Mgenom(X) := (8 — fowaz= (X)) (e — colps- (X))

= 03 — afowr (X) — Bcolpr- (X) + roweol pr- (X)

let = > v (8o (a)val pe (X) I voear Neenom (X)
Me{A,B,C}
let b(X) = H ]\Jdenom (X)
Me{A,B,C}

find go(X) € FIKI=1[X] and ha(X) s.t.
ha(X)vk (X) = = b(X)(Xg2(X) +H(B)/IK])  (+x)

commitments cmg,,cmp,
v+ F

To verify (#x), V will need to check the following;:

¥) = b(1)(392(7) + 1(8)/|K|) — vic(y)ha(y) = 0 |

sumcheckinner (7)

To verify (%), V will need to check the following:

sumcheckoyter (3)

s(B) +vn (o, B)(1n424(8) +nc25(8)24(8) +np2(8)) — LB vx (B)w(B) — t(B)2(S) — vu(B)hi(B) — Bg1(3) 20 i

Vgy 1= 92(7)s VAenem = Adenom (7)s VBuenem = Bdenom (1) VCienom = Clenom ()
Vg, = 91(6)7 Vzp = 23(5)’ Ut = t(ﬁ)

Vg2 5 UAgenom 3 UBdenom » UCldenom s g1+ Vip» UVt

—_~
use index commitments row, col, rowcol to construct virtual commitments vemya,, ... Biom: Cienom}

use index commitments val, commitments vem ..., VEM B, o> VEM o> CMhy, annd evaluations go (), t(/3)
to construct virtual commitment vemgymcheckinmer

use commitments cmg,cmsz,, cmy,cmy, and evaluations Zp(5).¢(3). g1(/3)
to construct virtual commitment vemgymcheck

outer

517"'755<¥F

use PC.Prove with randomness &1, ...,&5 to
construct a batch opening proof 7 of the following:

(€Mgy, €M A, s CMBy s CMOy s VEMsumeheckine ) AL 7Y €valuate t0 (Vg, ;U Ageoms VBaemom s YCaenom s 0) ()
(cmg,, Mz, , €My, VCMgymchecko ) 8t B evaluate to (vg,, vz, vt, 0) (%)

™

verify m with PC.Verify, using randomness &1, . .., &s,
evaluations Vg, , VAu.om> VBaeom > UCkemom Vg1 » Vs » U, and
commitments cmg,,cmy . cmp, . CMcy o
VCMsumcheckinner s €My » €Mz 5, CMy, VEMsyumcheck

inner



