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The Synthesis of Complex Audio Spectra 

by Means of Frequency Modulation* 

JOHN M. CHOWNING 

Stanford Artificial Intelligence Laboratory, Stanford. California 

An application of the well-known process of frequency 
modulation is shown to result in a surprising control of 

audio spectra. The technique provides a means of great 

simplicity to control the spectral components and their 
evolution in time. Such dynamic spectra are diverse in 
their subjective impressions and include sounds both 
known and unknown. 

INTRODUCTION: Of interest in both acoustical re 
search and electronic music is the synthesis of natural 

sound. For the researcher, it is the ultimate test of acous 

tical theory, while for the composer of electronic music 

it is an extraordinarily rich point of departure in the 

domain of timbre, or tone quality. The synthesis of natur 

al sounds has been elusive; however, recent research in 

computer analysis and synthesis of some tones of mu 

sical instruments [1] has yielded an insight which may 

prove to have general relevance in all natural sounds: the 

character of the temporal evolution of the spectral com 

ponents is of critical importance in the determination of 

timbre. 

In natural sounds the amplitudes of the frequency com 

ponents of the spectrum are time-variant, or dynamic. 

The energy of the components often evolve in compli 

cated ways; in particular, during the attack and decay 

portions of the sound. The temporal evolution of the 

spectrum is in some cases easily followed as with bells, 

whereas in other cases not, because the evolution oc 

curs in a very short time period, but it is nevertheless 

perceived and is an important cue in the recognition of 

timbre. Many natural sounds seem to have characteris 

tic spectral evolutions which, in addition to providing 

their "signature," are largely responsible for what we 

judge to be their lively quality. In contrast, it is large 

ly the fixed proportion spectrum of most synthesized 

sounds that so readily imparts to the listener the elec 

tronic cue and lifeless quality. 

The special application of the equation for frequency 

modulation, described below, allows the production of 

complex spectra with very great simplicity. The fact 

that the temporal evolution of the frequency compo 
nents of the spectrum can be easily controlled is perhaps 
the most striking attribute of the technique, for dy 

namic spectra are achieved only with considerable dif 

ficulty using current techniques of synthesis. At the end 

of this paper some simulations of brass, woodwind, and 

percussive sounds are given. The importance of these 

simulations is as much in their elegance and simplicity 

as it is in their accuracy. This frequency modulation 

technique, although not a physical model for natural 

sound, is shown to be a very powerful perceptual model 

for at least some. 

FREQUENCY MODULATION 

Frequency modulation (FM) is well-understood as ap 

plied in radio transmission, but the relevant equations 

have not been applied in any significant way to the 

generation of audio spectra where both the carrier and 

the modulating frequencies are in the audio band and 

the side frequencies form the spectrum directly. 

In FM, the instantaneous frequency of a carrier wave 

is varied according to a modulating wave, such that the 

rate at which the carrier varies is the frequency of the 

modulating wave, or modulating frequency. The amount 

the carrier varies around its average, or peak frequency 

deviation, is proportional to the amplitude of the modu 

lating wave. The parameters of a frequency-modulated 

signal are . 

c = carrier frequency or average frequency 

m = modulating frequency 

d = 
peak deviation. 

AMPLITUDE 
1a 

1*0 .5 

1=1 .5 

f I , 
c-3m c-2m c-m c c+m c+2m c+3m 

1=2 .5 
11111 

c-2m c c+2m 

1=3 .5 
1 T r T 1 

I«4 .5 - 

t T 1 T , 1 . 1 1 T t 
c-5m c c+5m 

e. 

Fig. 1. Example to show increasing bandwidth with in 

creasing modulation index, J. The upper and lower side fre 

quencies are at intervals of the modulating frequency, m, and 
are symmetrical around the carrier, c. 

* Reprinted with permission from the Journal of the Audio Engi 
neering Society, Volume 21, No. 7, September 1973. Copyright 
1973 by the Audio Engineering Society. 
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The equation for a frequency-modulated wave of peak 

amplitude A where both the carrier and modulating 

waves are sinusoids is 

e = A sin (a/ + I sin/8/) (1) 

where 

e = the instantaneous amplitude of the modu 

lated carrier 

a = the carrier frequency in rad/s 

ß = the modulating frequency in rad/s 

1 = d/m = the modulation index, the ratio of 

the peak deviation to the modulating fre 

quency. 

It is obvious that when 1 = 0 the frequency deviation 

must also be zero and there is no modulation. When I is 

greater than zero, however, frequencies occur above and 

below the carrier frequency at intervals of the modulat 

ing frequency. The number of side frequencies which oc 

cur is related to the modulation index in such a way that 

as I increases from zero, energy is "stolen" from the car 

rier and distributed among an increasing number of side 

frequencies. This increasing bandwidth as I increases, is 

shown in Fig. 1, with a constant-modulating frequency. 

The amplitudes of the carrier and sideband components 

are determined by Bessel functions of the first kind and 

nth order, /„(/), the argument to which is the modula 

tion index. The first six Bessel functions, J0 through J5, 

are shown in Fig. 2. The Oth order Bessel function and 

index I, yields an amplitude scaling coefficient for 

the carrier frequency; the 1st order, /i(/), yields a scaling 

coefficient for the first upper- and lower-side frequen 

cies; the 2nd order, J2(I), for the second upper- and 

lower-side frequencies; and so forth. The higher the or 

der of the side frequency the larger the index must be 

for that side frequency to have significant amplitude. 
The total bandwidth is approximately equal to twice the 

sum of the frequency deviation and the modulating fre 

quency. or 
BW « 2(d+m). 

All of the above relationships are expressed in the 

trigonometric expansion of Eq. [2] 

e = A { Jn(I) sina/ 

-t-ZjC/) [sin(a+ ß)t — sin(a— /S)] 
+ /,(/) [sin(a + 2ß)t + sin(a — 2ß) ] 
+ /3(/) [sin(a + 3/3) f — sin(a —• 3/8) ] 
+ }• (2) 

It can be seen in Eq. 2 that the odd-order lower-side 

frequencies, sin(a-/3), sin(a-3/3), etc., are preceded by a 

negative sign, and that for an index greater than 2.5, the 

Bessel functions (Fig. 2) will yield a negative scaling co 

efficient for some components. Ordinarily, these negative 

signs are ignored in plotting spectra, as in Fig. 1, since 

they simply indicate a phase inversion of the frequency 

component, 
— 

sin(0) = sin(— 8). In the application of 

FM described below, this phase information is significant 

and must be considered in plotting spectra. 

By way of demonstration, Fig. le is plotted, but with 

the phase information included, in Fig. 3. The carrier and 

the first upper-side frequency are plotted with a down 

ward bar representing the phase inversion resulting from 

the negative Bessel coefficients. The importance in noting 

the phase inversions will be seen in the following section. 
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Fig. 2. Bessel functions which determine the amplitudes 
of the sideband components. 

AMPLITUDE 
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C-3m 

Fig. 3. Plot of Fig. le with phase information included 
(modulation index = 4). The bars extending downward 

represent spectral components whose phases differ by 180°. 
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REFLECTED SIDE FREQUENCIES 

The special richness of this FM technique lies in the 

fact that there are ratios of the carrier and modulating 

frequencies and values of the index which will produce 

sideband components that fall in the negative frequency 

domain of the spectrum. These negative components re 

flect around 0 Hz and "mix" with the components in the 

positive domain. The variety of frequency relations which 

result from this mix is vast and includes both harmonic 

and inharmonic spectra. 
A simple but very useful example of reflected side 

frequencies occurs if the ratio of the carrier to modulat 

ing frequencies is unity. For the values 

c = 100 Hz 

m = 100 Hz 

1 = 4 

a plot of the spectrum is shown in Fig. 4a. The com 

ponent at 0 Hz represents a constant in the wave. The 

remaining lower-side frequencies are reflected into the 

positive frequency domain with a change of sign (in 

version of phase) and add algebraically to the com 

ponents which are already there as shown in Fig. 4b. 

For example, the second lower-side frequency will add 

to the carrier with like signs, therefore increasing the 

energy at 100 Hz, while the third lower-side frequency 

will add to the first upper-side frequency with unlike 

signs, decreasing the energy at 200 Hz. The spectrum, 

adjusted for the reflected frequency components and 

with the bars all up to reveal the spectral envelope, is 

shown in Fig. 4c. 

HARMONIC AND INHARMONIC SPECTRA 

The significance of the case above, where the ratio 

of the carrier to the modulating frequencies is 1/1, is 

that it is a member of the class of ratios of integers 
(rational numbers), thus 

c!m = 

and JVj and iV2 are integers. These ratios result in har 

monic spectra. If in addition, all common factors have 

been divided out of Nt and N2, then the fundamental 

frequency of the modulated wave will be 

f0 
= 

c/Nj 
= 

m/N2. 

The position of the side frequencies in the harmonic 
series can be determined from the following relations, 

k — 
N1 ± nNn for n = 0,1,2,3,4 .... 

where 

k = the harmonic number 

and 

n — the order side frequency. 

Except for n = 0, the carrier, there are two values for 

k for each order, corresponding to the upper and lower 

side frequencies. 

FREQ. 

Fig. 4. Fig. 4a shows spectrum with components which lie 
in the negative frequency domain; b shows plot from a in 
which the frequencies in the negative domain are reflected 
around 0 Hz with an inversion of phase and added to the 

components in the positive domain; c is plot of the magni 
tude of the components of b. 

Some useful generalizations can be made in regard to 

simple ratios. 

1) The carrier is always the A^th harmonic in the 

series. 

2) If N2 
— 1, the spectrum contains all harmonics and 

the fundamental is at the modulating frequency, e.g., 

1/1,2/1. 
3) When Ns is an even number, the spectrum contains 

cnly odd numbered harmonics, e.g., 1/2,1/4,3/2, 

3/4,5/2. 
4) If N2 — 3, every third harmonic is missing from 

the series, e.g., 1/3,2/3,4/3,5/3. 

As noted before, the actual number of harmonics which 

will have significant amplitude is dependent on the modu 

lation index. For small indexes and ratios where N, ^ 1, 

the fundamental may not be present in the spectrum. 

This can be seen in the spectra plotted in Fig. 5, where 

the ratio c/m = 4/1. Adjusted for the reflected side fre 

quencies, the spectra show the filling out of the harmon 

ics with an increasing index. The fundamental only be 

comes significant when the index is greater than two. 

Inharmonic spectra will result from ratios of irrational 

numbers, e.g., c/m = 
l/\/2, ir/\/3, 1/e. In this case, 
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the reflected side frequencies will fall between the posi 

tive components, thus forming a spectrum whose com 

ponents are not in a relation of simple ratios. Fig. 6 shows 

an adjusted spectrum where the ratio dm ss l/\/2 

and the index = 5. 

In summary, the ratio of the carrier and modulat 

ing frequencies (dm) determines the position of the 

components in the spectrum when there are reflected 

side frequencies, while the modulation index (dim) 
determines the number of components which will have 

significant amplitude. 

AMPLITUDE 

1=0 

FREQ. 
0 f 2f 3f 4f Ef 6f 7f 8f 9f 

m c a. 

1 = 1 

. . I —I * A 

b. 

1=2 

..nil. 

1 = 3 
t 1 I I t 1 t . 

c-3m c+3m 

1 = 4 

t ■ i ■ i I > . 
e. 

Fig. 5. Plot of spectrum where the ratio of c/m is 4/1. 
As the index increases, the reflected lower side frequencies 
begin to affect the spectrum when 1 = 3, where the funda 
mental, c—3m, is noticeably greater than the 7th harmonic, 
c+3m. In e, the symmetry around the carrier is no longer 
apparent. 
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Fig. 6. Inharmonic spectrum where the ratio c/m 
l/\ 2 and the modulation index = 5. The reflected compo 
nents, represented here with the bar at the top, fall in be 

tween the other components. 

DYNAMIC SPECTRA 

As demonstrated above, the equation for FM has an 

inherent and, as will be shown, most useful charac 

teristic: the complexity of the spectrum is related to 

the modulation index in such a way that as the index 

increases, the bandwidth of the spectrum also increases 

(see Fig. 5). If, then, the modulation index were made 

to be a function of time, the evolution of the band 

width of the spectrum could be generally described by 

the shape of the function. The evolution of each of the 

AMPLITUDE 

INDEX 
(time) 

Fig. 7. Dynamic spectrum where the ratio c/m = 1/1 
and the modulation index increases from 0 to 4 continuously. 
The increasing bandwidth is easily seen, but because the spec 
trum includes the reflected side frequencies, the evolution of 

the individual components is not always intuitively clear. 

components of the spectrum, however, is determined by 

the shape of the Bessel functions. Therefore, if the in 

dex increases with time the overall bandwidth will also 

increase, but a given component will either increase 

or decrease in amplitude depending on the slope of the 

Bessel function at that index range. Fig. 7 is a three 

dimensional representation of a dynamic FM spectrum 

where dm = 1/1 and the modulation index increases 

in time from 0 to 4. If the index sweeps over a very 

large range, for example from 2 to 10, the amplitudes 

of the components will oscillate around 0 amplitude 

as the bandwidth of the spectrum increases. 

The presence of reflected side frequencies in a dy 

namic spectrum enormously complicates the evolution 

of the individual components, to the extent that it is 

difficult to visualize the amplitude functions with any 

precision. It is possible to gain an intuitive feeling for 

their tendency of change, which in the research presented 

here, has proven to be largely sufficient.1 

Certainly the complexity in the evolution of each of 

the components of the spectrum makes an important 

contribution to the lively quality of FM sounds. Be 

cause this complexity is a function of the laws of the 

equation, it is surprising that while the evolution of the 

components is rigidly determined, they can still produce 

such rich and varied subjective impressions. 

1 A dynamic computer display program was very helpful in 
visualizing the spsctra which result from a changing index 
and reflected side frequencies. Given a ratio of carrier to 
modulating frequencies and an initial and terminal index, 
the program plots the changing spectrum. 
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Fig. 8. Bessel functions. J through . and indexes 0 through 20. This representation allows a rapid determination of 
the bandwidth resulting from a given index. 

In visualizing the effect of sweeping the modulation 

index, a careful study of Fig. 8 is helpful [3]. This is a 

three-dimensional representation of the orders •/„ through 
for an index range of 0 through 20 and is a suffi 

cient range of orders and indexes for many useful dy 
namic spectra. Contour lines A, B, and C represent con 

stant values of the functions at •/„(/) 
= .01, .001. and 

.0001 respectively. Line A then, indicates which order 

side frequency is just significant at a given index. Line D 

represents the order of the function which is equal to the 

argument, or J„(I) where n = I. This relation shows 

that any orders of side frequencies greater than the 

value of the index decrease rapidly in importance. Line 

E is the absolute maximum amplitude for each order. 

Lines F, G, H, I, J, and K show the zero crossings of 

the functions and, therefore, values of the index which 

will produce a null or zero amplitude for various or 

ders of side frequencies. 

IMPLEMENTATION 

The research described here was done using a Digi 

tal Equipment Corporation PDP-10 computer for which 

there is a special sound synthesis program designed to 

make optimum use of the time-sharing capability of 

the machine. Implementation of this research, however, 

will be described for MUSIC V, a sound synthesis pro 

gram which is both well-documented and generally 

available [4], 
MUSIC V is a program which generates samples or a 

numerical representation of a sound pressure wave ac 

cording to data which specify the physical character 

istics of the sound. The samples are stored on a mem 

ory device as they are computed. On completion of the 

computation, the samples are passed at a fixed rate 

(sampling rate, which is typically 10 000 to 30 000 

samples/sec) to a digital-to-analog converter, which gen 

erates a sequency of voltage pulses whose amplitudes 
are proportional to the samples. The pulses arc smoothed 

by a low-pass filter and passed to an audio system. 

P4 P5 P7 P6 
CARRIER FREQ. MODULATING 

AMPLITUDE FREQ. DEVIATION FREQ. 

Fig. 9. Simple FM circuit as represented in MUSIC V 
notation. 

The program is designed so that the computation of 

the samples is done by program blocks called unit gen 
erators. A typical unit generator is the oscillator which 

has two inputs, an output, and a stored waveshape 
function. The first input specifies the amplitude of the 

output, the second input the frequency of the output, 
and the function determines the shape of the output. 
The value of an input can either be specified by the 

user or can be the output from another unit generator, 

thereby allowing multilevel operations on waveforms. A 

collection of interconnected unit generators is called an 

instrument, which is supplied data through a set of 

parameters, P, to P,v set by the user. and P3 are re 

served for beginning time and duration of the note the 

instrument is to play and P2 is reserved for the instru 

ment number. The remaining parameters are assigned 
their function by the user. 

Shown in Fig. 9, is an instrument diagram which con 

sists of three unit generators, two oscillators and an 
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adder. The function for each oscillator is defined to be 

a sinusoid. This instrument is capable of producing com 

plex FM spectra such as the one in Fig. 4 where the 

values are now assigned to parameters. 

Pi 
— 1000 = 

amplitude of modulated carrier 

(arbitrary scaling) 

P5 
= 100 Hz = carrier frequency 

P0 
— 100 Hz = modulating frequency 

P7 
= 400 Hz = 

frequency deviation, for 7 = 4. 

Since I — dim, then d = 1m and for 7 = 4 the peak 

deviation = 400 Hz. Oscillator 1 produces a sinusoidal 

output whose amplitude is scaled by P- to be 400 Hz 

at a frequency of 100 Hz given by 

In the case above, which is typical for this applica 

tion of FM, the instantaneous frequency of the modu 

lated carrier at times becomes negative. That is, from 

Eq. 1. the sum of at, a ramp function, and 7 sin ßt, a 

sinusoid with amplitude 7, can produce a curve which 

has a negative slope at certain points and, therefore, 

a phase angle which decreases with time! This condi 

tion occurs when either the ratio of the carrier to the 

modulating frequency is very small or the modulation 

index is very large. The oscillator, u.g. 3, in Fig. 9 

P3 
P4 j P5 P7-P6 (P8-P7) P6 

NOTE CARRIER npv,. -w, AMPLITUDE DURATION FREQ. 2 

J" 

C3 
u. g.4 

1 

u.g.5 

fu-9-6 

u. g. 1 

u. g. 2 

u.g. 3 

OUTPUT 

P6 

Fig. 10. FM circuit to produce dynamic spectra. Two 
function generators are added, u.g. 4 and u.g. 5, to produce 
an amplitude envelope and a modulation index envelope 
which causes the bandwidth to vary. 

Fig. 11. Envelope function for brass-like tones. 

above, must be able to produce a wave which results 

from taking the sine of an angle which decreases as 

well as increases with time.2 

In order to specify the modulation index as a func 

tion of time and control the attack and decay of the 

modulated carrier, it is necessary to alter the instru 

ment. Fig. 9, by adding three more unit generators. 
In Fig. 10, u.g. 4 and u.g. 5 are time-domain function 

generators (oscillators or envelope generators in 

MUSIC V). U.g. 4 imposes an amplitude envelope on 

the modulated carrier and u.g. 5 and u.g. 6 together 

allow a dynamic control of the modulation index. The 

parameters for this instrument will have the following 

function : 

P1 
= 

Begin time of instrument 

P2 
= Instrument number 

P3 
= Duration of the "note" 

P4 
= 

Amplitude of the output wave 

P5 = Carrier frequency 

Pß 
= 

Modulating frequency 

P7 
= Modulation index 1, /t 

P8 
= Modulation index 2, /2 

Since the bandwidth is related directly to the modulation 

index (and only indirectly to the deviation), a special 

routine can be used to produce the required deviation, 

deviation = 
P, X P6 or deviation = 

(P8 
— 

P7) X P6. 

The same routine can also generate the frequency in 

puts for u.g. 4 and u.g. 5, such that P9 
= 1 /P3 where the 

relation 1/note-duration causes the functions associated 

with these generators to be sampled at a rate so that one 

period is completed in the duration P3. The oscillator and 

adder, u.g. 5 and u.g. 6, are related in such a way that 

P7 becomes the value of the modulation index when the 

output of u.g. 5 is zero and P8 is the modulation index 

when the output of u.g. 5 is one. For example, if Fig. 11 

represents the function for the oscillator u.g. 5 and 

.6 seconds 

100 Hz 

2 

8 

first, P^ and P8 
— 

P7 are multiplied by P6 to convert to 

deviation, then the function is scaled by 600 and added 

to the constant input to the adder of 200. The output of 

- The change in code to the oscillator in MUSIC V to al 
low for a decreasing angle is: 

for 

290 IF(SUM-XNFUN) 288, 287, 287 
287 SUM=SUM -XNFUN 

substitute 
290 1F ( SU M .GE.XNFUN ) GO TO 287 

IF(SUM.LT. 0.0) GO TO 289 
and for 

GO TO 293 
292 J6=L1+J3—1 

substitute 
GO TO 293 

287 SUM=SUM—XNFUN 
GO TO 288 

289 SUM=SUM+XNFUN 
GO TO 288 

292 J6=L1+J3—1. 
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the adder, then, is a deviation increasing from 200 to 

800 in the first 1/6 seconds, decreasing from 800 to 650 

in the next 1/6 seconds, etc. If the values of P7 and Ps 
are reversed, the function is inverted but between the 

same limits. Having this capability of scaling the devia 

tion in direct or inverse proportion to the function and 

between any two values for Ix and 1<< is useful in gener 

ating various dynamic spectra. 

SIMULATIONS OF INSTRUMENT TONES 

In this section, techniques for simulating three classes 

of instrument tones will be defined, using the computer 

instrument shown in Fig. 10. 

Brass-like Tones 

Risset demonstrated in his revealing analysis of trum 

pet tones [5] a fundamental characteristic of this class 

of timbres; the amount of energy in the spectrum is dis 

tributed over an increasing band in approximate propor 
tion to the increase of intensity. A simulation of this 

class of timbres is developed around the following 

premises: 

1) The frequencies in the spectrum are in the har 

monic series, 

2) Both odd and even numbered harmonics are at 

some times present, 

3) The higher harmonics increase in significance with 

intensity, 
4) The rise-time of the amplitude is rapid for a typi 

cal attack and may "overshoot" the steady state. 

Oscillators, u.g. 4 and u.g. 5, in Fig. 10, control the am 

plitude and modulation index (deviation indirectly), and 
both use the time domain function shown in Fig. 11. 

The parameter values for a brass-like tone can be: 

P3 = .6 

P4 = 1000 (amplitude scaling) 
Pr, 

= 440 Hz 

P6 
= 440 Hz "(ratio of cf m =1/1) 

P7 
= 0 

?8 
= 5. 

The modulation index (therefore deviation) changes in 

direct proportion to the amplitude of the modulated 

carrier wave; the result being an increase or decrease in 

significance of the side frequencies in proportion to the 

amplitude envelope function. The ratio, c/m = 1/1, pro 
duces components that fall in the harmonic series. By 

changing the values of the indexes by small amounts 

and the shape of the function, a large number of varia 

tions can be achieved. 

Woodwind-like Tones 

It is sometimes the case with woodwinds and organ 

pipes that the first frequencies to become prominent dur 

ing the attack are the higher harmonics, which then de 

crease in prominence as the lower harmonics increase 

during the steady state. This type of spectral evolution 

can be achieved in several ways, for example, by setting 

the carrier frequency to be an integral multiple of the 

modulating frequency, or by making the index function 

inversely proportional to the amplitude function. A sim 

ulation of this class of timbres is developed around the 

following premises: 

1) The frequencies in the spectrum are in the har 

monic series and for some woodwind tones are pre 

dominantly odd numbered harmonics, 

2) The higher harmonics may decrease in significance 
with the attack. 

In the first example, the carrier frequency is three times 

the modulating frequency, or c/m = 3/1, and the am 

plitude and index function is shown in Fig. 12. Since 
during the attack the index increases from 0 to 2, the 

carrier (3rd harmonic) will be apparent at the onset of 

the tone and then quickly decrease as the side frequen 
cies fill out the spectrum. The parameters are: 

P5 
= 900 Hz 

P6 
= 300 Hz 

P7 
= 0 

Pb 
= 2. 

A ratio of c/m = 5/1 will produce a bassoon-like timbre 

in the lower octaves. The functions remain as above and 

the parameters are: 

P3 
= 500 Hz 

P6 
= 100 Hz 

P7 
= 0 

Pa 
= 1.5. 

Another reed quality can be produced by choosing a 

ratio of c/m which yields the odd harmonics. The 

parameters 

P5 
= 900 Hz 

P6 
= 600 Hz 

PT 
= 4 

P8 
= 2 

will produce a clarinet-like timbre where 300 Hz is the 

fundamental and the index is inversely proportional to 

the amplitude function. The bandwidth of the spectrum 
will decrease as the amplitude increases during the 

attack. 

In all of the above examples, small alterations can be 

made which make the sounds more interesting and/or 

realistic. A particularly useful alteration is the addition 
of a small constant to the modulating frequency. If the 

value .5 Hz were added, for example, the reflected lower 

SEC 

Fig. 12. Envelope function for woodwind-like tones. 

sec 

Fig. 13. Special envelope function for modulation index 
to achieve a better approximation to a woodwind timbre. 
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side frequencies would not fall exactly on the upper-side 

frequencies, producing a beat frequency or tremulant of 

1 c/s. The realism can be further improved by making 
the function controlling the index the same as the am 

plitude function only through the attack and steady state 

and, thereafter, remaining constant. If Fig. 12 is the 

shape of the amplitude function, then Fig. 13 would be 

the shape of the index function. The evolution of the 

spectrum during the attack is apparently not always re 

versed during the decay. 

Percussive Sounds 

A general characteristic of percussive sounds is that 

the decay shape of the envelope is roughly exponential 

as shown in Fig. 14. A simulation of this class of 

timbres would be developed around the premises: 

1) The spectral components are not usually in the 

harmonic series, 

2) The evolution of the spectrum is from the complex 
to the simple. 

Fig. 14. Exponential decaying envelope for bell-like 
timbres. 

Bell-like sounds can be produced by making the change 
of the index directly proportional to the amplitude en 

velope. Fig. 14, then, is the function for the amplitude 
and index. The parameters can be the following: 

P:i 
= 15 seconds 

P4 
= 1000 

P5 
= 200 Hz 

P6 
= 280 Hz 

P7 
= 0 

Fig. 15. Modification of exponential envelope to obtain 
drum-like sound. 

The ratio dm = 1/1.4 results in an inharmonic relation 

of the frequency components. With the large initial 

index, the spectrum is dense and as the amplitude 
decreases the spectrum becomes gradually simple. As the 

amplitude approaches 0, the predominant frequency is 

the carrier at 200 Hz. By changing the amplitude func 
tion to that shown in Fig. 15, and with the following 
parameters, a drum-like sound can be produced. 

P3 
= . 2 

Ps 
= 200 Hz 

P0 
= 280 Hz 

P7 
= 0 

The principal difference from the bell sound, in addition 

to the short duration, is the vastly reduced initial band 

width of the spectrum. 
A wood drum sound is produced by keeping the pre 

vious amplitude function, but modulating the index ac 

cording to the function shown in Fig. 16. The param 
eters are: 

P, 
= -2 

P-a 
= 80 Hz 

P8 
= 55 Hz 

P7 
= 0 

P8 
= 25. 

The change of the index causes a burst of energy dis 

tributed over a wide frequency band at the onset, fol 

lowed by rapid decrease of the bandwidth to a sinusoid 

which has the perceptual effect of a strong resonance. It 

should be noted that a complex amplitude modulation 

also occurs in this case. Because the Bessel functions 

are quasi-periodic around 0, the components undergo 
an asynchronous modulation due to the rapid sweep of 

the index over the wide range. 

Fig. 16. Envelope for wood-drum sound. 

The above examples are intended to give some feeling 
for the power and economy of means in FM synthesis, 

although they by no means exhaust the potential of this 

instrument. With an additional five unit generators, as 

shown in Fig. 17, further control can be gained over the 

spectrum. U.g. 10 provides another carrier wave, but 

uses the same modulating oscillator. The frequency de 

viation (proportional to the index) can be scaled up or 

down by the multiplier, u.g. 8. Since the second-carrier 

frequency, P12, is independent, it can be set to be a 

P5 P7-P6 (P8-P7) P6 55 P6 

Fig. 17. FM circuit which allows" greater control over the 
spectrum. The additional carrier wave uses the same modu 
lating wave but the deviation can be scaled up or down by 
the multiplier. A formant peak can be placed at an arbitrary 
point in the spectrum. 
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multiple of the first-carrier frequency and therefore add 

components in another region of the spectrum. The pro 

portion of the two modulated carriers is determined by 
the multiplier, u.g. 7, which scales the amplitude before 

it is applied to the second carrier. The outputs are mixed 

by the adder, u.g. 11. With the parameters 

P- = 300 Hz 

Pn = 300 Hz 

P- = 1 

P* = 3 

Pro 
= -2 

Pn 
= -5 

P12 
= 2100 Hz 

the second carrier will add components centered around 

the 7th harmonic (c2/m 
= 

7/l), where the index 

ranges between .5 and 1.5 and at an amplitude ratio of 

5/1. The effect is that of a formant region added to 

the spectrum. 

CONCLUSION 

The technique of FM synthesis provided a very simple 

temporal control over the bandwidth of spectra whose 

component frequencies can have a variety of relation 

ships. Because "nature" is doing most of the "work," the 

technique is far simpler than additive or subtractive 

synthesis techniques which can produce similar spectra. 

Perhaps the most surprising aspect of the FM technique, 
is that the seemingly limited control imposed by "nature" 

over the evolution of the individual spectral components, 

proves to be no limitation at all as far as subjective im 

pression is concerned. This suggests that the precise am 

plitude curve for each frequency component in a com 

plex dynamic spectrum is not nearly as important, 

perceptually, as the general character of evolution of the 

components as a group. 

A full understanding of, and comprehensive applica 
tion of the FM technique will certainly take a number 

of years. The applications are surely more numerous in 

the unknown timbrai space than they are in the known. 

There is, however, great informative value in first limit 

ing oneself to the simulation of natural timbres since we 

have such well-formed perceptual images against which 

one can measure success. What can be learned in this 

process are those subtle attributes of natural spectra 
which so distinctively separate them from most synthe 
sized spectra and which can then be applied to the un 

known, "composed" timbrai space with the result of a 

vastly enriched domain in which the composer can work. 
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