
[1]

www.allitebooks.com

http://www.allitebooks.org

Interactive Applications Using
Matplotlib

Don't just see your data, experience it!

Benjamin V. Root

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Interactive Applications Using Matplotlib

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1170315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-884-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Benjamin V. Root

Reviewers
Kamran Husain

Nathan Jarus

Jens Hedegaard Nielsen

Sergi Pons Freixes

Acquisition Editors
Richard Gall

Owen Roberts

Content Development Editor
Shubhangi Dhamgaye

Technical Editors
Tanvi Bhatt

Nanda Padmanabhan

Copy Editors
Roshni Banerjee

Gladson Monteiro

Project Coordinator
Harshal Ved

Proofreaders
Maria Gould

Lesley Harrison

Bernadette Watkins

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Benjamin V. Root has been a member of the Matplotlib development team
since 2010. His main areas of development have been the documentation and the
mplot3d toolkit, but now he focuses on code reviews and debugging. Ben is also an
active member of mailing lists, using his expertise to help newcomers understand
Matplotlib. He is a meteorology graduate student, working part-time on his PhD
dissertation. He works full-time for Atmospheric and Environmental Research, Inc.
as a scientific programmer.

I would like to acknowledge the entire Matplotlib development team
for their insightful responses to my questions while I was writing
this book. In particular, I would like to thank Michael Droettboom,
Eric Firing, Thomas Caswell, Phil Elson, and Ryan May. Thanks
also go to the members of the matplotlib users' list without whom I
would have never learned this tool in the first place and for whom I
wrote this book.

This book would not have been possible without the love and
support of my wife, Margaret. She put up with far more than she
should have, and for that, I am in her debt.

Last, but not least, I must acknowledge John Hunter, the creator
of Matplotlib and the man who included me into the development
team. Working with him and the rest of the team allowed me to
mature as a programmer and scientist, and directly resulted in me
attaining my current employment, thus starting my career.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Nathan Jarus is a computer science PhD candidate at Missouri S&T. He regularly
uses Matplotlib to visualize and experiment with results. Prior to his graduate
studies, he spent several years developing data visualization tools for research
professors. Beyond visualization, he studies complex system modeling and control.

Jens Hedegaard Nielsen is a research software developer at University College
London, where he works on a number of different programming projects in relation
to research across the university. He is an active Matplotlib developer. He has a PhD
in experimental laser physics from Aarhus University, Denmark.

www.allitebooks.com

http://www.allitebooks.org

Sergi Pons Freixes is a telecommunications engineer and a PhD candidate with
experience on optical sensors and data analysis. For almost 10 years, he has been
working in international environments, performing both hands-on development
and research.

During his master's degree in telecommunications engineering, he engaged in
part-time research in the Department of Signal Theory and Communications at the
Polytechnic University of Catalonia (UPC), with the design and development of a
low-cost hyperspectral in-situ sensor. This experience stimulated him to start a PhD
at the same department. He obtained a grant from the Spanish National Research
Council (CSIC) and performed his predoctoral training at the Marine Technology
Unit in Barcelona, graduating for a master of advanced studies and leading and
supervising the master thesis of other university students, while continuing his
research on low-cost solutions oriented to increase the observational capabilities
for marine/oceanographic biological information systems.

In 2011, he gained a fellowship from the Spanish Ministry of Economy and
Competitiveness to expand his experience in international scientific organisms,
moving to the European Space Agency office in Italy and working on assessing the
viability of remote sensing coral monitoring. During his stay, he gained a contractor
position as performance simulation engineer for the Sentinel 3 satellite project at
the European Space Agency facilities in the Netherlands, being responsible for the
simulators and processors operation and maintenance.

In January 2015, he moved to San Diego, California, where he is currently finishing
his PhD while he pursues new opportunities.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Introducing Interactive Plotting	 1

Installing Matplotlib	 1
Show() your work	 3
Interactive navigation	 3
Interactive plotting	 4
Scripted plotting	 5
Getting help	 6

Gallery	 6
Mailing lists and forums	 6

From front to backend	 7
Interactive versus non-interactive	 7
Anti-grain geometry	 8
Selecting your backend	 8

The Matplotlib figure-artist hierarchy	 9
Canvassing the figure	 10
The menagerie of artists	 13

Primitives	 14
Collections	 17

Summary	 19
Chapter 2: Using Events and Callbacks	 21

Making the connection	 22
The big event	 25
Breaking up is the easiest thing to do	 31
Keymapping	 34
Picking	 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Data editing	 41
User events	 48
Editor events	 49
Summary	 54

Chapter 3: Animations	 55
A short history	 55
The fastest draw in the west	 56
The animation module	 57
Advanced animations	 60

Event source	 64
Timers	 66
Blitting	 68
Recipes	 69

Tails	 69
Fades	 72

Saving animations	 74
Notes about codecs and file formats	 75
Simultaneous animations	 77
How animations are saved	 78
Session recorder	 79

Summary	 83
Chapter 4: Widgets	 85

Built-in widgets	 85
Slider	 86
Button	 89
Check buttons	 92
Radio button	 95
Lasso	 99
LassoSelector	 103
RectangleSelector	 104
SpanSelector	 108
Cursor	 110
format_coord()	 110

Third-party tools	 113
mpldatacursor	 114
Glue	 114
Plot.ly, ggplot, prettyplotlib, and Seaborn	 114

Summary	 115

Table of Contents

[iii]

Chapter 5: Embedding Matplotlib	 117
The revelation	 119
Through a glass, darkly	 119

Tinker tailor soldier pylab_setup()	 120
Canvas materials	 121

Bars, menus, and sliders – four ways	 122
GTK	 122
Tkinter	 127
wxWidgets	 131
Qt	 135

Matplotlib in your app	 140
GTK	 140
Tkinter	 143
wxWidgets	 144
Qt	 146

Summary	 147
Index	 149

[v]

Preface
Why Matplotlib? Why Python, for that matter? I picked up Python for scientific
development because I needed a full-fledged programming language that made
sense. Too often, I felt hemmed in by the traditional tools in the meteorology field.
I needed a language that respected my time as a developer and didn't fight me
every step of the way. "Don't you find Python constricting?" asked a colleague who
was fond of bad puns. "No, quite the opposite," I replied, the joke going right over
my head.

Matplotlib is the same in this respect. Switching from traditional graphing tools of
the meteorology field to Matplotlib was a breath of fresh air. Not only were useful
programs being written using the Matplotlib library, but it was also easy to write
my own. Furthermore, I could write out modules and easily use them in both
the hardcopy generating scripts for my publications and for my data exploration
interactive applications. Most importantly, the Matplotlib library let me do what
I needed it to do.

I have been an active developer for Matplotlib since 2010 and I am still discovering
Matplotlib. It isn't that the library is insanely huge and unwieldy—it isn't. Instead,
Matplotlib appeals to all levels of expertise and interests. One can simply care
enough only to get a single plot displayed in three line of code and never think of the
library again. Or, one could assume control over every single minute plotting detail,
ensuring that everything is displayed "just right." And even when one does this and
thinks they have seen every single nook and cranny of the library, they will discover
some other feature that they have never seen before.

Preface

[vi]

Matplotlib is 12 years old now. New plotting projects have cropped up—some
supplementing Matplotlib's design, while others trying to replace Matplotlib
entirely. However, there has been no slacking of interest in Matplotlib, not from the
users and definitely not from the developers. The new projects are interesting, and
as with all things open source, we try to learn from these projects. But I keep coming
back to this project. Its design, developers, and community of users are some of the
best and most devoted in the open source world.

The book you are reading right now is actually not the book I originally wanted to
write. The interactive aspect of Matplotlib is not my area of expertise. After some
nudging from fellow developers and users, I relented. I proceeded to rewrite the
only interactive application I had ever finished and published. Working through the
chapters, I tried to find better ways of doing the things I did originally, pointing out
major pitfalls and easy mistakes as I encountered them. It was a significant learning
experience for me, which was wholly unexpected.

I now invite you to discover Matplotlib for yourself. Whether it is the first time or
not, it certainly won't be the last.

What this book covers
Chapter 1, Introducing Interactive Plotting, covers basic figure-axes-artist hierarchy and
other Matplotlib essentials such as displaying the plot. It also introduces you to the
interactive Matplotlib figure.

Chapter 2, Using Events and Callbacks, provides Matplotlib's events and a callback
system to bring your figures to life. It also explains how you can extend it with
custom events, making the application truly interactive.

Chapter 3, Animations, deals with ArtistAnimation, FuncAnimation, and timers
to make animations of all types. It also deals with animations that can be saved
as movies.

Chapter 4, Widgets, covers built-in widgets such as buttons, checkboxes, selectors,
lassos, and sliders, which are all explained and demonstrated. Here, you'll also learn
about other useful third-party widgets and tools.

Chapter 5, Embedding Matplotlib, teaches you how to add GUI elements to an existing
Matplotlib application. Here you'll also see how to add your interactive Matplotlib
figure to an existing GUI application. Identical examples are presented using GTK,
Tkinter, wxWidgets, and Qt.

Preface

[vii]

What you need for this book
At the absolute least, you will need the following Python packages installed on
your system: NumPy, SciPy, Basemap, and (of course) Matplotlib. To work on the
instructions presented in Chapter 5, Embedding Matplotlib, you will want to have at
least one of the following GUI toolkits installed: GTK, Tkinter (should come with
Python), wxWidgets, or Qt (version 4 is preferred; version 5 is supported only
recently for Matplotlib version 1.4). You will also need the corresponding Python
bindings for the GUI toolkits (some come with them by default).

Who this book is for
If you are a Python programmer who wants to do more than just see your data, this is
the book for you. It will explain the SciPy stack (that is, NumPy and Matplotlib) and
provide pointers to install them. Experience with GUI toolkits, such as wxPython, Qt,
or GTK+, is also not required, so this book can be an excellent complement to other
GUI programming resources. To understand the examples and explanations, you need
to know basic object-oriented programming terms and concepts.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from tutorial import track_loader
tracks = track_loader('polygons.shp')
Filter out non-tracks (unassociated polygons given trackID of -9)
tracks = {tid: t for tid, t in tracks.items() if tid != -9}

Preface

[viii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 polys = [p for p in cells.polygons]
 for p in polys:
 p.set_visible(True)
 p.set_alpha(0.0)

 def update(frame, polys):
 for i, p in enumerate(polys):
 alpha = 0.0 if i > frame else 1.0 / ((frame - i + 1)**2)
 p.set_alpha(alpha)

 ax.set_xlabel("Longitude")
 ax.set_ylabel("Latitude")
 strmanim = FuncAnimation(fig, update, frameCnt,
 fargs=(polys,))
 plt.show()

Any command-line input or output is written as follows:

$ pip install matplotlib

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Now click
on the Selection radio button and you will find that you can select a polygon again."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Introducing Interactive
Plotting

A picture is worth a thousand words

The goal of any interactive application is to provide as much information as possible
while minimizing complexity. If it can't provide the information the users need,
then it is useless to them. However, if the application is too complex, then the
information's signal gets lost in the noise of the complexity. A graphical presentation
often strikes the right balance.

The Matplotlib library can help you present your data as graphs in your application.
Anybody can make a simple interactive application without knowing anything about
draw buffers, event loops, or even what a GUI toolkit is. And yet, the Matplotlib
library will cede as much control as desired to allow even the most savvy GUI
developer to create a masterful application from scratch. Like much of the Python
language, Matplotlib's philosophy is to give the developer full control, but without
being stupidly unhelpful and tedious.

Installing Matplotlib
There are many ways to install Matplotlib on your system. While the library used
to have a reputation for being difficult to install on non-Linux systems, it has come
a long way since then, along with the rest of the Python ecosystem. Refer to the
following command:

$ pip install matplotlib

www.allitebooks.com

http://www.allitebooks.org

Introducing Interactive Plotting

[2]

Most likely, the preceding command would work just fine from the command line.
Python Wheels (the next-generation Python package format that has replaced "eggs")
for Matplotlib are now available from PyPi for Windows and Mac OS X systems.
This method would also work for Linux users; however, it might be more favorable
to install it via the system's built-in package manager.

While the core Matplotlib library can be installed with few dependencies, it is a
part of a much larger scientific computing ecosystem known as SciPy. Displaying
your data is often the easiest part of your application. Processing it is much more
difficult, and the SciPy ecosystem most likely has the packages you need to do that.
For basic numerical processing and N-dimensional data arrays, there is NumPy.
For more advanced but general data processing tools, there is the SciPy package
(the name was so catchy, it ended up being used to refer to many different things
in the community). For more domain-specific needs, there are "Sci-Kits" such as
scikit-learn for artificial intelligence, scikit-image for image processing, and
statsmodels for statistical modeling. Another very useful library for data processing
is pandas.

This was just a short summary of the packages available in the SciPy ecosystem.
Manually managing all of their installations, updates, and dependencies would be
difficult for many who just simply want to use the tools. Luckily, there are several
distributions of the SciPy Stack available that can keep the menagerie under control.
The following are Python distributions that include the SciPy Stack along with
many other popular Python packages or make the packages easily available through
package management software:

•	 Anaconda from Continuum Analytics
•	 Canopy from Enthought
•	 SciPy Superpack
•	 Python(x, y) (Windows only)
•	 WinPython (Windows only)
•	 Pyzo (Python 3 only)
•	 Algorete Loopy from Dartmouth College

For this book, we will assume at least Python 2.7 or 3.2. The requisite
packages are numpy, matplotlib, basemap, and scipy. Just about
any version of these packages released in the past 3 years should work
for most examples in this book (exceptions are noted in this book). The
version 0.14.0 of SciPy (released in May 2014) cannot be used in this book
due to a (now fixed) regression in its NetCDF reader. Chapter 5, Embedding
Matplotlib will have special notes with regards to GUI toolkit packages.

Chapter 1

[3]

Show() your work
With Matplotlib installed, you are now ready to make your first simple plot.
Matplotlib has multiple layers. Pylab is the topmost layer, often used for quick
one-off plotting from within a live Python session. Start up your favorite Python
interpreter and type the following:

>>> from pylab import *

>>> plot([1, 2, 3, 2, 1])

Nothing happened! This is because Matplotlib, by default, will not display anything
until you explicitly tell it to do so. The Matplotlib library is often used for automated
image generation from within Python scripts, with no need for any interactivity.
Also, most users would not be done with their plotting yet and would find it
distracting to have a plot come up automatically. When you are ready to see your
plot, use the following command:

>>> show()

Interactive navigation
A figure window should now appear, and the Python interpreter is not available
for any additional commands. By default, showing a figure will block the execution
of your scripts and interpreter. However, this does not mean that the figure is not
interactive. As you mouse over the plot, you will see the plot coordinates in the
lower right-hand corner. The figure window will also have a toolbar:

From left to right, the following are the tools:

•	 Home, Back, and Forward: These are similar to that of a web browser.
These buttons help you navigate through the previous views of your plot.
The "Home" button will take you back to the first view when the figure was
opened. "Back" will take you to the previous view, while "Forward" will
return you to the previous views.

Introducing Interactive Plotting

[4]

•	 Pan (and zoom): This button has two modes: pan and zoom. Press the left
mouse button and hold it to pan the figure. If you press x or y while panning,
the motion will be constrained to just the x or y axis, respectively. Press the
right mouse button to zoom. The plot will be zoomed in or out proportionate
to the right/left and up/down movements. Use the X, Y, or Ctrl key to
constrain the zoom to the x axis or the y axis or preserve the aspect ratio,
respectively.

•	 Zoom-to-rectangle: Press the left mouse button and drag the cursor to a new
location and release. The axes view limits will be zoomed to the rectangle
you just drew. Zoom out using your right mouse button, placing the current
view into the region defined by the rectangle you just drew.

•	 Subplot configuration: This button brings up a tool to modify plot spacing.
•	 Save: This button brings up a dialog that allows you to save the current

figure.

The figure window would also be responsive to the keyboard. The default keymap
is fairly extensive (and will be covered fully later), but some of the basic hot keys are
the Home key for resetting the plot view, the left and right keys for back and forward
actions, p for pan/zoom mode, o for zoom-to-rectangle mode, and Ctrl + s to trigger
a file save. When you are done viewing your figure, close the window as you would
close any other application window, or use Ctrl + w.

Interactive plotting
When we did the previous example, no plots appeared until show() was called.
Furthermore, no new commands could be entered into the Python interpreter until
all the figures were closed. As you will soon learn, once a figure is closed, the plot
it contains is lost, which means that you would have to repeat all the commands
again in order to show() it again, perhaps with some modification or additional plot.
Matplotlib ships with its interactive plotting mode off by default.

There are a couple of ways to turn the interactive plotting mode on. The main way
is by calling the ion() function (for Interactive ON). Interactive plotting mode can
be turned on at any time and turned off with ioff(). Once this mode is turned on,
the next plotting command will automatically trigger an implicit show() command.
Furthermore, you can continue typing commands into the Python interpreter. You
can modify the current figure, create new figures, and close existing ones at any time,
all from the current Python session.

Chapter 1

[5]

Scripted plotting
Python is known for more than just its interactive interpreters; it is also a fully fledged
programming language that allows its users to easily create programs. Having a
script to display plots from daily reports can greatly improve your productivity.
Alternatively, you perhaps need a tool that can produce some simple plots of the data
from whatever mystery data file you have come across on the network share. Here is
a simple example of how to use Matplotlib's pyplot API and the argparse Python
standard library tool to create a simple CSV plotting script called plotfile.py.

Code: chp1/plotfile.py

#!/usr/bin/env python

from argparse import ArgumentParser
import matplotlib.pyplot as plt

if __name__ == '__main__':
 parser = ArgumentParser(description="Plot a CSV file")
 parser.add_argument("datafile", help="The CSV File")
 # Require at least one column name
 parser.add_argument("columns", nargs='+',
 help="Names of columns to plot")
 parser.add_argument("--save", help="Save the plot as...")
 parser.add_argument("--no-show", action="store_true",
 help="Don't show the plot")
 args = parser.parse_args()

 plt.plotfile(args.datafile, args.columns)
 if args.save:
 plt.savefig(args.save)
 if not args.no_show:
 plt.show()

Note the two optional command-line arguments: --save and --no-show. With the
--save option, the user can have the plot automatically saved (the graphics format is
determined automatically from the filename extension). Also, the user can choose not
to display the plot, which when coupled with the --save option might be desirable if
the user is trying to plot several CSV files.

When calling this script to show a plot, the execution of the script will stop at the
call to plt.show(). If the interactive plotting mode was on, then the execution of
the script would continue past show(), terminating the script, thus automatically
closing out any figures before the user has had a chance to view them. This is why
the interactive plotting mode is turned off by default in Matplotlib.

Introducing Interactive Plotting

[6]

Also note that the call to plt.savefig() is before the call to plt.show(). As
mentioned before, when the figure window is closed, the plot is lost. You cannot
save a plot after it has been closed.

Getting help
We have covered how to install Matplotlib and went over how to make very simple
plots from a Python session or a Python script. Most likely, this went very smoothly
for you. The rest of this book will focus on how to use Matplotlib to make an
interactive application, rather than the many ways to display data. You may be very
curious and want to learn more about the many kinds of plots this library has to
offer, or maybe you want to learn how to make new kinds of plots.

Help comes in many forms. The Matplotlib website (http://matplotlib.org)
is the primary online resource for Matplotlib. It contains examples, FAQs, API
documentation, and, most importantly, the gallery.

Gallery
Many users of Matplotlib are often faced with the question, "I want to make a plot
that has this data along with that data in the same figure, but it needs to look like
this other plot I have seen." Text-based searches on graphing concepts are difficult,
especially if you are unfamiliar with the terminology. The gallery showcases the
variety of ways in which one can make plots, all using the Matplotlib library. Browse
through the gallery, click on any figure that has pieces of what you want in your
plot, and see the code that generated it. Soon enough, you will be like a chef, mixing
and matching components to produce that perfect graph.

Mailing lists and forums
When you are just simply stuck and cannot figure out how to get something to work
or just need some hints on how to get started, you will find much of the community
at the Matplotlib-users mailing list. This mailing list is an excellent resource of
information with many friendly members who just love to help out newcomers.
Be persistent! While many questions do get answered fairly quickly, some will
fall through the cracks. Try rephrasing your question or with a plot showing your
attempts so far. The people at Matplotlib-users love plots, so an image that shows
what is wrong often gets the quickest response. A newer community resource is
StackOverflow, which has many very knowledgeable users who are able to answer
difficult questions.

Chapter 1

[7]

From front to backend
So far, we have shown you bits and pieces of two of Matplotlib's topmost abstraction
layers: pylab and pyplot. The layer below them is the object-oriented layer (the OO
layer). To develop any type of application, you will want to use this layer. Mixing the
pylab/pyplot layers with the OO layer will lead to very confusing behaviors when
dealing with multiple plots and figures.

Below the OO layer is the backend interface. Everything above this interface level
in Matplotlib is completely platform-agnostic. It will work the same regardless
of whether it is in an interactive GUI or comes from a driver script running on a
headless server. The backend interface abstracts away all those considerations so
that you can focus on what is most important: writing code to visualize your data.

There are several backend implementations that are shipped with Matplotlib. These
backends are responsible for taking the figures represented by the OO layer and
interpreting it for whichever "display device" they implement. The backends are
chosen automatically but can be explicitly set, if needed (see Chapter 5, Embedding
Matplotlib).

Interactive versus non-interactive
There are two main classes of backends: ones that provide interactive figures and
ones that don't. Interactive backends are ones that support a particular GUI, such as
Tcl/Tkinter, GTK, Qt, Cocoa/Mac OS X, wxWidgets, and Cairo. With the exception
of the Cocoa/Mac OS X backend, all interactive backends can be used on Windows,
Linux, and Mac OS X. Therefore, when you make an interactive Matplotlib
application that you wish to distribute to users of any of those platforms, unless
you are embedding Matplotlib (again, see Chapter 5, Embedding Matplotlib), you
will not have to concern yourself with writing a single line of code for any of
these toolkits—it has already been done for you!

Non-interactive backends are used to produce image files. There are backends to
produce Postscript/EPS, Adobe PDF, and Scalable Vector Graphics (SVG) as well
as rasterized image files such as PNG, BMP, and JPEGs.

Introducing Interactive Plotting

[8]

Anti-grain geometry
The open secret behind the high quality of Matplotlib's rasterized images is its
use of the Anti-Grain Geometry (AGG) library (http://agg.sourceforge.net/
antigrain.com/index.html). The quality of the graphics generated from AGG
is far superior than most other toolkits available. Therefore, not only is AGG used
to produce rasterized image files, but it is also utilized in most of the interactive
backends as well. Matplotlib maintains and ships with its own fork of the library in
order to ensure you have consistent, high quality image products across all platforms
and toolkits. What you see on your screen in your interactive figure window will be
the same as the PNG file that is produced when you call savefig().

Selecting your backend
When you install Matplotlib, a default backend is chosen for you based upon
your OS and the available GUI toolkits. For example, on Mac OS X systems, your
installation of the library will most likely set the default interactive backend to
MacOSX or CocoaAgg for older Macs. Meanwhile, Windows users will most likely
have a default of TkAgg or Qt5Agg. In most situations, the choice of interactive
backends will not matter. However, in certain situations, it may be necessary to force
a particular backend to be used. For example, on a headless server without an active
graphics session, you would most likely need to force the use of the non-interactive
Agg backend:

import matplotlib

matplotlib.use("Agg")

When done prior to any plotting commands, this will avoid loading any GUI
toolkits, thereby bypassing problems that occur when a GUI fails on a headless
server. Any call to show() effectively becomes a no-op (and the execution of the
script is not blocked). Another purpose of setting your backend is for scenarios when
you want to embed your plot in a native GUI application. Therefore, you will need to
explicitly state which GUI toolkit you are using (see Chapter 5, Embedding Matplotlib).
Finally, some users simply like the look and feel of some GUI toolkits better than
others. They may wish to change the default backend via the backend parameter in
the matplotlibrc configuration file. Most likely, your rc file can be found in the
.matplotlib directory or the .config/matplotlib directory under your home
folder. If you can't find it, then use the following set of commands:

>>> import matplotlib

>>> matplotlib.matplotlib_fname()

u'/home/ben/.config/matplotlib/matplotlibrc'

Chapter 1

[9]

Here is an example of the relevant section in my matplotlibrc file:

CONFIGURATION BEGINS HERE

the default backend; one of GTK GTKAgg GTKCairo GTK3Agg
GTK3Cairo CocoaAgg MacOSX QtAgg Qt4Agg TkAgg WX WXAgg Agg Cairo
PS PDF SVG
You can also deploy your own backend outside of matplotlib by
referring to the module name (which must be in the PYTHONPATH)
as 'module://my_backend'
#backend : GTKAgg
#backend : QT4Agg
backend : TkAgg
If you are using the Qt4Agg backend, you can choose here
to use the PyQt4 bindings or the newer PySide bindings to
the underlying Qt4 toolkit.
#backend.qt4 : PyQt4 # PyQt4 | PySide

This is the global configuration file that is used if one isn't found in the current
working directory when Matplotlib is imported. The settings contained in this
configuration serves as default values for many parts of Matplotlib. In particular,
we see that the choice of backends can be easily set without having to use a single
line of code.

The Matplotlib figure-artist hierarchy
Everything that can be drawn in Matplotlib is called an artist. Any artist can have
child artists that are also drawable. This forms the basis of a hierarchy of artist
objects that Matplotlib sends to a backend for rendering. At the root of this artist tree
is the figure.

In the examples so far, we have not explicitly created any figures. The pylab and
pyplot interfaces will create the figures for us. However, when creating advanced
interactive applications, it is highly recommended that you explicitly create your
figures. You will especially want to do this if you have multiple figures being
displayed at the same time. This is the entry into the OO layer of Matplotlib:

fig = plt.figure()

Introducing Interactive Plotting

[10]

Canvassing the figure
The figure is, quite literally, your canvas. Its primary component is the
FigureCanvas instance upon which all drawing occurs. Unless you are embedding
your Matplotlib figures into a GUI application, it is very unlikely that you will need
to interact with this object directly. Instead, as plotting commands are issued, artist
objects are added to the canvas automatically.

While any artist can be added directly to the figure, usually only Axes objects are
added. A figure can have many axes objects, typically called subplots. Much like
the figure object, our examples so far have not explicitly created any axes objects to
use. This is because the pylab and pyplot interfaces will also automatically create
and manage axes objects for a figure if needed. For the same reason as for figures,
you will want to explicitly create these objects when building your interactive
applications. If an axes or a figure is not provided, then the pyplot layer will have
to make assumptions about which axes or figure you mean to apply a plotting
command to. While this might be fine for simple situations, these assumptions get
hairy very quickly in non-trivial applications. Luckily, it is easy to create both your
figure and its axes using a single command:

fig, axes = plt.subplots(2, 1) # 2x1 grid of subplots

These objects are highly advanced complex units that most developers will utilize for
their plotting needs. Once placed on the figure canvas, the axes object will provide
the ticks, axis labels, axes title(s), and the plotting area. An axes is an artist that
manages all of its scale and coordinate transformations (for example, log scaling and
polar coordinates), automated tick labeling, and automated axis limits. In addition
to these responsibilities, an axes object provides a wide assortment of plotting
functions. A sampling of plotting functions is as follows:

Function Description
bar Make a bar plot
barbs Plot a two-dimensional field of barbs
boxplot Make a box and whisker plot
cohere Plot the coherence between x and y
contour Plot contours
errorbar Plot an errorbar graph
hexbin Make a hexagonal binning plot
hist Plot a histogram
imshow Display an image on the axes
pcolor Create a pseudocolor plot of a two-dimensional array
pcolormesh Plot a quadrilateral mesh

Chapter 1

[11]

Function Description
pie Plot a pie chart
plot Plot lines and/or markers
quiver Plot a two-dimensional field of arrows
sankey Create a Sankey flow diagram
scatter Make a scatter plot of x versus y
stem Create a stem plot
streamplot Draw streamlines of a vector flow

Throughout the rest of this book, we will build a single interactive application piece
by piece, demonstrating concepts and features that are available through Matplotlib.
This application will be a storm track editing application. Given a series of radar
images, the user can circle each storm cell they see in the radar image and link those
storm cells across time. The application will need the ability to save and load track
data and provide the user with mechanisms to edit the data. Along the way, we will
learn about Matplotlib's structure, its artists, the callback system, doing animations,
and finally, embedding this application within a larger GUI application.

So, to begin, we first need to be able to view a radar image. There are many ways to
load data into a Python program but one particular favorite among meteorologists
is the Network Common Data Form (NetCDF) file. The SciPy package has built-
in support for NetCDF version 3, so we will be using an hour's worth of radar
reflectivity data prepared using this format from a NEXRAD site near Oklahoma
City, OK on the evening of May 10, 2010, which produced numerous tornadoes and
severe storms.

The NetCDF binary file is particularly nice to work with because it can hold multiple
data variables in a single file, with each variable having an arbitrary number of
dimensions. Furthermore, metadata can be attached to each variable and to the
dataset itself, allowing you to self-document data files. This particular data file has
three variables, namely Reflectivity, lat, and lon to record the radar reflectivity
values and the latitude and longitude coordinates of each pixel in the reflectivity
data. The reflectivity data is three-dimensional, with the first dimension as time and
the other two dimensions as latitude and longitude. The following code example
shows how easy it is to load this data and display the first image frame using SciPy
and Matplotlib.

www.allitebooks.com

http://www.allitebooks.org

Introducing Interactive Plotting

[12]

Code: chp1/simple_radar_viewer.py

import matplotlib.pyplot as plt
from scipy.io import netcdf_file

ncf = netcdf_file('KTLX_20100510_22Z.nc')
data = ncf.variables['Reflectivity']
lats = ncf.variables['lat']
lons = ncf.variables['lon']
i = 0

cmap = plt.get_cmap('gist_ncar')
cmap.set_under('lightgrey')

fig, ax = plt.subplots(1, 1)
im = ax.imshow(data[i], origin='lower',
 extent=(lons[0], lons[-1], lats[0], lats[-1]),
 vmin=0.1, vmax=80, cmap='gist_ncar')
cb = fig.colorbar(im)

cb.set_label('Reflectivity (dBZ)')
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
plt.show()

Running this script should result in a figure window that will display the first frame
of our storms that we will become very familiar with over the next few chapters.
The plot has a colorbar and the axes ticks label the latitudes and longitudes of our
data. What is probably most important in this example is the imshow() call. Being
an image, traditionally, the origin of the image data is shown in the upper-left corner
and Matplotlib follows this tradition by default. However, this particular dataset was
saved with its origin in the lower-left corner, so we need to state this with the origin
parameter. The extent parameter is a tuple describing the data extent of the image.
By default, it is assumed to be at (0, 0) and (N – 1, M – 1) for an MxN shaped
image. The vmin and vmax parameters are a good way to ensure consistency of your
colormap regardless of your input data. If these two parameters are not supplied,
then imshow() will use the minimum and maximum of the input data to determine
the colormap. This would be undesirable as we move towards displaying arbitrary
frames of radar data. Finally, one can explicitly specify the colormap to use for the
image. The gist_ncar colormap is very similar to the official NEXRAD colormap for
radar data, so we will use it here:

Chapter 1

[13]

The gist_ncar colormap, along with some other colormaps
packaged with Matplotlib such as the default jet colormap, are
actually terrible for visualization. See the Choosing Colormaps page of
the Matplotlib website for an explanation of why, and guidance on
how to choose a better colormap.

The menagerie of artists
Whenever a plotting function is called, the input data and parameters are processed
to produce new artists to represent the data. These artists are either primitives or
collections thereof. They are called primitives because they represent basic drawing
components such as lines, images, polygons, and text. It is with these primitives that
your data can be represented as bar charts, line plots, errorbars, or any other kinds
of plots.

Introducing Interactive Plotting

[14]

Primitives
There are four drawing primitives in Matplotlib: Line2D, AxesImage, Patch, and
Text. It is through these primitive artists that all other artist objects are derived from,
and they comprise everything that can be drawn in a figure.

A Line2D object uses a list of coordinates to draw line segments in between.
Typically, the individual line segments are straight, and curves can be approximated
with many vertices; however, curves can be specified to draw arcs, circles, or any
other Bezier-approximated curves.

An AxesImage class will take two-dimensional data and coordinates and display
an image of that data with a colormap applied to it. There are actually other kinds
of basic image artists available besides AxesImage, but they are typically for very
special uses. AxesImage objects can be very tricky to deal with, so it is often best to
use the imshow() plotting method to create and return these objects.

A Patch object is an arbitrary two-dimensional object that has a single color for its
"face." A polygon object is a specific instance of the slightly more general patch.
These objects have a "path" (much like a Line2D object) that specifies segments that
would enclose a face with a single color. The path is known as an "edge," and can
have its own color as well. Besides the Polygons that one sees for bar plots and pie
charts, Patch objects are also used to create arrows, legend boxes, and the markers
used in scatter plots and elsewhere.

Finally, the Text object takes a Python string, a point coordinate, and various font
parameters to form the text that annotates plots. Matplotlib primarily uses TrueType
fonts. It will search for fonts available on your system as well as ship with a few
FreeType2 fonts, and it uses Bitstream Vera by default. Additionally, a Text object
can defer to LaTeX to render its text, if desired.

While specific artist classes will have their own set of properties that make sense for
the particular art object they represent, there are several common properties that can
be set. The following table is a listing of some of these properties.

Chapter 1

[15]

Property Meaning
alpha 0 represents transparent and 1 represents opaque
color Color name or other color specification
visible boolean to flag whether to draw the artist or not
zorder value of the draw order in the layering engine

Let's extend the radar image example by loading up already saved polygons of
storm cells in the tutorial.py file.

Code: chp1/simple_storm_cell_viewer.py

import matplotlib.pyplot as plt
from scipy.io import netcdf_file
from matplotlib.patches import Polygon
from tutorial import polygon_loader

ncf = netcdf_file('KTLX_20100510_22Z.nc')
data = ncf.variables['Reflectivity']
lats = ncf.variables['lat']
lons = ncf.variables['lon']
i = 0

cmap = plt.get_cmap('gist_ncar')
cmap.set_under('lightgrey')

fig, ax = plt.subplots(1, 1)
im = ax.imshow(data[i], origin='lower',
 extent=(lons[0], lons[-1], lats[0], lats[-1]),
 vmin=0.1, vmax=80, cmap='gist_ncar')
cb = fig.colorbar(im)

polygons = polygon_loader('polygons.shp')
for poly in polygons[i]:
 p = Polygon(poly, lw=3, fc='k', ec='w', alpha=0.45)
 ax.add_artist(p)
cb.set_label("Reflectivity (dBZ)")
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")
plt.show()

Introducing Interactive Plotting

[16]

The polygon data returned from polygon_loader() is a dictionary of lists keyed by
a frame index. The list contains Nx2 numpy arrays of vertex coordinates in longitude
and latitude. The vertices form the outline of a storm cell. The Polygon constructor,
like all other artist objects, takes many optional keyword arguments. First, lw is short
for linewidth, (referring to the outline of the polygon), which we specify to be three
points wide. Next is fc, which is short for facecolor, and is set to black ('k'). This
is the color of the filled-in region of the polygon. Then edgecolor (ec) is set to white
('w') to help the polygons stand out against a dark background. Finally, we set the
alpha argument to be slightly less than half to make the polygon fairly transparent
so that one can still see the reflectivity data beneath the polygons.

Chapter 1

[17]

Note a particular difference between how we plotted the image using imshow()
and how we plotted the polygons using polygon artists. For polygons, we called
a constructor and then explicitly called ax.add_artist() to add each polygon
instance as a child of the axes. Meanwhile, imshow() is a plotting function that will
do all of the hard work in validating the inputs, building the AxesImage instance,
making all necessary modifications to the axes instance (such as setting the limits and
aspect ratio), and most importantly, adding the artist object to the axes. Finally, all
plotting functions in Matplotlib return artists or a list of artist objects that it creates.
In most cases, you will not need to save this return value in a variable because there
is nothing else to do with them. In this case, we only needed the returned AxesImage
so that we could pass it to the fig.colorbar() method. This is so that it would
know what to base the colorbar upon.

The plotting functions in Matplotlib exist to provide convenience and simplicity to
what can often be very tricky to get right by yourself. They are not magic! They use
the same OO interface that is accessible to application developers. Therefore, anyone
can write their own plotting functions to make complicated plots easier to perform.

Collections
Any artist that has child artists (such as a figure or an axes) is called a container.
A special kind of container in Matplotlib is called a Collection. A collection usually
contains a list of primitives of the same kind that should all be treated similarly.
For example, a CircleCollection would have a list of Circle objects, all with the same
color, size, and edge width. Individual values for artists in the collection can also be
set. A collection makes management of many artists easier. This becomes especially
important when considering the number of artist objects that may be needed for
scatter plots, bar charts, or any other kind of plot or diagram.

Some collections are not just simply a list of primitives, but are artists in
their own right. These special kinds of collections take advantage of various
optimizations that can be assumed when rendering similar or identical things.
RegularPolyCollection, for example, just needs to know the points of a single
polygon relative to its center (such as a star or box) and then just needs a list of all
the center coordinates, avoiding the need to store all the vertices of every polygon
in its collection in memory.

Introducing Interactive Plotting

[18]

In the following example, we will display storm tracks as LineCollection. Note
that instead of using ax.add_artist() (which would work), we will use ax.add_
collection() instead. This has the added benefit of performing special handling
on the object to determine its bounding box so that the axes object can incorporate
the limits of this collection with any other plotted objects to automatically set its own
limits which we trigger with the ax.autoscale(True) call.

Code: chp1/linecoll_track_viewer.py

import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from tutorial import track_loader

tracks = track_loader('polygons.shp')
Filter out non-tracks (unassociated polygons given trackID of -9)
tracks = {tid: t for tid, t in tracks.items() if tid != -9}

fig, ax = plt.subplots(1, 1)
lc = LineCollection(tracks.values(), color='b')
ax.add_collection(lc)
ax.autoscale(True)
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")
plt.show()

Chapter 1

[19]

Much easier than the radar images, Matplotlib took care of all the limit setting
automatically. Such features are extremely useful for writing generic applications
that do not wish to concern themselves with such details. We will come back to the
handling of LineCollections later in the book as we develop this application.

Summary
In this chapter, we introduced you to the foundational concepts of Matplotlib.
Using show(), you showed your first plot with only three lines of Python. With
this plot up on your screen, you learned some of the basic interactive features
built into Matplotlib, such as panning, zooming, and the myriad of key bindings
that are available. Then we discussed the difference between interactive and non-
interactive plotting modes and the difference between scripted and interactive
plotting. You now know where to go online for more information, examples, and
forum discussions of Matplotlib when it comes time for you to work on your next
Matplotlib project. Next, we discussed the architectural concepts of Matplotlib:
backends, figures, axes, and artists.

Then we started our construction project for this book, an interactive storm cell
tracking application. We saw how to plot a radar image using a pre-existing plotting
function, as well as how to display polygons and lines as artists and collections.
While creating these objects, we had a glimpse of how to customize the properties of
these objects for our display needs, learning some of the property and styling names.
We also learned some of the steps one needs to consider when creating their own
plotting functions, such as autoscaling.

In the next chapter, we will learn how to extend the basic interactivity of Matplotlib,
adding our own features and controls in order to make a truly interactive application.

Using Events and Callbacks
Wait time is the worst

I can hardly sit

No one has the time

Someone is always late

- The Strokes, Call Me Back (2011)

The callback system in Matplotlib is central to its interactivity. Unless you are
working with the interactive plotting mode on, execution of the script stops when
plt.show() is called. Without the ability to execute any additional code, the only
way to program interactivity is to register actions to be taken upon some event such
as a button click, mouse cursor motion, or key press. Matplotlib's callback system
has a base set of events and many callbacks that we have already discussed, such as
the default keymap discussed in the previous chapter and the ability to pan a plot.
Furthermore, it is possible to add new kinds of events, giving the developer full
access to Matplotlib's cross-platform callback system.

www.allitebooks.com

http://www.allitebooks.org

Using Events and Callbacks

[22]

Making the connection
The callback system is figure-oriented. Any GUI action that can trigger a callback can
only happen to whichever figure window is currently in focus. There are no global
actions that can trigger callbacks across multiple figures. The callback function will
get an Event object that contains pertinent information about the fired event. In the
following example, we will hook up two events to a figure: a keyboard button press
and a mouse button press. There are two callback functions, each printing out some
of the available pieces of information for their respective events:

Code: chp2/basic_mpl_connect.py

from __future__ import print_function
import matplotlib.pyplot as plt

def process_key(event):
 print("Key:", event.key)
def process_button(event):
 print("Button:", event.x, event.y, event.xdata, event.ydata,
 event.button)

fig, ax = plt.subplots(1, 1)
fig.canvas.mpl_connect('key_press_event', process_key)
fig.canvas.mpl_connect('button_press_event', process_button)
plt.show()

Now, go ahead and click around in the figure window and press some keys on your
keyboard. You will see all sorts of output in your terminal. We have called the mpl_
connect() method of the figure's canvas twice—once for each action we wanted to
register with each kind of event in that figure. If you had multiple figures, then the
connections have to be made for each figure that you want to have for that action.
The mpl_connect() method takes two arguments: the name of the event and the
callable object (such as a function).

Event Name Type Typical use
'resize_event' ResizeEvent Trigger redraws due to change in

figure size
'draw_event' DrawEvent Background updating or cursor

clearing after a plot is refreshed
'key_press_event' KeyEvent Keymap
'key_release_event' KeyEvent Exit a temporary mode entered by

holding a key down

Chapter 2

[23]

Event Name Type Typical use
'button_press_event' MouseEvent Clicking on the mouse and the start

of some button-hold action such as
panning

'button_release_event' MouseEvent Exit a temporary mode by holding a
button down such as panning

'scroll_event' MouseEvent This event is available, but not used in
the default interaction system

'motion_notify_event' MouseEvent Update cursor location display in the
figure, and calculate motion estimate
for live panning and zooming of a plot

'pick_event' PickEvent Artist selection
'idle_event' IdleEvent This event is available, but not used in

the default interaction system
'figure_enter_event' Event This event is available, but not used in

the default interaction system
'figure_leave_event' LocationEvent This event is available, but not used in

the default interaction system
'axes_enter_event' LocationEvent This event is available, but not used in

the default interaction system
'axes_leave_event' LocationEvent This event is available, but not used in

the default interaction system
'close_event' CloseEvent Terminates active animations

Probably the two most common events are key_press_event and button_press_
event that we just discussed in the previous example. Different types of events have
different information available for the callback function to use:

•	 Event: This event type provides the name string, the canvas instance, and
the originating backend-specific guiEvent, if applicable. The name is useful
if a callback function is to be attached to multiple events and needs to
differentiate between them, and it can also be used for logging purposes. The
canvas object is useful when the callback needs to trigger a canvas draw. The
guiEvent object is usually only used for figure embedding. This is the base
event type.

•	 ResizeEvent: This event type provides the height and width of the new
figure in pixels.

•	 DrawEvent: This event type provides the renderer instance, which is
important for any further draws that are needed by the callback.

Using Events and Callbacks

[24]

•	 LocationEvent: This event type provides two types of location data. First, it
provides the x and y values as pixels from the canvas' left and bottom edges,
respectively. Second, it provides the xdata and ydata values as the data
coordinates for the cursor when it passes over a plot axes. Furthermore, it
also provides the inaxes attribute pointing to the Axes object that mouse is
currently over (or None if not over any plot axes). This event type serves as
the basis for MouseEvent and KeyEvent.

•	 MouseEvent: This event provides data on the button that triggered the event
in addition to the location data of the mouse cursor. It can have numerical
values of 1, 2, or 3, indicating which of the three traditional mouse buttons
are active (1 is typically the left button, while 3 is the middle button or both
the left and right buttons at the same time). If a key was pressed while this
mouse event was triggered, the key attribute will indicate that key (see
KeyEvent for more detail). The "up" and "down" button values indicate that
the event is a scrolling event. The amount of scrolling is given by the step
attribute, with positive values for up and negative values for down.

•	 KeyEvent: This event type provides data on the key that was either pressed
or released in addition to the location data of the mouse cursor (if available).
Note that modifier keys Ctrl, Alt, and super are prepended to the pressed key
with a plus sign (for example, "control+m" and "alt+control+g"). Special keys
are usually spelled out; such as "home" or "up".

•	 PickEvent: This event type provides the mouseevent attribute, which is
the original MouseEvent object that triggered the pick. This event is fired off
whenever a mouse click is sufficiently close to an artist object, which is called
"picking". You can use this object to obtain location data, mouse button used
and any keys that were pressed at the time. The artist attribute contains
the Artist object for which the mouse "picked." If multiple artists are close
enough to a particular mouse click, then this is triggered for each Artist
separately. Furthermore, when picking a Collection artist, the event object
will also have an ind attribute that contains a list of indexes of the members
of that collection that were "picked."

•	 IdleEvent: This event type contains no extra information than the base
Event type. It serves only to flag when the GUI's event loop is idle so that
developers can perform deferrable actions when the resources are available
to do so. Prior to the creation of the animation module in Matplotlib and the
cross-platform timer class (discussed in the next chapter), this event type was
used as an ad-hoc timer for basic animations.

Chapter 2

[25]

•	 CloseEvent: This contains no extra information than the base Event type,
just like IdleEvent. This event type indicates that a figure is in the process
of being closed. This is particularly useful for interactive applications to
perform any sort of clean-up and bookkeeping actions whenever a figure
window gets closed for whatever reason. A particular nuance about this
event is that it is typically triggered at the beginning of the closing procedure.
Because of that, the canvas object and everything on it should still be valid.
However, in some cases (particularly when it is the exiting of the Python
interpreter that is triggering the window closing), some objects may already
be garbage-collected. Therefore, defensive programming for the close_
event callback functions is important, particularly to guard against the
AttributeError exceptions. Also, there is no way for a callback attached to
this event to prevent the figure from closing (so you can't use this event to
ask the user "Are you sure?").

The big event
What is the purpose of interactive plotting? Why is it important for Matplotlib to
provide this feature? It is important because you want to interact with your data.
What you plot in the figure is a visual representation of your data, and giving it
interactivity brings that data an extra step closer to the real world by providing your
users the means to interact with that data in a more physically intuitive manner. It is
all about data exploration.

So far, for our project, we have only developed the means to display our storm and
radar data. While we could simply use these viewers and then manually edit the
associated shapefile, it would not be practical. We should be able to provide users the
means to interrogate their data. To do this, we will use pick_event to add the ability
to select and deselect some tracks. As a simple example, we will make a track thicker
when it is selected and make it thinner when it is deselected (or simply, selected again).
Let's build upon the track viewer example discussed in the previous chapter:

Code: chp2/linecoll_selector.py

import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from tutorial import track_loader

def onpick(event):
 if not isinstance(event.artist, LineCollection):
 return

 lws = event.artist.get_linewidths()

Using Events and Callbacks

[26]

 for i in event.ind:
 lws[i] = 4 if lws[i] != 4 else 1
 event.artist.set_linewidths(lws)
 fig.canvas.draw_idle()

tracks = track_loader('polygons.shp')
Filter out non-tracks (unassociated polygons given trackID of -9)
tracks = {tid: t for tid, t in tracks.items() if tid != -9}

fig, ax = plt.subplots(1, 1)
lc = LineCollection(tracks.values(), color='b', lw=[1]*len(tracks),
 picker=True)
ax.add_collection(lc)
ax.autoscale(True)

fig.canvas.mpl_connect('pick_event', onpick)
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")
plt.show()

Run this example and start clicking on some of the lines. Notice that if you click a
point within a couple pixels of two or more tracks, they will all change thickness.
Let's study this example for a moment, as there are several key pieces in place here
to make this example work. First, for the LineCollection constructor, we are
supplying a list of ones to the lw argument (for line widths), even though it defaults
to a line width of one. This is because we will need to modify the line widths of
individual elements; therefore, we will need to operate on a list rather than the
default tuple of length one. Second, we need to set the picker argument to True in
order for the collection to even be considered for picking.

Chapter 2

[27]

Next, notice that we protected the callback function with a type check. As our
applications get more and more complex, it becomes a good idea to ensure that
your particular callback is operating only on objects that you expected to operate
on. In this case, it was done via a type check, but in other cases, some other sort of
validation may be needed. Finally, notice that we triggered a draw_idle() call after
updating the collection. Matplotlib will not automatically perform any draw calls
for us after picking, so we need to trigger it ourselves when appropriate. Typically,
we could use draw_idle(), but draw() is also valid. The difference between the
two is that each draw() call is guaranteed to happen, while draw_idle() merely
guarantees that a draw will occur soon, with possibly multiple queued idle draws
being consolidated.

For this example, we modified line widths as our callback action, but that is not the
only thing which can be modified. We could have changed line colors, transparency,
or even line styles such as making the line be dashed or dotted—just about anything
is possible within a callback function.

Using Events and Callbacks

[28]

While being able to make a track appear thick or thin at our whim might give us
a passing sensation of omnipotence, nothing useful is happening yet. First, the
program doesn't know which track was selected, only that some tracks are thicker
than others, which completely violates the separation of data and style. Second, we
only want to work on a single track at a time, so we need to keep at most one track
selected. Let's extend the example a bit more to include those requirements, as well
as the ability to delete the selected track by pressing the d key.

Code: chp2/linecoll_deleter.py

import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from tutorial import track_loader

selected = None
def onpick(event):
 global selected
 if event.artist is not lc:
 return
 lws = lc.get_linewidths()

 ind = event.ind[0]
 if ind != selected:
 # "Select" this track
 # But first, we need to de-select the previous selection
 if selected is not None:
 lws[selected] = 1
 lws[ind] = 4
 selected = ind
 else:
 # "Deselect" this track
 lws[ind] = 1
 selected = None
 lc.set_linewidths(lws)
 fig.canvas.draw_idle()

def keypress(event):
 global selected
 if event.key == 'd' and selected is not None:
 segs = lc.get_segments()
 segs.pop(selected)
 selected = None
 lc.set_segments(segs)
 # Also need to reset the linewidths list

Chapter 2

[29]

 lc.set_linewidths([1] * len(segs))
 fig.canvas.draw_idle()

tracks = track_loader('polygons.shp')
Filter out non-tracks (unassociated polygons given trackID of -9)
tracks = {tid: t for tid, t in tracks.items() if tid != -9}

fig, ax = plt.subplots(1, 1)
lc = LineCollection(tracks.values(), color='b', lw=[1]*len(tracks),
 picker=True)
ax.add_collection(lc)
ax.autoscale(True)

fig.canvas.mpl_connect('pick_event', onpick)
fig.canvas.mpl_connect('key_press_event', keypress)
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")
plt.show()

We now have two callbacks, each for a different kind of event and each working
off some common piece of data—the line collection object and the selected index.
Add the ability to save the tracks to a file and we will have a rudimentary storm
track editor!

Let's take a break from the track part of our project for a bit and work on the radar
and polygon viewer some more. The viewer we developed in the first chapter was
only able to show a single radar frame, which is completely useless for studying
storm cells throughout their lifecycle. Let's extend that example to allow the user
to move backwards and forwards in time with the left and right arrow buttons.

As you may have noticed in the previous example, we violated an age-old
programming rule of avoiding global variables. Our application became complex
enough that a state (the line collection and the selection index) had to be held outside
the callback functions. Global variables are a very tempting way of handling this
requirement, but it isn't the only way. In the following example, we will need to
hold a similar state, the radar data, the polygon data, and the currently displayed
frame index. We will now see a much cleaner alternative to using global variables
by creating a ControlSys class that will hold the state, provide various callback
functions and even connect them for you.

Using Events and Callbacks

[30]

This example modifies the radar viewer example given in the first chapter to add
a ControlSys class that will provide the functionality of stepping through a radar
animation using the left and right arrows. It is important to save the instantiated
class into a variable to prevent the object from being garbage-collected prior to
calling show():

Code: chp2/stormcell_anim.py

import matplotlib.pyplot as plt
from scipy.io import netcdf_file
from matplotlib.collections import PolyCollection
from tutorial import polygon_loader

class ControlSys:
 def __init__(self, fig, im, data, polycolls):
 self.fig = fig
 self.im = im
 self.data = data
 self.polygons = polycolls
 self.i = 0
 self.fig.canvas.mpl_connect('key_press_event', self.keypress)

 def keypress(self, event):
 previ = self.i
 if event.key == 'left' and self.i > 0:
 self.i -= 1
 elif event.key=='right' and self.i < (self.data.shape[0] - 1):
 self.i += 1
 if previ != self.i:
 self.polygons[previ].set_visible(False)
 self.polygons[self.i].set_visible(True)
 self.im.set_data(self.data[self.i])
 self.fig.canvas.draw_idle()

ncf = netcdf_file('KTLX_20100510_22Z.nc')
data = ncf.variables['Reflectivity']
lats = ncf.variables['lat']
lons = ncf.variables['lon']
i = 0

cmap = plt.get_cmap('gist_ncar')

Chapter 2

[31]

cmap.set_under('lightgrey')

fig, ax = plt.subplots(1, 1)
im = ax.imshow(data[i], origin='lower',
 extent=(lons[0], lons[-1], lats[0], lats[-1]),
 vmin=0.1, vmax=80, cmap='gist_ncar')
cb = fig.colorbar(im)

polygons = polygon_loader('polygons.shp')
polycolls = []
for frame in sorted(polygons):
 pc = PolyCollection(polygons[frame], linewidths=3, facecolors='k',
 edgecolors='w', alpha=0.6, visible=not frame)
 ax.add_collection(pc)
 polycolls.append(pc)
ax.autoscale(True)

ctrl_sys = ControlSys(fig, im, data, polycolls)

cb.set_label("Reflectivity (dBZ)")
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")
plt.show()

Another difference between this example and the original noninteractive viewer is
that this time, all of the polygons across time are plotted as a PolyCollection for
each frame, but the visible attribute was only set to True for one frame at a time.
This makes it easy to selectively display the polygons based on the current frame
because all that is needed to be done is to change the visibility attribute.

Breaking up is the easiest thing to do
Try the previous radar example again. This time, go forward a few frames and then
zoom in with the zoom tool. Now go back a frame.

Go ahead, I'll wait.

www.allitebooks.com

http://www.allitebooks.org

Using Events and Callbacks

[32]

Surprised? Remember that Matplotlib has its own built-in keymap. In the default
keymap, the left arrow means to go back to a previous view. When we zoomed
in and then pressed the left arrow key, not only did we go back a frame via our
callback, but we also went back to the original view prior to zooming via Matplotlib's
default keymap. The default keymap is a very important and useful feature for
providing basic interactivity for most users. However, when developing your
own application using Matplotlib, you might want to disable Matplotlib's keymap
entirely. The following example shows how to do that while demonstrating the
next important feature of the callback system: disconnecting a callback. In this
example, you can now press any non-system key or combination of keys without
ever triggering a built-in Matplotlib key press action. Go ahead and try some
combinations as well:

Code: chp2/disable_mpl_keymap.py

from __future__ import print_function
import matplotlib.pyplot as plt

def process_key(event):
 print(event.key)

fig, ax = plt.subplots(1, 1)
fig.canvas.mpl_connect('key_press_event', process_key)
fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)
plt.show()

Now add that the mpl_disconnect() line to our radar viewer example and try
the steps again. It stepped back a frame like you expected and it did not zoom out.
You are now free to build up your own keymap without worry of colliding with
Matplotlib's built-in keymap.

The mpl_disconnect() line takes a callback ID, and it will remove that callback
from the event it was connected to. Every time you connect a callback function to an
event using mpl_connect(), an ID is returned. If that particular function is already
connected to that particular event, then the existing ID is returned again. That ID is
returned so that the developer can choose to disconnect the event early for whatever
reason. A callback function can be connected to multiple events, and each connection
gets its own unique ID. So, disconnecting one of those callback connections only
disconnects it from that one event.

Chapter 2

[33]

So why would someone want to be able to disconnect a callback early? The most
common use case is to set up a clean-up action upon a key or button release. Let's
consider the storm cell viewer again. Even though the polygons are transparent, a
user comes back with a feature request to be able to "hide" the polygons so that he
can have an unobstructed view of the radar image under them. Let's implement this
feature by hiding the current frame's polygons only when the H button is held down
(let's reserve h for help later). Here is an updated ControlSys class:

Source: chp2/stormcell_anim_with_hide.py

class ControlSys:
 def __init__(self, fig, im, data, polycolls):
 self.fig = fig
 self.im = im
 self.data = data
 self.polygons = polycolls
 self.i = 0
 # Deactivate the default keymap
 keypressid = fig.canvas.manager.key_press_handler_id
 fig.canvas.mpl_disconnect(keypressid)
 self._keycid = self.fig.canvas.mpl_connect('key_press_event',
 self.keypress)
 self._hidecid = None

 def keypress(self, event):
 previ = self.i
 if event.key == 'left' and self.i > 0:
 self.i -= 1
 elif event.key == 'right' and self.i < (self.data.shape[0]-1):
 self.i += 1
 elif event.key == 'H':
 if self._keycid is not None:
 self.fig.canvas.mpl_disconnect(self._keycid)
 self._keycid = None
 cid = self.fig.canvas.mpl_connect('key_release_event',
 self.release_hide)
 self.polygons[self.i].set_visible(False)
 self.fig.canvas.draw_idle()
 if previ != self.i:
 self.polygons[previ].set_visible(False)
 self.polygons[self.i].set_visible(True)
 self.im.set_data(self.data[self.i])

Using Events and Callbacks

[34]

 self.fig.canvas.draw_idle()

 def release_hide(self, event):
 if event.key == 'H' and self._hidecid is not None:
 self.fig.canvas.mpl_disconnect(self._hidecid)
 self._hidecid = None
 cid = self.fig.canvas.mpl_connect('key_press_event',
 self.keypress)
 self.polygons[self.i].set_visible(True)
 self.fig.canvas.draw_idle()

When the ControlSys is initialized, it makes the first connection for key press events
and records it as self._keycid. It also instantiates a self._hidecid with a None so
that we can avoid any potential missing attributes in other parts of the code. Then,
when the H key is pressed down, we disconnect the self.keypress() callback and
connect the self.release_hide() callback to the key release event, recording that
connection's ID in self._hidecid. We also then set the current frame's polygons to
invisible and perform a draw to update the display.

As long as the user does not release the H key, the polygons will not be visible. Also,
during this time, no other key presses will activate our keymap, thereby preventing
the user from inadvertently changing the frame while in this mode and invalidating
our state. Once the H key is released, the key release event is disconnected and
our keymap is reconnected, along with setting the polygons' visibility to True and
updating the display again. The polygons are now visible, and we can still step back
and forth through time and use the polygon-hiding feature again. We will see more
examples of this technique when we start using widgets in Chapter 4, Widgets.

Keymapping
We can see that our application is going to grow in complexity very soon add we
continue to add features. Our current manner of keymapping is probably not going
to be easily maintainable as the number of actions increase. Let's take a moment
to implement something better. The most essential feature of a keymap is to tie a
predefined action to an arbitrary key or key combination. This seems like the perfect
job for a dictionary. Furthermore, as the keymap grows, it will become important to
be able to display the keymap in a helpful manner to your users. Each key/action
pair will need to come with a description that can later be displayed on demand.
Also, keeping in mind that our ControlSys class is likely to grow in complexity
soon, let's implement this keymap feature as a separate class that ControlSys will
inherit. The code is as follows:

Chapter 2

[35]

Source: chp2/stormcell_anim_with_keymap.py

class KeymapControl:
 def __init__(self, fig):
 self.fig = fig
 # Deactivate the default keymap
 keypressid = fig.canvas.manager.key_press_handler_id
 fig.canvas.mpl_disconnect(keypressid)
 self._keymap = OrderedDict()
 # Activate my keymap
 self.connect()
 self._lastkey = None

 def connect_keymap(self):
 self._keycid = self.fig.canvas.mpl_connect('key_press_event',
 self.keypress)

 def disconnect_keymap(self):
 if self._keycid is not None:
 self.fig.canvas.mpl_disconnect(self._keycid)
 self._keycid = None

 def add_key_action(self, key, description, action_func):
 if not callable(action_func):
 raise ValueError("Invalid action. Key '%s' Description %s"
 " - action function is not a callable" %
 (key, description))
 if key in self._keymap:
 raise ValueError("'%s' is already in the keymap" % key)
 self._keymap[key] = (description, action_func)

 def keypress(self, event):
 action_tuple = self._keymap.get(event.key, None)
 if action_tuple:
 self._lastkey = event.key
 # perform callback
 action_tuple[1]()

 def display_help_menu(self):
 print("Help Menu")
 print("Key Action")
 print("=========== ===")
 for key, (description, _) in self._keymap.items():
 print("%11s %s" % (key, description))

Using Events and Callbacks

[36]

In the code snippet, we completely rewrote the keypress() method to check the
keymap dictionary and call the stored callable if it was available for the pressed key.
The KeymapControl constructor creates the OrderedDict object that is our keymap.
This class also provides convenient methods for connecting and disconnecting this
keymap, along with a method to build the keymap and display a help menu. The
new display_help_menu() method will loop over the keymap dictionary and
display the keys and their respective help description. It should be noted that this
is why an OrderedDict was used as opposed to a regular dictionary object. With
an ordered dictionary, we can ensure that the menu will display related help items
together such as the left and right arrow keys.

Now, let's rework the ControlSys class. It will subclass KeymapControl, so we need
to factor away its keypress() method into two new methods: change_frame() and
enable_hide(), which represent the two generalized actions that keypress() was
performing before based on which key was pressed. The ControlSys constructor,
once it initializes the KeymapControl class, can then call add_key_action() for each
key that we wish to empower with an action. The left and right arrow keys are tied
to a lambda function that calls the new change_frame() method with a value of -1
and 1, respectively. The lambdas are needed because we need to supply the keymap
with a callable that it can use later. The H key is tied to the new enable_hide()
method. No lambdas were needed here because this method does not need to be
called with any parameters. Finally, the constructor also adds a new key action, h, to
display a useful help menu.

An interesting complication arises with this refactor though. The release_hide()
method needs to check that the key being released is the same key that originally
triggered the hide mode. Originally, this was explicitly set as a check for the H value.
However, with a dictionary-based keymap, we can no longer make that assumption.
In fact, it is theoretically possible now for multiple keys to be tied to a single action. So,
we need that method to check the event key against some saved value that will be set
by the enable_hide() method, thus ensuring that the key used for starting the hide
mode is used for turning it off. However, how do we get the enable_hide() method
to know what key triggered it? There are a number of ways to do this. One very
simple approach that you may have noticed in the KeymapControl class is to have the
keypress() method record a _lastkey attribute for every successful keymap trigger.
Now, enable_hide() can use _lastkey to record the active hide key:

Source: chp2/stormcell_anim_with_keymap.py

class ControlSys(KeymapControl):
 def __init__(self, fig, im, data, polycolls):
 self.fig = fig

Chapter 2

[37]

 self.im = im
 self.data = data
 self.polygons = polycolls
 self.i = 0
 self._hidekey = None
 self._hidecid = None
 KeymapControl.__init__(self, fig)

 self.add_key_action('left', 'Back a frame',
 lambda : self.change_frame(-1))
 self.add_key_action('right', 'Forward a frame',
 lambda : self.change_frame(1))
 self.add_key_action('H', 'Hide polygons while holding',
 self.enable_hide)
 self.add_key_action('h', 'Display this help menu',
 self.display_help_menu)

 def change_frame(self, frame_delta):
 newi = self.i + frame_delta
 if newi >= self.data.shape[0]:
 newi = self.data.shape[0] - 1
 if newi < 0:
 newi = 0
 if newi != self.i:
 self.polygons[self.i].set_visible(False)
 self.polygons[newi].set_visible(True)
 self.im.set_data(self.data[newi])
 self.fig.canvas.draw_idle()
 self.i = newi

 def enable_hide(self):
 self.disconnect_keymap()
 self._hidekey = self._lastkey.lower()
 cid = self.fig.canvas.mpl_connect('key_release_event',
 self.release_hide)
 self._hidecid = cid
 self.polygons[self.i].set_visible(False)
 self.fig.canvas.draw_idle()

 def release_hide(self, event):
 key = event.key.lower()
 if key == self._hidekey and self._hidecid is not None:

Using Events and Callbacks

[38]

 self.fig.canvas.mpl_disconnect(self._hidecid)
 self._hidekey = None
 self._hidecid = None
 self.connect_keymap()
 self.polygons[self.i].set_visible(True)
 self.fig.canvas.draw_idle()

Besides the improved scalability of this keymap design, we also gain better
modularity by defining a method for each separate action. These actions could now
be triggered in other ways than just through the keymap. This makes unit testing
easier, which is always a plus. Also, this design makes it easier to customize the
keymap. As you will see in a later section on user-defined events, we will be able
to externally define the keymap in a user configuration file. A further improvement
would be to have the keymapped callables return True or False to indicate that a
change in the state has occurred. The keypress() method could then trigger a call
to the draw_idle() method instead of having the callables do that. This would be a
further separation of responsibilities for the methods so that methods like change_
frame() could be used outside of any interactive drawing context such as automated
unit tests.

Picking
We demonstrated pick events earlier, showing how to select a storm track, changing
its thickness, but we haven't incorporated picking into our current design yet.
Much in the same vein as the KeymapControl class, let's create a PickControl class
that will keep a list of pick functions (pickers) and manage their connection to the
callback system for us:

Source: chp2/select_stormcells.py

class PickControl:
 def __init__(self, fig):
 self.fig = fig
 self._pickers = []
 self._pickcids = []

 def connect_picks(self):
 for i, picker in enumerate(self._pickers):
 if self._pickcids[i] is None:

Chapter 2

[39]

 cid = self.fig.canvas.mpl_connect('pick_event',
 picker)
 self._pickcids[i] = cid

 def disconnect_picks(self):
 for i, cid in enumerate(self._pickcids):
 if cid is not None:
 self.fig.canvas.mpl_disconnect(cid)
 self._pickcids[i] = None

 def add_pick_action(self, picker):
 if not callable(picker):
 raise ValueError("Picker function is not callable")
 if picker in self._pickers:
 raise ValueError("Picker is already in the list
 self._pickers.append(picker)
 cid = self.fig.canvas.mpl_connect('pick_event', picker)
 self._pickcids.append(cid)

Because we will be selecting storm cells instead of tracks, we need to modify the
construction of the PolyCollections to have a list of line widths as well as setting
the picker argument to True, much like we did back in the track selection example
for LineCollections. Next, we need to have ControlSys inherit from both
KeymapControl and PickControl, and register a new ControlSys method for picking:

Source: chp2/select_stormcells.py

 def select_stormcell(self, event):
 if event.artist not in self.polygons:
 return
 ind = event.ind[0]
 lws = event.artist.get_linewidths()
 if (self.i, ind) != self.selected:
 if self.selected is not None:
 prev_i, prev_ind = self.selected
 prev_lws = self.polygons[prev_i].get_linewidths()
 prev_lws[prev_ind] = 1
 self.polygons[prev_i].set_linewidths(prev_lws)

 lws[ind] = 4

Using Events and Callbacks

[40]

 self.selected = (self.i, ind)
 else:
 lws[ind] = 1
 self.selected = None

 event.artist.set_linewidths(lws)
 self.fig.canvas.draw_idle()

In the original track selection example, the selected variable was kept as a global
variable, which was a bad coding practice. Now, it is safely managed as an attribute
of the ControlSys class. Another difference between how we implemented track
and storm cell selection is that the selected variable now holds a tuple of the frame
index and the index within the polygon collection for that frame. This was necessary
as it requires two dimensions to properly reference a given Polygon artist in our
application as opposed to a single dimension for a single Line2D artist.

Chapter 2

[41]

Data editing
Sometimes, it is easy to lose sight of your original goals when developing an
application. We have been so focused on adding all sorts of bells and whistles to this
project that we have forgotten about its most important purpose: the editing of storm
cells and their tracks. Our application, so far, is strictly a data viewer, and a limited
one at that. We are not able to interrogate the display for more information about the
features we see, nor are we able to save our changes, much less even make any changes.
We demonstrated a track deletion feature back in the beginning of the chapter, but that
information could not be linked back to the source dataset for modification.

It is at the beginning of an application development that one must be very careful.
It is very easy to conflate the display with the data, as we have already done.
Conflating data and display can cause two kinds of problems. First, your data can
become tied up in some obscure, inscrutable display object that may or may not
respect the integrity of your original data. For example, our vertexes for the storm
cell polygons are currently stored in a PolyCollection object. It is not out of the
realm of possibility that Matplotlib could apply a path simplification algorithm to
the supplied points in order to reduce the amount of drawing it needs to perform.
The same applies to the tracks and the LineCollection object. The second problem
that can happen with conflating data and display is a tunnel vision that can hinder
the developer's design. The original dataset could contain extra information, such as
the size of the storm cell, its intensity, and so on. So far, our viewer application has
completely ignored this data because we didn't need it for the narrow-focused task
of simply displaying tracks and polygons. This resulted in nearly "painting ourselves
into a corner" with our application. If we had developed it further while conflating
the display and the data, we would have made it costly to restructure the code to
integrate the complete dataset into the application.

Now that we need to be able to round-trip our data from input to output and back
to input for a new instance of the editor, we will discontinue the use of the polygon_
loader() and track_loader() functions, and start using the storm_loader()
function instead.

www.allitebooks.com

http://www.allitebooks.org

Using Events and Callbacks

[42]

The NumPy primer
The storm_loader() and storm_saver() functions use a data object
known as a NumPy structured array. NumPy arrays are generalized
n-dimensional arrays containing values that all share the same type
(called a dtype). This is ideal for dealing with datasets since algorithms
and storage can be optimized when all the values of the array are of
the same size. A NumPy array can be sliced and indexed much like a
Python list. A structured array is a special kind of NumPy array that has
a compound dtype (that is, multiple basic data types together as one,
such as two floats and an integer). A compound dtype can have names
associated with each of the component dtypes. Consider the following
example:

points = np.array([(.0, 1), (.4, 2), (.6, 3), (.2, 1)],

 dtype=[('y', 'f'), ('t', 'i')])

The preceding command creates a structured array of length four and
two named parts. We can access this array in one of two ways: by
record (indexing and/or slicing) and by header (dictionary access). Both
points[2:4]['y'] and points['y'][2:4] will produce the same
result. This allows two ways of managing the data using the same object.

As part of the separation of the data and the display, we will need a way to map
information between the two. This is important because we will need to maintain
the integrity of our data structures as the editor is used. The following code snippet
shows the modification of the creation of the PolyCollection objects from the raw
storm data:

Source: chp2/stormcell_editor.py

stormcells = storm_loader('polygons.shp')
polycolls = []
stormmap = []
for frame in range(np.max(stormcells['frame_index']) + 1):
 indexes = np.where(stormcells['frame_index'] == frame)[0]
 polygons = stormcells[indexes]['poly']
 pc = PolyCollection(polygons, lw=[1]*len(polygons),
 facecolors='k', edgecolors='w', alpha=0.6,
 visible=(not frame), picker=True)
 ax.add_collection(pc)
 polycolls.append(pc)
 stormmap.append(indexes)

Chapter 2

[43]

In addition to the polycolls list that we had before, we will keep a stormmap list
containing NumPy arrays of indexes, referencing each storm cell's location in the
original stormcells data object. Notice that NumPy arrays can be sliced in additional
ways that normal Python lists cannot. In this snippet, the stormcells array was
indexed by a NumPy array of indexes, producing a new NumPy array that is a subset
of the original. Another way to index a NumPy array is to use a NumPy array of
Booleans, which will also produce a subset of the original data array. That method is
called Boolean indexing, and it will be demonstrated in the next code snippet.

We now need to update the ControlSys constructor to include the storm cell data
object and the mapping array. We will also add two new keymapped actions:
delete_selected() and save_stormdata() tied to the d and w keys, respectively
(w is for write). The delete_selected() method will not only delete the polygon
from the frame's PolyCollection, it will also have to remove it from the data
object as well as update the information contained in the mapping array. As for the
save_stormdata() method, we will have the data saved to a differently named file
for now to prevent clobbering the original packaged file. We will eventually want to
parameterize the filename arguments for better control:

Source: chp2/stormcell_editor1.py

class ControlSys(KeymapControl, PickControl):
 def __init__(self, fig, im, data, polygons, stormdata, stormmap):
 self.fig = fig
 self.im = im
 self.data = data
 self.i = 0
 self.selected = None
 self.polygons = polygons
 self.stormdata = stormdata
 self.stormmap = stormmap
 self._hidekey = None
 self._hidecid = None
 KeymapControl.__init__(self, fig)
 PickControl.__init__(self, fig)

 self.add_key_action('left', 'Back a frame',
 lambda : self.change_frame(-1))
 self.add_key_action('right', 'Forward a frame',
 lambda : self.change_frame(1))
 self.add_key_action('H', 'Hide polygons while holding',
 self.enable_hide)
 self.add_key_action('d', 'Delete the selected storm cell',
 self.delete_selected)

Using Events and Callbacks

[44]

 self.add_key_action('w', 'Save the storm data',
 self.save_stormdata)
 self.add_key_action('h', 'Display this help menu',
 self.display_help_menu)
 self.add_pick_action(self.select_stormcell)

 def delete_selected(self):
 if self.selected is None:
 return
 # only delete when the selection is in the current frame
 if self.i != self.selected[0]:
 return

 stormcell_index = self.stormmap[self.i][self.selected[1]]
 # Take it out of the raw stormdata object and everywhere else
 self.stormdata = np.delete(self.stormdata, stormcell_index)
 self.stormmap[self.i] = np.delete(self.stormmap[self.i],
 self.selected[1])
 paths = self.polygons[self.i].get_paths()
 paths.pop(self.selected[1])
 self.polygons[self.i].set_linewidths([1] * len(paths))

 # Also decrement any indexes greater than stormcell_index
 for indexes in self.stormmap:
 indexes[indexes > stormcell_index] -= 1
 self.selected = None
 self.fig.canvas.draw_idle()

 def save_stormdata(self):
 storm_saver('polygons_new.shp', self.stormdata)

The delete_selected() method takes advantage of various NumPy features to
manage the data that we have. First, NumPy provides a delete() function for its
arrays. This is useful because NumPy arrays cannot change size, so such convenience
functions paper over the fact that you are receiving a copy of the original array with
that particular element removed. This is done for both the raw stormdata and the
appropriate element in the stormmap array. Next, the appropriate polygon is removed
by "popping" its path data out of the collection. The line width data is also reset to the
appropriate length. Finally, the rest of the stormmap data is updated. This loops over
the list of NumPy arrays, decrementing any value that was greater than the index of
the storm cell we just removed. This particular action is what uses Boolean indexing
to find all elements in indexes that were greater than a particular value.

Chapter 2

[45]

Deleting storm cell polygons

The stormcell_editor1.py file that we just completed is a functional editor. It can
select and delete storm cells, and those changes can get saved to a file. However, it is
not very extensible. The display elements are intertwined with the control elements,
which only serves to make our control code more confusing. Confusing code is
difficult to maintain and hard to reuse.

We are going to need to improve how the code is organized so that we can continue
developing towards the interactive storm cell editor. There are two primary display
items in our editor: the radar display and the storm cell polygons. This was easy
enough to manage in ControlSys, but we still haven't added all of our display
elements. It is time to spin these things off into their own classes. The radar display
class is easy to make:

Source: chp2/stormcell_editor2.py

class RadarDisplay(object):
 def __init__(self, ax, lats, lons):
 self.im = None

Using Events and Callbacks

[46]

 cmap = plt.get_cmap('gist_ncar')
 cmap.set_under('lightgrey')
 self.initialize_display(ax, lats, lons)

 def initialize_display(self, ax, lats, lons):
 if self.im is not None:
 self.im.remove()
 fake_data = np.zeros((lats.shape[0], lons.shape[0]))
 self.im = ax.imshow(fake_data, origin='lower',
 extent=(lons[0], lons[-1], lats[0], lats[-1]),
 vmin=0.1, vmax=80, cmap='gist_ncar')

 def update_display(self, data):
 self.im.set_data(data)

Some of you may be scratching your heads, "Why didn't we initialize the display
with the radar data?" The answer is that this design enforces the separation of the
data and the display. This class merely provides the needed functionality to show a
particularly sized radar display, complete with a preset color map and positioning.
Next, we will create the Stormcells class. This is a bit more involved, but you will
find a lot of familiar code:

Source: chp2/stormcell_editor2.py

class Stormcells(object):
 def __init__(self, ax, stormdata):
 self.polygons = []
 self.create_polygons(ax, stormdata)

 @staticmethod
 def create_stormmap(stormdata):
 frame_cnt = np.max(stormdata['frame_index']) + 1
 stormmap = [np.where(stormdata['frame_index'] == frame)[0]
 for frame in range(frame_cnt)]
 return stormmap

 def remove_polygons(self):
 for strm in self.polygons:
 strm.remove()
 self.polygons = []

 def create_polygons(self, ax, stormdata):
 # Clear any previously existing polygons

Chapter 2

[47]

 self.remove_polygons()

 for indexes in self.create_stormmap(stormcells):
 polygons = stormdata[indexes]['poly']
 pc = PolyCollection(polygons, lw=[1]*len(polygons),
 facecolors='k', zorder=1, edgecolors='w',
 alpha=0.45, picker=True, visible=False)
 ax.add_collection(pc)
 self.polygons.append(pc)

 def delete_polygon(self, inds):
 frame_i, cell_i = inds
 paths = self.polygons[frame_i].get_paths()
 paths.pop(cell_i)
 lws = self.polygons[frame_i].get_linewidths()
 lws.pop(cell_i)

 def toggle_polygons(self, frame_index, visible=None):
 if visible is None:
 visible = not self.polygons[frame_index].get_visible()
 self.polygons[frame_index].set_visible(visible)

 def lolite_polygon(self, inds):
 self.hilite_polygon(inds, 1)

 def hilite_polygon(self, inds, lw=4):
 if inds is not None:
 frame_i, cell_i = inds
 lws = self.polygons[frame_i].get_linewidths()
 lws[cell_i] = lw
 self.polygons[frame_i].set_linewidths(lws)

Many of these methods are largely unaltered from ControlSys and the main
logic. That is another advantage of the work we are doing: simplifying the main
logic by encapsulating components into their own classes. The primary reason for
encapsulating these items into their own classes is to facilitate any future changes
that may come with regards to how we implement specific display elements.

Using Events and Callbacks

[48]

Another important feature you can see is that while this class will construct a storm
map data structure (and even use it when creating polygons), it will not store it for
itself. This is again another design decision for the separation of the data and display.
Undoubtedly, the storm map is needed to establish the relationship between the
display object and the data, but the hard question is, "Who should own it?" By its
very nature, both ControlSys and Stormcells could make credible claims to that
data structure. Ultimately, the question came down to which class needed the storm
map more. While the Stormcells class needs it when building the polygons, it is
only in relation to accessing the original data structure. Meanwhile, the ControlSys
needs it for managing interactivity, and is also in the best position for maintaining
the structure during any changes to the data. Therefore, while the Stormcells class
provides the static method for creating the storm map, it will be the ControlSys that
will obtain that map and maintain it.

User events
We have now seen our storm cell editing application grow in complexity as we
start adding even just a few features. The stormcell editor has a gamut of interactive
features and can delete storm cells and save the edited stormcells. And for good
measure, this application is cross-platform and can work using just about any of the
major GUI toolkits that are available, all in approximately 200 lines of code. Now,
before we start patting ourselves on the back, there is still a lot more to be done. The
editor still does not display any storm tracks, which will be another set of artists
to manage along with the storm cell polygons. The track and storm cell display
will need to be maintained together as they share a common underlying data. For
example, the selection of a track should also trigger a selection of a storm cell in that
track, and vice versa. The deletion of a storm cell should also trigger an update of its
track line.

Managing all of this in more traditional procedural coding styles would likely
produce a morass of spaghetti code that would become difficult to develop in the
first place, and impossible to maintain in the future. There are various programming
techniques that can be utilized to help the developer produce a usable code base.
One in particular, which you have already seen in this book, is the callback system.
Sometimes the callback system is avoided because it is perceived as being "overkill"
for the problem and requiring too much effort to implement your own. In many
toolkits and languages, an existing callback implementation is restricted to a
hardcoded set of events, leaving a developer high and dry for their own needs.

Chapter 2

[49]

Matplotlib's callback system, however, is not restricted to any set of events.
Developers are free to connect any callback function that takes a single argument to
any arbitrarily named string. Developers are also free to issue any sort of arbitrarily
named event, supplying their choice of an object for that event. This level of freedom
is actually taken advantaged of elsewhere in the library. The more intrepid reader
may have noticed by now that the Figure class and the Axes class both have their
own callback registry. No GUI-based events are processed through it, but it is useful
for managing specialized events such as changes in the figure resolution, or changes
in the limits of an axes. It is even used in certain kinds of artists to automatically
trigger redraws when its data changes.

An event is triggered by a CallbackRegistry object through its process() method.
This method takes two arguments: the name of the event to emit as a string and the
event object to supply to the connected callback functions. The event argument can be
anything. It does not have to inherit the Event class discussed earlier. This opens up a
wide assortment of possibilities to the developer utilizing the callback design pattern.

Editor events
Let's now re-imagine our existing features as a set of events:

•	 Change frame
•	 Select storm
•	 Deselect storm
•	 Hide storm cells
•	 Delete storm cell
•	 Save storm data
•	 Display help

We will add two new methods to the ControlSys class: _connect() and _emit().
They are merely shorthand for the mpl_connect() command and the recently
introduced process() method. In the constructor, we will connect some methods to
the events we have just listed. In the case of the help method and the storm saving
method, the methods originally supplied to the keymap will be connected to these
two new events, and the keymap will instead merely call _emit() of the respective
events. This can give a taste of fully customizable keymaps in the future. Meanwhile,
this is what our constructor and the two new _emit() and _connect() methods
now look like:

Using Events and Callbacks

[50]

Source: chp2/stormcell_editor2.py

class ControlSys(KeymapControl, PickControl):
 def __init__(self, fig, raddisp, data, polygons, stormdata):
 self.fig = fig
 self.raddisp = raddisp
 self.data = data
 self.i = 0
 self.selected = None
 self.polygons = polygons
 self.stormdata = stormdata
 self._hidekey = None
 self._hidecid = None
 KeymapControl.__init__(self, fig)
 PickControl.__init__(self, fig)

 self._connect('frame_change', self.update_radar_display)
 self._connect('frame_change', self.display_stormcells)
 self._connect('select', self.polygons.hilite_polygon)
 self._connect('deselect', self.polygons.lolite_polygon)
 self._connect('hide', self.polygons.toggle_polygons)
 self._connect('delete', self.polygons.delete_polygon)
 self._connect('delete', self.delete_stormcell)
 self._connect('save',
 lambda x: self.save_stormdata('polygons_new.shp'))
 self._connect('help', lambda x: self.display_help_menu())

 self.add_key_action('left', 'Back a frame',
 lambda : self.change_frame(-1))
 self.add_key_action('right', 'Forward a frame',
 lambda : self.change_frame(1))
 self.add_key_action('H', 'Hide polygons while holding',
 self.enable_hide)
 self.add_key_action('d', 'Delete the selected stormcell',
 self.delete_selected)
 self.add_key_action('w', 'Save the storm data',
 lambda : self._emit('save', None))
 self.add_key_action('h', 'Display this help menu',
 lambda : self._emit('help', None))
 self.add_pick_action(self.select_stormcell)

 def _emit(self, event, eventdata):
 self.fig.canvas.callbacks.process(event, eventdata)

 def _connect(self, event, callback):
 self.fig.canvas.mpl_connect(event, callback)

Chapter 2

[51]

A significant amount of refactoring in the rest of the class has also taken place. Let's
first take a look at the storm cell editing methods. The logic in delete_selected()
method was split out into two parts, the deletion logic for the polygon artist, which
we have seen in the Stormcells class, and the deletion logic for the storm cell data
and its mapping. The delete_selected()method now only deals with managing
the selection and emitting the delete action if appropriate. We also updated the
saving method to accept a filename as an argument. The code is as follows:

Source: chp2/stormcell_editor2.py

 def delete_selected(self):
 if self.selected is None:
 return
 # only delete when the selection is in the current frame
 if self.i != self.selected[0]:
 return

 self._emit('delete', self.selected)
 self.selected = None
 self.fig.canvas.draw_idle()

 def delete_stormcell(self, inds):
 frame_i, cell_i = inds
 # Take it out of the raw stormdata object and everywhere else
 stormcell_index = self.stormmap[frame_i][cell_i]
 self.stormdata = np.delete(self.stormdata, stormcell_index)
 self.stormmap[frame_i] = np.delete(self.stormmap[frame_i],
 cell_i)
 # Also decrement any indexes greater than stormcell_index
 for indexes in self.stormmap:
 indexes[indexes > stormcell_index] -= 1

 def save_stormdata(self, fname):
 storm_saver(fname, self.stormdata)

www.allitebooks.com

http://www.allitebooks.org

Using Events and Callbacks

[52]

Next, the methods related to the display of the storms were refactored. In particular,
the change_frame() method split out most of its logic into methods related to
updating the radar display, which now resides in the RadarDisplay class, and
methods related to updating the storm cell display. We begin to see the advantage
of this design where we can logically compartmentalize portions of our interactive
display. The radar display logic does not need to commingle with the polygon
display logic or the storm cell selection logic. We can keep methods small and to the
point, which makes them easier to work with. The code is as follows:

Source: chp2/stormcell_editor2.py

 def change_frame(self, frame_delta):
 newi = self.i + frame_delta
 if newi >= self.data.shape[0]:
 newi = self.data.shape[0] - 1
 if newi < 0:
 newi = 0
 if newi != self.i:
 self._emit('frame_change', newi)
 self.i = newi
 self.fig.canvas.draw_idle()

 def update_radar_display(self, index):
 self.raddisp.update_display(self.data[index])

 def display_stormcells(self, index):
 self.polygons.toggle_stormcells(self.i, False)
 self.polygons.toggle_stormcells(index, True)

 def enable_hide(self):
 self.disconnect_keymap()
 self._hidekey = self._lastkey.lower()
 cid = self.fig.canvas.mpl_connect('key_release_event',
 self.release_hide)
 self._hidecid = cid
 self._emit('hide', self.i)
 self.fig.canvas.draw_idle()

 def release_hide(self, event):
 key = event.key.lower()
 if key == self._hidekey and self._hidecid is not None:
 self.fig.canvas.mpl_disconnect(self._hidecid)

Chapter 2

[53]

 self._hidekey = None
 self._hidecid = None
 self.connect_keymap()
 self.polygons.toggle_stormcells(self.i, True)
 self.fig.canvas.draw_idle()

Finally, the selection/deselection logic, which is contained entirely within the
select_stormcell() method, has been significantly reduced in size with (just
about) all display aspects removed from it. The method is now much easier to
understand: deselect what was selected before, and select what has now been
selected if it wasn't the same as before:

Source: chp2/stormcell_editor2.py

 def select_stormcell(self, event):
 if event.artist not in self.polygons.polygons:
 return
 ind = event.ind[0]
 self._emit('deselect', self.selected)
 if (self.i, ind) != self.selected:
 self.selected = (self.i, ind)
 self._emit('select', self.selected)
 else:
 self.selected = None
 self.fig.canvas.draw_idle()

Go ahead and give this program a try. You will find that it will behave exactly like
before, with only an increase of approximately seventy lines of code. For those 70
lines of code, we have now broken down our ControlSys class full of methods
that could only be used in an interactive context into a class where the majority of
its code is now behind sensible methods and classes that do not care one bit about
interactivity. This will become useful in the next chapter when we will need to
produce animations of our display without being able to provide any manual inputs.
This is also valuable for unit tests and also for building more complicated features
that will need to reuse parts of the current code base.

Using Events and Callbacks

[54]

Summary
We have come a long way in this chapter learning about the Matplotlib events
and the built-in callback system. Our project application has grown in complexity
significantly, requiring multiple refactors along the way. First, we connected to
Matplotlib's GUI-based event system, particularly the key press and pick events.
We also learned how to disconnect a callback function, both our own and
Matplotlib's default keymap handler.

Then, you learned how to develop a more general keymap handler that even
manages its own help documentation that could be produced on demand. After that,
we added in a similar artist pick handler that allowed for different kinds of pickers
to be used. With these two controllers working independently of each other, they
were able to produce interactive features that they could not do on their own.

Next, we took a step back from our project and re-examined its goals as a storm
track/cell editor. We examined the implications and the ease of conflating data
and display. Bearing those lessons in mind, we reworked our application to achieve
that separation and managed to round-trip data from an input file, through the
editor, and saved them back out to a file that could then be used as input in the
next run of the editor.

Finally, we took a deeper look at Matplotlib's callback system and realized just how
flexible and generalized it was. With such a ready-to-use callback system available,
we now have several application-specific events that are available for other functions
to connect. This allowed us to split out the interactive-specific methods into more
generalized noninteractive methods and reduce the amount of overlapping realms
of responsibilities in the ever-growing ControlSys class.

In the next chapter, we will take advantage of this event-driven design to achieve
a new feature with minimal amount of effort. We will be maximizing code reuse in
developing animation code while also enhancing our interactive display. In the next
chapter, we are going to Hollywood!

Animations
Animation can explain whatever the mind of man can conceive

- Walt Disney

More so than a static plot, an animation is innately interactive. It is much closer to
how we take in the physical world, and therefore our minds can often assimilate
its message in more meaningful ways. Another advantage of an animation is that it
provides a convenient third dimension in which to display your data. So, rather than
trying to cram all of your information into a single static plot you can spread out
your data along this orthogonal axis, thereby reducing clutter. To put it another way,
if a picture is worth a thousand words, then how many words must a whole movie
of pictures be worth?

A short history
Prior to version 1.1 of Matplotlib, animations were often done hackishly. The
implementations were usually GUI-specific and were often brittle. Things improved
in version 1.0 with the introduction of a cross-platform Timer class, but the code
examples in the gallery were an unsightly eyesore, completely in contrast to the
typical easy reading of most Python code. On top of all that, there still wasn't any
way to save the animations to movie formats, except to save each frame individually
and use an external renderer to compose the movie.

Shortly after the release of version 1.0, Matplotlib contributor Ryan May created
the animation module in order to complete a graduate course assignment without
using MATLAB. This author collaborated with (recently) Dr. May in design reviews
and shaking out the usual bugs that come with such fundamental additions to any
library. He even used it for the same exact graduate course assignment the following
year, finding additional room for improvements.

Animations

[56]

Unfortunately, as is the case for many contributions in the open source community,
the module's documentation, while quite thorough in explaining its API, can hardly
be used as a guide. This chapter probably represents the first complete guide to
Matplotlib's animation module, showing all of the ins and outs and little tricks that I
have developed over the past few years (surprising even Dr. May himself: "You did
what with it?")

The fastest draw in the west
Your manager stops by your cubicle and says, "You know that track editor thing you
have been working on? Yeah, I am going to need a movie of it that I can put it into a
presentation for the Bobs by the end of the day. Mmm-kay? That would be great."

Don't freak out! Take a deep breath and think about it for a moment. At the end of
the previous chapter, didn't we have something that looked a lot like an animation
when pressing the arrow keys? All of the major code pieces are in place already. You
just need something that can save the frames automatically, preferably right into
an appropriate movie format. You don't have much time, so let's quickly jury-rig
something for this one-off task and then worry about making it right later. Take the
chp2/stormcell_editor2.py script we left off in the previous chapter and replace
the final plt.show() function with the following few lines:

Source: chp3/quick_animation.py

from matplotlib.animation import FuncAnimation
anim = FuncAnimation(fig, lambda _: ctrl_sys.change_frame(1),
 frames=data.shape[0], repeat=False)
anim.save('storms.gif', writer='imagemagick')

Assuming you have the powerful ImageMagick tool installed on your system,
an image will be made for each frame of your animation and then combined
into a single animated GIF file (and those individual frames will be cleaned up
automatically). Provided the animation is short and simple, an animated GIF can be
a very reliable format that can be used just about anywhere without worrying about
the version of PowerPoint, Impress, or some other arcane presentation software
(or then discovering that the computer in the lecture hall doesn't have just the right
codec to play your movie). Of course, we will cover how to generate movies in other
formats as well later in the chapter.

Chapter 3

[57]

Run the script, view the GIF in a browser, and breath a sigh of relief. "That was easy",
you think to yourself. "But, what exactly did I do?" Quite simply, the FuncAnimation
class is one of the two types of Animation classes available in Matplotlib. It executes
a given function for each frame. This function is expected to update some artists for a
given frame index (which was the parameter that we choose to ignore for now with
an underscore dummy variable in the lambda expression). We had FuncAnimation
perform the same task as pressing the right arrow key a given number of times in
the key map construction. We also specified that there would be no looping of the
animation (which only really matters if we were going to display the animation rather
than saving it). We then stated that the animation will be saved as storms.gif using
the predefined ImageMagick animation writer settings. I bet you have never dreamed
that an animation could be that easy?

The animation module
Now that we've had a crash course in animations for Matplotlib, let's take a step back
and get to know the animation module. There is the base Animation class and three
subclasses, namely, TimedAnimation, FuncAnimation, and ArtistAnimation. These
classes handle all of the work necessary to initiate the animation upon call to show()
and update the figure window with a new draw at the appropriate intervals. They
also provide the interface to save your animation, hiding away many of the ugliness
one might find when manually composing their own animation.

The most simple animation class is ArtistAnimation. You first perform all of
the plotting, appending the artists of each frame into a list of lists. Each sublist
represents all of the artists that should be visible for a given frame. The length of the
list provided to the ArtistAnimation class is the number of frames the animation
will have. When rendering, the ArtistAnimation class will modify the appropriate
artists' visibility property and trigger a draw. This approach is the best way to handle
simple, straightforward animation tasks.

To demonstrate the use of this class, let's grab the Stormcells class from the editing
code at the end of the previous chapter. The ArtistAnimation class expects a list of
lists, so we will build a one-element list containing the PolyCollection object for
each frame, as follows:

Source: chp3/stormcell_animation.py

fig, ax = plt.subplots(1, 1)
stormcells = storm_loader('polygons.shp')
polycolls = Stormcells(ax, stormcells)
artists = [[p] for p in polycolls.polygons]

Animations

[58]

ax.autoscale(True)
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")

anim = ArtistAnimation(fig, artists)
plt.show()

Run this script and a figure window will open up and show some polygons traveling
across the plot area. Note that you still have the full default interactive navigation
system available to you. You can zoom and pan this plot while the animation is played.
Unfortunately, as of Matplotlib version 1.4, there are no built-in keymaps or GUI tools
to control the animation such as play/pause or the speed of the animation. However,
work is being done in version 2.1 to revamp the toolbar system to make it easier to add
such features whenever an animation is added to a figure.

Storm cell polygon animation

Chapter 3

[59]

One of the major downsides of ArtistAnimation is that it requires a separate
instance of every artist in every frame. This can be very resource-intensive. For
example, if we were to implement a radar loop as an ArtistAnimation class, not
only would the radar data be held in memory for the entire time series, but also the
RGBA image data for each frame. This becomes impractical for large animations.
Another downside is that it requires all artists to be made a priori, thereby
precluding use cases such as dynamic content or the cogeneration of a movie and the
data via a simulation. And so, the FuncAnimation class can be used instead. The idea
with this class is that you provide a function that will be responsible to modify artists
prior to rendering each frame. So, for example, your animation function for an image
animation could load image data into the memory one frame at a time (similar to
how we do it right now with our radar viewer). In fact, let's take the RadarDisplay
class we created in the storm cell editor as the start:

Source: chp3/radar_animation.py

ncf = netcdf_file('KTLX_20100510_22Z.nc')
data = ncf.variables['Reflectivity']
lats = ncf.variables['lat']
lons = ncf.variables['lon']

fig, ax = plt.subplots(1, 1)
raddisp = RadarDisplay(ax, lats, lons)
raddisp.update_display(data[0])
cb = fig.colorbar(raddisp.im)
cb.set_label("Reflectivity (dBZ)")
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")

anim = FuncAnimation(fig,
 lambda idx: raddisp.update_display(data[idx]),
 frames=data.shape[0], repeat=False)
plt.show()

There are only two new lines—the import of FuncAnimation (not shown) and its
instantiation prior to show(). Unlike ArtistAnimation, this type of animation
needs to have some way of knowing how many frames the animation has, hence the
frames argument. The function supplied to the constructor should accept a frame
index for its first argument. There is a mechanism to supply other arguments to this
function, but we will discuss this later. When you run this script, a figure window
will pop up and a radar loop will play.

Animations

[60]

A common pitfall with first time users of animations is that they do not save the
instantiated object to a variable. This is understandable as Matplotlib users tend to
get used to not saving the output of calls, such as plt.imshow() and ax.scatter(),
without any consequence. Plotting works fine with functions such as these because
the returned objects are automatically added to the appropriate axes object, which
is, in turn, recorded in the appropriate figure object. This is, in turn, recorded in
what is known as the "Pyplot State Machine". A Matplotlib user can go quite far
having never saved a single artist object into a variable. This is because the pyplot
state machine keeps those objects "alive" and therefore these objects are not garbage
collected. Up to at least version 1.4, animation objects are not automatically saved
anywhere and would typically be garbage-collected shortly after instantiation, if not
stored in a variable.

Any animation based off of the TimedAnimation class, which the previously
mentioned classes are, have some constructor arguments to control the timing of
the animation. By default, the animation is timed to advance a frame every 200
milliseconds. This can be modified by the interval argument. An additional delay
can also be added to the last frame of the animation loop prior to restarting the loop
(also in milliseconds). Such a delay, provided by the repeat_delay argument, often
helps users gain an easy visual cue for the start and end of an animation. By default,
there is no additional delay. Of course, one could also decide not to even have a loop
in the first place by setting the repeat argument to False.

Advanced animations
So far, we have seen how to inject animations into an existing Matplotlib application
as if it was an afterthought. This is perfectly valid, but what if we spend time
considering how best to prepare our codebase for animation use? What sort of
features and effects could we enable?

Your manager drops by and says, "You know the animation I showed the Bobs the
other day? They need one with the tracks displayed, mmm-kay? We need to push
this, so I am going to need you to come in on Saturday to get this done, that would
be great." It is a good thing we had the foresight to isolate our display elements into
their own classes in the previous chapter. Now, it is just a matter of adding a new
display element, that is, tracks! We will model this one closely to the Stormcells
design, but there are going to be some fundamental differences. First, the storm cells
are organized by frames while the tracks are not. This leads to a bit of a complication
for the purposes of animations. The storm tracks will need to grow longer with time
as opposed to being discrete sets of artists for each frame. Let's first take a look at
how one can implement a Tracks class:

Chapter 3

[61]

Source: chp3/quick_animation2.py

class Tracks(object):
 def __init__(self, ax):
 self.tracks = None
 self.initialize_lines(ax)

 @staticmethod
 def create_trackmap(stormdata):
 trackmap = []
 for trackid in range(np.max(stormdata['track_id']) + 1):
 indexes = np.where(stormdata['track_id'] ==
 trackid)[0]
 # Ensure the track segments are in chronological order
 seg_indxs = np.argsort(stormdata['frame_index'][indexes])
 trackmap.append(indexes[seg_indxs])
 return trackmap

 def remove_lines(self):
 if self.tracks is not None:
 self.tracks.remove()
 self.tracks = None

 def initialize_lines(self, ax):
 self.remove_lines()
 self.tracks = LineCollection([])
 ax.add_collection(self.tracks)

 def update_lines(self, frame_index, stormdata):
 segments = []
 for indexes in self.create_trackmap(stormdata):
 trackdata = stormdata[indexes]
 trackdata = trackdata[trackdata['frame_index'] <=
 frame_index]
 # must always be something in a track, even NaNs.
 segments.append(zip(trackdata['xcent'],
 trackdata['ycent'])
 or [(np.nan, np.nan)])
 self.tracks.set_segments(segments)

 def lolite_line(self, indx):
 self.hilite_line(indx, 1)

Animations

[62]

 def hilite_line(self, indx, lw=4):
 if indx is not None:
 lws = self.tracks.get_linewidths()
 lws[indx] = lw
 self.tracks.set_linewidths(lws)

Much like the RadarDisplay class, we will initialize an Artist object (in this case,
LineCollection) with no data in it. This way, we have an artist object to add to the
axes from the start and then we would never need to concern ourselves about the
axes again. Therefore, subsequent frame draws will compute which points will be
visible and set them as line segments for each available track. Any tracks that are
yet to form by the time of frame_index will instead be represented by a single set
of Not a Number (NaN), which Matplotlib always renders as a blank.

Similar to the Stormcells class, we will have a method that can generate a "track map"
that would index the raw data by tracks and be used to build up the track lines. One
may express concern with the inefficiency that would arise with repeatedly computing
the track map with every frame update rather than simply reusing the track map
from some other source. The answer to this point is to avoid the trap of premature
optimization. This interface design is very simple to use and it is relatively easy to
understand. We can always add optimizations later if we find that they are warranted.

Some additions were made to the ControlSys constructor, particularly the addition
of a lines instance to the class and the connecting of an update_track_display()
method to the 'frame_change' event.

Finally, let's see what the main logic has become:

Source: chp3/quick_animation2.py

if __name__ == '__main__':
 from matplotlib.animation import FuncAnimation

 ncf = netcdf_file('KTLX_20100510_22Z.nc')
 data = ncf.variables['Reflectivity']
 lats = ncf.variables['lat']
 lons = ncf.variables['lon']
 stormcells = storm_loader('polygons.shp')

 fig, ax = plt.subplots(1, 1)
 raddisp = RadarDisplay(ax, lats, lons)
 raddisp.update_display(data[0])
 cb = fig.colorbar(raddisp.im)
 polycolls = Stormcells(ax, stormcells)
 linecoll = Tracks(ax)

Chapter 3

[63]

 # Turn on the first frame's polygons
 polycolls.toggle_polygons(0, True)
 ax.autoscale(True)

 ctrl_sys = ControlSys(fig, raddisp, data, polycolls, linecoll,
 stormcells)
 cb.set_label("Reflectivity (dBZ)")
 ax.set_xlabel("Longitude")
 ax.set_ylabel("Latitude")

 anim = FuncAnimation(fig, lambda _: ctrl_sys.change_frame(1),
 frames=data.shape[0], repeat=False)
 anim.save('storms_with_tracks.gif', writer='imagemagick')

Viewing the GIF animation of the storm cells with trailing tracks using an image viewer

Animations

[64]

Go ahead and run this script and send off the storms_with_tracks.gif animation
to your manager. You can now see how careful consideration during development
can make it fairly simple to add features such as animated storm tracks because all of
the pieces are in their logical places. We can also see how relatively easy it would be
to add and remove display elements to and from ControlSys. Also, as will soon be
demonstrated, we can easily mix and match these display elements for other purposes.

Oh, and feel free not to come in on Saturday now that we have this done.

Event source
Animations in Matplotlib are event-driven from a source object that handles
callbacks. This seemingly simple object is actually critical for properly timed
animations in Matplotlib. Think about it for a moment. In order for callbacks to be
triggered on a regular interval, the time must be checked frequently. If Matplotlib
were to perform this time check itself while the figure window is displayed, then the
GUI's event loop would constantly be interrupted, which would cause all sorts of
performance issues and responsiveness problems. So, timings need to be handled by
the GUI. This is why older Matplotlib animation examples were so ugly and difficult
to share. They often had GUI-specific tricks to achieve the timing effect desired.

By default, the TimedAnimation objects will create an event source object that ties
into the GUI's timing features. This makes the creation of a single animation very
easy and intuitive for users. However, what if you have multiple animation objects
that you want to use together in a single plot? While all of our examples so far have
had a single Animation instance with possibly many components, there is no reason
why one could not have multiple Animation instances, provided that the developer
takes some care in juggling them. Let's take the three classes we made in the previous
example and create an animation object for each of them and run them all at once.
Here is the main logic:

Source: chp3/simultaneous_animations.py

if __name__ == '__main__':
 stormcells = storm_loader('polygons.shp')
 ncf = netcdf_file('KTLX_20100510_22Z.nc')
 data = ncf.variables['Reflectivity']
 lats = ncf.variables['lat']
 lons = ncf.variables['lon']
 framecnt = data.shape[0]

 fig, ax = plt.subplots(1, 1)

Chapter 3

[65]

 rad_disp = RadarDisplay(ax, lats, lons)
 cb = fig.colorbar(rad_disp.im)
 trks = Tracks(ax)
 cells = Stormcells(ax, stormcells)
 cells.toggle_stormcells(0, True)

 cb.set_label("Reflectivity (dBZ)")
 ax.set_xlabel("Longitude")
 ax.set_ylabel("Latitude")

 radanim = FuncAnimation(fig,
 lambda i, dat: rad_disp.update_display(dat[i]),
 framecnt, fargs=(data,))
 trkanim = FuncAnimation(fig, trks.update_lines,
 framecnt, fargs=(stormcells,))
 strmanim = ArtistAnimation(fig, [[p] for p in cells.polygons])

 plt.show()

Nothing out of the ordinary here. We even demonstrate how to pass additional
arguments to our update function in the respective FuncAnimation objects
via the fargs parameter. Previously, the ControlSys method passed into the
FuncAnimation constructor already had access to these other pieces of data, but
since the Track and RadarDisplay objects are designed not to carry any of the raw
data, this information would need to be supplied externally via the fargs argument
in the FuncAnimation constructor.

Now run the preceding script. You should notice that something seems... off. Looking
closely, you may see that the radar display and the polygons are not updating at quite
the same time. The animation looks stuttered and unsynchronized. This is because
each of the three animation objects created here have their own event_source
instance, each of which will be started independently of each other, and each will cause
their own draw calls. Luckily, there is a simple solution to this problem:

Source: chp3/synchronized_animations.py

 radanim = FuncAnimation(fig,
 lambda i, dat: rad_disp.update_display(dat[i]),
 framecnt, fargs=(data,))
 event_source = radanim.event_source
 trkanim = FuncAnimation(fig, trks.update_lines,
 framecnt, fargs=(stormcells,),
 event_source=event_source)
 strmanim = ArtistAnimation(fig, [[p] for p in cells.polygons],
 event_source=event_source)

Animations

[66]

What we have done is take the first animation's event_source object and supply it
to the other two animation instances. Now, all three animations will be running off
of the same timer. Running this new script, you should see a much more coherent,
synchronized animation than in the previous example.

Timers
Most of the time, you will never need to interact directly with a timer object. The
animations manage it all for you. However, timers are completely independent of
the animation module. Therefore, it is entirely possible to use timers for animation-
like effects in your interactive applications. Oftentimes, such effects can add a bit of a
"wow" factor to an otherwise boring feature. Sometimes, features such as transitions
can provide important visual cues to the user or unobtrusively convey subtle
information about what the application is doing. Consider, for example, the age-old
"spinning hourglass" mouse cursor to indicate that the application is busy (or the
"spinning beach ball" for Mac OS X users). By being animated as opposed to just a
static image, it helps convey to the user that work is progressing and that the system
is not entirely frozen.

Our application does not have any busy cycles, so we aren't going to add any spinning
beach balls. However, let's consider a feature to jump ahead several frames with a
single press of a key. This is a convenient function that can help a user jump quickly
through a longer radar sequence. We can easily implement this by connecting the up
and down arrow keys to call change_frames() with the values -5 and 5, respectively.
However, the user would miss out on seeing any frames in between because the
display will just jump to the requested frame. Instead, let's implement a frame
transition feature that will use a timer to quickly hop through the frames:

 def frame_hop(self, frame_delta):
 def hopper(ctrl_sys, increm, final):
 ctrl_sys.change_frame(increm)
 if increm > 0 and ctrl_sys.i >= final:
 return False
 elif increm < 0 and ctrl_sys.i <= final:
 return False

 increm = np.sign(frame_delta)
 if increm > 0:
 final = min(self.i+frame_delta, self.data.shape[0]-1)
 else:
 final = max(0, self.i + frame_delta)
 timer = self.fig.canvas.new_timer(100)
 timer.add_callback(hopper, self, increm, final)
 timer.start()

Chapter 3

[67]

A new method was added to the ControlSys. This creates a one-off callback
function called hopper() that calls the change_frame() method with a positive or
negative delta. The callback then checks whether it has now reached its destination
frame, and if so, removes the callback by returning False. A return of False (as
opposed to None or zero or anything that would inadvertently evaluate to False)
is a mechanism by which a callback can remove itself from the timer. After creating
the callback function, the frame_hop() method then computes what the destination
frame would be, taking into account the bounds of the radar sequence. Then, a new
timer object, which is associated with the canvas, is created. Its callback interval is
set to 100 milliseconds. Next, the hopper() callback is added to the timer along with
its three arguments. Finally, the timer is started. Of course, we will need to add the
appropriate keys to the keymap:

 self.add_key_action('up', 'Back 5 frames',
 lambda : self.frame_hop(-5))
 self.add_key_action('down', 'Forward 5 frames',
 lambda : self.frame_hop(5))

The timer is asynchronous, so the application will continue just fine after start()
is called. A tenth of a second later, the callback is triggered, causing the display
to step a single frame. A tenth of a second later, the callback is triggered again.
All this while, the application is still responsive to any other interactive features.
Finally, after triggering the callback the appropriate number of times, the callback
function will terminate the timer by returning False and all of the frame-hopping
components are cleaned up automatically.

Run the script we saw before for implementing a frame transition feature and use
the up and down arrow keys along with your right and left keys to change frames.
The display will hop along the radar sequence with only a single key press. Note
that not even a single Animation instance was used to achieve this effect. Being able
to directly utilize a timer in your application can gain you very fine-grained control
over your application, which you might not be able to achieve with an Animation
object. The advantage of an Animation object is for when you don't already have
the framework in place to perform the desired animation action (we already had the
change_frame() method), and it provides the mechanism to save the animations.
The ability to save animations will be discussed in depth shortly.

Animations

[68]

Blitting
Blitting is a technique where anything in the animation that is static will only be
drawn once and treated as a background for any animated artists. It is an age-old
optimization that can significantly reduce the amount of work needed to render
each frame. Back in the days when processing power was a premium, any sort of
optimization was valuable to improve the smoothness of an animation (the technique
wholly predates Matplotlib). It was also a relatively easy optimization to understand
and implement, so it worked its way into the vernacular of programmers who do not
regularly deal with animations.

So matplolib has the ability to handle blitting across most of the interactive backends;
the Mac OS X backend does not support it due to limitations in Matplotlib's design.
It is often misunderstood, however, and so it is turned off by default (plus, this is
the mode that achieves full compatibility across all backends). In most situations,
on even moderate hardware of the past few years, you will not notice the difference
between blitting and not blitting. Indeed, one should treat blitting like one would for
any other optimization technique—it is good to know about, but don't prematurely
optimize your code until you determine that you need it. Blitting can cause enough
headaches for even the most experienced users, so you would only want to deal with
it if you absolutely have to. For a technique that is conceptually simple, it can be
surprisingly tricky to use.

The first thing to remember about blitting is that it is extremely difficult to use if you
have multiple animation objects in play. This is because the first step of blitting is to
store an unanimated image in memory that would serve as the static background. If
multiple animation objects are in play, you have no guarantee that another animation
has already performed a draw when your blitting animation object captures that
initial blit. Second, panning and zooming may not work properly for blitting.
Considering that the drawing of the ticks and labels tend to be the most expensive of
the typically static parts of the plot draw, blitting without the ticks and labels tend to
be fairly pointless. Future versions of Matplotlib may contain fixes for this limitation,
allowing full interactivity during blitting as well as providing possible optimizations
to the axis ticking system so that refreshes to the axis ticks are not as expensive as
they are now.

Finally, z-order is not respected during blitting. You cannot have a static component
in front of an animated component. This becomes particularly evident in the case
of annotations and legends. Without blitting, an animated component will get
drawn behind a legend or any annotation. However, during blitting, legends and
annotations are considered to be static and will be drawn as a background for the
animated components.

Chapter 3

[69]

Blitting with ArtistAnimation instances is simple because all of the animated
components are controlled by the animation instance. Just pass a blit=True
keyword argument to the constructor. Blitting with the more advanced
FuncAnimation class can be trickier. One thing we haven't covered yet about the
animation functions is what they should return. Our examples have them return
nothing at all, which is perfectly fine to do if you are not blitting. However, when the
blit property has been set to True, your animation function will need to return a
list of all the animated Artist objects for that particular frame. This way, the blitting
code will know exactly which artists it needs to clear from the image (as opposed to
normal animations, which draws each frame from scratch). Without the returned list
of Artists by the animation function, blitting will not work.

Observant readers may have noticed another interesting argument to the
FuncAnimation constructor—init_func. This function, if given, is to draw the
clear frame of the animation. The clear frame of an animation is typically the static
background of the animation, but it isn't restricted to just the static components, as
it can return a list of animated artists. Besides, when starting the animation, the clear
frame is drawn whenever the blit image needs to be refreshed, such as when the
figure window is resized. The init_func function is called with no arguments, not
even any supplied fargs parameter. If no init_func is provided, then the first full
frame of the animation, sans any returned Artists, is used instead. So, resizing the
figure window while playing a FuncAnimation that does not have an init_func
argument will result in restarting the animation sequence.

Recipes
There are a few commonly requested animation effects that pop up on Matplotlib's
mailing list. Unfortunately, it isn't really possible to generalize them into a set
of utility functions that can be included into Matplotlib. Instead, like a chef, you
will need to figure out how to best achieve the effect that you want within your
masterpiece. We can provide some basic examples to demonstrate some concepts.

Tails
When showing moving particles, having a trailing track behind the particle helps
to visualize the motion. This is essentially what we implemented in the previous
section. However, what if the time series is very long or if there are many particles to
visualize? Keeping all of these very long tails around indefinitely can make for a very
busy scene. What if we snipped these tails? Let's modify the code for synchronizing
animations in the Event Source section of this chapter by updating the Track class
and showing just the tracks as an animation:

Animations

[70]

Source: chp3/track_tails.py

class Tracks(object):
 def __init__(self, ax, tails=None):
 self.tracks = None
 self.tails = tails
 self.initialize_lines(ax)
...
 def update_lines(self, frame_index, stormdata):
 segments = []
 for indexes in self.create_trackmap(stormdata):
 trackdata = stormdata[indexes]
 trackdata = trackdata[trackdata['frame_index'] <=
 frame_index]
 if self.tails:
 mask = (trackdata['frame_index'] >=
 (frame_index - self.tails))
 trackdata = trackdata[mask]
 # must always be something in a track, even NaNs.
 segments.append(zip(trackdata['xcent'],
 trackdata['ycent'])
 or [(np.nan, np.nan)])
 self.tracks.set_segments(segments)

We build a boolean mask to index each track's segments that are to be visible. The
main logic only has a tiny change:

if __name__ == '__main__':
 stormcells = storm_loader('polygons.shp')
 fig, ax = plt.subplots(1, 1)
 trks = Tracks(ax, 3)
 ax.set_xlim(stormcells['xcent'].min(), stormcells['xcent'].max())
 ax.set_ylim(stormcells['ycent'].min(), stormcells['ycent'].max())
 ax.set_xlabel("Longitude")
 ax.set_ylabel("Latitude")
 trkanim = FuncAnimation(fig, trks.update_lines,
 stormcells['frame_index'].max() + 1,
 fargs=(stormcells,))
 plt.show()

Chapter 3

[71]

A storm track tail animation

When you run this example, you will see short lines "crawling" about the plot
area. The lines are at most three segments long, as parameterized in the Tracks
constructor. This is just one approach to line tailing. Another involves simple slicing
of the NumPy array containing the vertexes (for example, verts[-tail:]). A word
to the wise, though. Do watch out for tail parameters of zero when slicing like this. A
negative zero is still zero, and as such, would result in an array slice that goes from
the first element to the end rather than an empty slice.

Animations

[72]

Fades
Having artist objects fade with time is another popular animation effect. Much
like the tails, fades help us give a sense of past information, which can easily be
compared against current information. Let's again modify the code for synchronizing
animations in the Event Source section of this chapter, but this time keeping only
the Stormcells class and showing just the storm cells as an animation with faded
polygons trailing behind the current polygons:

Source: chp3/stormcell_fade.py

if __name__ == '__main__':
 stormcells = storm_loader('polygons.shp')
 frameCnt = stormcells['frame_index'].max() + 1

 fig, ax = plt.subplots(1, 1)
 cells = Stormcells(ax, stormcells)
 ax.autoscale(True)

 polys = [p for p in cells.polygons]
 for p in polys:
 p.set_visible(True)
 p.set_alpha(0.0)

 def update(frame, polys):
 for i, p in enumerate(polys):
 alpha = 0.0 if i > frame else 1.0 / ((frame - i + 1)**2)
 p.set_alpha(alpha)

 ax.set_xlabel("Longitude")
 ax.set_ylabel("Latitude")
 strmanim = FuncAnimation(fig, update, frameCnt,
 fargs=(polys,))
 plt.show()

Chapter 3

[73]

When this script is run, it shows the following output:

Animated "fades" of the storm cell polygons

Unlike storm tracks, polygons were previously set up to use the ArtistAnimation
class. However, because of the simplicity of that animator, one cannot apply effects
such as tails and fades (unless all such instances were previously rendered). Instead,
for just about any effect, one would need to use FuncAnimation. So, for this example,
we will need to initially set all polygons to be visible, but with full transparency.
This way, you don't show any of the polygons in that quick moment between the
plt.show() command and the first frame's update. Then, we create a little function
that will compute the transparency level for all polygons based upon the current
frame. The alpha value will be one for the polygons in the current frame, zero for the
polygons in any future frames, and the value rapidly approaching zero the further
back in time one goes.

Animations

[74]

Saving animations
While having a quick and easy way of displaying an animation is nice, you would
likely need to save the animation somehow. The animation module provides the
"writer" framework that allows multiple movie-writing mechanisms to be available
to users. One of them that you have already seen is the simple frame-saving
mechanism that is fed into ImageMagick to convert frames into an animated GIF.
Three additional mechanisms are packaged with Matplotlib, namely, 'ffmpeg',
'avconv', and 'mencoder'. Actually, there are four more, but they are essentially
slightly modified versions of the three and 'imagemagick'. These three writers
provide interfaces to their respective encoding tools. The avconv tool is a somewhat
recent fork of the popular ffmpeg tool from libav, so they are quite similar for now,
while the mencoder tool is the encoder put out by the same people that release the
popular "mplayer" application.

While these writer classes are packaged with Matplotlib, the tools themselves are not
(neither is ImageMagick). If you attempt to save an animation using a tool that is not
installed, you will get an error. So, make sure you have installed one of these tools
and set your animation.writer setting in your matplotlibrc file that we discussed
in Chapter 1, Introducing Interactive Plotting. Here is a snippet from my own rc file,
where ffmpeg is used by default:

###ANIMATION settings
animation.writer : ffmpeg # MovieWriter 'backend' to use
animation.codec : mpeg4 # Codec to use for writing movie
animation.bitrate: -1 # Controls size/quality tradeoff
 #for movie.
 # -1 implies let utility auto-
 #determine
animation.frame_format: 'png' # Controls frame format used by temp
 #files
animation.ffmpeg_path: 'ffmpeg' # Path to ffmpeg binary. Without
 #full path
 # $PATH is searched
animation.ffmpeg_args: '' # Additional arguments to pass
 #to mencoder

Chapter 3

[75]

Notes about codecs and file formats
While I will not claim to possess anything more than a passing familiarity with
movie formats, I recognize that neither do many other people. For those who have
had experience editing and creating movies and understand these concepts far more
extensively, you can skip this section; be assured that I could not possibly add any
new knowledge. For those reading on, there are likely to be some over-simplifications.
As such, this section is only intended to provide enough information to successfully
render animations and avoid pitfalls and should not be considered authoritative.

A codec is a library that will code and decode a video (or audio) data stream. Some
common video codecs are Theora, DivX, and H.264 (also known as MPEG-4). Most
movie writers can utilize a wide variety of codecs. How the video stream is encoded
is separate from the movie format, often called the "container" format. It is called a
container format because it contains not only the encoded video stream, but also the
audio stream, the metadata, subtitles, and anything else that might be with the movie
file. With many movie writers, the container format is automatically determined
from the specified filename extension. Some common container formats are OGG
(.ogg), AVI (.avi), and MPEG (.mpg or .mpeg).

Not all codecs are compatible with all kinds of container formats, and not all
containers can be produced by all of the movie writers. Take care in choosing an
appropriate combination of codec, writer, and container format for your saved
animations. It is entirely possible to produce invalid movie files. The Matplotlib
library will not know that a specified combination is invalid, so will not produce a
warning or an error. One particular invalid combination that has always confused
me is using the 'ffmpeg' writer with the 'mpeg4' codec and a file with a .mpg
or .mpeg extension. This will not produce a valid animation because the MPEG
container format is older than the MP4 codec and not compatible. However,
the file will be valid if you set the filename extension to .avi or .mp4.

Another factor to consider while saving your animations is how you plan to
display them. If you are just going to view the files yourself on the same system
that recorded the animation, then it shouldn't be an issue. If your system can write
the animation, then it can play the animation. However, quite often, the purpose
of saving the animation is to share it with others. This means that their playback
abilities will need to be considered.

Animations

[76]

I've made attempts to figure out an ideal default configuration for Matplotlib's
animations, aiming for the widest platform compatibility possible, as opposed to
focusing upon compression and quality. At this time, only one combination could
be found that could play on stock installations of OpenOffice Impress on Mac OS X,
Microsoft Office PowerPoint on Windows / Mac OS X, QuickTime player on Mac
OS X, and LibreOffice on Linux. It is possible to play just about any of these videos
on any of these systems with additional tools and add-ons installed, but what was
tested were stock installations. Refer to the following table to check the compatibility
of the different combinations of codecs and containers with various display and
presentation software on different platforms:

Codec Format OpenOffice
Impress
(Mac OS X)

MS Office
PowerPoint
(Mac OS X)

QuickTime
(Mac OS X)

LibreOffice
Impress
(Linux)

MS Office
PowerPoint
(Windows)

mpeg4 .mp4 ✓ ✓ ✓ ✓ ✗

.avi ✗ ✗ ✗ ✓ ✓

.mov ✓ ✓ ✓ ✓ ✗

.m4v ✗ ✗ ✗ ✓ ✗

.asf ✗ ✗ ✓ ✓ ✗

libtheora .avi ✗ ✗ ✗ ✓ ✗

.mov ✗ ✗ ✗ ✗ ✗

.m4v ✗ ✗ ✗ ✗ ✗

.asf ✗ ✗ ✗ ✓ ✗

msmpeg4 .avi ✗ ✗ ✗ ✓ ✓

.mov ✗ ✗ ✗ ✗ ✗

.m4v ✗ ✗ ✗ ✗ ✗

.asf ✗ ✗ ✗ ✓ ✓

msmpeg4v2 .avi ✗ ✓ ✓ ✓ ✓

.mov ✗ ✗ ✗ ✗ ✓

.m4v ✗ ✗ ✗ ✗ ✗

.asf ✗ ✗ ✓ ✓ ✓

wmv1 .avi ✗ ✓ ✓ ✓ ✓

.mov ✗ ✗ ✗ ✗ ✗

.m4v ✗ ✗ ✗ ✗ ✗

.asf ✗ ✗ ✓ ✓ ✓

wmv2 .avi ✗ ✓ ✓ ✓ ✓

.mov ✗ ✗ ✗ ✗ ✗

Chapter 3

[77]

Codec Format OpenOffice
Impress
(Mac OS X)

MS Office
PowerPoint
(Mac OS X)

QuickTime
(Mac OS X)

LibreOffice
Impress
(Linux)

MS Office
PowerPoint
(Windows)

.m4v ✗ ✗ ✗ ✗ ✗

.asf ✗ ✗ ✓ ✓ ✓

While this is not exhaustive, it should provide good guidance to help users select what
kind of movie file they need for their uses. There are many other possible combinations
that were not tested, so an ideal combination may yet to be discovered. Your best bet
for cross-platform compatibility is to use the default codec of mpeg4 in a .mp4 container.

Simultaneous animations
Earlier in this chapter, we showed how easy it was to use multiple independent (but
synchronized) animation objects. This is often ideal for producing well-modularized
code. For example, one may wish to reuse the radar display portion of the code for
synchronizing animations in the Event Source section of this chapter for a separate
app without any of the storm tracks or polygons. One could then even mix and
match animations from other sources for new and interesting applications.

This is all good for displaying purposes, but what about saving the animations?
Animation saving is initiated from an animation object rather than some other parent
object of the animations, and doing so would only step through that particular
animation, leaving any other animations unaware that anything is going on. To
address this problem, the extra_anim keyword argument is available in the save()
method. This argument expects a list of other animation objects that are all attached
to the same figure. Let's modify the code for synchronizing animations in the Event
Source section of this chapter to include an animation-saving step:

Source: chp3/saving_multi_animations.py

 radanim = FuncAnimation(fig,
 lambda i, dat: rad_disp.update_display(dat[i]),
 framecnt, fargs=(data,))
 event_source = radanim.event_source
 trkanim = FuncAnimation(fig, trks.update_lines,
 framecnt, fargs=(stormcells,),
 event_source=event_source)
 strmanim = ArtistAnimation(fig, [[p] for p in cells.polygons],
 event_source=event_source)
 radanim.save('multi_animation.mp4',
 extra_anim=[trkanim, strmanim])
 plt.show()

Animations

[78]

It doesn't matter which animation object gets used to call save(). Therefore, a coding
style that I tend to employ is to build a list of animation objects and invoke the first
animation object's save() method and pass in a slice of the rest:

if anims:
 anims[0].save(fname, extra_anim=anims[1:])

This is particularly useful for applications where the animation elements are
configurable. Also notice in our example that we were still able to call plt.show()
after saving the animation. This is much like how one should call plt.show() after
saving an image, not before. If you want to do both animation saving and animation
showing, then the save() must occur prior to show().

How animations are saved
Most of the time, there will be no need to concern yourself with the particulars of
how Matplotlib saves animations. However, it can easily get confusing trying to
debug a problem, so having a familiarity with it will grant you insight into how to
hunt down your bug. Furthermore, with this knowledge, you will be able to create
your own custom writer classes for specialized purposes.

First, while the Animation objects provide a save() method, it is merely for
convenience and does not mean that the animation performs any saving; however,
it does an important housekeeping task besides argument sanitation and loading up
default configurations. The animation must first disconnect itself from drawing event
notifications. This is to prevent accidental triggering of the animation's event source
(typically, the timer). After the saving is complete, it will need to reconnect itself to
the draw notification system. This allows you to show() the animation after saving it.

For the process of saving an animation (or multiple simultaneous animations, as we
just demonstrated in the previous section), the save() method enters a with clause,
calling the animation writer's saving() context manager. This context manager
performs any necessary actions to setup() and finish() the animation-saving
process, such as establishing subprocess pipes to the chosen encoder program. Within
the context clause, frames are iteratively obtained from the animation's new_saved_
frame_seq() method, stepping through them without a timer. After obtaining a
frame, the writer's grab_frame() method is called, which essentially calls savefig()
on the animation's figure object, passing the frames along to the encoder.

Chapter 3

[79]

Animation objects in Matplotlib have the ability to keep around a copy of the frame
sequence. This is particularly useful for animation loops. For FuncAnimation objects,
for example, the supplied frame count doesn't need to be an integer. It can be any
iterable sequence, which would get supplied to the animation function instead
of the frame index. Therefore, the Animation object cannot assume that it can go
back to the beginning of the input sequence when it is looping the animation. For
FuncAnimation objects, frames are cached as they are drawn interactively because
there is no guarantee that the frames could be regenerated. Therefore, the "frame
sequence" is a counter for the first pass through the animation, but then it can also
be a sequence of rendered frames for subsequent passes. So, depending upon the
type of input and the Animation subclass, the new_saved_frame_seq() method
will provide a fresh iterator for the (possibly cached) frame sequence. For basic
TimedAnimation objects, this is merely a call to its new_frame_seq() method.

Session recorder
Your manager drops by your cubicle and says, "Yeah, so, uhm, this storm track
editor you are working on, the Bobs want to be able to record themselves using the
application, mmm-kay? So, why don't you go ahead and just slip in that feature
there, making a video just like you did before?"

So, the Bobs want the ability to record an interactive session. To them, this is just
a tiny difference from what you have done before. To you, this is a fundamentally
different problem. First of all, the animations you have made so far have all been
driven by timers rather than by a user. Second of all, you haven't tried saving an
animation during a live interactive session. Is it even possible? Doesn't the save()
method wait until the animation is completed, preventing the execution of any other
code? How would any of the interactive features work while the save() method is
keeping Matplotlib out of the event loop?

These are all very valid questions and highlights fundamental limitations of
Matplotlib's animations and writers. However, not all is lost! The roadblock to
overcome is the fact that the save() method is synchronous. If we could make it
asynchronous, then we could get somewhere with this.

Animations

[80]

Remember in the previous section, the save() method used a context to set
up and tear down the animation-saving process. Also, within the context, the
frame sequence is processed in a for loop, recording each frame. With a session
recorder, there is no frame sequence to iterate over, so let's create a subclass of
TimedAnimation that will return an iterator to an empty list. Furthermore, we need
an animation writer class that will not stop writing the animation just because the
iteration stopped like this:

Source: chp3/session_recorder.py

from matplotlib.animation import TimedAnimation, MencoderWriter

class SessionAnimation(TimedAnimation):
 def new_frame_seq(self):
 return iter([])

class SessionWriter(MencoderWriter):
 def finish(self):
 pass

We created a special TimedAnimation subclass that will always return an empty
frame sequence, and we subclassed MencoderWriter so that we could turn its
finish() method into a no-op. This would allow for the save() method to become
asynchronous. You can also similarly subclass FFMpegWriter, AVConvWriter, or
ImageMagickWriter, as they operate under similar principles. However, for any of
the file-based writers, such as ImageMagickFileWriter and FFMpegFileWriter, the
finish() method is supposed to execute the encoding step, and so their cleanup()
methods would need to be jury-rigged to perform that action along with its usual
cleanup step.

Of course, these lines by themselves wouldn't be enough to create a session
recorder. How could we wield these two classes to get what we need? While the
SessionAnimation class does not have any frames to provide, it is still a timer-based
animator, and as such, comes with a timer. We can leverage this timer to attach a
callback that would trigger the writer object's grab_frame() method:

Source: chp3/session_recorder.py

from contextlib import contextmanager
from matplotlib import rcParams
import matplotlib.pyplot as plt

@contextmanager
def record_session(filename, interval=100, codec=None,
 bitrate=None, fig=None):
 if codec is None:
 codec = rcParams['animation.codec']
 if bitrate is None:

Chapter 3

[81]

 bitrate = rcParams['animation.bitrate']
 if fig is None:
 fig = plt.gcf()

 anim = SessionAnimation(fig, interval=interval, repeat=False)
 # frame rate (not interval) in seconds (not milliseconds)
 writer = SessionWriter(1000.0 / interval, codec, bitrate)

 grabby = lambda *x: writer.grab_frame()
 anim.event_source.add_callback(grabby)
 try:
 anim.save(filename, writer=writer)
 yield fig
 finally:
 writer.cleanup()

It makes a lot of sense to implement the session recorder as a context manager. This
allows us to guarantee that the cleanup action is performed. If you have not worked
with the contextmanager decorator before, it is a convenient way to create simple
context managers from a function with a single yield statement in it. Everything
before the yield statement is effectively part of the __enter__() portion of the
context, while everything after the yield statement is effectively part of __exit__().
The value of the yield statement is the return value for __enter__().

If what was just said made absolutely no sense because you have never made a
class that can be used in a with statement, then just realize that when the record_
session() function is called as part of a with statement, it will do everything up to
the yield statement. Then anything in the scope of the with clause is executed next.
Upon leaving the scope of the with clause, the execution of the record_session()
function will resume after the yield statement to wrap everything up. Context
managers are extremely powerful this way because they allow you to create useful
functions that can "bookend" arbitrary code. As the author of record_session(),
we don't have to worry at all about what the user is doing while the yield statement
is being processed because our code is completely self-contained. Prior to context
managers, the solution to this problem would have been to pass an arbitrary function
for record_session() to call, which gets unwieldy when users need to wrap
sections of code into functions for single use purposes.

Animations

[82]

So, let's see this session recorder in action:

Source: chp3/session_recorder.py

if __name__ == '__main__':
 with record_session('session.mp4') as fig:
 ax = fig.add_subplot(1, 1, 1)
 ax.plot([1, 2, 3, 4, 5])
 plt.show()

The record_session() context manager returned a figure to use for plotting (we
can only record a movie for a single figure). We can then use the figure as one
normally would, performing plotting actions and ending with the usual plt.show()
call. Go ahead and try out the example. When the figure is displayed, pan the plot
around a bit, then close the figure. The encoding will then wrap up and produce a
movie file. Play back this movie file and you will see the plot get panned around in
exactly the same way you just did in the interactive session.

One important limitation to keep in mind when using the session recorder is that the
figure should not be resized while the session is interactive. Movie formats assume
a static size for its duration, so if we start sending the encoder frames that are sized
differently from the first frame, the video will start to alias as the encoder blindly
crams pixels into incorrectly sized boxes. At this time, Matplotlib cannot disable
figure resizing to protect users from messing up their own recordings.

On a related note, it is not recommended that you supply the keyword
argument bbox_inches='tight' to the savefig_kwargs argument
in the animation's save() method. This argument shaves off any
extraneous whitespace around the saved figure. It is an extremely popular
autotrimming feature in Matplotlib. However, if even one frame is sized
differently from the others by even one pixel, the video will be ruined.

Chapter 3

[83]

Summary
We have seen how easy it is to integrate an animation into any Matplotlib application.
Using FuncAnimation, we were able to simulate a user stepping through the frames of
our application and save it as an animated GIF. Furthermore, we saw how to control
the speed of the animation, whether or not the animation should loop, and if so, how
much of a delay should be inserted between loops. Besides function-based animations,
the ArtistAnimation class was introduced as a simple alternative animator,
discussing the pros and cons of each. As we became more advanced in our animation
usage, we were able to create and synchronize multiple animation instances, allowing
developers to mix together the desired animation elements.

We also covered other advanced animation topics, such as how animation objects in
Matplotlib work, in particular, the timers in the animator classes. We discussed why
Matplotlib's cross-platform timer object is necessary and how it works for interactive
sessions. Taking it a step further, we used timers within our interactive application
without even invoking any animation code at all. Then, we discussed the blitting
optimization that is available when the overhead cost of drawing the static elements
of your animations in each frame approaches the time it takes to render the animated
portions, and how this optimization comes with a price. Finally, we covered some
advanced animation recipes to give some ideas on how to achieve some commonly
requested effects, such as tails and fades.

Then we covered how the animation objects save movie files. The difference between
codecs and container formats were discussed briefly. More importantly, a table was
provided showing the compatibility of the different combinations of codecs and
containers with various display and presentation software on different platforms.
Then, we showed how to save multiple animation objects into a single movie using
the extra_anim keyword argument. The movie writer framework was introduced, as
well as an overview of the entire movie-saving process. Finally, to demonstrate how
one could manipulate the pieces of this animation stack, it was shown how one could
modify an existing stream writer into an interactive session recorder for Matplotlib.

In the next chapter, we will extend our application further, adding tools and other
visual elements to it. It is time to add some bling to our app!

Widgets
I'm telling you loosen up my buttons baby
But you keep fronting
Saying what you going do to me
But I ain't seen nothing

- The Pussycat Dolls, "Buttons" (2005)

What are widgets? They are doohickeys, you know, thingamajiggers or
whatchamacallits. Whatever they are, they are the visual tools by which a user can
interact with your application. Humans intuitively interact with their environment
through physical objects. It is perfectly natural for us to want to have knobs, buttons,
and other contraptions to get things done. Up to this point, most of our interactivity
has been through the keyboard or using default interactivity via the mouse. We have
not added any knobs or buttons to our application in order to extend its functionality.

A word of warning before we proceed. This chapter will often exhibit feature creep.
This will be necessary in order to demonstrate the features that Matplotlib provides;
however, it does not mean that one should pack every single possible widget into their
application just because they can. Developing an application in such a manner leads to
clutter. Take care to consider your requirements and how best to accomplish them.

Built-in widgets
A design principle adopted early on by Matplotlib was one of interoperability. It
shouldn't matter which GUI you are using; everything should just simply work.
Therefore, Matplotlib provides a basic set of widgets that are entirely implemented
using Matplotlib's interactivity framework. All of the built-in widgets are
implemented using nothing more than what we have covered in this book so far.
While these widgets may not be the most aesthetically pleasing ones, they will work
in any interactive environment that you use for regular plotting.

Widgets

[86]

Conceptually, many widgets emit specialized events that can have callbacks attached
by developers. However, the mechanism to attach these callbacks is much more
direct than the more generalized event handling that we worked with back in
Chapter 2, Using Events and Callbacks. This makes working with widgets accessible to
inexperienced programmers who are yet to learn how to create a GUI application.

Indeed, given that the primary audience for Matplotlib is scientific programmers
for whom GUIs are, at best, an afterthought, Matplotlib provides a gradual curve
to create full-fledged GUI applications. For simple GUI tasks, one can go quite far
with Matplotlib without ever having to adopt a GUI platform. And, as we will see
in the next chapter, taking those final steps into a GUI application would not require
getting rid of any existing code.

Slider
So the manager drops by your cubicle and says, "Yeah, so, here is the thing. The Bobs
hate pressing buttons on the keyboard to go back and forth through the radar loop.
If you could make it more like a video player with a little moving bar at the bottom,
that would be great." Well, it is a good thing that Matplotlib has the Slider widget.
It is very basic and simple to use. It is initialized with an Axes object and would act
as a progressive bar depicting a value between some minimum and maximum value
that is set upon creation. More importantly, it is designed to respond to mouse clicks
anywhere within the bar, thus triggering callbacks with the new value of the bar.

For our storm cell application, we have most of the mechanisms in place for this via
the custom 'frame_changed' event. To add a Slider object, we will need to allocate
some space in the figure, create the object, and attach a callback that would update
the display whenever the slider experiences a change. Let's first create a utility
function that takes a figure object, the number of frames, and a height parameter as
a fraction of the figure space. Assume that the widget module is imported from the
matplotlib package in the following code snippet:

Source: chp4/slider.py

def build_progress_bar(fig, lastframe, height):
 # Give us some room along the bottom
 fig.subplots_adjust(bottom=2*height)
 barax = fig.add_axes([0.1, 0.005, 0.8, height])
 bar = widgets.Slider(barax, 'Time', 0, lastframe, valinit=0,
 valfmt='%d of '+str(lastframe))
 return bar

Chapter 4

[87]

Existing subplots are adjusted at the bottom to give space for twice the height
requested because we need to accommodate any axes labels and tick labels. We then
manually create a new Axes object using a method that we are yet to cover in this
book. The add_axes() method is known as the direct axes insertion method as it
bypasses much of the pyplot and figure-subplot-handling mechanisms. It is trickier
to use in some respects because you are now operating outside of the figure's subplot
specification mechanism, but it will do exactly as you request it and will not be
impacted by anything else in the figure. The argument to add_axes() is a list of x
position, y position, and width and height, all in "figure space", which is essentially
just normalized space between 0 and 1. Keep in mind that the origin of this space is
in the lower left-hand corner of the figure.

Finally, the Slider object is created with the Axes instance. It is given a label to
display along with a number range of 0 to lastframe. We will also specify the
starting point for the slider at zero. As a feature of the slider, its current value is
displayed on its right. Because we are dealing with integer frame numbers, we will
need to specify that the display should be formatted for integers and include a cue
for how many frames there are.

Next, we will call this function from within the ControlSys constructor:

 self._progress_bar = build_progress_bar(
 fig, data.shape[0] - 1, 0.02)

Also, we will add a callback to this slider to update the display whenever the user
interacts with the slider:

 self._progress_bar.on_changed(
 lambda frame: self.change_frame(int(frame)–self.i))

So, whenever the slider exhibits a change, it will call the change_frame() method of
ControlSys to move back or forward a specified number of frames. Note that for the
Slider instance, the callback will be given a single argument, which is the floating
point value that the slider represents. So, we will need to cast it as an integer prior
to performing the subtraction and passing it to the method that expects an integer.
At this point, the application will change frames in response to both key presses
and interactions with the slider. The user can click anywhere along the bar, and the
display will change to the corresponding frame. Furthermore, the user can go back
and forth between the two input methods, and mostly, it will work just fine.

Widgets

[88]

There is one last piece that we need to put in place. As it stands, there is no way to
communicate frame changes back to the slider. So, when a user uses the keyboard
to advance a few frames, the slider is not updated accordingly, leading to much
confusion. This has to be addressed carefully. By default, any changes to the slider's
internal value will trigger an event, which would cause the change_frame() method
to be called, which would then cause the 'frame_change' event to be emitted. Since
we need to use this event to ensure that the slider is updated appropriately when a
key is pressed, a closed cycle is formed, causing a feedback loop.

Fortunately, the solution is simple. We will connect a new callback to the 'frame_
change' event:

 self._connect('frame_change', self.update_progress_bar)

Then, we will define a new method for ControlSys that will carefully update the
slider without triggering an event:

 def update_progress_bar(self, index):
 self._progress_bar.eventson = False
 self._progress_bar.set_val(index)
 self._progress_bar.eventson = True

Just about all of the Matplotlib widgets have an attribute named eventson that is
typically set to True. Emission of an event is protected by this attribute. So, if we
set it to False prior to calling the progress bar's set_val() method, which would
normally trigger callbacks, then the slider can do everything it needs to do to update
the bar visually without triggering callbacks. We would then restore the attribute to
True as we wrap up. The following figure shows the slider bar:

Chapter 4

[89]

Slider bar without miniature hamburgers

Go ahead and try out the script in the Slider section for yourself and see how much
more user-friendly the application will become with such a simple little widget.

Button
Given that the Bobs didn't like using the keyboard to go back and forth through the
radar loop, most likely they don't like to use the keyboard for other things as well. I
know this is utter blasphemy and completely incomprehensible to developers and
power users who love their keyboard shortcuts, but some people just love having
buttons on their screens with the exact name of their function written on them. I
know! It is crazy, but what can you do?

The widget module of Matplotlib provides a Button class. Each instance is given
an Axes object and a string for its label. You can optionally provide an image to be
displayed on the button (which can be any valid argument to Matplotlib's imshow()
function) as well as the button colors when the mouse cursor is and is not hovering
over the button. The image option is very nice for those who want to make their
buttons look like real GUI buttons that are prevalent in GUI applications. You load
up an icon image using Matplotlib's plt.imread() function and provide its returned
object as the image argument. For our purposes, we will stick with just having text in
our buttons.

Widgets

[90]

Given that we are going to want a button for just about all of our keymap items,
let's implement our button system in a similar manner as our KeymapControl class:

Source: chp4/buttons.py

class ButtonControl:
 def __init__(self, fig, width, height):
 self.fig = fig
 # Give us some room along the top
 fig.subplots_adjust(top=1-height*2)
 self._buttonwidth = width
 self._buttonheight = height
 self._buttonmap = {}

 def connect_buttonmap(self):
 for text, (cid, func, button) in self._buttonmap.items():
 if cid is None:
 cid = button.on_clicked(func)
 self._buttonmap[text] = (cid, func, button)

 def disconnect_buttonmap(self):
 for cid, func, button in self._buttonmap.values():
 if cid is not None:
 button.disconnect(cid)
 self._buttonmap[text] = (None, func, button)

 def add_button_action(self, text, action_func):
 if not callable(action_func):
 raise ValueError("Invalid action. Button '%s''s"
 " action is not a callable" % text)
 if text in self._buttonmap:
 raise ValueError("'%s' is already a button" % text)
 ax = self.fig.add_axes(
 (len(self._buttonmap) * self._buttonwidth,
 0.99 - self._buttonheight,
 self._buttonwidth, self._huttonheight))

 button = widgets.Button(ax, text)
 # Swallow the event parameter. Not needed for these buttons
 func = lambda event: action_func()
 cid = button.on_clicked(func)
 self._buttonmap[text] = (cid, func, button)

Chapter 4

[91]

The constructor is rather different than the constructor of KeymapControl. We
still need a dictionary that will map the label to not only the function, but also the
function's callback ID and the button object itself. In this design, we are limiting
ourselves to a single callback per button, but the Button widget itself does not have
that restriction (indeed, none of the built-in widgets have that restriction). Also,
note that to disconnect a callback function from a button you do not use the figure's
canvas via the mpl_disconnect() method, rather you do it directly through the
widget object instead using its disconnect() method.

The ControlSys class now subclasses ButtonControl along with the other control
classes, and the constructor will build itself a set of buttons that have a width that is
10 percent of a figure and height that is 5 percent of a figure:

 ButtonControl.__init__(self, fig, 0.1, 0.05)

Also, we will add some buttons through the constructor as well:

 self.add_button_action('|<<',
 lambda : self.change_frame(-5))
 self.add_button_action('|<',
 lambda : self.change_frame(-1))
 self.add_button_action('>|',
 lambda : self.change_frame(1))
 self.add_button_action('>>|',
 lambda : self.change_frame(5))
 self.add_button_action('Del', self.delete_selected)
 self.add_button_action('Save',
 lambda : self._emit('save', None))
 self.add_button_action('Help',
 lambda : self._emit('help', None))

Widgets

[92]

The following figure shows the output of the preceding code:

Buttons--because the keyboard and slider are just not enough

The functions and lambdas attached to these buttons are identical to the ones passed
to their keymap counterparts. Try out the script in the Button section. You will find
that you can now change the frame of the radar loop in three ways — arrow keys on
the keyboard, the four buttons we just added, and the slider. Also note that changing
the frame using any of the new buttons still updates the slider, but yet required no
new code to do so. All the pieces came together through the event interface. Lest
we forget, the changing of the frames updates multiple things, independently,
that is, the radar image, the polygons, the tracks, and the slider bar. If we had a
new requirement to display something else on a frame-by-frame basis, such as the
timestamp of each radar image, then adding it would be a simple matter and would
be inherently controllable by all of the input methods.

Check buttons
This application has three major display elements, that is, the radar image, storm
polygons, and tracks. While all three should be displayed at the same time most
of the time, it is entirely reasonable to want to independently hide these elements.
Implementing such a feature through just the keyboard is possible but it would
start to clutter up the keymap, and it would require tracking multiple states, thus
cluttering up the code as well. GUI checkboxes are a useful tool to not only provide
an interface for tracking multiple independent states, but also for providing a useful
visual cue on the current boolean state of each item you need tracked. The Matplotlib
library provides a simple CheckButtons widget for this very purpose.

Chapter 4

[93]

The CheckButtons constructor takes an Axes object in which all of the checkboxes
and text labels will reside, as well as a list of strings for the labels. There will be as
many checkboxes as there are labels. Finally, the constructor takes a list of Booleans
of the same length as that of the list of labels. The booleans would indicate the initial
activity state of each button, True will have the box checked, while False will have
an empty box.

To implement our checkboxes, we will follow a similar design pattern that we
used for the slider. We will start with a utility function that will be supplied with
the figure instance as well as the width of the widget. The function will adjust the
subplots in the figure to make some room on the right-hand side of the figure, make
the needed Axes object, and then build the CheckButtons widget:

Source: chp4/check_buttons.py
def build_check_buttons(fig, width):
 # Give us some room along the right
 fig.subplots_adjust(right=1-width)
 boxax = fig.add_axes([0.99 - width, 0.8, width, 0.1])
 checks = widgets.CheckButtons(boxax, ('Radar', 'Polys', 'Tracks'),
 [True]*3)
 return checks

Note that because we are placing the widget on the right-hand side of the plot, we
need to adjust the figure margin by 1 – width instead of width. The use of 0.99 as
the offset when constructing the Axes object is to give a slightest bit of a gap from the
edge. Our checkboxes will be labeled Radar, Polys, and Tracks, and will all be set as
active initially. Next, we will need to call this function in the ControlSys constructor
and attach a new method as a callback to the returned widget:

 self._toggle_buttons = build_check_buttons(fig, 0.1)
 self._toggle_buttons.on_clicked(self.toggle_visibility)

The new toggle_visibility() method would initially seem easy to implement. It
takes a single argument, that is, the string label originally given to the CheckButtons
constructor. This is the label for the checkbox that was changed:

 def toggle_visibility(self, item):
 if item == 'Radar':
 self.raddisp.im.set_visible(
 not self.raddisp.im.get_visible())
 elif item == 'Polys':
 self.polygons.toggle_polygons(self.i)
 elif item == 'Tracks':
 self.lines.tracks.set_visible(
 not self.lines.tracks.get_visible())
 else:
 raise ValueError("Invalid name %s for toggling" % item)
 self.fig.canvas.draw_idle()

Widgets

[94]

However, this would not work properly for the polygons. The problem is that the
storm cell polygons are represented as a list of PolygonCollection objects, one for
each frame that individually have their visibility turned on and off. Toggling the
polygons in this manner would only take effect in the current frame. This is another
example of the need to keep the data separate from the display. The logical concept
of the storm cell visibility as a whole does not perfectly line up with the visibility of
the individual storm cells. The Stormcells class needs to carry a logical visibility
state. Let's modify Stormcells to use a _visible attribute:

Source: chp4/check_buttons.py

 def toggle_polygons(self, frame_index, visible=None):
 if visible is None:
 visible = not self.polygons[frame_index].get_visible()
 self.polygons[frame_index].set_visible(
 visible and self._visible)

 def get_visible(self):
 return self._visible

 def set_visible(self, visible):
 self._visible = bool(visible)

So, whenever the visibility for the Stormcells object is False, no individual
polygon can be made visible, even if the user calls the toggle_polygons() method
directly. This keeps the state consistent. The final form of the toggle_visibility()
method is as follows:

Source: chp4/check_buttons.py

 def toggle_visibility(self, item):
 if item == 'Radar':
 self.raddisp.im.set_visible(
 not self.raddisp.im.get_visible())
 elif item == 'Polys':
 self.polygons.set_visible(
 not self.polygons.get_visible())
 self.polygons.toggle_polygons(
 self.i, self.polygons.get_visible())
 elif item == 'Tracks':
 self.lines.tracks.set_visible(
 not self.lines.tracks.get_visible())
 else:
 raise ValueError("Invalid name %s for toggling" % item)
 self.fig.canvas.draw_idle()

Chapter 4

[95]

The following screenshot shows the use of check buttons to choose which display
element to show in our application:

Calling the toggle_polygons() method after setting the visibility would ensure
that the current frame's polygons are taken care of automatically. The users of our
application now have the ability to choose what they want to see for their own
purposes. Giving users the freedom to choose how to use your application allows it
to become a more general-use tool. On the other hand, too much freedom can make
an application too confusing or cluttered to use. Also, without a clear design in place,
users may start requesting new features now that your application provides a hint of
new possibilities. Try to strike a good balance in your designs.

Radio button
The storm cell application is becoming more and more interactive, but it is still
missing some key components. Primarily, we have no way to mark any new storm
cells to our dataset. Doing so will require mouse interaction, but how do we do this
without conflicting with the existing polygon-picking feature? We will need to make
our application modal. There needs to be two modes in which the mouse interacts
with the plot — selection and outlining. These two modes can easily be chosen via
key presses, but let's also add a little widget for this too. This way, our users can
have an easy-to-see visual cue for the mode they are currently in, which would help
to reduce user confusion and mistakes.

Widgets

[96]

A widget that maintains a mutually exclusive state among multiple items is
typically referred to as a set of radio buttons. The Matplotlib library has such a
widget available, and we will use it for our mode-setting needs. The RadioButtons
constructor is very similar to the CheckButtons constructor. It takes an Axes instance
as well as a list of labels. However, instead of a list of booleans to indicate which
label is active or not, the constructor takes an integer index into the supplied list
to indicate which label should be initially active.

Following the same design pattern that we used for the check buttons previously,
we will place this particular widget in the upper right-hand corner of the figure.
We start with a utility function:

Source: chp4/radio_buttons.py

def build_radio_buttons(fig, height):
 # Give us some room along the top
 fig.subplots_adjust(top=1-height)
 button_ax = fig.add_axes([0.85, 1 - height, 0.14, height])
 buttons = widgets.RadioButtons(
 button_ax, ('Selection', 'Outline'))
 # Compatibility layer (this method was not added until v2.1.)
 if not hasattr(buttons, 'set_active'):
 def set_active(index):
 if 0 > index >= len(buttons.labels):
 raise ValueError("Invalid RadioButton index: %d" %
 index)

 for i, p in enumerate(buttons.circles):
 if i == index:
 color = buttons.activecolor
 else:
 color = buttons.ax.get_axis_bgcolor()
 p.set_facecolor(color)

 if buttons.drawon:
 buttons.ax.figure.canvas.draw()

 if not buttons.eventson:
 return
 for cid, func in buttons.observers.items():
 func(buttons.labels[index].get_text())
 buttons.set_active = set_active
 return buttons

Chapter 4

[97]

The first few lines should be quite familiar. After that, however, it is a bit of what is
called "monkey patching". Until recently, the RadioButtons widget in Matplotlib
was missing a method to independently set the state of the widget without an
event. We were able to do this with the Slider object earlier in this chapter, and
such a feature was very important to maintain consistency between the state of
the display and the application. Therefore, this utility function will monkey patch
a set_active() method onto this RadioButtons instance that would set the
appropriate button active and all other buttons inactive. It will also, if needed, trigger
any callbacks, passing them the label of the button that was made active. This is an
interesting insight into the inner workings of many of the Matplotlib widgets, as
many of the widgets we have discussed so far follow this particular pattern.

Next, we will need to call this utility function from the ControlSys constructor and
have it maintain a _mode attribute (initializing it to the default 'Selection' mode):

 self._mode_buttons = build_radio_buttons(fig, 0.1)
 self._mode = 'Selection'

Also, we will attach all of the callbacks, not only for the radio buttons, but also to add
two new keys 'o' and 's' for the outline and selection modes, respectively:

 self._mode_buttons.on_clicked(self.set_mode)
 self.add_key_action('s', 'Selection mode',
 lambda : self.set_mode('Selection'))
 self.add_key_action('o', 'Outline mode',
 lambda : self.set_mode('Outline'))

Of course, we will need to add a new ControlSys method to set the mode:

 def set_mode(self, mode):
 if mode != self._mode:
 self._mode_buttons.eventson = False
 if mode == 'Selection':
 self.connect_picks()
 self._mode_buttons.set_active(0)
 elif mode == 'Outline':
 self.disconnect_picks()
 self._mode_buttons.set_active(1)
 else:
 self._mode_buttons.eventson = True
 raise ValueError("Invalid mode value: %s" % mode)
 self._mode_buttons.eventson = True
 self._mode = mode

Widgets

[98]

This method is very important to understand. While we could have implemented the
handling of the changing of mode via the same event framework we have for other
things, let's keep it procedural to ease understanding. First, nothing will happen
unless the mode is actually being changed. If the mode stays the same, then there
is no need to do anything. Second, much like we needed to do to independently set
the Slider widget's state earlier in the chapter, we don't want to cause a feedback
loop. So, we will set the mode button's eventson attribute to False. This will
prevent the triggering of callbacks when we do update the widget. Next, depending
upon the mode being set, we will either connect or disconnect the picking ability of
ControlSys, which is entirely the point of setting the mode. Next, we will call the
widget's set_active() method with the appropriate index, which will visually
update the widget to the correct state. Finally, as we exit the method, we will restore
the eventson attribute and record the mode for the ControlSys class. The output of
this is demonstrated in the following screenshot:

Selecting the 'Outline' mode using the radio buttons

Chapter 4

[99]

If you run the script in this section, you will not see much difference from before.
There will be a new widget in the upper right-hand corner and that's pretty much it.
Now press the o key. You will see that the radio buttons are automatically updated to
show that the mode is now set to Outline. Try selecting a polygon. You will find that
you cannot. Now click on the Selection radio button and you will find that you can
select a polygon again. As a side note, press the h key for the help menu. The menu
will automatically gain two new entries for the two modes.

Lasso
It is a bit ironic that this feature is one of the last ones we will cover in this chapter, as
it was this widget that I first encountered and became convinced that a full-fledged
GUI application was not necessary for an early project involving storm cells. The
ability to interactively draw a polygon directly upon a radar image is an absolute
requirement for a storm cell editor application. Without the ability to add polygons
for a new radar loop, all we have is just a radar viewer with too many widgets.

The Lasso widget in Matplotlib is a fair bit different from other widgets we have
encountered so far. First, this widget does not persist; it is created on demand.
Second, it is used in two parts, activation and deactivation. A lasso records the
points your mouse passes over between the activation time of the widget and its
deactivation. This makes it perfect for the task of obtaining storm cell outlines in
our application. We will use mouse button presses and releases to signal these two
stages. While it is technically possible to use a different event to trigger the start
of a lasso, Matplotlib's implementation of the class is somewhat short-sighted as
it assumes that the left mouse button (and only that button) is continuously held
down while drawing, and it is only the release of that button that would trigger
the finishing step of the lasso. Future versions of Matplotlib may generalize this
somewhat to allow other mechanisms to control the lasso, such as a combination of
the keyboard and mouse.

To implement the storm cell outline drawing feature, let's start with updating the
ControlSys class with two new methods for the activation and deactivation of
Lasso:

Widgets

[100]

Source: chp4/lasso.py

 def _start_stormcell(self, event):
 if self.fig.canvas.widgetlock.locked():
 return
 if event.inaxes is not self.raddisp.im.get_axes():
 return
 if self._mode != 'Outline':
 return
 self._lasso = widgets.Lasso(event.inaxes,
 (event.xdata, event.ydata),
 self._finish_stormcell)
 self.fig.canvas.widgetlock(self._lasso)

 def _finish_stormcell(self, verts):
 if len(verts) > 2:
 self._emit('create', (self.i, verts))
 self.fig.canvas.widgetlock.release(self._lasso)
 self._lasso = None
 self.fig.canvas.draw_idle()

The _start_stormcell() method will check three things to figure out whether it
should even start the process of creating a storm cell polygon. First, it checks the
canvas to see whether another widget has already acquired a lock. Certain kinds
of widgets inherently cannot operate concurrently, such as the panning and zoom-
to-rectangle widgets. The canvas instance maintains an advisory lock mechanism
that widgets can query and also acquire when it is available. For the second check,
the method will check to see whether the event that triggered occurred from within
the Axes instance that we want to draw in. Remember that all of the other widgets
we currently have are Axes instances themselves. We do not want to use a lasso
in any of those axes whenever the user clicks inside one of them. The last check is
to determine whether the ControlSys instance is currently in the Outline mode,
otherwise we wouldn't want to use a lasso.

Once the checks pass, a Lasso object is created. The Lasso constructor is supplied
with the Axes instance that it will operate in, the first vertex for the polygon that it
will be drawing, and the callback that it should use when the left mouse button is
released. The instantiated Lasso object is saved as an attribute of the ControlSys
instance. Finally, a widget lock is acquired from the canvas to prevent other widgets
from interfering with the Lasso object during its lifetime.

Chapter 4

[101]

When the release event is triggered, the Lasso widget provides the x and y vertexes
that had been recorded in the _finish_stormcell() method that was set as
the callback. First, you need to conduct a check to ensure that the verts variable
contains at least three x and y tuples. This helps eliminate storm cell outlines that
would occur from spurious mouse clicks. Furthermore, a polygon with less than
three points has a nonexistent area, which makes it very difficult to select and delete
later. If the check passes, then we will emit a 'create' event, supplying a tuple of
the frame index and the list of vertexes. As part of the finishing step, we then release
the widget lock, delete the Lasso instance by setting the _lasso attribute to None,
and trigger an idle draw (which would get rid of the lasso's outline).

If you were to run the code at this point after switching to the Outline mode, you
will be able to use the mouse to draw a polygon anywhere you'd like on the radar
image. When you release the mouse button, the outline will disappear. This is
because we have yet to attach any callbacks to the emitted 'create' event. This
event is the opposite of the 'delete' event. Currently, we have two callbacks
attached to the deletion event—one to delete a particular polygon from the
Stormcells instance and one that would delete it from the storm data held by the
ControlSys object. Similarly, we will need to create two new methods, one in the
Stormcells class and one in ControlSys, which would add a new storm cell. First,
let's add the add_polygon() method for the Stormcells class:

 def add_polygon(self, celldata):
 frame_i, verts = celldata
 paths = self.polygons[frame_i].get_paths()
 paths.append(Path(verts, closed=True))
 lws = self.polygons[frame_i].get_linewidths()
 lws.append(1)

This method looks much like the delete_polygon() method, except that we are
appending a Path object instead of "popping" it off of the paths list. Similarly,
for line widths, we append a value of 1 to the list. The Path object is a specialized
Matplotlib data structure for lists of vertex data—be it a line, Bezier curve, or a
polygon—and is imported from the matplotlib.path module. Because we are
dealing with a polygon, we pass a closed=True argument to the constructor so that
it can ensure that the path's first vertex is also the path's last vertex.

Widgets

[102]

Next, we create the method used to add a new storm cell to the storm data held by
ControlSys:

Source: chp4/lasso.py

 def add_stormcell(self, celldata):
 frame_i, verts = celldata
 stormcell_index = len(self.stormdata)
 xcent, ycent = np.mean(verts, axis=0)
 newcell = np.array([(xcent, ycent, frame_i, np.nan,
 calc_area(verts),
 stormcell_index, -9,
 np.array(verts))],
 dtype=storm_dtype)
 self.stormdata = np.append(self.stormdata, newcell)
 self.stormmap[frame_i] = np.append(self.stormmap[frame_i],
 stormcell_index)

The add_stormcell() method demonstrates some very simple, but useful NumPy
features. First, the verts list is a list of list, which NumPy can interpret as a two-
dimensional array. To compute a rough estimate of the polygon's center coordinate,
one can call np.mean() on the vertexes, applying the mean along the zeroth
dimension. Because the list of vertexes is N rows by two columns, such a calculation
results in two values being returned. Note that this is just an approximation of the
polygon's center because the vertexes are not guaranteed to be uniformly spaced
along the outline.

Next, we create a new one-element NumPy-structured array (similar to the array that
we discussed back in the Chapter 2, Using Events and Callbacks). This array contains
the x and y center point, the frame index, frame time, the area of the polygon, the
storm cell's index, the storm cell's track ID number, and a NumPy array of vertexes
for the polygon. What's not shown here (but included in tutorial.py) is the calc_
area() function that can approximately calculate the area of a polygon recorded as
latitude/longitude points. For now, we will set the frame time to NaN because we
have not coded a way for ControlSys to know what time it is (as opposed to what
frame it is, which it does know). Most importantly, the track ID is set to -9 because
this is the value used elsewhere to indicate that the storm cell has not been associated
with any storm tracks.

This array is appended to the stormdata attribute, remembering that NumPy arrays
cannot change size. So, np.append() will return a new array that we will assign
back to the stormdata attribute. Finally, the stormmap list of NumPy arrays, each
containing a list of storm cell indexes, is updated with this new storm cell's index.

Chapter 4

[103]

The only thing left to do now is attach these two methods as callbacks to the
'create' event:

 self._connect('create', self.polygons.add_polygon)
 self._connect('create', self.add_stormcell)

The following screenshot demonstrates drawing a polygon around a storm cell while
in the Outline mode:

Drawing a polygon around a storm cell near the top while in the 'Outline' mode

When you run the script in this section and switch to the Outline mode, you will
find that any outline you draw now will persist. If you switch back to the Selection
mode, you can pick these polygons and delete them if you wish.

LassoSelector
This particular widget is slightly different from the Lasso widget (and is a somewhat
recent addition to Matplotlib). The primary difference is that this widget is persistent
as opposed to being created on demand. Because it is persistent, its usage is a bit
more simplified. The constructor only needs the Axes instance for which it applies
and the callback to use when a polygon selection has been made. This object will
manage the widget locks for you. The callback only needs to do something with the
list of vertexes.

Widgets

[104]

For our purposes, if we were to use the LassoSelector widget instead of the Lasso
widget, we would create the widget upon the switch to the Outline mode and
destroy it when we switch away from that mode. At that point, we could eliminate
the _start_stormcell() method and get rid of its connection to the 'button_
press' event.

RectangleSelector
You are actually already acquainted with this particular widget. It is primarily used
to select a region to zoom in the built-in interface. However, it can certainly be used
for other purposes as well, such as selecting multiple items within its box or just be
a way to draw an arbitrary rectangle (or line) on your plot. Let's take a break from
our storm cell application for a moment and come up with an example of using the
RectangleSelector widget:

Code: chp4/rectangle_selector.py

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import RectangleSelector
from matplotlib.path import Path

class DataContainer(object):
 def __init__(self, xs, ys):
 self.xs = xs
 self.ys = ys

 def select_from_bbox(self, x1, y1, x2, y2):
 bbox = Path([(x1, y1), (x1, y2), (x2, y2), (x2, y1)],
 closed=True)
 return bbox.contains_points(zip(self.xs, self.ys))

if __name__ == '__main__':
 xs, ys = np.random.random((2, 25))
 fig, ax = plt.subplots(1, 1)
 ax.scatter(xs, ys)

 def how_many_selected(evnt_click, evnt_release):
 print(evnt_click.xdata, evnt_click.ydata)
 print(evnt_release.xdata, evnt_release.ydata)
 where = how_many_selected.dc.select_from_bbox(
 evnt_click.xdata, evnt_click.ydata,

Chapter 4

[105]

 evnt_release.xdata, evnt_release.ydata)
 print("%d out of %d" % (np.sum(where), len(where)))
 how_many_selected.dc = DataContainer(xs, ys)

 rs = RectangleSelector(ax, how_many_selected)
 plt.show()

Setting up the widget is easy. The constructor, at a minimum, needs the relevant
Axes instance and a callback function that would be called upon the release of the
relevant mouse button. Unlike most callback functions that are used for widgets, this
one takes two arguments, both of which are Event objects representing the event
that started the selection and the event that ended the selection. More often than not,
one would only be interested in their xdata and ydata attributes, but all the other
attributes that we discussed for mouse events back in Chapter 2, Using Events and
Callbacks, are available as well.

The following screenshot shows the use of RectangleSelector in the box mode to
select points:

Widgets

[106]

There are many other arguments that can be added to the constructor. To avoid
triggering a selection action inadvertently, there are minspanx and minspany, which
set the minimum thresholds in the respective dimensions. There is also drawtype,
which can be set to either 'box', which is the default, or 'line'. With the widget
set to a line-drawing mode instead of a box mode, one can easily turn the widget
into a ruler:

Code: chp4/ruler.py

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import RectangleSelector
from mpl_toolkits.basemap import Basemap, pyproj

def distance(evnt_click, evnt_release):
 g = pyproj.Geod(ellps='WGS84')
 _, _, dist = g.inv(evnt_click.xdata, evnt_click.ydata,
 evnt_release.xdata, evnt_release.ydata)
 print("(%f, %f) to (%f, %f): %f km" %
 (evnt_click.xdata, evnt_click.ydata,
 evnt_release.xdata, evnt_release.ydata,
 dist / 1000.0))

if __name__ == '__main__':
 fig, ax = plt.subplots(1, 1)
 bm = Basemap(projection='cyl', resolution='l',
 llcrnrlon=-130, llcrnrlat=25,
 urcrnrlon=-60, urcrnrlat=55)
 bm.drawstates(ax=ax)
 bm.drawcountries(ax=ax)
 bm.drawcoastlines(ax=ax)
 rs = RectangleSelector(ax, distance, drawtype='line',
 minspanx=0.001, minspany=0.001)
 plt.show()

Chapter 4

[107]

Run the script in this section and you will see a map of the USA. Click anywhere on
the map and drag. You will see a straight line connected to your mouse pointer from
the initial click point. Release the mouse button and information will be printed to
your terminal, indicating the longitudes and latitudes of the start and end points
as well as the great circle distance between them. Because the RectangleSelector
widget is set up to be persistent, you can measure distances as many times as you like.
This prevents the zoom tool from working because it is also a RectangleSelector
widget; however, you can still zoom using the scroll button of your mouse. Also note
that you can still pan the plot as you could before, as shown next:

Using the RectangleSelector in its 'line' draw type to measure the distance from Oklahoma to Massachusetts
(~2,333 km)

Slated for version 2.1 of Matplotlib is an overhaul of the toolbar system to make
it possible to extend its default set of tools. Essentially, it will become possible for
developers to register and unregister the individual tools that you find in the toolbar
and other tools that you make or are provided by third-party packages. With this
feature, the ruler tool would automatically switch off whenever the zoom tool is
chosen, preventing conflicts, and there would even be a button in the toolbar for the
widget, if you so choose.

Widgets

[108]

SpanSelector
The SpanSelector widget is much like the RectangleSelector widget, except
that it is adjustable only in a single dimension. This particular widget can be useful
to highlight regions in a plot, or for easy calculations of aggregate statistics or
integrations over a particular dimension, or for easy zooming in or out of a region
without modifying the limits of any other dimensions. It mostly works in a similar
manner, too. Its constructor expects an Axes instance to attach the widget to, and it
expects a callback function for when the selection is complete. Unlike the callback
method for RectangleSelector, which took two Event arguments, this callback
takes two arguments that are the start and end values of the selected span, rather
than the start and end Event instances. Let's take a look at an example that creates
different colored highlights for a time series of fake stock prices:

Code: chp4/span_selector.py

from itertools import cycle
import matplotlib.pyplot as plt
from matplotlib.widgets import SpanSelector
import numpy as np

if __name__ == '__main__':
 t = np.arange(180)
 value = (20 * np.sin((np.pi/2) * (t / 22.0)) +
 25 * np.random.random((len(t),)) + 50)
 fig, ax = plt.subplots(1, 1, figsize=(10, 5))
 ax.step(t, value)
 ax.set_ylabel("Stock Price (USD)")
 ax.set_xlabel("Time (days)")
 colors = cycle(list('rybmc'))

 def onselect(x0, x1):
 ax.axvspan(x0, x1, facecolor=next(colors), alpha=0.5)
 fig.canvas.draw_idle()

 ss = SpanSelector(ax, onselect, 'horizontal')
 plt.show()

Chapter 4

[109]

In addition to the Axes instance and the callback function, SpanSelector needs to
know its orientation. It can be either 'horizontal' or 'vertical'. In the preceding
example, once a selection is made, that region remains highlighted, but with a
different color that comes from the cyclic iterator of colors. Like RectangleSelector,
this widget can also have its properties defined through the rectprops argument
and can also have a minspan attribute defined to provide a basic filter of selections.
Besides the minspan attribute, one can temporarily disable the widget by setting
its visibility to False and re-enable it by making it visible again. The following
screenshot shows selecting spans of data in a time series:

Selecting spans of data in a time series

One feature of SpanSelector that does not currently exist in RectangleSelector
is that one could provide another callback method for any mouse movement events
during the selection via the onmove_callback argument. This callback gets the same
set of arguments as the selection callback. As of version 1.4, one can also specify that
the rectangle should remain after the selection is complete by setting span_stays
to True. The selection remains visible until the next selection is made. Note that
for our example, we did not use the span_stays argument. Instead, we plotted an
axvspan() upon selection.

Widgets

[110]

Cursor
This particular widget does not add any interactive features like the others do with
callbacks and such, but it is a simple display widget that can add just the right touch
to their interactive application. Invoke this widget for an Axes object. Whenever
the mouse goes over the plot region, a horizontal and vertical line will appear,
intersecting at the mouse pointer, following it around. If you only want the vertical
line, then set horizOn=False in the constructor. Set vertOn=False if you want
only the horizontal line instead. Note that you can also set these two properties of
the Cursor instance after the fact and turn it all off with the visible property. Any
additional keyword arguments to the constructor can specify the properties of the
lines such as color and linewidth.

format_coord()
This isn't a widget in the same manner as the others that we have discussed here.
Rather, it is a hook into a built-in interactive feature of Axes objects. All Axes objects
have a format_coord() method that is called whenever the mouse moves over
the plot area. This method returns a string that is displayed in the lower right-
hand corner of the figure. By default, they display the x and y data coordinates of
the mouse pointer. This is straightforward enough because the method takes two
arguments, that is, the x and y coordinates of the mouse in data space (therefore, the
values would always be within the x and y limits of the plot). However, there is no
reason why it can't display something else as a function of those coordinates.

There are a couple of different ways in which one could modify this method. The
easiest way (but a little hackish) is to monkey patch the format_coord() method
with a customized function. One could also subclass Axes. The following example
uses the subclassing approach to display not only the x and y coordinates, but also
the image value if there is an image:

Source: chp4/format_coord_image.py

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.axes import Axes
import matplotlib.transforms as mtransforms
import matplotlib.projections as mproj

class DataAxes(Axes):
 name = 'data'
 def format_coord(self, x, y):
 normal_part = Axes.format_coord(self, x, y)
 if self.images:

Chapter 4

[111]

 # Most recent image is usually on top
 im = self.images[-1]
 j, i = self._coords2index(im, x, y)
 z = im.get_array()[j, i]
 return "Value: %f, %s" % (z, normal_part)
 return normal_part

 @staticmethod
 def _coords2index(im, x, y):
 """
 Convert data coordinates to index coordinates.
 Credit: mpldatacursor developers.
 Copyright (c) 2012. BSD License
 Modified from original found at:
 https://github.com/joferkington/mpldatacursor/blob/master/
mpldatacursor/pick_info.py
 """
 xmin, xmax, ymin, ymax = im.get_extent()
 if im.origin == 'upper':
 ymin, ymax = ymax, ymin
 im_shape = im.get_array().shape[:2]
 data_extent = mtransforms.Bbox([[ymin, xmin],
 [ymax, xmax]])
 array_extent = mtransforms.Bbox([[0, 0], im_shape])
 trans = (mtransforms.BboxTransformFrom(data_extent) +
 mtransforms.BboxTransformTo(array_extent))
 j, i = trans.transform_point([y, x]).astype(int)
 # Clip the coordinates to the array bounds.
 return (min(max(j, 0), im_shape[0] - 1),
 min(max(i, 0), im_shape[1] - 1))

Register DataAxes so that it can be used like any other Axes
Uses the 'name' attribute, so it will be accessible as 'data'.
mproj.projection_registry.register(DataAxes)

This is fairly straightforward, even if it may seem a bit obtuse at first. The DataAxes
subclass defines two methods, the modified format_coord() method and a helper
method, namely, _coords2index(). In format_coord(), we first obtain what would
normally be the output for a typical Axes instance. Then, we determine whether the
instance has had any image objects plotted onto it (the self.images attribute is a list
of image objects as imshow() can be called multiple times over different extents).

Widgets

[112]

For simplicity, we will assume that the last image added is at the top above all others
and that that image is the one we want to reference. Ideally, we would have a list of
image objects sorted by their zorder value in descending order. We would then—
again, ideally—march through that list, looking for the first image object that has the
x and y coordinates within its extents. For the purposes of this example though, we
will ignore all other possible image objects.

Next, because our coordinates are in data space, we will need to transform these
coordinates into integer array indexes with all the proper bound clipping as well.
This is done using Matplotlib's built-in transform system. Again, for simplicity, we
will assume that only linear scales are at work (for example, not using scales such as
log, semilog, or polar transformations). To build this linear transform, we construct
two bounding boxes as mtransforms.Bbox instances and create a transform object,
which can then be used to calculate the array coordinates. Because the mouse could
potentially be off the image object but still within the plot region (for example, after
panning the plot or zooming out), we will need to clip the array coordinate values to
be within the array bounds. So, when the mouse is off the image, the array indexes
returned by this method will be the point on the edge of the image closest to the
mouse pointer.

Finally, we register the DataAxes class so that it can be used much like any other
built-in Axes objects. This is done through Matplotlib's projection system. The
original intent of this registration system was to have an Axes subclass for each
kind of projection, such as polar projections and 3D projections, but it is perfectly
legitimate to use this registration system for specialty Axes classes. Now that the
DataAxes class has been registered, it is easy to request it:

Source: chp4/format_coord_image.py

if __name__ == '__main__':
 ys, xs = np.mgrid[0:5:0.1, 0:4:0.1]
 fig = plt.figure()
 ax = fig.add_subplot(1, 1, 1, projection='data')
 ax.imshow(xs, extent=(xs[0, 0], xs[0, -1], ys[0, 0], ys[-1, 0]),
 origin='lower', cmap='gray')
 plt.show()

The projection='data' argument to fig.add_suplot() tells Matplotlib to
use whichever Axes class that was registered as data. For the plt.subplots()
function, this can be specified by providing a single element dictionary,
{'projection':'data'}, to the subplot_kw argument.

Chapter 4

[113]

The following screenshot displays the image value under the mouse cursor with our
DataAxes subclass:

Run this script and move your mouse cursor over the image. You will see the image
value reported along with the coordinates in the lower right-hand corner of the
figure window. Pan and zoom the figure and it will still work exactly as expected.

Third-party tools
While Matplotlib likes to follow a "batteries included" philosophy for all things
related to plotting, there are times when a desired feature just doesn't generalize
well enough for it to be a standard feature. Alternatively, a feature may require other
specialty packages that do not make sense to have as a dependency for Matplotlib.
For these situations, there is a growing library of packages that provide additional
interactive features on top of your standard Matplotlib application.

Widgets

[114]

mpldatacursor
The mpldatacursor package (https://pypi.python.org/pypi/mpldatacursor)
provides a number of useful interactive tools, primarily focusing on making it very
easy to annotate a plot. To use this tool, create your plots as normal. Then you can
add a data cursor to one or more Axes object (and can optionally specify which
Artist objects the cursor is valid for). Then, click on something in your plot and an
annotation will appear, describing what you clicked on.

Glue
The Glue project (http://www.glueviz.org) is not a widget or a tool, but it
builds entirely off of Matplotlib to provide the means to interactively explore high
dimensional datasets, particularly relational data. Once a dataset is loaded up in
Glue, one can tell it to create different kinds of plots such as histograms and images.
Interacting with one plot would automatically update other plots that are related to
the one you interacted with. For example, one could select a region of the histogram,
and the data points that fall within that selected region would get highlighted in the
corresponding image plot. Conversely, one could also select a region from the plot
display, and the histogram display would be updated with a histogram overlay of
the selected region. New plots can also be generated from arbitrary slices of existing
images (for example, a 2D slice through a 3D "cube" of data). There are also other
useful widgets to make data exploration easy and intuitive.

Plot.ly, ggplot, prettyplotlib, and Seaborn
The Plot.ly, ggplot, prettyplotlib, and Seaborn projects are also not widgets, but they
are very useful projects that builds off of Matplotlib. Plot.ly (http://plot.ly) is a
plotting web service that can take a Matplotlib figure and host an interactive version
of it on its web servers. You can then share that plot with others to interact with and
modify. Finally, you can export that figure back to Matplotlib code or several other
languages, such as R or Matlab, with support for more languages in the works. The
ggplot project (https://github.com/yhat/ggplot) is a Python clone of the popular
R package by the same name. It is a high-level way of creating plots using a concept
called "Grammar of Graphics".

The prettyplotlib project (http://blog.olgabotvinnik.com/prettyplotlib/)
and the Seaborn project (http://web.stanford.edu/~mwaskom/software/
seaborn/) both do a fantastic job of not only improving upon the default aesthetics
of Matplotlib, but also making it very painless to modify these settings both
programmatically and interactively. The Seaborn project in particular also provides
additional interactive tools for statistical analyses.

Chapter 4

[115]

Summary
Interactivity takes many forms. Widgets are visible elements that are primarily
interacted with via the mouse. In this chapter, we covered all of Matplotlib's
GUI-neutral widgets. Widgets such as sliders, checkboxes, and radio buttons
were all integrated into our application's event framework. Doing so allowed for
multiple ways to update the state of the application and for the state of the widgets
to be updated as well. Widgets such as Lasso and Button were added as input
mechanisms, providing the means to modify the data that the application displays.
Other widgets were also covered but not included into our main application such
as RectangleSelector and SpanSelector. A few ways of using these widgets
were demonstrated, from selecting data to measuring distances. We even went over
how to create a specialized Axes subclass that operates seamlessly with the rest of
Matplotlib for the purpose of extending the data display of the figure window.

Finally, we went over a variety of third-party tools and packages, some providing
widgets, some providing an alternative interface to Matplotlib and everything in
between. If these projects do not provide what you need, create your own package to
grow this community. Hopefully, this chapter has provided insight into Matplotlib's
flexibility and has inspired new widgets and features, some of which we may find in
a future version of Matplotlib!

In the next chapter, we will dive just a little bit deeper into Matplotlib. Its GUI
neutrality will be violated. We will pull back that canvas and begin to explore
Matplotlib's deepest secrets.

Embedding Matplotlib
The Lion thought it might be as well to frighten the Wizard, so he gave a large,
loud roar, which was so fierce and dreadful that Toto jumped away from him in
alarm and tipped over the screen that stood in a corner. As it fell with a crash
they looked that way, and the next moment all of them were filled with wonder.
For they saw, standing in just the spot the screen had hidden, a little old man,
with a bald head and a wrinkled face, who seemed to be as much surprised as
they were. The Tin Woodman, raising his axe, rushed toward the little man
and cried out, "Who are you?"

"I am Oz, the Great and Terrible," said the little man, in a trembling voice.

- The Wonderful Wizard of Oz, by L. Frank Baum

We now have a working, usable, interactive application that demonstrates many
features of Matplotlib. Let us take a quick look back at what we have. First and
foremost, we have a way to display images with additional plotting on top of it. We
can pan and zoom that figure, and resize it to our heart's content. Next, the application
responds to custom key mapped commands that we added for this specific application.
We also added other features such as object selection via the mouse. Our application
now also utilizes timers to produce timed effects such as transitions.

Those features are all well and good, but it was in the previous chapter where our
interactive application became something more recognizable by everyday users. The
addition of GUI widgets to our application makes it somewhat more intuitive to use
and more adaptable to different workflow habits. Users now have multiple ways
to interact with the application and can use the method that best suites them for
maximum productivity. All of this was achieved without needing to know how to
use any GUI toolkits.

Embedding Matplotlib

[118]

There is a trade-off, however. The GUI-neutral widgets that Matplotlib provides
are not aesthetically pleasing, to say the least. Nor are they very customizable. They
can also be very difficult to manage in a larger, dynamic application with many
moving parts. The requirements for your application can easily grow beyond what
Matplotlib can provide you.

Your manager drops by your cubicle. "So... yeah... I just gave your storm application
a try, and I think it is broken. Uhm, the menu bar seems to be missing along the top,
you see? If you can get right on that, that would be great, mmm-kay?"

Well, we could kludge together a bunch of Text objects in an OffsetBox...ahh, but
we wouldn't be able to always put it at the very top, and it would be fragile anyway.
So, is this the point where we part ways? Was this entire venture all for naught?
Were the Matplotlib developers so shortsighted as to have us completely stymied by
a mere menu?

No! Of course not! Why would you think such silly thoughts?

Think back to the very beginning of the first chapter: "Matplotlib's philosophy is to
give the developer full control, but without being stupidly unhelpful and tedious."
You may have not noticed, but this entire book has been an exercise in progressively
taking control from Matplotlib as we developed our application. Never once did
we feel truly hemmed in by it. So, what trick do I have up my sleeve to get us out
of this predicament? No tricks. Just a thought for you: "Don't those buttons for the
navigation toolbar look remarkably polished compared to the buttons we placed
within our application?"

While you ponder that thought, let us look at our problem a different way. Consider
a situation where an existing GUI application gains a requirement for interactive
plotting. For example, a spreadsheet-like application that now needs to be able to
plot the data dynamically, with zooming and panning. Much time and resources
have been spent developing this application, so it doesn't make sense to scrap it.
Nor do we want to spend the time coming up with a limited plotting module that
will just become a maintenance nightmare. If only you could use an existing plotting
package right inside your application.

Chapter 5

[119]

The revelation
You have had a moment to ponder the question about the toolbar buttons. Some
of you may have even gone back to the application, and ran it using different
backends, realizing that all the toolbars follow their respective backend's style. That
would mean that it is somehow possible to include GUI-specific elements into our
Matplotlib application. Or perhaps it is the Matplotlib figure that is the odd one out,
with it being included into a tiny GUI application that is the backend?

Indeed, this whole time, you have been embedding Matplotlib figures into a GUI!

Everything in Matplotlib builds off the figure's canvas object. That canvas is the
interface layer between the user and the backends. By staying above this layer, most
of the messy details about GUI applications have been tucked away, keeping the user
focused on their plotting tasks. Matplotlib's appeal is in giving the user a plot in as
little as three lines of code: the import, the plot, and the show. Not once does the user
need to give a thought to initializing an application object, attaching a figure window
to it, then drawing the plot, and then finally triggering the GUI mainloop.

Once you go beyond the canvas layer, you are locking your application into a
specific GUI toolkit. The trade-off being that you can access the full suite of features
provided by your toolkit of choice. In this chapter, we will examine this from two
perspectives: how to embed GUI elements into an existing Matplotlib application,
and how to embed the Matplotlib canvas into an existing GUI application. But first,
let us get to understand the Matplotlib figure better.

Through a glass, darkly
Previously in this book, we have conflated the canvas and figure terms, at best giving
an impression that the figure object was merely a container for the canvas object.
When working above the canvas level, this conceptual model is sufficient. The truth,
however, is more complicated. There are actually three objects in play: figure, canvas,
and manager. We encountered the manager briefly in one of the examples in the
previous chapter. While I would love to describe a very clean and inspired design
involving these three objects, that would not be possible. Abstraction layers that hide
away messy details are never simple. Initial appearances can often be misleading in
understanding the relationships between them. Our discussion of the design should
bring about a new level of clarity in how Matplotlib truly works, and hopefully some
inspiration in new ways to use the library.

Embedding Matplotlib

[120]

Tinker tailor soldier pylab_setup()
In this book, we have shown an attribute hierarchy of figure.canvas.manager,
implying that the manager is a child object of the canvas, and a grandchild of the
figure object. That would be a useless simplification. These objects all cross-reference
each other in such ways that the usual parent/child object relationship has very
little meaning.

There is a very good reason why nearly every Matplotlib example you find
imports matplotlib.pyplot (either directly or through pylab). The import
of pyplot triggers a call to matplotlib.backends.pylab_setup(), which
loads the desired backend module, the new_figure_manager() function, the
draw_if_interactive() function and the backend's show(). The backend's
show() and draw_if_interactive() functions take the appropriate steps for
their respective backends to display and update a figure window. This is why
matplotlib.use() has to be called prior to the import of pyplot (either directly
or indirectly). The import of pyplot can only ever happen once, so pylab_setup()
would only be called once (actually, that is a bald-faced lie, but we won't get into
the particulars about pyplot.switch_backend()).

The new_figure_manager() function is only ever called from plt.figure(). Its job
is to instantiate an appropriate Figure, FigureCanvas, and FigureManager objects,
and return the manager instance. Initialization of the manager requires a canvas
object, which, in turn, requires a figure. This is the source of the implied hierarchy,
but each object has references to each other, for the most part.

The job of the manager is to be responsible for the three high-level GUI elements in
a figure: window, canvas, and the navigation toolbar. For example, if a user specifies
that the figure should change size, then the manager would interpret that as a
request to change the window size as well. Creation of the manager automatically
creates a main window object and a navigation toolbar object and packs the supplied
canvas object with the toolbar into the window.

The figure object, as we discussed in Chapter 1, Introducing Interactive Plotting, is an
Artist object in its own right. It exists primarily as the root node for the hierarchy
of Artist plotting objects and for holding a few convenience methods. It may be
useful to think of the figure as the application window that contains the canvas,
but it is really the canvas that contains the figure, and the application window
contains the canvas.

Chapter 5

[121]

It is important to recognize that the manager is not strictly required for use of the
figure or canvas. The existence of the manager is the key distinction between simply
augmenting your Matplotlib application with GUI elements and fully embedding the
canvas into your own GUI application. The manager subsumes many of the tedious
and oftentimes boilerplate tasks for creating and destroying the GUI window and
kicking off the mainloop. It will be shown later in this chapter how to completely cut
out the manager in order to embed your plot into your own application.

Canvas materials
Each backend subclasses FigureCanvasBase to create its own powerful canvas class.
Because the canvas object is intended to be an interactive component in its own right,
the interactive backends will typically subclass not only FigureCanvasBase, but also
a relevant widget class from their toolkit.

These parent GUI classes of the canvases are all abstract container types. Therefore,
they can have other widgets added to them as well as be able to be packed into a
window such as Qt's MainWindow object with other widgets. The manager object
does just this, packing the canvas with a navigation toolbar. The navigation toolbar
also subclasses a relevant widget class from the respective toolkit.

All figure managers have at least three attributes: canvas, toolbar, and window. It
only references the figure object through the canvas attribute. The following table
lists what those respective instances subclass.

Backend canvas toolbar window
Gtk | Gtkagg
| Gtk3agg |
GtkCairo |
Gtk3Cairo

gtk.DrawingArea gtk.Toolbar gtk.Window

Macosx |
CocoaAgg

NSView |
NSImageView

NSObject | (no
toolbar)

NSWindow

Qt4 | Qt4agg QtGui.QWidget QtGui.QToolBar QtGui.QMainWindow

Qt5 | Qt5agg QtWidgets.
QWidget

QtWidgets.
QToolBar

QtWidgets.
QMainWindow

Tkagg |
Windowing

tk.Canvas* tk.Frame tk.Tk

Wx | Wxagg wx.Panel wx.ToolBar wx.Frame

Embedding Matplotlib

[122]

* Not sublcassed directly. Instead, it keeps a tk.Canvas instance
accessible via get_tk_widget().

Understanding exactly what the canvas and other parts are made of will greatly ease
the embedding process. Some backends' managers may have additional attributes to
assist with the GUI layout process. We will go over some of these differences in the
next section on embedding GUI elements into an existing Matplotlib application.

Bars, menus, and sliders – four ways
Perhaps the best way to really understand the roles of these objects is through
examples. Let us look at two simple tasks for modifying our storm cell application:
add a menu bar and replace the Matplotlib slider widget with a similar native
widget. We will do this same thing using four different GUI toolkits: GTK, Tkinter/
Tcl, wxWidgets, and Qt.

A word of warning before we proceed: I am, by no means, an expert in any of these
GUI toolkits. Describing me as a novice would be a stretch as well. The following
examples are not intended to illustrate best practices in using the toolkits. Instead,
they are intended to help inspire the readers to see the possibilities and to help get
one over some of the initial hurdles that one may encounter.

Another quick note regarding our storm track application. The Tracks,
RadarDisplay, and Stormcells classes have been moved out of the application into
submodules; we will no longer be needing to modify these classes any further.

GTK
The GTK library is very popular among Linux developers, but it also works on
Windows and Mac systems. Most Linux systems will already have this package and
its Python bindings installed, and binary installs for this toolkit for Windows and Mac
are available as well. Unfortunately, most of the popular Python distributions such
as Anaconda do not make GTK available and the binary installs of GTK do not easily
work with those distributions. For such distributions, the toolkit needs to be built from
source against the Python distribution. None of these issues, however, specifically
relates to Matplotlib. Once GTK and its Python bindings are installed and working,
Matplotlib can use its gtkagg backend right away. Matplotlib also supports other
GTK-related backends such as GDK and a combination of GTK and Cairo graphics.

Chapter 5

[123]

The following example will use the GTKv2-based backend because I have some
experience with its API. The GTKv2 API does not support Python 3, though. To
use GTK in your Python 3 application, you would need to use GTKv3 with gobject
introspection through the gtk3agg backend, which also works in Python 2.x. As
with the other backend examples, we will show that once you have locked yourself
into a particular backend, you will need to explicitly set that backend prior to any
other Matplotlib import.

Source: chp5/slider_gtk.py

from __future__ import print_function
import matplotlib
matplotlib.use('gtkagg')
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import netcdf_file
from matplotlib import widgets
from tutorial import storm_loader, storm_saver, storm_dtype, calc_area
from elements import RadarDisplay, Stormcells, Tracks

import gtk

Import of the GTK toolkit is very straightforward and simple. For the progress bar,
we will redo the build_progress_bar() function to construct a gtk.HScale object.
In GTK, this class is similar to the scrollbars, but it is also used for these sorts of
sliders.

def build_progress_bar(fig, lastframe, height):
 # An abstract object that represents a set of possible values
 # on a number line, and how to move along that line.
 # Constructor takes:
 # value, lower, upper, step-increment, page-increment, page-size
 adj = gtk.Adjustment(0, 0, lastframe, 1, 5, 0)

 # The slider object
 bar = gtk.HScale(adj)
 bar.set_digits(0) # We have integers, so show no decimal places
 bar.set_value_pos(gtk.POS_RIGHT)
 bar.show()

 vbox = fig.canvas.manager.vbox
 # Put the slider at the bottom of the packing
 vbox.pack_end(bar, expand=False, fill=False, padding=0)
 return bar

Embedding Matplotlib

[124]

GTK, like some other toolkits, uses layout objects. The GTK backend has a gtk.VBox
object into which the canvas and the navigation toolbar have been packed into it. The
canvas was first packed to the start of the vertical layout box, while the navigation
toolbar was first packed in to the end of the box. Therefore, when it comes to packing
the slider, it will be placed above the navigation toolbar. We are going to forgo
setting any heights for the slider as that can be tricky to do properly in GTK's layout
system. We will see examples of how to do this in other backends, though.

We will need to change the setting of the progress bar's callback upon changes to
the slider. More specifically, for GTK, the changes to the slider's stored Adjustment
object represent the slider's state. The value of this object is accessible via the value
attribute. Let us modify the original _progress_bar.on_changed() method call to
the following:

 self._progress_bar.get_adjustment().connect('value_changed',
 lambda adj: self.change_frame(int(adj.value) – self.i))

Finally, for the progress bar, we will need to modify the update_progress_bar()
method so that the slider will respond to the 'frame_changed' event. Again, the
Adjustment object is obtained, and its value is set. This does not trigger a 'value_
changed' event. Therefore, we do not need to set any eventson attributes the way
we needed to for Matplotlib's slider widget.

 def update_progress_bar(self, index):
 self._progress_bar.get_adjustment().value = index

Next, we will add a very simple menu bar to our application. We will follow the
same style as the code for our slider widget, creating a builder function that will be
called by our ControlSys constructor. It will take a figure object and a dictionary of
actions. We will expect four named actions: 'save', 'exit', 'help', and 'about'.

def build_menubar(fig, actions):
 # File menu items
 save = gtk.MenuItem("Save")
 save.connect('activate', actions['save'])
 exit = gtk.MenuItem("Exit")
 exit.connect('activate', actions['exit'])

Chapter 5

[125]

 filemenu = gtk.Menu()
 filemenu.append(save)
 filemenu.append(exit)

 # The File menubar item
 filem = gtk.MenuItem("File")
 filem.set_submenu(filemenu)

 # The Help menu items
 helpi = gtk.MenuItem("Help")
 helpi.connect('activate', actions['help'])
 about = gtk.MenuItem("About")
 about.connect('activate', actions['about'])

 helpmenu = gtk.Menu()
 helpmenu.append(helpi)
 helpmenu.append(about)

 # The Help menubar item
 helpm = gtk.MenuItem("Help")
 helpm.set_submenu(helpmenu)

 # Now adding File and Help menus to the bar
 mb = gtk.MenuBar()
 mb.append(filem)
 mb.append(helpm)
 mb.show_all()

 vbox = fig.canvas.manager.vbox
 vbox.pack_start(mb, expand=False, fill=False, padding=0)
 # Put this menubar at the top by putting it first in the
 # packing list
 vbox.reorder_child(mb, 0)

 return mb

Embedding Matplotlib

[126]

Like with the slider bar, we will need the manager's vbox object again. This time,
we will want the menu bar to appear at the top above the canvas, which has already
been packed. So, we go ahead and pack it normally, and then call vbox.reorder_
child() to move it to index 0 of the packing list. Some Linux users (depending on
the desktop environment) may not see a menu bar in the figure window. Rather, it
will show up at the top of the screen where most menu bars appear for native apps
of those environments.

 menuactions = {'save': lambda _: self._emit('save', None),
 'exit': gtk.main_quit,
 'help': lambda _: self._emit('help', None),
 'about': lambda _: self._emit('about', None)}
 self._mbar = build_menubar(fig, menuactions)

Embedding GTK's slider widget. Notice that the menu is not visible in the application window because native
GTK applications of my desktop environment have their menus in a separate menu bar.

The menu items that we created were connected to an 'activate' GTK event, with
an attached callback. The dictionary above provides those callbacks and most of
them should be familiar. For GTK, these callbacks would be called with an argument,
which we will swallow for most of them. The new callback here for 'exit' is how
one would terminate GTK's mainloop. Note that this would close out all figure
windows, not just the ControlSys's figure window.

Chapter 5

[127]

Tkinter
The Tk/Tcl GUI toolkit won't be winning any beauty contests any time soon, but it
has a distinct advantage of being included by default in every Python install. This
greatly simplifies the installation procedure for your application. Do note that when
building Matplotlib from source, you will need the Tk/Tcl development header files
available in order for the Matplotlib build process to compile the tkagg backend.
This often causes confusion among first-time developers because installing the
Tk/Tcl header files after building Matplotlib will not make the tkagg backend be
available. The Matplotlib library would have to be re-built once the header files are
available. However, binary installs of Matplotlib, whether from Python wheels,
Anaconda, binstar.org, or some other distribution, will have the tkagg backend
already compiled and available to use.

Source: chp5/slider_tk.py

from __future__ import print_function
import matplotlib
matplotlib.use('tkagg')
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import netcdf_file
from matplotlib import widgets
from tutorial import storm_loader, storm_saver, storm_dtype, calc_area
from elements import RadarDisplay, Stormcells, Tracks

try:
 import Tkinter as tk # for pre-py3k
except ImportError:
 import tkinter as tk # for py3k

The try/except logic above addresses a change in naming conventions for the
Tkinter package between the Python 2.x series and Python 3.x (py3k). This will help
your script to be compatible with both versions of Python from a single codebase.

For replacing Matplotlib's slider, we will use the tk.Scale class. First, the object
needs to know who its parent will be. This is mostly for processing events for
children of widgets that are currently in focus. In this case, it makes sense to make
the slider a child of the figure window, which we obtain from the figure manager.
We also tell the Scale object that it will be modifying an integer variable by
supplying a tk.IntVar instance. This makes sense because our slider is being used
for control of discrete frames. We then specify the range for the Scale.

Embedding Matplotlib

[128]

The tk.Scale class can take length and width arguments in units of pixels. This is
different from the units that were needed for the Matplotlib slider widget, which
expected fractions of the figure. Luckily, this is straightforward to convert. There is
an attribute to all Figure objects called bbox, which represents the bounding box
for the figure. It has a number of useful properties that return information about the
bounding box. The width and height properties return the figure's dimensions in
units of pixels. Multiplying that by the fractional height parameter would get the
desired height of the scale bar.

def build_progress_bar(fig, lastframe, height):
 root = fig.canvas.manager.window

 length = int(fig.bbox.width)
 width = int(fig.bbox.height * height)
 bar = tk.Scale(master=root,
 variable=tk.IntVar(), from_=0, to=lastframe,
 label='Time', orient=tk.HORIZONTAL,
 length=length, width=width, showvalue=True)
 bar.pack(after=fig.canvas.get_tk_widget())
 return bar

Finally, we need to place the scale bar in the right location. Similar to GTK, the
Tkinter toolkit utilizes a somewhat simplified packing paradigm. We do not need to
explicitly create layout boxes. The pack() method of every widget specifies how it
should be laid out in relation to other objects. In this case, we want the scale widget
to be placed below the canvas widget. So, we call the pack() method with the canvas
object as the after argument. Notice that the tkagg backend is unusual in that the
canvas itself is not subclassed from a GUI widget. Instead, the widget instance is
managed internally and is accessible via the canvas's get_tk_widget() method, so
we pass that to the pack() method call.

In Tkinter, widget resources are set through the configure() method with keyword
arguments. So, to set a callback function for slider interactions, we would set the
command resource with the same callback lambda we set before for the Matplotlib
slider in what was originally the _progress_bar.on_changed() method call. The
value passed to the callback from this event is the value of the slider.

 self._progress_bar.configure(
 command=lambda frame: self.change_frame(int(frame)-self.i))

Chapter 5

[129]

Finally, to make sure that 'frame_change' events in our application updates the
slider widget, we will need to tweak the update_progress_bar() method. Instead
of set_val(), it is just set(). Also, like in the GTK example, the event handling in
Tk prevents recursive event calling, so we can remove the setting of the eventson
attribute.

 def update_progress_bar(self, index):
 self._progress_bar.set(index)

Next, we will add a menu bar to our application. The function will take a figure
object and a dictionary of callbacks, much like how we did in the GTK example. In
Tk, menus are rather simple. Conceptually, menus are just a list of items. These items
can be additional menus that cascade from the item or commands attached to the
item. Every menu item has a label, which is the displayed text.

def build_menubar(fig, actions):
 root = fig.canvas.manager.window
 # Creating the menubar
 mb = tk.Menu(root)

 # File menu items
 filemenu = tk.Menu(mb, tearoff=0)
 filemenu.add_command(label="Save", command=actions['save'])
 filemenu.add_command(label="Exit", command=actions['exit'])
 # Adding File to the menubar
 mb.add_cascade(label="File", menu=filemenu)

 # Help menu items
 helpmenu = tk.Menu(mb, tearoff=0)
 helpmenu.add_command(label="Help", command=actions['help'])
 helpmenu.add_command(label="About", command=actions['about'])
 # Adding Help to the menubar
 mb.add_cascade(label="Help", menu=helpmenu)

 # Display menubar and items
 root.config(menu=mb)

 return mb

Embedding Matplotlib

[130]

With the completed menu bar above, it is added to the figure window as a menu.
Therefore, it does not need to be added to any layout boxes or packing lists. Next,
let us take a look at the callbacks that we will set for the menu commands. Callbacks
for menu commands do not take any arguments, unlike for GTK. We also see how to
quit a Tk window, reaching all the way down to the quit() method of the managed
window object.

 menuactions = {'save': lambda : self._emit('save', None),
 'exit': self.fig.canvas.manager.window.quit,
 'help': lambda : self._emit('help', None),
 'about': lambda : self._emit('about', None)}
 self._mbar = build_menubar(fig, menuactions)

Using Tkinter's slider and menu widgets

That method should only take effect for the window and should only terminate the
Tk mainloop once all of the figure windows are closed. All of the other callbacks are
the typical callbacks we have seen before. Using this application, you will notice that
the window is taller than before. This is because the canvas no longer needs to share
space with the slider widget. Also, the menu bar added some height to the window.

Chapter 5

[131]

wxWidgets
The wxWidgets toolkit is a Python-friendly library that can be a prettier alternative
to Tkinter. It does need to be separately installed, thereby complicating installation
procedures somewhat. However, unlike with the tkagg backend, the wxagg backend
is available as soon as the wxWidgets toolkit is installed, even if it is installed
after the Matplotlib package. This is because the wxagg backend has no compiled
component. Up to version 1.4 of Matplotlib, the wxWidgets backends will not work
in Python 3. At the time of this writing, the developers of wxWidgets were in the
process of preparing a new release called wxPython-Phoenix that will work in
Python 3. A patch for the wxWidgets backends to use the Phoenix library is slated
for inclusion in Matplotlib version 2.1. Imports of wxWidgets are also the same
regardless of which version of Python is being used.

Source: chp5/slider_wx.py

from __future__ import print_function
import matplotlib
matplotlib.use('wxagg')
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import netcdf_file
from matplotlib import widgets
from tutorial import storm_loader, storm_saver, storm_dtype, calc_area
from elements import RadarDisplay, Stormcells, Tracks

import wx

For the slider replacement, we can use the wx.Slider class. This class is similar to
Tkinter's Scale class. It will need the window object as its parent, and the range of
values. It also needs the starting value for the slider, which we will set to zero. One
can also specify an ID number for the widget, which has uses within the wxWidgets
framework that won't be covered here. This number can be safely set to -1. The
widget's size is handled through a tuple of length and height in units of pixels. If one
of the dimensions is -1, then that tells wxWidgets to automatically expand the widget
in that dimension.

def build_progress_bar(fig, lastframe, height):
 root = fig.canvas.manager.window
 # arguments are: parent, id, startvalue, minvalue, maxvalue
 bar = wx.Slider(root, -1, 0, 0, lastframe, style=wx.SL_HORIZONTAL,
 size=(-1, int(fig.bbox.height * height)))

Embedding Matplotlib

[132]

 sizer = root.GetSizer()
 sizer.Insert(1, bar, 0, wx.EXPAND)
 return bar

The wxWidgets framework uses sizer objects for layouts, similar to GTK's VBox and
HBox objects. We can retrieve the window's sizer instance and manually insert the
bar object into its packing list. Prior to this insertion, the sizer object for a Matplotlib
figure has only two widgets packed: the canvas and the navigation toolbar. The
Insert() method call says to insert the bar object at index 1 in the packing list,
which effectively puts it after the canvas. The third argument flags how the
proportions for the widget's containment area are handled. Zero for this argument
indicates that there are no proportion rules to enforce onto the containment area. If
a value of 1 is passed to this argument, it will equally share the vertical space with
other widgets in the sizer. The fourth argument flags how the widget should be sized
in relation to the parent widget. The wx.EXPAND flag indicates that the widget should
be expanded to occupy the available space, even when the window is resized. The
online wxWidgets documentation explains these parameters in far more detail than
can be covered here.

Now, we need to get slider events to trigger our 'frame_changed' event.
Connecting events in wxWidgets is done through the Bind() method. The Slider
class, like other widgets in wxWidgets, has many events that it can emit, giving the
developer very fine-grained control over the behavior of their widgets. However,
for our purposes, we only need the very general wx.EVT_SCROLL event, which
represents any change to the slider by any means. The attached callback is passed
an object from which an event object can be retrieved. From the event emitted from
the slider, one can retrieve the slider's new value via the GetValue() method.
Otherwise, the lambda callback is structured the same as it was originally.

 cback = lambda e: self.change_frame(
 int(e.GetEventObject().GetValue()) - self.i)
 self._progress_bar.Bind(wx.EVT_SCROLL, cback)

Finally, we need to set the state of the slider whenever the 'frame_changed' event
is emitted. Tweak the update_progress_bar() method to call SetValue() instead
of set_val() on this slider. Setting the slider's value does not trigger an EVT_SCROLL
event, so we don't have to worry about any protection from recursive event calling.

 def update_progress_bar(self, index):
 self._progress_bar.SetValue(index)
 self.fig.canvas.draw()

Chapter 5

[133]

Unfortunately, the wxagg backend is somewhat finicky. It tends to be a bit
conservative in refreshing the canvas, particularly for draw_idle() calls. Sometimes,
it needs an explicit draw() call. Testing of this application revealed that interacting
directly with the slider would sometimes fail to update the radar display until the
mouse passed over the display area, although it would work fine when using the
keyboard. Adding the draw() method call does the trick here.

Making nice looking menus in wxWidgets is easy. First, we create a wx.Menu
instance, and Append() items to it. Append() is a factory method that takes a
specialized wxWidgets ID and a label. The wxWidgets ID in this situation can be
used to tag a menu item as one of several common menu items that have default
settings for them such as hotkeys. For example, marking a menu item as wx.ID_SAVE
will cause that menu item to be accessible via the Ctrl + S key combination managed
through wxWidgets. A value of -1 is also appropriate as well. After creating a menu
item, we Bind() the appropriate callback function to the wx.EVT_MENU signal that is
emitted by it.

def build_menubar(fig, actions):
 root = fig.canvas.manager.window

 # File menu items
 filemenu = wx.Menu()
 fitem = filemenu.Append(wx.ID_SAVE, "Save")
 root.Bind(wx.EVT_MENU, actions['save'], fitem)
 fitem = filemenu.Append(wx.ID_EXIT, "Quit")
 root.Bind(wx.EVT_MENU, actions['exit'], fitem)

 # The Help menu items
 helpmenu = wx.Menu()
 hitem = helpmenu.Append(wx.ID_HELP, "Help")
 root.Bind(wx.EVT_MENU, actions['help'], hitem)
 hitem = helpmenu.Append(wx.ID_ABOUT, "About")
 root.Bind(wx.EVT_MENU, actions['about'], hitem)

 # Now adding File and Help menus to the bar
 mb = wx.MenuBar()
 mb.Append(filemenu, "File")
 mb.Append(helpmenu, "Help")
 root.SetMenuBar(mb)

 return mb

Embedding Matplotlib

[134]

After creating the menus and binding callbacks to the menu items, we create a
wx.MenuBar instance and append the two wx.Menu objects we created to it, with
the appropriate labels. Finally, it is set as the figure window's menu bar, thereby
avoiding the need for any sizer objects. Because wxWidgets wraps the GTK library
on Linux, some Linux users will find that the menu bar will not appear with the
figure window. As with GTK, it will be located in the desktop menu bar like any
other native application in certain desktop environments.

 menuactions = {
 'save': lambda _: self._emit('save', None),
 'exit': lambda _: self.fig.canvas.manager.window.Close(),
 'help': lambda _: self._emit('help', None),
 'about': lambda _: self._emit('about', None)}
 self._mbar = build_menubar(fig, menuactions)

Native wxWidget slider in our application. The menu bar is separate in this screenshot due to my desktop
environment.

Callbacks in wxWidgets are expected to take a positional argument, which we don't
need to pass on to our menu actions. So, we will swallow them in the lambdas. We
also see that a call to the Close() method will close a wxWidgets window. Once all
of the windows are closed, the mainloop will terminate.

Chapter 5

[135]

Qt
The Qt library is more than just a GUI toolkit. It is a well-designed software
development platform in general. Its history, however, is quite complicated and can
be very confusing for newcomers. The important thing to remember is that there
is the main Qt library implemented in C/C++ and then there are the bindings for
multiple languages, particularly Python. Due to a variety of reasons, there are two
common Python bindings: PyQt and PySide. Matplotlib supports both bindings.
Furthermore, there are multiple versions of the bindings. Starting with version 1.0,
Matplotlib supported PyQt4. With version 1.1, support for PySide began. Then in
version 1.4, support for PyQt5 was added.

Source: chp5/slider_qt4.py

from __future__ import print_function
import matplotlib
matplotlib.use('Qt4Agg')
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import netcdf_file
from matplotlib import widgets
from tutorial import storm_loader, storm_saver, storm_dtype, calc_area
from elements import RadarDisplay, Stormcells, Tracks

from matplotlib.backends.qt4_compat import QtCore, QtGui

Matplotlib has various mechanisms for letting the user specify which binding to use
automatically. For the developer, this means that it is best to import the Qt packages
via Matplotlib's qt_compat module. This module will select the correct bindings to
import automatically. It also helps to smooth out the differences between PyQt4,
PyQt5, and PySide, such as PyQt5's splitting of the QtGui module into QtGui and
QtWidgets. Note that qt_compat was added in version 1.4 of Matplotlib. Since
version 1.1, there has been a module called qt4_compat, which is now deprecated.
The qt4_compat module helps developers target the PyQt4 platform, while qt_
compat lets developers target PyQt5 and later, regardless of which actual bindings
are used. The examples here will use the qt4_compat module, as it is available in
older versions of Matplotlib.

Embedding Matplotlib

[136]

One difference between the Qt backends and other backends is that the navigation
toolbar is at the top of the window by default. It is also detachable, meaning that
the user can move it to any other position in the figure window as desired. Also,
the window object is not quite like the windows in the other backends. It does not
contain the navigation toolbar and the canvas widgets in a packing list. Instead, it
has the canvas as a central widget and treats the navigation toolbar specially, which
allows it to be detachable.

In the Qt library, as in GTK, layout boxes are used for sizing and placements, but the
Qt backends in Matplotlib do not have any layout boxes already set. As the central
widget, we will need to instantiate a QtWidgets.QVBoxLayout object and set it to the
canvas. When we are done with building the slider and any other widgets, we can
add them to the canvas's layout. But, before adding the slider, we will need to add a
QtGui.QSpacerItem instance that, when placed before the slider in a vertical layout,
will force the slider to the bottom part of the canvas.

def build_progress_bar(fig, lastframe, height):
 vbox = QtWidgets.QVBoxLayout()
 fig.canvas.setLayout(vbox)
 height = int(fig.bbox.height * height)

 bar = QtGui.QSlider(QtCore.Qt.Horizontal)
 bar.setRange(0, lastframe)
 bar.setSingleStep(1)
 bar.setMinimumSize(0, height)

 # Add an auto-updating label for the slider
 value = QtWidgets.QLabel('0 of %d' % lastframe)
 value.setMinimumSize(0, height)
 value.connect(bar, QtCore.SIGNAL('valueChanged(int)'),
 lambda frame: value.setText("%d of %d" %
 (frame, lastframe)))

 hbox = QtWidgets.QHBoxLayout()
 hbox.addWidget(bar)
 hbox.addWidget(value)

 # This spacer will force the slider to the bottom of the canvas
 vspace = QtGui.QSpacerItem(0, 0,
 QtWidgets.QSizePolicy.Expanding,
 QtWidgets.QSizePolicy.Expanding)

 vbox.addItem(vspace)
 vbox.addLayout(hbox)
 return bar

Chapter 5

[137]

As for the slider, we will use the QtWidgets.QSlider class, which is simple to
instantiate needing only a style flag to indicate whether it is horizontal or vertical.
We have to separately set this slider's range and its step size. We will go an extra
step in this example and also provide a text display for the slider's current value like
what was provided for with the Matplotlib slider. This requires a QtWidgets.QLabel
instance, connected to a valueChanged signal emitted from the bar object. These
two objects are positioned next to each other by packing them into a QtWidgets.
QHBoxLayout instance.

We already showed how to connect to a slider event when we set up a label object to
show the current frame index. We also need to trigger the 'changed_frame' event
in our application whenever the slider value changed. This will be very similar to
what we did previously. We will connect the canvas (rather than the label object) to
the valueChanged signal from the slider. The lambda callback is the same as usual
because the signal provides the integer value from the slider.

 self.fig.canvas.connect(self._progress_bar,
 QtCore.SIGNAL('valueChanged(int)'),
 lambda frame: self.change_frame(int(frame) - self.i))

And hooking our 'frame_changed' event to update the slider is simple as well,
requiring only a call to the setValue() method instead of set_val(). Qt is also
designed, like the other toolkits, to prevent recursive event calling, so we can remove
that protection here as well.

 def update_progress_bar(self, index):
 self._progress_bar.setValue(index)

Finally, we will build the menu for our application. Menu items in Qt are QtGui.
QAction instances. These constructors can take a label name and a parent widget.
It can also take a QtGui.QIcon instance as the first argument in a three-argument
form of the constructor, if you want to provide icons for your menu items. Next, you
connect the menu item to the callback.

def build_menubar(fig, actions):
 root = fig.canvas.manager.window

 # File menu items
 saveact = QtGui.QAction("Save", root)
 saveact.triggered.connect(actions['save'])

Embedding Matplotlib

[138]

 exitact = QtGui.QAction("Exit", root)
 exitact.triggered.connect(actions['exit'])

 # Help menu items
 helpact = QtGui.QAction("Help", root)
 helpact.triggered.connect(actions['help'])
 aboutact = QtGui.QAction("About", root)
 aboutact.triggered.connect(actions['about'])

 # Menubar creation
 mb = root.menuBar()
 # The File menubar item
 filemenu = mb.addMenu("File")
 filemenu.addAction(saveact)
 filemenu.addAction(exitact)
 # The Help menubar item
 helpmenu = mb.addMenu("Help")
 helpmenu.addAction(helpact)
 helpmenu.addAction(aboutact)

 return mb

Once all of the menu items are created, we can start adding them to the window's
menu bar (obtained via the window's menuBar() factory method). The addMenu()
factory method returns a QMenu instance with the given label set for it. The menu
items are added through their addAction() method.

 menuactions = {'save': lambda : self._emit('save', None),
 'exit': QtGui.qApp.quit,
 'help': lambda : self._emit('help', None),
 'about': lambda : self._emit('about', None)}
 self._mbar = build_menubar(fig, menuactions)

Chapter 5

[139]

PyQt4 slider and menu bar. The slider shares space with the canvas.

Callback functions for the QAction instances are not given an argument, so the
lambda functions are much like most of the other examples. This 'exit' action will
quit the entire application rather than just closing out the current window. Using
this version of the application, you may notice that the slider is closer to the plot area
than in the other three versions, much like when we used Matplotlib's slider widget
in Chapter 4, Widgets. This is because the Qt backend did not establish a layout object
as the central widget. With the canvas already established as the central widget, the
only solution is to pack other widgets into it, rather than with it.

Embedding Matplotlib

[140]

Matplotlib in your app
We have peered behind the canvas and have gained an immense understanding of
how backends in Matplotlib operate. For four of the major backends, we have even
seen how to augment our application with GUI widgets, learning some of the subtle
differences in the backends.

But, what if you already have a GUI application written in Python, and the
Matplotlib portion is the new feature to add? This is called embedding. The basic
idea is that the canvas is added to your application as a widget. The tricky part is that
you cannot let pyplot create the Figure instance. The pyplot module assumes that
it will be responsible for triggering and terminating the application mainloop. It also
automatically attaches the figure managers to the canvases. This can conflict with
normal application operations. Therefore, when embedding, it is best to completely
bypass pyplot.

Like in the previous section, we will examine how to embed the Matplotlib canvas
into a GUI Python application in four different toolkits. The application is just a main
window into which the canvas is added, but you will see the minimum needed to
get your Matplotlib application embedded. All of the examples will be based on the
same version of the code that the previous section's examples were based on. These
examples will not be built on top of those in the previous section, though. The main
reason for this is that those examples would need to be reworked to remove the
dependency upon the manager object. Bypassing pyplot means that no manager
is created for the figure and canvas. It would be too confusing in this book to fix up
those changes and show how to embed. Instead, we will only need to make two tiny
changes in the codebase before proceeding with the embedding work—remove the
following lines:

fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)

import matplotlib.pyplot as plt

The first one is of no consequence. The default keymap is established by the figure
manager, and without a manager, there is no default keymap to disable! The removal
of the other line keeps us from the temptation of using pyplot. Now, let us look at
how to add our application as if it was a widget.

GTK
When skipping the import of pyplot, you will need to explicitly import the Figure
class as well as the desired backend's canvas class. Of course, you will also want
to import the toolkit of choice using the same approaches we used in the previous
section.

Chapter 5

[141]

Source: chp5/embedding_gtk.py

import gtk
from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg
FigureCanvas = FigureCanvasGTKAgg

You may notice many online examples of embedding that might directly
import a class called FigureCanvas. This is actually identical to the import of
FigureCanvasGTKAgg from the gtkagg backend. As of version 1.4 of Matplotlib, the
backend-specific classes for the canvas and the manager have an alias to the names
FigureCanvas and FigureManager, respectively. For these examples, we will do the
aliasing ourselves in order to be compatible with earlier versions of Matplotlib.

Next, we will need to see how we bypass pyplot to create the figure and embed its
canvas into our application. For GTK, we start with a gtk.Window instance. Then
we create a Figure and FigureCanvas objects. Notice that these are just simple calls
to their constructors. After that, we are able to create plotting axes right off of the
Figure instance like normal. That is because the only thing different at this point
is the lack of the manager, and the manager wouldn't come into play in normal
circumstances until the show().

if __name__ == '__main__':
 ncf = netcdf_file('KTLX_20100510_22Z.nc')
 data = ncf.variables['Reflectivity']
 lats = ncf.variables['lat']
 lons = ncf.variables['lon']
 stormcells = storm_loader('polygons.shp')

 win = gtk.Window()

 fig = Figure()
 canvas = FigureCanvas(fig)
 ax = fig.add_subplot(1, 1, 1)
 raddisp = RadarDisplay(ax, lats, lons)
 raddisp.update_display(data[0])
 fig.colorbar(raddisp.im)
 polycolls = Stormcells(ax, stormcells)
 linecoll = Tracks(ax)

 # Turn on the first frame's polygons
 polycolls.toggle_polygons(0, True)
 ax.autoscale(True)

Embedding Matplotlib

[142]

 ctrl_sys = ControlSys(fig, raddisp, data, polycolls, linecoll,
 stormcells)

 win.connect('destroy', lambda x: gtk.main_quit())
 win.set_default_size(int(fig.bbox.width), int(fig.bbox.height))
 win.set_title("Embedding with GTK")
 win.add(canvas)
 win.show_all()
 gtk.main()

The final block of code does much of what a manager would do normally. These
steps establish the size of the main window, its title, and the adding of the canvas
widget. Finally, it kicks off the GUI mainloop, at which point you would see the
main window with your fully functioning application.

Embedding the canvas in a simple GTK application. This will appear the same in all of our embedding
examples.

Yes, it was that easy. "Perhaps it was because the GUI app we were embedding into
was too simple," you think? Nope. The canvas is a widget, and so it can be used in all
of the same ways that GTK widgets can be used. You can add the widget just about
anywhere. In a tab, in a modal window, in whatever you'd like it to be. You can also
add as many canvas widgets as you'd like. Just remember that there is one canvas
to each figure instance (and vice versa), but there is no reason why one can't have
multiple canvas widgets to an application window.

Chapter 5

[143]

One thing is missing from our figure, though—the navigation toolbar. This is another
thing that the figure manager would take care of automatically. If you want the
toolbar as well, it is available as a widget from the backend. There are examples
in Matplotlib's online documentation showing how to include the toolbar. For
simplicity, we will omit the navigation toolbar from these examples.

Tkinter
There is nothing unusual about the imports when embedding into a Tkinter
application. You may have noticed by now the lack of the matplotlib.use()
call. The use() feature is almost exclusively for the convenience of pyplot and is
completely useless in embedding situations.

Source: chp5/embedding_tk.py

try:
 import Tkinter as tk
except ImportError:
 import tkinter as tk
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
FigureCanvas = FigureCanvasTkAgg

For the Tk application, we will create a tk.Tk instance and pass it as the master widget
for the FigureCanvas. The canvas classes from the different backends all have slightly
different constructors, depending on the design of the toolkit and the backend.

if __name__ == '__main__':
 ncf = netcdf_file('KTLX_20100510_22Z.nc')
 data = ncf.variables['Reflectivity']
 lats = ncf.variables['lat']
 lons = ncf.variables['lon']
 stormcells = storm_loader('polygons.shp')

 win = tk.Tk()

 fig = Figure()
 canvas = FigureCanvas(fig, master=win)
 ax = fig.add_subplot(1, 1, 1)
 raddisp = RadarDisplay(ax, lats, lons)
 raddisp.update_display(data[0])
 fig.colorbar(raddisp.im)
 polycolls = Stormcells(ax, stormcells)
 linecoll = Tracks(ax)

Embedding Matplotlib

[144]

 # Turn on the first frame's polygons
 polycolls.toggle_polygons(0, True)
 ax.autoscale(True)

 ctrl_sys = ControlSys(fig, raddisp, data, polycolls, linecoll,
 stormcells)

 win.wm_title("Embedding with Tk")
 canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
 canvas.show()
 tk.mainloop()

The last block of code here sets the window title and packs the canvas widget into
its parent (which is the window instance, in this case, that was specified back in the
canvas constructor). Remember that the tkagg backend is a little bit unusual in that
the canvas object itself is not the widget. Instead, you obtain the widget from a call
to the get_tk_widget() method. Finally, the mainloop is started, at which point the
window will appear with a fully operational Matplotlib application.

Still don't believe me that it is this easy? Take a look at the next example.

wxWidgets
Just like the previous example's imports, there is nothing special here.

Source: chp5/embedding_wx.py

import wx
from matplotlib.figure import Figure
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg
FigureCanvas = FigureCanvasWxAgg

wxWidgets is a little bit different from the GTK and Tkinter toolkits. wxWidgets has
an App instance that needs to be constructed which will control the GUI mainloop.
For wxWidgets, it doesn't really matter when you instantiate it, but for the sake of
consistency, let us instantiate it before any of the other GUI elements. wxWidgets
is also a little bit different with respect to its window constructors. The wx.Frame
constructor requires a parent widget (which is None if it is the main window), an ID
number (which we can safely set to -1), and the window title. The wxagg backend's
FigureCanvasWxAgg constructor is also different from the other backend's canvas
constructors. It needs the parent widget, which we are setting to the window, the ID
number, and the figure instance to which the canvas will be attached.

Chapter 5

[145]

if __name__ == '__main__':
 ncf = netcdf_file('KTLX_20100510_22Z.nc')
 data = ncf.variables['Reflectivity']
 lats = ncf.variables['lat']
 lons = ncf.variables['lon']
 stormcells = storm_loader('polygons.shp')

 app = wx.App()
 win = wx.Frame(None, -1, "Embedding with wxWidgets")

 fig = Figure()
 canvas = FigureCanvas(win, -1, fig)
 ax = fig.add_subplot(1, 1, 1)
 raddisp = RadarDisplay(ax, lats, lons)
 raddisp.update_display(data[0])
 fig.colorbar(raddisp.im)
 polycolls = Stormcells(ax, stormcells)
 linecoll = Tracks(ax)

 # Turn on the first frame's polygons
 polycolls.toggle_polygons(0, True)
 ax.autoscale(True)

 ctrl_sys = ControlSys(fig, raddisp, data, polycolls, linecoll,
 stormcells)

 win.SetInitialSize(wx.Size(int(fig.bbox.width),
 int(fig.bbox.height)))
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(canvas, 1, wx.TOP | wx.LEFT | wx.EXPAND)
 win.SetSizer(sizer)
 win.Fit()
 canvas.SetFocus()
 win.Show()
 app.MainLoop()

Building our wxWidgets app is a little bit different from the first two examples
we looked at. I have had good success with embedding the canvas widget into a
wx.BoxSizer instance that is then added to the Frame instance. Then, the window's
Fit() method that will keep the canvas and the window sized together is called.
Obviously, your application may have different needs, so choose accordingly. Also
notice the call to the canvas's SetFocus() method. This helps to get our key press
events recognized by Matplotlib right away. Finally, the mainloop in the app object
is triggered.

And you still don't believe me that it is this easy to embed Matplotlib into your
application?

Embedding Matplotlib

[146]

Qt
One thing different for this toolkit's import is that we will need the sys module as
well. Otherwise, it is still recommended that you import the Qt bindings through
Matplotlib's qt_compat or the qt4_compat module.

Source: chp5/embedding_qt4.py

import sys
from matplotlib.backends.qt4_compat import QtGui, QtCore
from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg import FigureCanvasQt4Agg
FigureCanvas = FigureCanvasQt4Agg

Like wxWidgets, the Qt toolkit also has an application object that is needed to
be instantiated. However, it has been my experience that it is critical that the
QtGui.QApplication object is created prior to any other GUI element, unlike
with wxWidgets. The application constructor takes sys.argv, which is the list
of command-line arguments. This is a common convention in Qt programming,
and there are a number of Qt-specific command-line arguments that could be
passed to your application for special GUI behavior, which are explained in the Qt
documentation online. Next, the main window, figure and canvas objects are created.

if __name__ == '__main__':
 ncf = netcdf_file('KTLX_20100510_22Z.nc')
 data = ncf.variables['Reflectivity']
 lats = ncf.variables['lat']
 lons = ncf.variables['lon']
 stormcells = storm_loader('polygons.shp')

 # Must come before any Qt widgets are made
 app = QtGui.QApplication(sys.argv)
 win = QtGui.QMainWindow()

 fig = Figure()
 canvas = FigureCanvas(fig)
 ax = fig.add_subplot(1, 1, 1)
 raddisp = RadarDisplay(ax, lats, lons)
 raddisp.update_display(data[0])
 fig.colorbar(raddisp.im)
 polycolls = Stormcells(ax, stormcells)
 linecoll = Tracks(ax)

 # Turn on the first frame's polygons
 polycolls.toggle_polygons(0, True)
 ax.autoscale(True)

Chapter 5

[147]

 ctrl_sys = ControlSys(fig, raddisp, data, polycolls, linecoll,
 stormcells)

 win.resize(int(fig.bbox.width), int(fig.bbox.height))
 win.setWindowTitle("Embedding with Qt")
 # Needed for keyboard events
 canvas.setFocusPolicy(QtCore.Qt.StrongFocus)
 canvas.setFocus()
 win.setCentralWidget(canvas)
 win.show()
 sys.exit(app.exec_())

Finally, with the app-building code block, we size the window and establish its
title. We also take a couple extra steps to get the keypress events to be recognized
by setting a StrongFocus policy for the canvas widget, and setting it to have the
focus. Then we add the canvas as the central widget. We could have added the
canvas to a tab in a tabbed window setup, or maybe as some sort of element in a
dashboard display, and set that display as the central widget instead of the canvas.
In such cases, the focus policy may need to be tweaked a bit to allow other widgets
in the app to respond to interaction events. At last, the window is shown, and the
mainloop is started. Qt will even determine a return value for your application
based on how it terminates.

Summary
We have now seen Matplotlib for what it truly is: a plotting library that provides
several miniature GUI applications. We have revealed an interloper to the
figure-canvas relationship; namely the manager. The miniature GUI application
provides the manager, navigation toolbar, and the GUI window in which to
marry all of these components together into the interactive Matplotlib figure that
we have come to depend upon. When Matplotlib is not interactive enough for you,
you saw how to add new widgets to spice up your application. Finally, for those
who already have an interactive application, and only need Matplotlib "on the side,"
we explained how Matplotlib's canvas could be treated just like another widget to
be added to your application.

Looking back over the book, we have been on a journey discovering Matplotlib's
interactive features. Building this application piece-by-piece has given us a valuable
opportunity to not just learn the features, but to also see how they can work together
to create something that is greater than the sum of its parts. For example, not only
did we learn about Matplotlib's events and how to use them, we also utilized custom
events to completely refactor our application. That refactoring made it possible to
easily add new features to our event-driven application.

Embedding Matplotlib

[148]

We also saw first-hand the reasons for maintaining the separation between the
display and our data. Conflating the two is a common pitfall in application
development; its problems often manifesting later in development when they are
much more difficult to fix. With isolated display elements and the event framework,
each part could operate independently of each other, which made it easy to add
new elements to our display. It also made it trivial to reuse those components in
completely new applications.

The Bobs were wowed by our boardroom-pleasing animations that we were able
to generate from our codebase. We were also able to incorporate other animation
aspects into our application such as transitions using timers, as well as learn how
to create effects like tails and fades. Next, knobs and other gizmos were added to
it so that users like your manager and the Bobs could feel much more comfortable
using our application. Those widgets were an important component to achieving
full interactivity.

No project is ever really finished. More can always be done to extend it, making
it more useful. This storm cell application is an open source project hosted at my
GitHub page, and is actively used for severe weather research. Patches are always
welcome, and perhaps you may find a feature of yours demonstrated in a future
edition of this book!

[149]

Index
A
animation module 57-59
animations

about 55, 56
advanced 60-64
saving 74-79
simultaneous 77, 78

Anti-Grain Geometry (AGG) library
about 8
URL 8

artist 9, 13

B
backends

about 7
interactive, versus non-interactive 7
selecting 8, 9

bars 122
blitting 68, 69
built-in widgets

button 89-92
check buttons 92-95
Cursor object 110
format_coord() method 110-113
LassoSelector widget 103, 104
Lasso widget 99-103
radio button 95-98
RectangleSelector widget 104-107
slider 86-88
SpanSelector widget 108, 109

button
about 89-92
check buttons 92-95

C
canvas

materials 121, 122
CloseEvent event 25
codecs 75-77
collection

about 17-19
URL 17

connection
creating 22

container 17
Cursor object 110

D
data editing 41-48
DrawEvent event 23

E
editor events 49-53
event

about 23
big event 25-31
CloseEvent 23, 25
DrawEvent 22, 23
Event 23
IdleEvent 23, 24
KeyEvent 22-24
LocationEvent 23, 24
MouseEvent 23, 24
PickEvent 23, 24
ResizeEvent 22, 23

event source 64, 65

[150]

F
fades 72, 73
figure

about 9
canvassing 10-13

file formats 75
format_coord() method 110-113
frontend

to backend 7

G
gallery 6
ggplot

URL 114
Glue project

about 114
URL 114

GTK
about 122-126, 140, 142
gobject introspection 123

I
IdleEvent event 24
ImageMagick tool 56
interactive backend

versus non-interactive backend 7
interactive navigation

about 3
Home, Back, and Forward button 3
Pan (and zoom) button 4
Save button 4
Subplot configuration button 4
Zoom-to-rectangle button 4

interactive plotting 4

K
KeyEvent event 24
keymapping 34-38

L
LassoSelector widget 103, 104
Lasso widget 99-103
LocationEvent event 24

M
Matplotlib

built-in keymap 32-34
embedding 117-119
figure-artist hierarchy 9
forums 6
gallery 6
help 6
in app 140
installing 1, 2
interactive backend, versus non-interactive

backend 7
mailing lists 6
work, displaying 3

menus 122
MouseEvent event 24
mpldatacursor package

about 114
URL 114

N
Network Common Data Form (NetCDF) 11
non-interactive backend

versus interactive backend 7
Not a Number (NaN) 62
NumPy structured array 42

P
PickEvent event 24
picking 38-40
Plot.ly

URL 114
prettyplotlib

URL 114
primitives 14-16
pylab_setup() 120

Q
Qt library 135-139, 146, 147

R
radio button 95-98
recipes 69

[151]

RectangleSelector widget 104-107
ResizeEvent event 23

S
scripted plotting 5, 6
Seaborn

URL 114
session recorder

saving 79-81
slider 86-89, 122
SpanSelector widget 108, 109
subplots 10

T
tails 69-71
third-party tools

about 113
ggplot 114
Glue project 114
mpldatacursor package 114
Plot.ly 114
prettyplotlib 114
Seaborn 114

timers 66, 67
Tkinter 127-130, 143, 144

U
user events 48, 49

W
widgets

about 85
built-in widgets 85, 86

wxWidgets 131-134, 144, 145

X
XML data type

URL 77

Thank you for buying
Interactive Applications Using Matplotlib

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Matplotlib for Python Developers
ISBN: 978-1-84719-790-0 Paperback: 308 pages

Build remarkable publication-quality plots the
easy way

1.	 Create high quality 2D plots by using
Matplotlib productively.

2.	 Incremental introduction to Matplotlib, from
the ground up to advanced levels.

3.	 Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them
in Python applications.

4.	 Deploy Matplotlib in web applications and
expose it on the Web using popular web
frameworks such as Pylons and Django.

matplotlib Plotting Cookbook
ISBN: 978-1-84951-326-5 Paperback: 222 pages

Learn how to create professional scientific plots using
matplotlib, with more than 60 recipes that cover
common use cases

1.	 Learn plotting with self-contained, practical
examples that cover common use cases.

2.	 Build your own solutions with the orthogonal
recipes.

3.	 Learn to customize and combine basic plots
to make sophisticated figures.

Please check www.PacktPub.com for information on our titles

Learning IPython for Interactive
Computing and Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

1.	 A practical step-by-step tutorial which will
help you to replace the Python console with
the powerful IPython command-line interface.

2.	 Use the IPython notebook to modernize the
way you interact with Python.

3.	 Perform highly efficient computations with
NumPy and Pandas.

IPython Notebook Essentials
ISBN: 978-1-78398-834-1 Paperback: 190 pages

Compute scientific data and execute code
interactively with NumPy and SciPy

1.	 Perform Computational Analysis interactively.

2.	 Create quality displays using matplotlib and
Python Data Analysis.

3.	 Step-by-step guide with a rich set of examples
and a thorough presentation of The IPython
Notebook.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Interactive Plotting
	Installing Matplotlib
	Show() your work
	Interactive navigation
	Interactive plotting
	Scripted plotting
	Getting help
	Gallery
	Mailing lists and forums

	From front to backend
	Interactive versus non-interactive
	Anti-grain geometry
	Selecting your backend

	The Matplotlib figure-artist hierarchy
	Canvassing the figure
	The menagerie of artists
	Primitives
	Collections

	Summary

	Chapter 2: Using Events and Callbacks
	Making the connection
	The big event
	Breaking up is the easiest thing to do
	Keymapping
	Picking
	Data editing
	User events
	Editor events
	Summary

	Chapter 3: Animations
	A short history
	The fastest draw in the west
	The animation module
	Advanced animations
	Event source
	Timers
	Blitting
	Recipes
	Tails
	Fades

	Saving animations
	Notes about codecs and file formats
	Simultaneous animations
	How animations are saved
	Session recorder

	Summary

	Chapter 4: Widgets
	Built-in widgets
	Slider
	Button
	Check buttons
	Radio button
	Lasso
	LassoSelector
	RectangleSelector
	SpanSelector
	Cursor
	format_coord()

	Third-party tools
	mpldatacursor
	Glue
	Plot.ly, ggplot, prettyplotlib, and Seaborn

	Summary

	Chapter 5: Embedding Matplotlib
	The revelation
	Through a glass, darkly
	Tinker tailor soldier pylab_setup()
	Canvas materials

	Bars, menus, and sliders four ways
	GTK
	Tkinter
	wxWidgets
	Qt

	Matplotlib in your app
	GTK
	Tkinter
	wxWidgets
	Qt

	Summary

	Index

