Perl 5%’

Web development can be fun again

A Mojolicious Book
Brian Medley

Contents

License

Rationale
1.1 Mojolicious e e e e

Preparation

Going Forward
2.1 Preamble e
22 HTTP 1.1 e e
23 Routes e e
24 LogEING e e e e e e e
2.5 Placeholders
2.6 Parameters. L e
277 Templatesand Stash
2.8 SeSSIONS e e e
2.9 Forms e e e e

Mojolicious Applications
3.1 APhotoapp e
3.1 Startup . ..o e
3.1.2 Controller e
3.1.3 LandingPage
3.2 Bloggingapp e e e e e e
32,1 Startup e e e
322 Controller
33 Chatapp o e

Examples

10
10
11
12
13
14
16
18
19
21

24
24
25
27
28
35
35
37
39

43

4.1
4.2
4.3
4.4
4.5

Basic Authentication Lo L 43
Session Authentication Lo 45
JSON API e 48
Synchronizing non-blocking operations 53
Mojo::UserAgent Command-Line 55

License

Please download and share this book unmodified. (The book is available under a Creative
Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.)

https://creativecommons.org/licenses/by-nc-nd/3.0/

Attribution: Perl 5 Raptor: https://github.com/kraih/perl-raptor

Rationale

1.1 Mojolicious

Thus begins our quest for Mojo - a tutorial approach to learning web technologies. We will be
learning Mojolicious [http://mojolicious.org]; at the time of this writing it is a "next generation
web framework for the Perl Programming language". The next generation feature set is:

e Full stack HTTP and WebSocket client/server
« IPv6, TLS, SNI, IDNA, Comet

* Non-blocking I/0 and embeddable web server
e JSON and HTML/XML parse with CSS selectors
 Perlish Templates

e Sessions

 Cookie management

e HTTP / WebSocket

* Routes

e CGI / PSGI auto-detection

e Static files

e Testing framework

e Plugins

Chapter 2 will focus on introducing Mojolicious while chapter 3 has several apps for perusal. A
photo app, blogging app, and a real-time chat app. Chapter 4 has several practical examples.

Preparation

Perl

Mojolicious requires Perl. These days we separate a system perl with a user installed Perl. The
user installed is necessary so that we have free reign over what is installed, configured, and can
allow for easier debugging.

We will be using Perl on OS X with 5.20.1. Your system Perl will be used to bootstrap our
install with Perl-Build and App::cpanminus. Perl-Build will download, configure, and install
Perl, while App::cpanminus allows for easier installation of modules.

$ curl -L —-n -0 https://raw.githubusercontent.com/tokuhirom/Perl-Build/master/perl-build
$ perl perl-build 5.20.1 /opt/perl-5.20.1

Fetching 5.20.1 ...
Downloaded http://.../SHAY/perl-5.20.1.tar.bz2 to .../perl-5.20.1.tar.bz2
Configuring perl °5.20.1

$ curl -L http://cpanmin.us | /opt/perl-5.20.1/perl - App::cpanminus

--> Working on App::cpanminus
Fetching http://www.cpan.org/authors/id/M/MI/MIYAGAWA/App-cpanminus-1.7014.tar.gz ... OK
Configuring App-cpanminus-1.7014 ... OK

Building and testing App-cpanminus-1.7014 ... OK
Successfully installed App-cpanminus-1.7014
3 distributions installed

After doing these things it will be easier to install Mojolicious and any required modules. Also,
there is now a fully functional Perl install that can be tinkered with to your heart’s content. To
verify the install run:

$ /opt/perl-5.20.1/bin/perl -v

This is perl 5, version 20, subversion 1 (v5.20.1) built for darwin-2level
Copyright 1987-2014, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at http://www.perl.org/, the Perl Home Page.

For convenience, a symlink can be added so that /opt/perl points to /opt/perl/5.20.1/bin/perl.
$ In —s /opt/perl-5.20.1/bin/perl /opt/perl

Installation

Adding the Mojolicious CPAN module to the system installs everything required for developing
and running a web app.

$ /opt/perl-5.20.1/bin/cpanm Mojolicious

Mojolicious will be installed by the cpanm utility.

Hello World In Text

Now that we have Mojolicious installed, we can start writing code for our website. Our first
example is a full program and you are not expected to understand everything. It is geared to
get your feet wet. After this, we will have a tutorial introduction in HTTP, HTML, Javascript,
CSS, and other Web technologies. The first example is a Mojolicious::Lite application. It is a
real-time micro web framework. This micro web framework can have the entire web structure
in a single file.

Several key features that enable the real-time aspects of the framework are websockets, RESTful
routes, non-blocking I/0 web server, and long polling.

The framework is predominately written by Sebastian Riedel.

Now, lets turn our attention onto some code. In the code below, line 1 turns your Perl script into
a full featured web application that uses strict, warnings, and utf8. It’s fun.

7

DB W=

OO0 1N N Wk —

Listing 1.1: Hello World - ex1_1.pl

use Mojolicious::Lite;
get ’/’ => {text => 'Mojolicious is awesome!’};
app->start;

Run the program like so:
$ morbo —-v hello_world_text.pl

["Mon Sep 3 19:08:38 2012] [info] Listening at "http://*:3000".
Server available at http://127.0.0.1:3000."

We now have a full featured web server running on port 3000. You may view in any browser. In
your URL bar put: http://127.0.0.1:3000 and view the page.

Hello World In HTML

Next, modify the contents of hello_world.pl to look like this:

Listing 1.2: HTML Hello - ex1_2.pl

use Mojolicious::Lite;

get '/’ => sub {
s

my $self = shift;

$self->render("index");

I

app->start;
__DATA _

@@ index.html.ep

<!DOCTYPE html>
<html>
<head>
<title>Hello World</title>
</head>
<body>
Hello world
 %# Edit here
</body>
</html>

Our morbo server should automatically restart and load the new file contents. The code at line 6
displays the inlined page below.

Next, add "Carpe diem" after line 21. Save the file and reload the page in the browser. The
morbo server will restart your server once a change is detected.

The other way to build an app is with a well-structured web application. This is where the
business logic and application set up are put in several files, as opposed to just one. A full app is
created with the "generate app" command, and we will discuss this further with the Photo app.

We are going to be using lite apps going forward until the photo album is encountered later on.

Going Forward

2.1 Preamble

Here we get down with Mojo. A brief introduction of HTTP 1.1 is given and then we look at
some specific ways that Mojolicious creates a framework around web technologies to make
things easier for development. Specifically, we will look at what follows:

* Routes

Logging
Placeholders

Query Parameters
Templates and Stash
e Sessions

Forms

After that our attention will be turned to apps and examples.

10

22 HTTP1.1

Under the Hood

As you know, web pages are loaded from a server. When you go to domain.com, then the
default HTML is loaded using HTTP. As you will see, the transfer, or request, from the web
browser client (aka user agent) to the server can be considered a file transfer. For example, when
http://127.0.0.1:3000 was visited something like the following was sent from your browser to
the server (the request):

GET / HTTP/1.1

Host: 127.0.0.1:3000

Connection: keep-alive

Cache-Control: max-age=0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/%;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_8_5) AppleWebKit/537.36 (KHT
Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Then, the server responded with (the reply):

HTTP/1.1 200 OK

Content-Length: 2

Server: Mojolicious (Perl)
Connection: keep-alive

Date: Wed, 30 Oct 2013 23:44:04 GMT
Content-Type: text/html;charset=UTF-8

If we were to go to http://127.0.0.1:3000/hello, then the GET request would start with:
GET /hello HTTP 1.1

Of note, 1s that when we access http://127.0.0.1:3000 there is an implied "/" and when
http://127.0.0.1:3000/hello there is a specific "/hello". These are the pages that the server
1s being requested to serve.

Also, the structure of the request and response should be noted. The lines that are Word:
or Word-Dash-Word: are called headers. These are metadata that describe your request and
response.

11

DN W=

2.3 Routes

Finding our way
Routes enable Mojolicious to easily glue together an incoming request with code.

For example, if we pointed our browser at http://127.0.0.1:3000, then the following request
would be sent to the server:

GET / HTTP 1.1

And the route below would be used.

Listing 2.1: Index Route

get '/° => sub {

my $self = shift;

$self->render(text => "Hello world");
b

The get °/’ will redirect the HTTP GET / request to the anonymous subroutine shown. It should
be noted that a GET and POST can be redirected to different subroutines; and we will examine
POST later in the chapter. This is a very powerful construct that allows us to execute arbitrary
business logic (system commands, SQL, control flow logic, etc) for a given request.

Also, $self is a Mojolicious::Controller object. This contains both the HTTP request and HTTP
response.

12

[S—

— OO0 00NN BN~

2.4 Logging

From whence we came

At times it is appropriate to log data while processing code in the backend. In development
mode a file in log/development.log is used and in production mode a file log/production.log is
utilized. The modes can be switched around via MOJO_MODE environment variable. Merely
creating a log directory in the app’s home directory will enable the output into these files.

$ mkdir log

Now we can send logging data to the proper file with code such as:

Listing 2.2: ex2_2.pl

use Mojolicious::Lite;

get ’/:name’ => {name => ’Default’} => sub {
my $self = shift;

my $name = $self->param("name");

$self->render(text == "Hello world: $name");

I

app->start;

In addition, usage statistics for each request are logged to the development.log file. For example,
the below is from the route snippet above.

[Mon Sep 3 22:07:35 2012] [info] Listening at "http://*:3000".

[Mon Sep 3 22:07:38 2012] [debug] Your secret passphrase needs to be changed!!!
[Mon Sep 3 22:07:38 2012] [debug] GET /carpe (Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1).
[Mon Sep 3 22:07:38 2012] [debug] Routing to a callback.

[Mon Sep 3 22:07:38 2012] [debug] {
’now’ => 'Mon Sep 3 22:07:38 2012’

}

13

— OO0 00INWNBWN

[SE—

2.5 Placeholders

What’s in a name...

Input and output are intrinsic to any computer program, perhaps doubly so to a web application.
A significant source of user input comes from the URL that the user typed in. These are
placeholders and GET/POST parameters.

They are embedded in the the URLSs, which makes things easy for copying and pasting with
friends. We will be discussing placeholders in this section.

A placeholder is embedded in the URL and parsed by Mojolicious. They are available via the
->param method.

As a specific example, the following code can be used to demonstrate a GET request with an
optional placeholder. The parameter is a name.

Listing 2.3: ex2_2.pl

use Mojolicious::Lite;
get ’/:name’ => {name => ’Default’} => sub {
my $self = shift;
my $name = $self->param("name");
$self->render(text => "Hello world: $name");
};
app->start;

The application usage is straightforward: visit “http://127.0.0.1:3000/° and you get a default
name; visit "http://127.0.0.1:3000/Ben’ and you get the name ’Ben’.

The above paragraph is detailed below via curl.

14

$ curl -v http://127.0.0.1:3000/

Trying 127.0.0.1...

Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)
GET / HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: */*

HTTP/1.1 200 OK

Content-Length: 20

Server: Mojolicious (Perl)

Date: Fri, 29 Apr 2016 21:21:12 GMT
Content-Type: text/html;charset=UTF-8

ANNANANANANYV VYV VYV ¥ *x

Connection #0 to host 127.0.0.1 left intact
Hello world: Default

$ curl -v http://127.0.0.1:3000/Ben

* Trying 127.0.0.1.

*

* Connected to 127. 0 0.1 (127.0.0.1) port 3000 (#0)
> GET /Ben HTTP/1.1

> Host: 127.0.0.1:3000

> User-Agent: curl/7.43.0

> Accept: */x*

>

< HTTP/1.1 200 OK

< Content-Length: 16

< Server: Mojolicious (Perl)

< Date: Fri, 29 Apr 2016 21:21:16 GMT

< Content-Type: text/html;charset=UTF-8

<

*x Connection #0 to host 127.0.0.1 left intact

Hello world: Ben

Of note is that the default GET request looks exactly similar with the one in the prior section.
However, when we add /Ben onto the URL we get "GET /Ben".

15

2.6 Parameters

Variety is the spice...

This section deals with GET and POST parameters. These parameters present themselves
through the request in the query string. This will be made clearer in the curl output below;
however, something like "GET /?age=25" is presented to the server when the user types (or
clicks on a link that has) http://127.0.0.1:3000/?age=25

As a specific example, the following code can be used to demonstrate a GET request with a
placeholder and GET parameter. Both are optional.

Listing 2.4: ex2_3.pl

OO0 N Wk —

use Mojolicious::Lite;
get ’/:name’ => {name => ’Default’} => sub {
my $self = shift;
my $name = $self->param("name");
my $age = $self->param("age") // 20;
$self->render(text => "Hello world: $name and $age years old.");
}i
app->start;

The application usage is straightforward: visit "http://127.0.0.1:3000/” and you get a default
name; visit "http://127.0.0.1:3000/Ben?age=30" and you get the name ’Hello world: Ben and 30

years old.’.

The above paragraph is detailed below via curl.

16

$ curl -v http://127.0.0.1:3000/

Trying 127.0.0.1...

Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)
GET / HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: */*

HTTP/1.1 200 OK

Content-Type: text/html;charset=UTF-8
Server: Mojolicious (Perl)
Content-Length: 38

Date: Fri, 29 Apr 2016 21:55:57 GMT

ANNANANANANYV VYV VYV ¥ *x

*

Connection #0 to host 127.0.0.1 left intact
Hello world: Default and 20 years old.

$ curl -v http://127.0.0.1:3000/Ben?age=30

* Trying 127.0.0.1.

Connected to 127. 0 0.1 (127.0.0.1) port 3000 (#0)
GET /Ben?age=30 HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: x/x

HTTP/1.1 200 OK

Content-Type: text/html;charset=UTF-8
Date: Fri, 29 Apr 2016 21:56:01 GMT
Content-Length: 34

Server: Mojolicious (Perl)

* NANANANANANV VYV VYV X

Connection #0 to host 127.0.0.1 left intact
Hello world: Ben and 30 years old.

Again, the default GET request looks exactly similar with the one in the prior section. However,
when we add /Ben?age=30 onto the URL we get "GET /Ben?age=30".

Multiple paramters can be added with a &. The first requires a ? and then the rest are separated
by &.

For example http://127.0.0.1:3000/Ben?age=30&developer=1.

17

OO0 N Wk —

2.7 Templates and Stash

How did that get there?

Templates are the bread and butter of dynamic content generation. They take input from the
controller and load that into a templating system to create content. The content is usually a web
page with HTML, CSS, and Javascript. However, there are other possibilities, as well, such as
text, XML, and pdf.

The input from the controller is placed in a "stash" data structure. There are a few ways to set
up this data structure. One approach is to use the "stash" controller method.

Listing 2.5: ex2_4.pl

use Mojolicious::Lite;

get ’/:name’ => {name => ’’} => sub {
my $c = shift;

my $name = $c->param("name");
$c->stash(name => $name);

$c->render("slash");

I

app->start;
__DATA _

@@ slash.html.ep

% if (stash(’name’)) {
You are <%= stash(’name’) %>
% } else {
Please pass in a name to the url like so ’<%= url_for(’/Ben’)->to_abs %>’.

(o}
% }

For example, in line 8 of ex2_4.pl we set the "name" stash parameter which will be available
in the templates. Specifically, at line 19 the "stash" helper is used to dynamically adjust the
template output.

18

OO0 NN N W —

2.8 Sessions

Lets stick around

A session is mechanism that uses cookies for saving state between different requests and
responses. The cookie is a special header in the browser that is saved by the browser between
requests and responses in a cookie jar. Technically, the session is defined as:

Persistent data storage for the next few requests, all session data gets
serialized with Mojo::JSON and stored Base64 encoded in HMAC-SHAl signed
cookies, to prevent tampering. Note that cookies usually have a 4096 byte (4KB)
limit, depending on browser.

In the code below, when we visit http://127.0.0.1:3000 and reload several times, then the browser
will remember the counter at line 6. Then, the user will be shown how many times they have
visted.

Listing 2.6: ex2_5.pl

use Mojolicious::Lite;

get ’/7 => sub {
S

my $self = shift;

++$self->session->{count};

$self->render("slash");

};
app->start;
__DATA__

@@ slash.html.ep

% if (1 == session("count")) {
You have visted once.
% } else {

You have visted <%= session("count") %> times.

o
% }

Lets examine what happens in the actual request and response. What we’re going to do is use
curl and show the headers that are interchanged via the user agent and the server.

19

Our initial request is here. The last line shows that this is the first time this page has been visted.
Please note that there the Set-Cookie header in the response is parsed by curl and saved into the
file "jar".

$ curl -v --cookie jar --cookie-jar jar http://127.0.0.1:3000/
> GET / HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: */x

HTTP/1.1 200 OK

Date: Fri, 29 Apr 2016 01:59:07 GMT

Added cookie mojolicious="eyJleHBpcmVzIjoxNDYx0Dk4NzQ3LCJjb3VudCIGMXO- - -72e64d66da00d8calf
80ee4838410957612188d" for domain 127.0.0.1, path /, expire 1461898747

Set-Cookie: mojolicious=eyJleHBpcmVzIjoxNDYx0Dk4NzQ3LCJjb3VudCIGMXO- - -72e64d66da00d8calf80
ee41838410957612188d; expires=Fri, 29 Apr 2016 02:59:07 GMT; path=/; HttpOnly

Server: Mojolicious (Perl)

Content-Type: text/html;charset=UTF-8

Content-Length: 26

¥ NNV V VYV

A

ANNANNA

You have visted once.

The next time we run curl we’ll send the Cookie header in the request so that the server can
retrieve the value(s) that were saved earlier. This cookie is then made available in the session
object for the route.

$ curl -v --cookie jar --cookie-jar jar http://127.0.0.1:3000/

> GET / HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: */*

Cookie: mojolicious=eyJleHBpcmVzIjoxNDYxODk4NzQ3LCJjb3VudCI6MXO- - -72e64d66da00d8calf80eed f
838410957612188d

V V VYV

HTTP/1.1 200 OK

Server: Mojolicious (Perl)

Content-Length: 29

Content-Type: text/html;charset=UTF-8

Replaced cookie mojolicious="eyJleHBpcmVzIjoxNDYx0Dk4NzQ5LCJjb3VudCI6MnO- - -5a8ec66a8db5e54
a484211159e1f116631e62a27" for domain 127.0.0.1, path /, expire 1461898749

Set-Cookie: mojolicious=eyJleHBpcmVzIjoxNDYx0Dk4NzQ5LCJjb3VudCI6MNnO- - -5a8ec66a8db5e54a4842
1159e1f116631e62a27; expires=Fri, 29 Apr 2016 02:59:09 GMT; path=/; HttpOnly

< Date: Fri, 29 Apr 2016 01:59:09 GMT

¥ N NN ANV

A

You have visted 2 times.

Do you see the message that we visited the index page twice? Our cookie jar saved the state and
the server correctly interpreted Cookie: header in the request.

20

OO0 NN N W —

el e e T e T e T e S e e e
OO0 NPk W —O

2.9 Forms

User Input

Without user input the web would be boring. We need the user’s data so that we can do
meaningful work. A large percentage of user data originates from forms. For this section, lets
look at the example in different parts. First, we’ll have our application logic, and next we’ll look
at the templates.

The application logic displays the form at line 2; processes our form at line 8; and either displays
an error, or success at lines 16 and 19.

Listing 2.7: Application logic

Present form
get ’/’ => IIS'LaShII;
post '/’ => sub {
my $self = shift;
Process
if ("Bender" eq $self->param("name")) {
$self->redirect_to("/bender");
return;
}
Error
$self->flash(error => "Not bender");
$self->redirect_to("/");
I
get ’/bender’;

We use the flash for presenting any error message during form processing. The flash is set at
line 15 and its value is used in the template. The flash is a methodology for passing a value from
one request to another and only lasts for that one request.

This is perfect for passing success, informational, and error messages between requests - such
as what is done at line 3 below.

One more thing to note is that in our <form> we have an "action" attribute. With this we set the
destination of our POST request. Very important so that data shows up at the proper spot.

21

OO0 NN N W —

Listing 2.8: Templates

@@ slash.html.ep
% if (flash("error")) { #
<%= flash("error") %>

% }
<form method=post action="/"> %#
Name: <input type=text name=name>
</form>
@@ bender.html.ep

Awesome!

Now, lets examine exactly what happens when we use our form.

Using curl, we’re going to request our form, and then submit the form. The initial request is
shown below. This is exactly as if typing "http://127.0.0.1:3000" in the URL bar and then hitting
enter.

This will send off a GET request to the server which responds with our form.

$ curl -v http://127.0.0.1:3000/

* Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)
GET / HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: x/x

HTTP/1.1 200 OK

Content-Length: 73

Server: Mojolicious (Perl)

Date: Fri, 29 Apr 2016 03:02:40 GMT
Content-Type: text/html;charset=UTF-8

ANNANANANV VYV VY

<form method=post action="/">
Name: <input type=text name=name>
</form>

The next command will simulate sending filling out the form with "Bender" and pressing enter.
Note how the curl request is now a POST. This queues our application logic to process the ’post
=>"/"" route. The route verifies the user input (that name does, in fact, equal "Bender") and
redirects us onto success route.

Note the use of 302 Found redirection logic.

22

This is a separate request that the user agent must follow in order to complete the form.

$ curl -v -L -d ’name=Bender’ http://127.0.0.1:3000/
* Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)
POST / HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: x/x

Content-Length: 11

Content-Type: application/x-www-form-urlencoded

HTTP/1.1 302 Found

Location: /bender

Date: Fri, 29 Apr 2016 03:06:38 GMT
Content-Length: 0

Server: Mojolicious (Perl)

Connection #0 to host 127.0.0.1 left intact

Issue another request to this URL: ’http://127.0.0.1:3000/bender’
Switch from POST to GET

Re-using existing connection! (#0) with host 127.0.0.1

Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)

GET /bender HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: x/x

HTTP/1.1 200 OK

Date: Fri, 29 Apr 2016 03:06:38 GMT
Content-Length: 9

Server: Mojolicious (Perl)
Content-Type: text/html;charset=UTF-8

ANANANANANYVVVVYV X % % % % NANANANANANVVVVVVYV

Awesome!

We have achieved Awesome via our form processing.

23

Mojolicious Applications

3.1 A Photo app

The previous portion of this book focused on Mojolicious::Lite applications; however, in order
to realize our Photo application it will be easier to use the full blown application features of
Mojolicious. An application of this type can be started with:

$ mojo generate app Photo

[mkdir] /opt/photo/script

[write] /opt/photo/script/photo

[chmod] /opt/photo/script/photo 744

[mkdir] /opt/photo/lib

[write] /opt/photo/lib/Photo.pm

[mkdir] /opt/photo/lib/Photo/Controller

[write] /opt/photo/lib/Photo/Controller/Example.pm
[mkdir] /opt/photo/t

[write] /opt/photo/t/basic.t

[mkdir] /opt/photo/public

[write] /opt/photo/public/index.html

[mkdir] /opt/photo/templates/layouts

[write] /opt/photo/templates/layouts/default.html.ep
[mkdir] /opt/photo/templates/example

[write] /opt/photo/templates/example/welcome.html.ep

As you can see, it has an invocation script, startup package (lib/Example.pm), an example
Controller, some tests, and example content (the index.html and .ep template files).

However, starting from scratch is not necessary; we are going to use the git checkout of this
book which includes all the code for our Photo app.

$ cd /opt
$ git clone git@github.com:brianmed/mojo_book.git
$ cd mojo_book

24

W N =

The app is runnable via:

$ cd photo
$ morbo —-v script/photo

When we point our browser to http://127.0.0.1:3000 we’ll get our app. As you can see, our
version is in /opt/mojo_book/photo and expects its config file to be in /opt/photo.

After the config file has been set up, we can run our app via "script/photo"; this is a Perl script
that bootstraps our app. Most of the time you won’t need to modify this; however, if module
directories are needed, then "use lib" statements can be put here.

What happens next?

3.1.1 Startup

Mojolicious initializes our app and then calls Photo::startup.

The startup method adds and configures plugins; sets up some logging; adds in helpers; and sets
up routes. For example, as you can see below in the line from lib/Photo.pm our route for the
index page is set up.

Listing 3.1: Index Route

$r->get(’/’)->to(controller => ’Index’, action => ’slash’);

When a user agent does a GET /, then Photo::Controller::Index::slash will be called and the
slash.html.ep file will be served.

Given that, lets go back and dissect Photo::startup one "section" at a time.

First, we turn on development logging for when we are running in production mode. This is a
convenience for early stage production or when debugging something. Simply comment out
for Production. Next, we initialize the config data structure with a file. These are lines 1 and 3
below.

Listing 3.2: Setup

$self->log->level ("debug");

my $site_config = $self->plugin("Config" => {file => $self->home->rel_file(’ ../
photo.config’)});

This file is just a Perl data structure and can be hand edited or programmatically defined. Another
option is to use JSONConfig and a JSON config file. Below is an example config file.

25

Listing 3.3: Configuration

OO0\ Nk W —

site_secret => "MOAR COREZ foR all the things!",

The next set up phase is to initialize the secret passphrase. Multiple passphrases are supported
that allows for phasing out an old passphrase. These passphrases are used for things like signed
cookies (which are used in the sessions).

Listing 3.4: Secrets setup
$self->secrets([$$site_config{site_secret}]);

After our passphrase we set up our routes; an "under" nested route that verifies the session; and
route set up itself. At line 15 the "entry" point to our app from the user agent is defined - namely
the initial page. It should be noted that we can define "get" and "post" for these routes.

Listing 3.5: Under route
my $r = $self->routes;

my $have_album = $r->under (sub {
my $self = shift;

if (!$self->session("album")) {
my $url = $self->url_for(’/’);
$self->redirect_to($url);
return undef;

}

return 1;

});

$r->get(’/’)->to(controller => ’Index’, action => ’slash’);

Arbitrary Perl (DB lookups, JSON parsing, file processing) can be put in the nested route. If "1"
1s returned the child route will be allowed to run and if "undef" is returned it won’t. Very handy
for doing basic authentication and authorization checks. If they don’t pass either one, then a
redirect can happen, or some flag can be set.

26

OO0 1N N Wk —

W N =

In addition "any" is supported - which is useful for supporting GET and POST on the same
route. Below are a couple example routes. One for GET and another for POST.

Listing 3.6: Initial routes

$r->get(’/album/switch/:name’) ->to(
controller => ’Album’,
action => ’switch’,
name => undef

);

$r->post(’/album/save’) ->to(
controller => ’Album’,
action => ’save’

);

One thing that should be mentioned about our routes is that they have two modes of operation.
One is when we have no session and another is when there 1s a session. Our session stores the
selected album and the $have _album nested route verifies if the session is still valid. If not, the
user agent will be redirected back to the landing page.

The above app logic is shown in the code below.

Listing 3.7: Session route

$have_album->get(’/album/show’) ->to(
controller => ’Album’,
action => ’show’

);

3.1.2 Controller

A controller encapsulates the business logic for our website. Fine grained control can be exerted
over the app by using packages and subs. One package can control the "main" page with login
and logout and other packages can focus on other sub systems of our app.

For our app, we have the Index and Album controllers. One is the landing page for our app and
the other holds all the business logic for the photo album.

We can view an album, create one, switch to a new album, upload a photo, and view a photo.

27

O 01N N kW —

3.1.3 Landing Page

The main page does several things - allow for viewing; selecting, or creating an album. Below
1s the method responsible for all this.

Listing 3.8: Landing page logic
sub slash {
my $c = shift;

my $all = SiteCode::Albums->new(path => $c->app->home->rel_dir("albums"))->all;

if (0 == @{ $all }) { # Create an album if none found
my $url = $c->url_for(’/album/create’);
return($c->redirect_to($url));

if ($c->session("album")) { # Show the album if we have a session
my $url = $c->url_for(’/album/show’);
return($c->redirect_to($url));

}

my $url = $c->url_for(’/album/switch’); # Select an album if nothing selected
return($c->redirect_to($url));

Code starting at line 4 checks to see if any albums have been created; if not, the user is redirected
to /album/create. In addition, we’re using the handy url_for and redirect_to methods. These
methods allow for more easily working with URLSs and generating a 302 response.

One last thing, is that this switch-a-roo logic is made possible by the marvelous session handling
in Mojolicious. There are several ways to use the session, two are detailed below. The first line
reads a variable from the session and the second line sets the variable.

my $foo = $c->session(’foo’);
$c = $c->session(foo => ’bar’);

That’s all you got to do, and you get:

Persistent data storage for the next few requests, all session data gets
serialized with Mojo::JSON and stored Base64 encoded in HMAC-SHAl signed
cookies, to prevent tampering. Note that cookies usually have a 4096 byte (4KB)
limit, depending on browser.

Photo

Initially, no photo albums exist in the model.

28

OO0 1N N kW —

Given that, the landing page redirects the user to an action that creates an album. This action is
not in Photo::Controller:: Album, it uses automatic rendering (explained below).

The renderer can be manually started by calling the method "render" in
Mojolicious: :Controller, but that’s usually not necessary, because it will get
automatically called if nothing has been rendered after the router finished its
work. This also means you can have routes pointing only to templates without
actual actions.

This automated rendering takes our template file and displays it. The template name is generated
by taking the controller, action, format, and handler and combining them like so: controller/ac-
tion.format.handler. Therefore, our template is album/create.html.ep.

The main things to note in this template are the error and form handling. The error section is
here:

Listing 3.9: Error handling

% 1if (flash(’error’)) {
<div class="row">
<div class="spanl2">
<div class="alert alert-error">
<button type="button" class="close" data-dismiss="alert">×</button>
<%= flash(’error’) %>
</div>
</div>
</div>
% }

The main points are the % to embed Perl code in the template sandbox and the flash usage. The
flash is persistent for one-request only and is stored in the session. The error would come from
the POST form action (shown below).

Listing 3.10: Form start

<form action="/album/save" method="post">

The POST action Album::Controller::save does several things, most notably it validates the
input, creates the album, and stores the album name in the session. That is, it "switches" to that
album. Below is the error handling. Of note is that the flash error value is stored with an API
similar to the stash. After setting our error flag we redirect back to displaying the create view.

29

Listing 3.11: Switching albums error checking

my $dir = $c->app->home->rel_dir("albums");
my $album_name = $c->param("album_name");

unless ($album_name) {
$c->flash("error" => "No album name given");

my $url = $c->url_for(’/album/create’);
return($c->redirect_to($url));

OO0 NN N W —

}

After the input checks are done and the album created, we switch to that album and redirect
back to the landing page - which will detect the selected album and act appropriately.

Listing 3.12: Switching albums logic

warn("album_name: $album_name");
$c->session(album => $album_name);

my $url = $c->url_for(’/’);
return($c->redirect_to($url));

N B W=

Also, one thing to see that we have a "warn" in the code there. It’s main purpose is to show
that this is possible and will go the "console". For example, if running through morbo, then the
message will be intermixed in the morbo output and not in the log file.

So, after the above, we go back to the landing page - which redirects to the album viewer. The
action for this is Photo::Controller:: Album::show. This sub is responsible for shimmying data
from our model (a bunch of JSON files) to the view. Below 1s how that is accomplished.

It should be noted that we are able to pass an object to the view.

Listing 3.13: Viewing albums

$c->stash(album => $album);
$c->stash(slots => $album->slots);
$c->stash(albums => $albums->all);

W N =

In addition, we put some debug information in the log to demonstrate how that operates.

Listing 3.14: Debugging example
1 $c->app->log->debug("album: " . $album->name);

Our template for this action (album/show.html.ep) does several things. In the HTML body we
have our error handling, form to handle a new photo upload, button that allows for switching
between albums, and the picture viewing code.

30

O 01N N Wk —

The picture code is in the template twice. The first time is if there are no photos to view and the
second is when we have a photo.

The form code 1s shown below.

Listing 3.15: Form setup

<form action="/album/upload" method="post" enctype="multipart/form-data"> %#
<fieldset>
<legend>
<%= stash(’album’)->name %> - %#
<div class="btn-group">

Albums

<ul class="dropdown-menu">
Create</1i>
<li class="divider"></1li>
% foreach my $album (@{ stash(’albums’) }) {
<a href="/album/switch/<%= $album->name %>"><%= $album->name
%>

(]

% }

</div>
</legend>
<label>Label</label>
<input type="text" placeholder="Label" name="label">

<label>Description</label>
<input type="text" placeholder="Description" name="descr">

<label>File</label>
<input type="file" name="photo">
</fieldset>

<button type="submit" class="btn">Upload</button>
</form>

At line 1 we specify action that will happen when we upload a file. Line 4 is pretty cool because
we’re accessing a value in the stash that is an object. Lines 13 to 15 process our album array to
generate a pulldown for the user to select an album. They are shown below.

Listing 3.16: Album links

% foreach my $album (@{ stash(’albums’) }) {
<a href="/album/switch/<%= $album->name %>"><%= $album->name
%>

o
% }

31

— OO0 NP W -

—
W N =

O\ UN W~

The ability to intermix Perl loop and control structures with plain html is very powerful. As a
specific example, the above allows us to iterate over an array of objects in the stash to create a
portion of our html document.

After our form, we process the HTML to display the album. This is shown below.

Listing 3.17: Display album
% if (0 == @{ stash(’slots’) }) {
<div class="row">
<div class="spanl2">
No photos found
</div>
</div>

% }
% if (0 !'= @{ stash(’slots’) }) {

o
% }

Note that there are two sections. One is for when there are no photos in the album and the other
is for when there are. The code for when there are photos is much more interesting than when
there aren’t, so lets look at a few snippets from it:

This snippet processes our album array and is used to give us a ’lil dot to click on to maneuver
through the pics. Of note is how the $active variable is used to populate our class.

Listing 3.18: Dot code

% foreach my $slot (@{ stash(’slots’) }) {
% my $active = $slot->{idx} ? "" : "active";
<li data-target="#myCarousel" data-slide-to="<%= $slot->{idx} %>" class="
<%= $active %>">

o°
-

The next snippet displays the pictures. The line at 7 provides the src for the img tag. Without it,
it would be difficult to have pictures.

Listing 3.19: Display pictures

<div class="carousel-inner">

% foreach my $slot (@{ stash(’slots’) }) {
% my $active = $slot->{idx} ? "" : "active";

<div class="item <%= $active %>">
<img src="<%= url_for->path("/album/photo/$slot->{idx}") %>"> %#
<div class="carousel-caption">

32

10
11
12
13
14
15
16

<h4><%= $slot->{label} %></h4>

<p><%= $slot->{descr} %></p>
</div>
</div>

}

o°

</div>

Finally, we the left and right arrows over the image if there is more than photo.

Listing 3.20: Navigation

% if (1 '= @{ stash(’slots’)}) {
<
»

o
% }

OK! We’ve done a lot and have a bit more to go. We should talk about the file upload and img
src tag routes. Below is the form code that will POST to our upload route.

Listing 3.21: Upload form

<form action="/album/upload" method="post" enctype="multipart/form-data"> %#

The upload action is this sub: Photo::Controller::Album::upload. This does some validation,
creates a photo album object, and then stores the photo in a new "slot". A slot is merely a way
to refer to a set of pictures. Each slot is comprised of two files, one being the metadata for the
image (a JSON file) and the other being the image itself.

The img src tag route, which is the Photo::Controller:: Album::photo sub is shown below.

Listing 3.22: Display photo

sub photo {
my $c = shift;

my $dir = $c->app->home->rel_dir("albums");

my $album = SiteCode::Album->new(path => "$dir/" . $c->session->{album}, name
=> $c->session->{album}); @

my $slot = $c->param("slot");

my $filename = $album->photo($slot);

$c->reply->asset(Mojo::Asset::File->new(path => $filename));

33

OO0 W —

This retrieves our selected album, gets the photo in a particular slot, and then sets our reply
to use that file. At line 5 is where the album object is created - this shows one way to access
session variables. The slot is given to us from the template and 9 gets the filename for the photo
in that slot. It’s an absolute path.

This path is then served at line 11.

The last bit of code is used to manually switch to a different album. It’s main utility is when the
session expires and the user has to choose an album, again. The code is below.

Listing 3.23: Switch albums

sub switch {
my $c = shift;

if (defined $c->param("name")) {
my $album_name = $c->param("name");

$c->session(album => $album_name);
my $url = $c->url_for(’/’);
return($c->redirect_to($url));

}

$c->app->home->rel_dir("albums");
SiteCode: :Albums ->new(path => $dir)->all;

my $dir
my $all

$c->stash(albums => $all);

return($c->render);

If we’ve been given a name from the view, then we save the album name in the session and
redirect back to the landing page. This should then do another redirect back to the album viewer.

34

3.2 Blogging app

Next, we will focus on a new app that was heavily adapted from Mojo::Pg (another one of
Sebastian Riedel’s many creations). We will look at adding helpers and database usage into our
bag of tricks.

The code is available via git:

$ cd /opt
$ git clone git@github.com:brianmed/mojo_book.git

The app is runnable via:

$ cd blog
$ morbo —-v script/blog

This app should feel similar to the Photo app; so, we won’t repeat very much of the information
that can be retrieved from there. Below we start examining the unique aspects of the startup
routine.

3.2.1 Startup

Given that Mojolicious initializes our app via the startup sub, then that’s a natural place for
adding our database set up. This is accomplished with helpers. These are code blocks that are
available to the controller and templates.

Listing 3.24: Helpers

Model
$self->helper(sql => sub { state $sql = Mojo::SQLite->new(’sglite:_blog.sqlite’)
});
$self->helper(
posts => sub { state $posts = Blog::Model::Posts->new(sql => shift->sql) });

In Line 2 we use the app object and create a helper. The state variable will persist in the process
and a Mojo::SQLite object will be available. Given this, at least one database connection per
process is required.

The next helper is our Model object. This is the glue between our controller, data (the Model),
and view.

The code below will create and version control a database. Super sweet. A very minimal, yet
versatile file format is used for this versioning and creation.

35

W N =

OO0k W —

SOOI N W~

p—

Listing 3.25: Migration Logic

Migrate to latest version if necessary
my $path = $self->home->rel_file(’migrations/blog.sql’);
$self->sql->migrations->name(’blog’)->from_file($path)->migrate;

Below is the actual migration file contents.

Listing 3.26: Migration SQL

-- 1 up

create table if not exists posts (
id serial primary key,

title text,

body text

)

-- 1 down
drop table if exists posts;

This syntax uses SQL comments with metadata for versioning. The / up is used when going
from version 0 —> 1. And, the / down is used when going from 1 —> 0.

The routes are very similar to the Blog app and are listed below.

Listing 3.27: Blog routes

Controller

my $r = $self->routes;

$r->get(’/’ => sub { shift->redirect_to(’posts’) });
$r->get(’/posts’)->to(’posts#index’);
$r->get(’/posts/create’)->to(’ posts#create’)->name(’create_post’);
$r->post(’/posts’)->to(’ posts#store’)->name(’store_post’);
$r->get(’/posts/:id’)->to(’ posts#show’)->name(’ show_post’);
$r->get(’/posts/:id/edit’)->to(’ posts#edit’)->name(’edit _post’);
$r->put(’/posts/:id’)->to(’ posts#update’)->name(’ update_post’);
$r->delete(’ /posts/:id’) ->to(’ posts#remove’)->name(’ remove_post’);

There are; however, a few key differences. The / route (index) shows how an anonymous sub
can be used instead of a package. Also, the succinct format of ’controller#action’ is used with
naming routes.

These names can be referenced later via url_for and redirect_to - in fact, the / route uses
redirect->to(’posts’).

36

B W=

0NN N W=

3.2.2 Controller

Our blog begins here:

Listing 3.28: Initial route

sub index {

my $self = shift;

$self->render(posts => $self->posts->all);
}

Line 3 is where the magic happens. We use the posts helper and call the all sub in the
Blog::Model::Posts package.

This returns an array of posts which the template then processes.

Listing 3.29: Posts SQL

sub all { shift->sql->db->query(’select * from posts’)->hashes->to_array }

The template is below and uses a layout for making templates with a common structure easier
(e.g. HTML documents).

Listing 3.30: Post template

% layout ’blog’, title => ’Blog’;

% for my $post (@$posts) {

<p>
<h2><%= link_to $post->{title} => show_post => {id => $post->{id}} %></h2>
%= $post->{body}

</p>

}

= link_to ’New post’ => ’create_post’

oP of

As you can tell, line 2 processes our array and creates the post listings. Our layout, listed below,
allows for rapid and concise construction of a plethora of templates.

37

OO0 NN N W —

Listing 3.31: Blog layout

<!DOCTYPE html>
<html>
<head>
<title><%= title %></title>
<style>
a, body { color: #2a2a2a }
body { font: 0.9em ’'Helvetica Neue’, Helvetica, sans-serif }
input[type=text], textarea { width: 600px }
input.field-with-error, textarea.field-with-error {
border: 4px solid #f00;
}
textarea { height: 300px }
</style>
</head>
<body>
<hl><%= link_to ’'Blog’ => ’posts’ %></hl>
%= content
</body>
</html>

Line 17 is where the content from the calling template is inserted.

Further inspection of the template shows that at line 4 we have a tag helper that uses the named
route show_post. This creates the blog listing.

All that in one line ’o code:

Listing 3.32: Blog posts rendering
$self->render(posts => $self->posts->all);

38

DN W=

1

3.3 Chat app

Wow, we have a photo app and a blogging app. What’s next is a chat app. It’s a Mojolicious::Lite
app that in around 80 lines has...

* Real-time websocket chat

Database Schema Set up

Database Data Reset

Records number of users

Sends status messages every 10 seconds
All templates included

The code is available via git:

$ cd /opt
$ git clone git@github.com:brianmed/mojo_book.git

The app is runnable via:

$ cd chat
$ morbo —-v chat.pl

Starting from the top, we use a helper in exactly the same way as our blogging app and then use
the super sweet migration features of Mojo::SQLite and resets the number of connected users.

This is reflected in the lines below.

Listing 3.33: Chat database

helper sql => sub { state $sql = Mojo::SQLite->new("sqlite:_chat.sqlite") };

Setup and reset database
app->sql->migrations->from_data("main", "migrations")->migrate;
app->sql->db->query("DELETE FROM connected");

Next, our index page is configured via..

Listing 3.34: Index route
get "/" => "chat";

39

0NN N W=

And, uses the template here:

Listing 3.35: Chat logic
@@ chat.html.ep
<form onsubmit="sendChat(this.children[0]); return false"><input></form>
<div id="log"></div>
<script>
var ws = new WebSocket(’<%= url_for(’channel’)->to_abs %>’);
ws.onmessage = function (e) {
document.getElementById(’log’).innerHTML += ’<p>’ + e.data + ’'</p>’;
}

function sendChat(input) { ws.send(input.value); input.value = ’’ }
</script>

This is a very succinct way to express which template goes with a route that needs no app logic
executed in the controller.

The heart of our app is the websocket connection. This does several things:

* Set up the connection

e Identify the connection

e Sends status notifications

* Forwards messages via pubsub
* Receives messages via pubsub
e Gracefully cleanup

* Records presence

First, we configure the connection and then we identify the connection uniquely. The unique
connection is identified with the monotonic time that steady_time provides.

Listing 3.36: Websocket route
websocket "/channel" => sub {
my $c = shift;

Setup connection
$c->inactivity_timeout (3600) ;

Identify connection
$c->stash("unique", md5_sum(steady_time));

Next we set up a recurring timer that will send a message every 10 seconds to the websocket
connection. This type of app logic is very powerful and there are a variety of possibilities with
websockets, event loops (IOLoop), databases, and the async feature set of Mojolicious which
will allow realizing amazing apps.

40

OO0 NN N W —

N B W=

W N =

Listing 3.37: Notifications

Send FYI notifications
my $id = Mojo::IOLoop->recurring (10 => sub {
my $loop = shift;

my $human = "people";
my $word = "are";

my $connected = $c->sql->db->query(qq(
SELECT COUNT (person) as count
FROM connected
WHERE person != ?7),

$c->stash("unique")
) ->hash->{count};

if ($connected) {
$human = "person" if 1 == $connected;
$word = "is" if 1 == $connected;

}

$c->send (sprintf("The time is now: %s, $connected other $human $word connected"

scalar(localtime)));

1}

The next bit "o code will blast out and receive the chat messages via the pubsub capabilities of
Mojo::SQLite and friends.

Listing 3.38: PubSub

Forward messages from the browser to SQLite
$c->on(message => sub { shift->sql->pubsub->notify(mojochat => shift) });

Forward messages from SQLite to the browser
my $cb = $c->sql->pubsub->listen(mojochat => sub { $c->send(pop) });

The amount of expressiveness that Mojolicious provides is super cool. In a couple lines of code
we have realized the bulk of our chat app.

The next bit gracefully closes our connection. We stop listening for chat messages; remove
ourselves from the pool of connected users; and stop the recurring timer.

Listing 3.39: Cleanup
Gracefully cleanup
$c->on(finish => sub {
my $c = shift;

41

$c->sql->pubsub->unlisten(mojochat => $cb);

NN D A

$c->sql->db->query("DELETE FROM connected WHERE person = ?", $c->stash("unique"
¥);

Mojo: :IOLoop->remove($id);
3

S O >©

Finally, our app announces its presensce via a DB call.

Listing 3.40: Presence

1 # Record our presence
2 $c->sql->db->query ("INSERT INTO connected VALUES (?, CURRENT_TIMESTAMP)", $c->
stash("unique"));

One last thing that should be noted is that our current database calls block.

42

OO0 NN W —

Examples

4.1 Basic Authentication

Authentication and authorization are necessary for content protection. There are several ways
they can be realized. One is with Basic authentication and another is with sessions. This first
example is with Basic that returns a 401 to the client.

We check for the proper username and send back a 401 if not found.

Listing 4.1: Authentication logic

under (sub {
my $c = shift;
Check for username "Bender" and password "rocks"
if (secure_compare($c->req->url->to_abs->userinfo // "", ’Bender:rocks’)) {
return 1;
}
Require authentication
$c->res->headers ->www_authenticate(’Basic’);
$c->render(text => ’Authentication required!’, status => 401);
return undef;
});

43

[SE—

— OO0 WUN B W -

If Bender is found, then one of the GET requests are served..

Listing 4.2: Protected content

get '/° => sub {
my $c = shift;

return $c->render(text

E

> ’'Hello Bender!’);

get ’/time’ => sub {
my $c = shift;

return $c->render(text => scalar(localtime));

}’

The main thing to denote from this example is that Mojolicious makes your life easy with
enough primitives that get out of your way so that development can happen faster.

44

NN A W=

4.2 Session Authentication

Our next example is with session authentication. We have..

* A Landing page

* Login page view

* Login page processing
Logout processing
Session authentication
Member area

Private file retrieval

Below is our landing page. If we are logged in, then we proceed onto the member area, if not
we get the login page. The landing page app logic is a non-trivial decision where we determine
if the login page should be given for an already logged in person, the user gets redirected to the
member area, or they get a real landing page.

Listing 4.3: Initial route

Landing page
get */’ => sub {
my $c = shift;

return $c->redirect_to("/time") if $c->session("username");
return $c->redirect_to("/login");

e

Our login logic is below. The login GET request is just a template and processing via POST is
where we do username authentication. We don’t really do any authorization; however, using the
power of our minds we can imagine different routes that require a specific set of usernames, or
we can add groups onto our user scheme and show different templates based on that.

45

OO0 NN W —

The options are really almost limitless.

Listing 4.4: Login logic

Show login
get ’/login’ => ’login’;

Process login
post ’/login’ => sub {
my $c = shift;

Authentication

unless ("Bender" eq $c->param("username")) {
return $c->redirect_to("/login");

}

if ("rocks" ne $c->param("password")) {
return $c->redirect_to("/login");

}

The session persists across requests via cookies
$c->session(username => $c->param("username"));

Expiration date in seconds from now (persists between requests)
#

This is how long they are logged in

$c->session(expiration => 604800);

return $c->redirect_to("/time");

I

The final piece for our login scheme is that session expiration can be set programmatically. This
will give us the ability to set the time our user can stay logged in.

An important piece of our session management is the ability to logout. This is done via HTML
links. Below we set the session expiration to a previous time and this resets the session.

46

OO0 NN N W —

OO0 NN N =W —

—

Listing 4.5: Logout logic

Exit member area
get ’/logout’ => sub {
my $c = shift;
Delete whole session by setting an expiration date in the past
$c->session(expires => 1);
$c->redirect_to("/login");
b

Our actual session validation is done via an under route. Since this is a Mojolicious::Lite app,
then all routes after the under will be subject to authentication. The session authentication
merely verifies that a username is present in the session.

If no username, then we go back to the login screen. If so, we continue our march into the route
in question.

Listing 4.6: Authentication logic

Session authentication
under (sub {
my $c = shift;

Already logged in?
if ($c->session("username")) {
return 1;

}
$c->redirect_to("/login");

return undef;

3

The main new feature of our member area is that "private" files are protected. We use
Mojo:: Asset::File and present the "private" file (i.e. any file with an absolute path) for the
user. These lines are below.

Listing 4.7: Protected content

$c->res->headers ->content_type(’text/plain’);
$c->reply->asset(Mojo::Asset::File->new(path => ’/etc/passwd’));

47

[S—

SOOI NN~

4.3 JSON API

Moving along, our next example utilizes a JSON API that abstracts out a key/value store written
using Mojo::SQLite.

In our under route which allows for the JSON API authentication. The under does several things,
which are:

* Validate JSON

* Verify username

* Verify API key

* Authenticate user

Below is the validation. Note how the controller object ($¢) has a req object which includes the
JSON already parsed. Also, our under renders and returns undef so that the user is presented
with their JSON and the child routes are not processed.

Listing 4.8: Authentication start

under (sub {
my $c = shift;

unless ($c->req->json) {
$c->render(json => {
status => "error", data => { message => "No JSON found" }

});

return undef;

}

48

OO0 NN N =W —

After validation, we authenticate the user. If there are errors, then a similar scenario exists where
the JSON is rendered and undef is returned. However, when the authentication succeeds, then
"1" is returned and the children routes can be processed.

Listing 4.9: Validate credentials

unless ("fnord" eq $username) {
$c->render(json => {
status => "error", data => { message => "Credentials mis-match" }
})s
return undef;
}
unless ("68b329da9893e34099c7d8ad5¢ch9c940" eq $api_key) {
$c->render(json => {
status => "error", data => { message => "(Credentials mis-match" }
})s
return undef;
}
return 1;
1) 5

Next, we have helpers for our CRUD datastore and the GET/POST routes that allow for data
retrieval and modifications.

49

OO0 NN N W —

Listing 4.10: CRUD helpers

helper insert => sub {
my $c = shift;

my $email = $c->req->json->{email};
my $key = $c->req->json->{key};
my $value = $c->req->json->{value};

$c->sql->db->query (
"INSERT INTO keys (email, key, value) VALUES (?, ?, ?)",
$email, $key, $value
)->last_insert_id;

return $c;

75

helper select => sub {
my $c = shift;

$c->req->json->{email};

my $email =
= $c->req->json->{key};

my $key

return $c->sql->db->query(
"SELECT * from keys WHERE email = ? and key = ?",
$email, $key
) ->hash;
I

The above are the INSERT and SELECT helpers. Given how the insert helper returns $c and
select returns $hash, we can do something like this: "$c->insert->select". The goal is a fluent
interface to our datastore.

After our helpers, we have the actual routes that manipulate data. Note how straightforward it is
to return JSON with something as simple as "$c->render(json => ...)".

50

OO0 NN N W —

Listing 4.11: CRUD routes

any ’/vl/insert’ => sub {
my $c = shift;

return($c->render(json => {
status => "success",

});

any ’'/vl/select’ => sub {
my $c = shift;

return($c->render(json => {
status => "success",
datum => $c->select
1))
i

datum => $c->insert->select

That’s basically it. Next is a sample run via the command-line.

51

$ curl -v -X POST ’http://127.0.0.1:3000/v1/insert’ --data ’{"username":"fnord","api_key":"68
b329da9893e34099c7d8ad5ch9c940" , "email" : "a@a.com", "key":"str", "value":"hello_world"}’

Trying 127.0.0.1...

Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)

POST /v1/insert HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: */*

Content-Length: 117

Content-Type: application/x-www-form-urlencoded

upload completely sent off: 117 out of 117 bytes
HTTP/1.1 200 OK

Server: Mojolicious (Perl)

Date: Sat, 23 Apr 2016 17:43:12 GMT
Content-Type: application/json;charset=UTF-8
Content-Length: 122

ANNANNANANANX*XV VVVVVYV X %

Connection #0 to host 127.0.0.1 left intact
{"status":"success", "datum": {"key":"str","value": "hello_world", "inserted":"2016-04-23
17:43:12","id":1,"email" :"a@a.com"}}

$ curl -v -X GET ’http://127.0.0.1:3000/v1/select’ --data ’{"username":"fnord","api_key":"68b
329da9893e34099c7d8ad5ch9c940" , "email" : "a@a.com", "key":"str"}’

Trying 127.0.0.1...

Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)

GET /vl1/select HTTP/1.1

Host: 127.0.0.1:3000

User-Agent: curl/7.43.0

Accept: x/x

Content-Length: 95

Content-Type: application/x-www-form-urlencoded

*

upload completely sent off: 95 out of 95 bytes
HTTP/1.1 200 OK

Server: Mojolicious (Perl)

Date: Sat, 23 Apr 2016 17:43:23 GMT
Content-Type: application/json;charset=UTF-8
Content-Length: 122

¥ NNANANNANANXV VVVV VYV X ¥

Connection #0 to host 127.0.0.1 left intact
{"datum": {"inserted":"2016-04-23 17:43:12","key":"str","value":"hello_world","email":"a@a.
com","id":1}, "status":"success"}

52

()W, RE SOV I (SR

0NN N W=

4.4 Synchronizing non-blocking operations

Our next example was lifted from the Mojolicious Cookbook. The cookbook has a plethora of
examples and other goodness. The example we are focusing on is synchronizing api calls in a
non-blocking fashion.

What we are going to do is search metacpan with a couple queries in a non-blocking fashion.

The first bit is the delay. This is methodology for orchestrating callbacks. Simply do Mojo::I0Loop-
>delay and you..

Build Mojo::IOLoop::Delay object to manage callbacks and control the flow of
events for this event loop, which can help you avoid deep nested closures that
often result from continuation-passing style. Callbacks will be passed along to
"steps" in Mojo::IOLoop: :Delay.

Below is what the code looks like that starts the delay.

Listing 4.12: Index route
Search MetaCPAN for "mojo" and "minion"
get */’ => sub {

my $c = shift;

Prepare response in two steps
$c->delay(

The steps needed by the delay are sub CODE blocks. The first one sets up our concurrent
requests. This is shown below:

Listing 4.13: GET requests
Concurrent requests

sub {
my $delay = shift;
my $url = Mojo::URL->new(’api.metacpan.org/v0/module/_search’);

$url->query({sort => ’date:desc’});
$c->ua->get($url->clone->query({gq => 'mojo’}) => $delay->begin);
$c->ua->get($url->clone->query({q => ’minion’}) => $delay->begin);

}

We use the embedded Mojo::UserAgent object and the begin methods of the delay that set up
the number of requests that will happen concurrently. When the GET request is finished, then
the UserAgent will execute the begin callback. This callback does the following:

Indicate an active event by incrementing the event counter, the returned
callback needs to be executed when the event has completed, to decrement the

53

[c<BEN e WV, IE RO TN (O R

event counter again. When all callbacks have been executed and the event
counter reached zero, "steps" will continue.

After the first step is finished, then the rendering takes place. The code for this is below.

Listing 4.14: Request output

Delayed rendering
sub {

my ($delay, $mojo, $minion) = @_;

$c->render(json => {

mojo => $mojo->res->json(’/hits/hits/0/_source/release’),

minion => $minion->res->json(’/hits/hits/0/_source/release’)
3
}

The $c->render will display the json to the user. The point of this example is that the
Mojo::UserAgent get requests were happening while other requests on the server were be-
ing served.

54

0NN N W= [c IR e WV, BN OS T R

NN AW

4.5 Mojo::UserAgent Command-Line

This is our first command-line example. We are retrieving the weather for a given IP address.
There are two GET requests. One retrieve the latitude and longitude for an IP address, and the
next takes that and gets the weather.

The below code sets up our script. We use Mojo::Base -strict for enabling Modern Perl features
in our script. Also, the very succinct Mojo::10Loop->delay allows us some freedom for running
non-blocking code in a serial fashion.

Listing 4.15: Setup
#!perl
use Mojo::Base -strict;

use Mojo::IOLoop;
use Mojo::UserAgent;

my $ua = Mojo::UserAgent->new;
my $addr = shift // die("Please pass in an IP");

After this, the 1st GET request is done. Note how we use an array of CODE references for our
delay method. The first sub initiates a non-blocking request with ip-api.com.

Listing 4.16: Lat/Lon

Non-blocking requests (synchronized with a delay)
Mojo::IOLoop->delay (
sub {
my $delay = shift;

my $ip_query = sprintf("http://ip-api.com/json/%s", $addr);
$ua->get($ip_query => $delay->begin);
},

And then we set up the query for the final GET request that retrieves the weather. Note how the
transaction from the previous request is available in this delay step.

Listing 4.17: Weather

sub {
my ($delay, $ip) = @ ;

Setup weather query

my $query = sprintf(
"lat=%s&lon=%s&unit=0&1lg=english&FcstType=json",
$ip->res->json->{lat},

55

10
11
12
13

O 0N N Wk —

$ip->res->json->{lon}
);
my $url = sprintf("http://forecast.weather.gov/MapClick.php?%s", $query);

$ua->get($url => $delay->begin);
}

In the last step we print the weather. Note the compact methodology of accessing the response
and the embedded json embedded.

Listing 4.18: Output

sub {
my ($delay, $weather) = @_;
Talk about the weather
my $j = $weather->res->json;
say (sprintf(
"$addr: %S: %S: %s",
$j->{location}{areaDescription},
$j->{time}{startPeriodName}[0],
$j->{data}{text}[0]
));
}
) ->wait;

The final coolness that we use from Mojo::I0Loop::Delay is the wait method. This will..

Start "ioloop" and stop it again once an "error" or "finish" event gets
emitted, does nothing when "ioloop" is already running.

56

