
The Javascript Specification
March 29, 2009

Contents

1 Introduction 1
1.1 fb hash . 1
1.2 fb.Interface . 2
1.3 Feedback classes . 2
1.4 Miscellaneous . 2

2 Initialization 3
2.1 File Structure . 3
2.2 Initialization . 4

3 fb.Interface 4
3.1 fb.Interface() . 5
3.2 Feedback interface classes . 5

3.2.1 Constructor . 6
3.2.2 Methods . 6

4 The feedback classes 6
4.1 Constructor . 6
4.2 Properties and Methods . 7

5 fb.Common.js 7

6 Testing 7

7 Next Ideas 8

1 Introduction

The Javascript frontend has been redesigned to be more modular, and, hopefully, somewhat
simpler. Instead of consisting of a single large object definition in a single (and huge) file, it
is now split up into smaller method definitions in separate files. It is highly suggested that
you read through at least this section and the next, Initialization.

At the highest level, the program is composed of three “things.” These three “things”
are the fb hash function/object, the fb.Interface instance/class, and the feedback classes.

1.1 fb hash

The most prominent of these is the fb hash function/object. To reduce the chance of
namespace collisions, the old fb object has been renamed to fb hash, where the “hash” part

1

1 INTRODUCTION 2

will eventually be an actual random string (i.e., fb 234lkh6ui). Everything is written inside
of anonymous functional closures, which effectively give this object its original name of fb,
so from now own, unless necessary, fb hash will be referred to as fb. Also, to maintain some
sort of parallelism in the code, the fb object itself is the old fb.init() function (everything
else is a class, where the variable is actually the constructor, so that has been mimicked
here). As such, in order to invoke the program, all that is needed is to call fb hash().
Finally, everything else is a property or a method of fb (i.e., fb is the namespace in which
the entire program resides).

1.2 fb.Interface

The second main “thing” is the fb.Interface instance/class. The fb.Interface class
encapsulates and creates the user interface aspect of the program. Its internals will be
discussed later, but the important thing to know is that there is only one instance of this
class, instantiated as the program is initialized (given that the user is authorized) and stored
at fb.i. Also, everything with regards to layout, display, formatting, etc., is dealt with by
the fb.Interface class. Everything else is dealt with by the feedback classes.

1.3 Feedback classes

The last main “thing” in the program is actually many “things”: the feedback classes.
For each type of feedback allowed (e.g., page-comments, changing text, changing colors,
changing images, etc.) there is a class (stored as a method of the fb object). For example,
the fb.Comment class encapsulates page-comments. It stores all of the state relating to them,
does all of the page-comment processing that is necessary, and has all of the page-comment
CRUD methods (with the exception that some of the CRUD work is done in the respective
feedback interface classes, see fb.Interface below).

1.4 Miscellaneous

Finally, a few other side notes. jQuery is still located at fb.$, and fb.env still exists to
hold that state which is not contained in some feedback class (like the init boolean, the
current page string, the url token, etc.). However, fb.env.logged in has been renamed
to fb.env.authorized to match the backend and to help generalize the program (when
giving feedback on a page accepting public feedback, you are still authorized even though you
are not logged in). Also, two new variables have been introduced, fb.env.get address and
fb.env.post address. These are the URLs to which we submit the HTTP GET and POST
requests, respectively. Finally, everything is URI encoded (by encodeURI()) before being
submitted. This changes nothing in the backend, but in the frontend, upon instantiation,
the feedback classes need to decode the necessary fields (by decodeURI()).

2 INITIALIZATION 3

2 Initialization

2.1 File Structure

As mentioned at the beginning, the original program has been rewritten to be more modular.
One part of that is the use of classes defined in the fb namespace, and the other part is the
use of multiple files. At this point, the program consists of the following files:

1. fb hash.js

2. fb.jQuery.js

3. fb.Common.js

4. fb.Interface.js

5. fb.Interface.comment.js

6. fb.Comment.js

The first of these files defines fb hash(), and does nothing else. The second loads the jQuery
library and the jQuery windowName Transporter plugin under the fb.$ namespace. The
third defines miscellaneous helper functions (see fb.Common.js below). The fourth defines
the fb.Interface class (see fb.Interface below). The fifth is a sample feedback interface
class, and the sixth is a sample feedback class. In general, the order of the files should be as
follows:

1. fb hash.js

2. fb.jQuery.js

3. fb.Common.js

4. fb.Interface.js

5. All feedback interface class definition files (one per class)

6. All feedback class definition files (one per class)

To generate the single Javascript include file a new Rails controller has been introduced:
FeedbackjsController. This controller currently has one action, index, that concatenates
these files in order (appending the fb hash() call at the end) and then renders the result as
a Javascript file. In addition, it caches the result so that the file need not be re-generated on
every call. To expire the cache, run rake jscache:clear in the coreapp directory. Note
that the cache needs to be expired manually after every edit of anything in coreapp/app/js.
Finally, because of this new controller, the Javascript frontend should now be loaded from

http://localhost:3000/feedbackjs.

3 FB.INTERFACE 4

2.2 Initialization

(Largely from Arthur’s e-mail) Initialization begins with loading Javascript file rendered by
FeedbackjsController:index. The first part of this file (fb hash.js) defines the function
fb hash(), which is the namespace within which the rest of the program resides. This gives
us a reference to something, and we extend this reference with numerous attributes in the
files in coreapp/app/js via the

(function(fb) {

// var $ = fb.$;

...

})(fb_hash);

pattern. This pattern defines an anonymous function with one argument (fb), and then
immediately calls it with fb hash as the argument. Inside of this function, any variables
can be used, given they are declared first (using the Javascript keyword var). For example,
the first line can be uncommented to reassign the jQuery variable as $, allowing the use of
$ as usual. Furthermore, within this function, we have access to the fb hash object by the
name fb, and can extend fb hash via fb. These extensions are available globally because
fb hash was defined (globally) at the very beginning. Thus, when fb hash() is called and
executed at the very end (as a function), all of its attributes (e.g., fb.env, fb.Comment, etc.)
are already there.

After the fb hash object is ready (i.e., all of its attributes are defined), we call fb hash()

to begin initializing the program. fb hash() sets up the environment, pulls out current -

page and url token (which is the empty string if it is not found neither in the URL nor in a
cookie), sets get address and post address, and executes the first request for comments.
The callback for the request (defined anonymously inline) checks authorization and, condi-
tioned on authorization, builds the program interface and displays the received comments.
Checking authorization includes setting the fb.env.authorized boolean and stopping when
necessary. Building the program interface is accomplished by instantiating the only instance
of fb.Interface, fb.i, and displaying the received comments is accomplished by calling
fb.Comment.get callback with the received data and the boolean true to signal the ren-
dering of all new comments).

Note that, first, as mentioned before, fb.i is the one and only instance of fb.Interface.
Trying to create another instance will result in an exception being thrown. Also note that
the interface must be initialized before we try to build any comments. Building comments
requires that the respective inner class of fb.Interface already be defined (more on this
later), so building a comment before the interface has been set up will result in errors.

3 fb.Interface

As mentioned before, the fb.Interface class encapsulates everything that has to do with
the user interface aspect of the program. As such, the only state it stores has to do with
the interface; all other state is stored elsewhere. Also, since an instance of fb.Interface is
an instance of the user interface, having multiple instances does not make sense. Trying to
instantiate more than one instance of fb.Interface will cause an exception to be thrown.

3 FB.INTERFACE 5

3.1 fb.Interface()

Upon instantiation, the fb.Interface class does three things. First, it should pull in any
stylesheets that the interface needs. As this may take some time to complete, this should be
the very first thing the constructor does. (The mock-up does not use stylesheets, but their
inclusion would present no difficulty.) Second, it generates the interface of the program. In
the mock-up, this means creating a main “window” (div) in which the comment interface
can reside. Third, it instantiates all of the feedback interfaces classes with itself as argu-
ment. This allows the feedback interface classes to access the properties and methods of
fb.Interface. The new instances are then stored as instance variables of fb.Interface.
This pattern is used because it guarantees four important things:

1. The interface, along with the individual feedback interfaces, is not initialized if the
user is not authorized

2. The individual feedback interfaces are initialized after the main interface is initialized

3. The individual feedback interfaces are initialized before any instance of their respective
feedback class

4. There is only one instance of every feedback interface.

The first point is taken care of in fb hash(), as the program exits before initializing the
interface if the user is not authorized. The second point is taken care of as the feedback
interfaces are initialized at the end of the fb.Interface constructor, meaning that the rest
of the interface has already been completely initialized. The third point is taken care of as
we know that by the time the fb.Interface constructor completes, all of the individual
feedback interfaces have been completely initialized. Since the first instances of the feedback
classes are instantiated after the fb.Interface constructor is called, we are guaranteed that
by the time these instances are built, the individual feedback interfaces are already initialized.
Also, note that the third point is a requirement as the constructors of the feedback classes
attempt to build their instance of feedback (see below (3.2)). Finally, the fourth point is
taken care of as we know that the constructor of the fb.Interface class is only called once,
and that is the only place where instances of the feedback interface classes are made.

3.2 Feedback interface classes

As mentioned before, there is a class for every type of feedback. These classes will be
discussed later, but for now we need to know that they are expected to have at least the
instance methods render and remove, and call a method build in the constructor. Re-
turning to the fb.Interface class, fb.Interface has an “inner” class for each feedback
class, where the “inner” classes are now called “feedback interface classes.” As an ex-
ample, for page-comments, the fb.Comment class encapsulates the actual comments and
fb.Interface.comment holds all of the interface methods for comments. Within the feed-
back interface classes, the properties and methods of the fb.Interface class can be accessed
via self if the pattern given in fb.Interface.comment.js is followed. In addition to fol-
lowing this pattern, there are other requirements of the feedback interface classes.

4 THE FEEDBACK CLASSES 6

3.2.1 Constructor

The constructor of each feedback interface class should initialize the interface for its associ-
ated type of feedback, as well as define the appropriate methods for itself.

3.2.2 Methods

Each feedback interface class should have at least three methods:

build Creates (and returns) whatever needs to be created for a new instance of that type
of feedback (e.g., the DOM representation of a comment)

render Renders an instance of a type of feedback (e.g., inserting the DOM element returned
by build into the DOM or making something visible)

remove Removes an instance of a type of feedback from the interface

As mentioned before, build is called in the constructor of a feedback class (e.g., the con-
structor for the fb.Comment class calls fb.i.comment.build(this)). render and remove,
however, are only called through their respective methods in their associated feedback class.
In order to have complete encapsulation by each feedback class of their respective type of
feedback, each feedback class also has the instance methods render and remove. Note that it
is definitely more natural to render a comment (Comment.render()) than it is to tell the com-
ment part of the interface to render a comment instance (fb.i.comment.render(Comment)).
To implement this, the render method of the feedback class should call the respective render
method in fb.Interface, and the remove method of the feedback class should call the re-
spective remove method in fb.Interface. However, it is expected that the render method
of the feedback class does nothing else, while the remove method completes the rest of its
destructive functionality after calling the fb.Interface remove method.

4 The feedback classes

As mentioned several times before, there is a feedback class for each type of feedback. Each
feedback class encapsulates a single type of feedback. For example, the fb.Comment class
encapsulates the page-comment type of feedback. As with the feedback interface classes,
there are also requirements placed on the feedback classes.

4.1 Constructor

The constructor of each feedback class should do at least the following:

• Call the build method in the respective feedback interface class, storing the result in
an instance variable build

• Add each new instance to the class variable all (described below)

• Add each new instance to the class variable unrendered (described below)

5 FB.COMMON.JS 7

4.2 Properties and Methods

Each feedback class should have at least two class variables:

all An associative array mapping feedback ids to instances of the feedback class. Should
hold every instance of its respective feedback class

unrendered An associative array of form similar to all that hold every unrendered instance
of its respective feedback class

Note that building and rendering are two separate operations, and so a unrendered array is
necessary.

Every feedback class should also support the instance methods remove and render, and
the class (or static) methods get, post, and render. The instance method render, as
discussed above in 3.2, should do nothing but call the render method of the respective
feedback interface class with this as argument. As rendering is a purely interface-related
task, it should be clear that the instance method render should do nothing else. The instance
method remove, on the other hand, should call the remove method of the respective feedback
interface class, and then complete the rest of its destructive functionality. As a method, it
should completely remove the instance of feedback from the program (including removing
the instance from the all and unrendered array, and destroying all instance variables).
The class methods get and post should perform their respective actions for their associated
type of feedback, with post assuming that it is being called in the context of a form with
the appropriate fields for the associated type of feedback (e.g., fb.Comment.post() assumes
that it is being called in the cotenxt of a form with the fields content and target, where
“in the context of a form” means that the method’s this variable is a reference to a form).
The class method render should merely call the render method of every element in the
unrendered array.

5 fb.Common.js

fb.Common.js contains all general helper methods, where are methods are defined under the
fb namespace (as opposed to some being defined as plugins and extensions to jQuery). If
needed/wanted, jQuery can also be extended (see the end of fb.Common.js), but to avoid
confusion, all helper methods should be defined under the fb namespace. However, there
is an exception. Methods that are inherently related to the interface should be defined
as instance methods, by extending the prototype method, of the fb.Interface class. For
example, the old fb.div() function has been moved to fb.i.div() as an instance method of
the fb.Interface class. On the other hand, assert, which is just a general helper function,
is defined in fb.Common.js as fb.assert().

6 Testing

Arthur has already implemented an integration test as a rake task using (Fire)Watir. More
specific unit tests of the Javascript could also be written using QUnit. It would be trivial to

7 NEXT IDEAS 8

create another action of FeedbackjsController that would generate Javascript for testing
(e.g., it could leave out the fb hash() call at the end and replace it with the suite of
unit tests). After finalizing the design of the interface aspect of the Javascript, this should
probably be the first task.

7 Next Ideas

This is a list of possible changes to the Javascript to either make simpler or generalize better.
If implemented, they will be moved into an appropriate section of this document.

• The structure of the feedback classes is definitely in question. As it is now, they are
separate entities with no connection, and if more are added, getting the new feedback
would require one HTTP GET for each feedback class. This is far from optimal.
One possible fix is to make each feedback class inherit (or “inherit”) from a feedback
“superclass.” This “superclass” can do the delegation of work on the response to a
get, allowing one HTTP GET to suffice for updating all types of feedback. Also, if this
schema will be similar to how the Rails backend will end up, the parallelism would be
nice.

• Right now, when the Javascript frontend sends a request for the feedbacks to the Rails
backend, the reply contains all feedbacks, including those the frontend already has.
In addition, the Javascript frontend has to do a lot of processing to determine which
feedbacks are new, and whether or not any have been deleted. The overhead of sending
redundant data and doing data processing in Javascript could be avoided by changing
the format of the request for feedbacks and the response. If the Javascript frontend
tells the Rails app what feedbacks it already has, then the Rails app can send only the
feedbacks the frontend does not have plus a list of the feedback ids of the feedbacks
that have been deleted. This would significantly reduce the size of the response as
well as the amount of time (and space) spent processing the response in the frontend.
The downside, however, is the possibility of the frontend having to send a huge list of
feedback ids. This could be solved by using HTTP POST for the request instead of
HTTP GET. This may be an abuse of POST’s intended uses, but it would also solve
the problem of having to send a current page parameter that is too long.

	1 Introduction
	1.1 fb_hash
	1.2 fb.Interface
	1.3 Feedback classes
	1.4 Miscellaneous

	2 Initialization
	2.1 File Structure
	2.2 Initialization

	3 fb.Interface
	3.1 fb.Interface()
	3.2 Feedback interface classes
	3.2.1 Constructor
	3.2.2 Methods

	4 The feedback classes
	4.1 Constructor
	4.2 Properties and Methods

	5 fb.Common.js
	6 Testing
	7 Next Ideas

