
Short Cut Resistant AEAD Mode
Draft

Shay Gueron1,2, Colm MacCárthaigh2, and Alex Weibel2

1University of Haifa, Israel 2Amazon Web Services, USA

Version of: Monday 9th December, 2019 (@ 19:23 UTC)

Abstract. Short Cut Resistant AEAD Mode (SCRAM) is a new AEAD
encryption mode that addresses the tempting short cut that a decrypt-
ing party may apply: “Releasing Unauthenticated Plaintext” (RUP).
SCRAM is a probabilistic encryption scheme. It uses a random value
R, applies a key derivation that separates the encryption and authen-
tication keys, computes an intermediate authentication tag T , and en-
crypts R with a key that depends on T . The authentication tag Tag is
derived from T and some other metadata. This forces the decryption to
start with authenticating the AAD and the ciphertext to retrieve T , and
only then start with the actual decryption. The overhead introduced by
SCRAM, compared to AES-GCM, is minimal. In addition, SCRAM has
a built-in mechanism that helps obscuring traffic analysis: encryption
receives an input frame size f and (if needed) pads the plaintext to the
next boundary of this frame, so that the ciphertext’s length is divisible
by f.

1 Overview of SCRAM (simple option with no built-in
message padding)

Let Π = (Gen;Enc;Dec) be a nonce base Authenticated Encryption with Associated
Data (AEAD) scheme, where encryption takes a nonce (N), a header (A), a message
(M), and outputs ciphertext C plus an authentication tag T . The decrypting party
receives (N,A,C, T) and invoked the Dec procedure. It is supposed to first authenticate
the input (i.e., verify T) and only then conditionally release the decrypted message
to the its environment. The RUP scenario is the case where the decrypting party is
motivated to apply a performance short cut: trickle out the decrypted message while
authenticating it on-the-fly, speculatively start some follow-up processing on the data,
and determine the authenticity in the end. Here, the hope is that the consequences
of the speculative data release can be undone if the message is eventually declared
unauthentic. However, security cannot rely on such hopes. Some prominent AEAD
modes such as AES-GCM facilitate the RUP short cut, and unfortunately the sender
of an encrypted message cannot prevent the intended receiver from taking it.

1.1 Notation

A byte is an element of {0, 1, . . . , 255} (typically encoded by 8 bits). We use {0, 1}s to
denote the set of all the strings of s bits, {0, 1}8s to denote the set of all the strings of

2

s bytes. Specific byte values are written with a 0x prefix (e.g., 0x04 for the byte “4”).
Repeated zero bytes are denoted by 0x00., e.g., 0x003 is the string 0x00 ‖ 0x00 ‖ 0x00
(equivalently, 0x000000) of length 3 bytes.

With no loss of generality, we assume that inputs, outputs and values are strings
of bytes. For a value V the length (in bytes) of V is denoted by |V | or by len(V).
For short, we omit the “bytes” when specifying lengths, e.g., we say that the string
J = 0x04 ‖ 0x03 ‖ 0x02 ‖ 0x01 ‖ 0x00 (equivalently 0x0403020100) has length 5. We
adopt a convention where the bytes of V are listed as v|V |−1v|V |−1 . . . v0 and v0 is
considered as the “least significant byte”. For example the least significant byte of
J = 0x04 ‖ 0x03 ‖ 0x02 ‖ 0x01 ‖ 0x00 is 0x00 (and the most significant byte is 0x04).
For V = v|V |−1v|V |−1 . . . v0 and U = u|U|−1u|U|−1 . . . u0 the concatenation of U and V
is denoted by U ‖ V and refers to the string u|U|−1u|U|−1 . . . u0v|V |−1v|V |−1 . . . v0 of
length |U | + |V |. For α, β such that 0 ≤ α < β ≤ |V | − 1, we use V [β : α] to denote
the sub-string of (β − α+ 1) bytes vβvβ−1 . . . vα. For example, V [1 : 0] = v1v0.

Consider an integer 0 < a ≤ 28w−1 and w = d(log2(a)/8)e, so that a can be written
in base 16 with at most w digits. For an integer ` ≥ w, we use str`(a) to denote the
`-byte string representation of a written in base 16 (with leading zero bytes as needed).
We call it the encoding of a as a string of ` bytes. For example, for a = 12825249 (in
base 10) and w = 3, the encoding of a as a string of 3 bytes is str3(a) = 0xc3b2a1, and
the encoding of a as a string of 8 bytes is str8(a) = 0x0000000000c3b2a1.

Given the encoding c = str`(a) of an integer a, the inverse operation that retrieves
a is denoted by int(c). For example, int(0x07e3) = 2019.

Uniform random sampling of an element w from a finite set W is denoted by
w ←$ W .

2 SCRAM with padding to the next boundary of a frame

We build an AEAD scheme SCRAM that consists of the three algorithms GenSCRAM,
EncSCRAM, DecSCRAM, and is parametrized by the lengths (and limits) of the involved
operands as follows. Non-negative parameters Amax, Mmax, f, fbytes, r, b, nlen, t, s, u,
s, w, κ, κ1. These satisfy κ1 ≥ κ ≥ r ≥ t > 0, s = nlen + b + 2u + t + r, 0 ≤ f < 28fbytes,
w ≥ max (κ, r) + fbytes. The scheme’s key is denoted by K where |K| = κ1 (bytes).

SCRAM is a composition of a privacy-only encryption scheme ENCRYPT/DECRYPT,
a message authentication scheme MAC, and a pseudorandom function family F .

– The pseudorandom function family. The family F : {0, 1}8κ1 × {0, 1}8s → {0, 1}8w
is indexed by the key K, operates on an input string S of s bytes, and delivers a
w bytes output. Its operation is denoted by F (K,S).

– The nonce-based encryption scheme ENCRYPT/DECRYPT. We use the standard
notation C = ENCRYPT(Ke, N,M) for encryption of the message M with the
nonce N under the key Ke (|Ke| = κ) to produce ciphertext C, and M =
DECRYPT(Ke, N,C) for decryption. The nonce length is nlen, 0 ≤ |M | ≤ Mmax

and |C| = |M |.
– The nonce-based message authentication scheme MAC. We use the standard nota-

tion T = MAC(KM , N, P) for tagging a message P with the nonce N , under the
key KM (|KM | = κ) , to produce the tag T and (pass/fail) = VER(KM , N, P, T)
to denote verification. The nonce length is nlen, 0 ≤ |P | ≤ Amax + Mmax, and
|T| = t.

3

GenSCRAM selects K from {0, 1}8κ1 , uniformly at random. The input to EncSCRAM is
a triple (N,A,M) (nonce, Additional Authenticated Data, message) and and a frame
size f, where |N | = nlen, 0 ≤ |A| ≤ Amax, 0 ≤ |M | ≤ Mmax, 0 ≤ f ≤ 28fbytes.
Before encryption, the message M is padded (if needed; to the next boundary of the
f) into a padded message denoted paddedM , using a string of padlen zero byte, such
that |paddedM | is a multiple of f. The output is ciphretext C (|C| = |paddedM |), a
value X with |X| = r + fbytes, and an authentication tag Tag with |Tag| = t. The
flow includes the generation of a random value R of length r (X is the encryption
of R ‖ strfbytes(padlen)) and formatting four strings S1, S2, S3, S4 of length s (=
nlen + b + 2u + t + r) that are input to F .

SCRAM encryption (EncSCRAM)
Input: (N,A,M), f, fbytes
Output: C,X, Tag
Key: K
1. R←−$ {0, 1}8r
2. S1 = N ‖ 0x00b−1 ‖ 0x01 ‖ 0x00u ‖ 0x00u ‖ 0x00t ‖ R
3. U1 = F (K,S1)
4. Ke = U1[κ− 1 : 0]
5. padlen = 0; if f > 0 then padlen = (f − len(M)) (mod f)
6. PADDING = 0x00padlen

7. paddedM = M ‖ PADDING
8. C = ENCRYPT(Ke, N, paddedM)
9. S2 = N ‖ 0x00b−1 ‖ 0x02 ‖ 0x00u ‖ 0x00u ‖ 0x00t ‖ 0x00r

10. U2 = F (K,S2)
11. KM = U2[κ− 1 : 0]
12. T = MAC(KM , N,A‖C)
13. S3 = N ‖ 0x00b−1 ‖ 0x03 ‖ 0x00u ‖ 0x00u ‖ T ‖ 0x00r
14. U3 = F (K,S3)
15. Y 1 = U3[r − 1 : 0]⊕R
16. Y 0 = U3[r + fbytes− 1 : r]⊕ strfbytes(padlen)
17. X = Y 1 ‖ Y 0
18. S4 = N ‖ 0x00b−1 ‖ 0x04 ‖ stru(len(A)) ‖ stru(len(M)) ‖ T ‖ R
19. U4 = F (K,S4)
20. Tag = U4[t− 1 : 0]
21. Output C,X, Tag

The input for DecSCRAM decryption is the quadruple (N,A,C,X, Tag) where 0 ≤
|A| ≤ Amax, 0 ≤ |C| ≤Mmax+ fbytes, |X| = r+ fbytes, |Tag| = t. If the authentication
passes, the output is either the decrypted message M , where |M | = |C| − padlen, and
padlen that is extracted from X. If the authentication fails, the output is a failure
symbol ⊥.

SCRAM decryption (DecSCRAM)
Input: (N,A,C,X, Tag), fbytes
Output: either M or ⊥
Key: K
1. S2 = N ‖ 0x00b−1 ‖ 0x02 ‖ 0x00u ‖ 0x00u ‖ 0x00t ‖ 0x00r
2. U2 = F (K,S2)
3. KM = U2[κ− 1 : 0]
4. T = MAC(KM , N,A‖C)

4

5. S3 = N ‖ 0x00b−1 ‖ 0x03 ‖ 0x00u ‖ 0x00u ‖ T ‖ 0x00r
6. U3 = F (K,S3)
7. Y 1 = U3[r − 1 : 0]⊕X[r − 1 : 0]
8. R = Y 1
9. Y 0 = U3[r + fbytes− 1 : r]⊕X[r + fbytes− 1 : r]

10. padlen = intfbytes(Y 0)
11. LM = len(C)− padlen
12. S4 = N ‖ 0x00b−1 ‖ 0x04 ‖ stru(len(A)) ‖ stru(LM) ‖ T ‖ R
13. U4 = F (K,S4)
14. Tag′ = U4[t− 1 : 0]
15. if Tag′ 6= Tag
16. Output ⊥
17. else
18. S1 = N ‖ 0x00b−1 ‖ 0x01 ‖ 0x00u ‖ 0x00u ‖ 0x00t ‖ R
19. U1 = F (K,S1)
20. Ke = U1[κ− 1 : 0]
21. paddedM = DECRYPT(Ke, N,C)
22. M = paddedM [len(C)− 1 : padlen]
23. Output M

A specific instantiation of SCRAM. In a specific instantiation, we set Mmax =
Amax = 232, nlen = 12, t = 16, b = 4, κ1 = κ = r = 32, fbytes = 2, u = 8, s = 80,
w = 64.

This implies that the inputs to F have length s = nlen + b + 2u + t + r = 80,
that f < 216, so the size of the padding can be encoded in 2 bytes, and that For
ENCRYPT/DECRYPT, we use Counter Mode with the block cipher AES. For MAC we
use GMAC (with a 32-byte key). For F we use HMAC-SHA512 (with digest size 64).

	Short Cut Resistant AEAD Mode Draft

