

1

Babelfish Compass: User Guide

Document history:

Dec-2022 v.2022-12: added executive summary, analysis of dynamic SQL, reporting of complexity

 score for not-supported items, -userconfigfile option

Oct-2022 v.2022-10: added support for processing queries captured through extended events

Sep-2022 v.2022-09: generating .csv file for complexity/effort estimation

Jun-2022 v.2022-06-a: added -importfmt option to process captured query files; various report

 enhancements

Jun-2022 v.2022-06: added -pgimporttable option

Apr-2022 v.2022-04: added automatic check for new Compass version and -noupdatechk option

Mar-2022 v.2022-03: added -recursive, -include, -exclude options

Feb-2022 v.2022-02: new Compass version numbering

Jan-2022 added compatibility matrix with Babelfish

Dec-2021 v.1.2: added -rewrite option

Nov-2021 correct typo in section about BabelfishCompassUser.cfg; edit for grammar

Nov-2021 v.1.1: added user-definable overrides, example for -pgimport, Mac/Linux support

Oct-2021 v.1.0: first version

Contents

What Is Babelfish Compass? ... 3

Compatibility with Babelfish for PostgreSQL .. 4

Installing Babelfish Compass ... 5
Prerequisites...5
Downloading Babelfish Compass ...5
Installation ..5

Running Babelfish Compass on Windows ... 6

Running Babelfish Compass (Mac/Linux).. 7

Reports, applications, and input files .. 7
Report directory location ...8

Specifying the Babelfish version ... 9

Command-line options .. 9
Examples ... 13

Automatic rewriting of unsupported features .. 15

File handling .. 16

The BabelfishFeatures.cfg file ... 17
SQL feature classifications ... 17
Example: BabelfishFeatures.cfg ... 17

2

The BabelfishCompassUser.cfg file (classification overrides) ... 19
Example: overriding default classification and reporting group ... 20

User-defined estimates in .csv file .. 21
Complexity estimates .. 21
Effort estimates ... 21
Examples ... 22

Using -pgimport .. 23
Schema for imported items ... 24
Example query ... 25

Processing captured SQL queries .. 26
SQL Server Profiler .. 26
SQL Server Extended Events .. 26
Examples ... 27

Security .. 28
The -pgimport option ... 28
Automatic update check ... 28

Using Babelfish Compass to migrate to PostgreSQL ... 29

Troubleshooting .. 31

Licensing .. 31

3

What Is Babelfish Compass?
The Babelfish Compass tool (short for “COMPatibility ASSessment”) analyzes SQL/DDL code for one or

more Microsoft SQL Server databases to identify the SQL features which are not compatible with

Babelfish for PostgreSQL.

You can use Babelfish Compass to analyze the SQL/DDL code for your current SQL Server-based

applications for compatibility with Babelfish. The purpose of this analysis is to gather information so

you can make a Go/No Go decision about starting a migration project from SQL Server to Babelfish.

For this purpose, Babelfish Compass produces an assessment report which lists -in great detail- all of

the SQL features found in your SQL/DDL code, and whether or not these are supported by the latest

version of Babelfish.

A new version of Babelfish Compass will be available as part of each Babelfish release containing new

or changed functionality.

Note that Babelfish Compass is a stand-alone, on-premises tool. While Babelfish Compass is part of

the Babelfish product, it is technically separate from Babelfish itself as well as from the Babelfish code,

and is located in a separate GitHub repository.

4

Compatibility with Babelfish for PostgreSQL
The Babelfish Compass tool supports the following Babelfish versions.

In principle, any version of Babelfish Compass will support whichever Babelfish version the

BabelfishFeatures.cfg file has been updated for. However, a full version of Babelfish Compass, also

including fixes and enhancements, will in principle be published for every Babelfish release with

added support for new T-SQL features.

Babelfish Compass version Supports Babelfish versions

2022-12 2.3.x, 2.2.x, 2.1.x

1.4.x, 1.3.x, 1.2.x, 1.1.x, 1.0.x

2022-09, 2022-10, 2022-11 2.2.x, 2.1.x

1.3.x, 1.2.x, 1.1.x, 1.0.x

2022-07

2022-06/2022-06-a

2.1.x

1.3.x, 1.2.x, 1.1.x, 1.0.x

2022-04 1.2.x, 1.1.x, 1.0.x

2022-03 1.2.x, 1.1.x, 1.0.x

2022-02 1.1.x, 1.0.x

1.2 1.1.x, 1.0.x

1.0, 1.1 1.0.x

In February 2022, Babelfish Compass changed to a different version numbering schema (YYYY-MM) to
avoid confusion with Babelfish version numbers. Consequently, Compass version 1.2 was followed by
version 2022-02.
Note that Babelfish version 2.0.x has not been released.

5

Installing Babelfish Compass

Prerequisites
Before installing Babelfish Compass, you must install a Java Runtime Environment (JRE) version 8 or

higher (64-bit version).

Babelfish Compass produces compatibility assessment reports in HTML format. To view the HTML

output, we recommend using a recent release of the Google Chrome or Mozilla Firefox browser.

On Mac/Linux, you need to be able to run a bash script (e.g. with #!/bin/bash).

Downloading Babelfish Compass
Babelfish Compass is available as an open-source project at https://github.com/babelfish-for-

postgresql/babelfish_compass.

A binary version can be downloaded from:

https://github.com/babelfish-for-postgresql/babelfish_compass/releases/latest ; choose the most

recent BabelfishCompass_<version>.zip file.

The installation instructions that follow are based on this version.

Installation
Babelfish Compass is distributed as an executable JAR file, which requires no CLASSPATH settings. The

only environmental requirement is that the Java JRE is in the PATH.

Installation steps on Windows:

1. Download the BabelfishCompass.zip file as detailed in the previous section.

2. Unzip the file so that the contents are placed in your installation directory of choice; this

document will assume the file resides in C:\BabelfishCompass.

a. If a previous installation is already present in your installation directory, you can overwrite

the installation (but we recommend you make a backup copy first).

3. Installation is complete.

Installation steps on Mac/Linux:

1. Download the BabelfishCompass.zip file as detailed in the previous section.

2. Unzip this file so that the contents are placed in your directory of choice, for example

/home/username/BabelfishCompass.

https://github.com/babelfish-for-postgresql/babelfish_compass
https://github.com/babelfish-for-postgresql/babelfish_compass
https://github.com/babelfish-for-postgresql/babelfish_compass/releases/latest

6

a. Do not install Babelfish Compass into /home/username/BabelfishCompassReports,

since this is where the generated reports will be placed, and the reports should be kept

separate.

b. If a previous installation is already present in your installation directory, you can

overwrite the installation (but we recommend you make a backup copy first).

3. Verify the BabelfishCompass.sh shell script is executable by running ./BabelfishCompass.sh .

If it is not executable, run the command: chmod +x BabelfishCompass.sh .

4. Installation is complete.

Running Babelfish Compass on Windows
To run Babelfish Compass on Windows, open a cmd prompt (a "DOS box") and navigate to the

Babelfish Compass installation directory.

Then, select the command line options that you need to include when invoking Babelfish Compass.

The command line options are detailed in the Command-line options section of this guide, or you can

review them on the command line by running:

C:\BabelfishCompass> BabelfishCompass[.bat] -help

Then, invoke BabelfishCompass[.bat] with your choice of command-line options.

Babelfish Compass usage typically starts by creating an assessment report file. The assessment report

output file provides a detailed summary of the supported and unsupported SQL features in Babelfish

for the analyzed SQL Server script(s). In the simplest usage case, a single SQL/DDL script is analyzed.

To analyze a single script, simply specify a report name and an input file with your call to Babelfish

Compass. For example:

C:\BabelfishCompass> BabelfishCompass[.bat] MyFirstReport C:\temp\AnyCompany.sql

This command creates an assessment report named MyFirstReport, containing the analysis for

SQL/DDL script AnyCompany.sql.

When a report is created, BabelfishCompass will automatically:

1. Open an explorer window in the directory where the report files are stored.

2. Open the generated assessment report in the default browser.

3. Print the full pathname of the report file to stdout.

7

There are many additional command-line options you can include that support functionality to

process multiple input scripts (for one application or multiple applications), generate more detailed

output reports, and so on. See Command-line options for details.

Running Babelfish Compass (Mac/Linux)
To run Babelfish Compass on Linux, open a bash command prompt and navigate to the Babelfish

Compass installation directory.

Then, select the command line options that you need to include when invoking Babelfish Compass.

The command line options are detailed in the Command-line options section of this guide, or you can

review them on the command line by running:

$./BabelfishCompass.sh -help

Then, invoke BabelfishCompass.sh with your choice of command-line options.

Babelfish Compass usage typically starts by creating an assessment report file. The assessment report

output file provides a detailed summary of the supported and unsupported SQL features in Babelfish

for the analyzed SQL Server script(s). In the simplest usage case, a single SQL/DDL script is analyzed.

To analyze a single script, simply specify a report name and an input file with your call to Babelfish

Compass. For example:

$./BabelfishCompass.sh MyFirstReport /tmp/AnyCompany.sql

This command creates an assessment report named MyFirstReport, containing the analysis for

SQL/DDL script AnyCompany.sql.

When a report is created, BabelfishCompass will automatically:

1. Open a file browser in the directory where the report files are stored.

2. Open the generated assessment report in the default browser. Please note that on Linux, the

browser will not open automatically; instead, simply open the file manually.

3. Print the full pathname of the report file to stdout.

There are many additional command-line options you can include that support functionality to

process multiple input scripts (for one application or multiple applications), generate more detailed

output reports, and so on. See Command-line options for details.

Reports, applications, and input files
The Babelfish Compass tool generates a report with a user-specified report name. The report is the

result of analyzing one or more SQL/DDL scripts. In the simplest case, a single SQL/DDL script is

8

analyzed. Babelfish Compass also supports combined analysis of multiple input scripts and multiple

applications.

Each input script is associated with an application name. By default, the application name is taken

from the input script file name. For example, a script named Accounts.sql is created for an application

named Accounts. You can specify the application name with the -appname flag. A report can cover

multiple input scripts for the same application, as well as multiple scripts for different applications.

Examples:

The following command generates a report for a single input file, with an application named Accounts:

BabelfishCompass MyReport C:\temp\Accounts.sql

The following command generates a report for a single input file, with an application named Sales:

BabelfishCompass MyReport C:\temp\ddl.20210913.sql -appname Sales

The following command generates a report for multiple input files, with an application named Sales:

BabelfishCompass MyReport C:\temp\ddl.20210913*.sql -appname Sales

The following command generates a report for multiple input files, with applications named Accounts,

Sales and HR:

BabelfishCompass MyReport C:\temp\Accounts.sql C:\temp\Sales.sql C:\temp\HR.sql

When you create a report for multiple applications, the assessment can optionally indicate which

applications contribute to a particular line item. To include this content, specify the -reportoption

apps option. The report will contain lines in the following format:

SOUNDEX() : 45 #apps=3: Accounts(16), Support(20), HR(9)

This means 45 cases of the SOUNDEX() built-in function were found, in three applications as indicated:

Report directory location
By default, the Babelfish Compass report is created in the following location:

• C:\Users\username\Documents\BabelfishCompass (on Windows)

• /Users/username/BabelfishCompassReports (on Mac)

• /home/username/BabelfishCompassReports (on Linux)

A report is created as a .html file in a directory below this location. For example, on Windows,

Babelfish Compass creates a report named MyReport.html in the following directory:

C:\Users\username\Documents\BabelfishCompass\MyReport.

9

Technically, the location of the report root directory is determined by the value of

System.getProperty("user.home") in Java. The locations shown above are typical defaults. It is

currently not possible specify a different, user-defined location instead.

Specifying the Babelfish version
By default, Babelfish Compass delivers a compatibility assessment for the most recent version of

Babelfish, as indicated in the BabelfishFeatures.cfg file. You can perform an assessment for an earlier

version of Babelfish by specifying the older version with the -babelfish-version option; for example:

 -babelfish-version 1.3.0

The initial GA version of Babelfish is version 1.0.0. Since no older version exists at the time of the

initial release, this option will only be valid with later Babelfish releases.

Command-line options
To display all of the command-line options, run BabelfishCompass -help. Note that all command-line

options are optional:

• -version: displays the version of the Babelfish Compass tool.

• -explain: displays some high-level guidance on how to use the Babelfish Compass tool.

• -encoding <encoding>: specifies the encoding of the input files, if the files are not ASCII or the

default encoding (this default is shown by -help).

The specified -encoding is applied to all input files. To process multiple input files with

different encodings, import each file separately (with -add), specifying the correct encoding for

each input file.

Unicode-formatted files with BOM bits are automatically detected and processed accordingly,

so -encoding does not need to be specified.

To review a list of supported encodings, run -encoding help

• -babelfish-version <version>: performs the analysis for an older BBF version. See Specifying
the Babelfish version for more information.

• -add: imports an additional SQL/DDL script to an existing report, performs an analysis, and

generates a report.

10

• -replace: replaces an already-imported SQL/DDL script in an existing report, performs an

analysis, and generates a report

• - delete: deletes all the files for an already existing report before recreating it.

• -noreport: performs an analysis without generating a report. This is useful when multiple files

are imported; without -noreport, a report will be generated after every imported file. To

generate a report after importing all files, include the -reportonly option.

• -reportfile: specifies the filename for the report. This does not affect the directory where the

report files are located. See the Examples.

• -importonly: imports the SQL/DDL script, but does not perform an analysis or generate a

report. This can be useful when importing multiple files, as the analysis will otherwise be

performed after every imported file.

• -analyze: performs an analysis on imported files, and generates a report. This can be used after

importing files with -importonly, or to re-run an analysis on imported files from an earlier

report (for example, when re-running the analysis when a later version of Babelfish has

become available).

• -userconfigfile filename : as of v.2022-12, this specifies the user-defined .cfg file to be used

(default = BabelfishCompassUser.cfg).

• -nooverride: do not use classification/report group overrides from the user-defined .cfg file.

• -noreportcomplexity: as of v.2022-12, estimated complexity for not-supported items will not

be included in the Compass report.

• -list: displays the files/applications that have been imported for a report.

• -reportonly: generates a report for already-imported and analyzed SQL/DDL scripts. Specify a

report name; do not specify input files. This option is useful when generating additional

detailed assessment reports, for example with a cross-reference or additional filtering

(see -reportoption).

11

• -reportoption <options>: specifies options for generating the final assessment report. Specify

different options in a comma-separated list (without spaces), and/or by using

multiple -reportoption flags. The cross-reference is not generated by default, as this

potentially makes the assessment report very long.

Possible options are:

o xref or xref=all: generates two cross-references for all items that are marked as "not

supported" or "review". One cross-reference is ordered by SQL feature, the other by

objects for which such items were detected.

Warning: for large schemas, the report generated with xref (and even more so when

combined with status=all), may become very large and may take longer to load in your

browser. For this reason, the xref option is off by default, and you have to specify it

explicitly with -reportoption.

In addition (v.2022-07 or later) object names are listed for which issues (or no issues)

were identified by Compass. These lists can be reached by clicking on the "without

issues" link in the Object Count section (without xref, this link is not present):

o xref=feature or xref=object generates only the cross-reference by feature, or by object,

respectively.

o status=<status>: with xref, specifies the categories for which the cross-reference should

be generated. Without this option, a cross-reference is generated only for items

marked as "not supported" or "review". To generate a cross-reference for a different

category, specify (for example) status=supported or status=ignored. With status=all, a

cross-reference for all items is generated.

Note that using this option can result in a longer assessment report.

o detail: with xref, generates additional detail for a reported item. For example, when

reporting an object which cannot be created, specifying detail will include the name of

the object. The report may get significantly longer as a result.

o filter=<string>: with xref, only includes items which match the specified string (case-

insensitive). This can be useful when the generated cross-reference is very long, for

example to cross-reference only specific items of interest. Note that the Summary

section is not affected by this option.

12

o linenrs=<number>: with xref, defines the maximum number of line numbers

mentioned in the cross-reference before suppressing the rest and adding "+ NNN

more". By default, the maximum number is 10.

o notabs: with xref, opens the hyperlinks to the original SQL source code in the same

browser window instead of in a new tab. By default, a hyperlink opens in a new tab.

NB: For large SQL source files, it may take some time before the browser displays the

desired line. If this takes too long, it is also possible to manually access the

corresponding flat text file (same filename, but with a .dat suffix instead of .html).

o apps: shows which applications contribute to a particular line item in the Summary

section when a report covers multiple applications. For example, the following means

that 45 cases of the SOUNDEX() built-in function were found, in three applications as

indicated:

SOUNDEX() : 45 #apps=3: Accounts(16), Support(20), HR(9)

o batchnr: with xref, displays the location of an item as a combination of the batch

number in the file, the starting line number of the batch in the source file, and the line

number in the batch. By default, the location is shown as the line number in the source

file.

o hints: (Compass v.2022-07 and later) lists all popup hints in the SQL Summary section at

the end of the report (so that they can be read without requiring mouse action)

• -quotedid {on|off}: sets QUOTED_IDENTIFIER at the start of each SQL/DDL script. Default is ON

• -pgimport "pg-connection-attributes": creates a database table in a PostgreSQL database, and

loads all captured items into the table. This table can then be accessed with SQL queries for

further processing (see

13

• Using -pgimport). By default, this table is named public.BBFCompass, but a different name can

be specified with -pgimporttable.

The PostgreSQL connection attributes are specified in a comma-separated list as follows:

host,port,username,password,dbname . The import is performed through a script created in

the captured subdirectory. This script uses the PostgreSQL psql utility, which must be installed

on your system, and in your PATH.

Note that the password is not saved anywhere and not written to any file (including temporary

files).

• -pgimportappend: with -pgimport, appends content to an already-existing PostgreSQL table.

Without this option, -pgimport will drop the table if it exists, before recreating it.

• -pgimporttable: with -pgimport, specifies the name of the table to import the data into.

• -rewrite: for certain T-SQL constructs that are currently unsupported by Babelfish, performs

automatic rewriting of the applicable syntax with T-SQL features supported by Babelfish (see

Automatic rewriting of unsupported features).

• -exclude <list> : specifies a comma-separated list of file type suffixes to be excluded. By

default, a series of file types are excluded (unless overridden with -include); to display these,

use -help exclude.

• -include <list> : specifies a comma-separated list of file type suffixes to be included; only the

filetypes specified with -include will be processed.

• -recursive : any subsequent directory names are processed recursively, using all files in the

directory tree as input. Both -include and -exclude (if specified) are applied to any files found.

With -recursive, it is recommended to specify -appname as well, otherwise each input file will

be assumed to represent a different application.

• -noupdatechk : do not perform a check for a newer version of Babelfish Compass

• -importfmt <format> : process an XML file from SQL Server Profiler with captured SQL queries

(see Processing captured SQL queries)

• -nodedup : with -importfmt, do not perform de-duplication of captured SQL

Examples
Generate a default report without cross-references for an application named Sales:

BabelfishCompass MyReport C:\temp\Sales.sql

14

Generate a default report without cross-reference for an application named Sales,

deleting the report directory first if it already exists:

BabelfishCompass MyReport C:\temp\Sales.sql -delete

Generate a report for applications named Accounts and Sales, cross-referencing all categories,

including additional detail, and allowing up to 100 line numbers to be enumerated in the cross-

reference:

BabelfishCompass MyReport2 C:\temp\account*.sql -appname Accounts -add -noreport

BabelfishCompass MyReport2 C:\temp\sales.sql -add -noreport

BabelfishCompass MyReport2 -reportoptions xref,status=all,detail,linenrs=100

Display all files and applications imported for MyReport2:

BabelfishCompass MyReport2 -list

Re-run an analysis for an existing report, but specifically for Babelfish version 1.5.0 (this example

assumes the latest version of Babelfish is later than 1.5.0):

BabelfishCompass MyReport3 -analyze -babelfish-version 1.5.0

Import all captured items into a PostgreSQL database table:

BabelfishCompass MyReport3 -pgimport

"mybighost.anycompany.com,5432,bob,B!gbob72,mydb"

Generate a cross-referenced report named : C:\...\BabelfishCompass\MyReport4\MyApp.xref.html.

(without the -reportfile option, the report file name would be something like

C:\...\BabelfishCompass\ MyReport4\report-MyReport4-2021-Sep-13-21.22.23.html):

BabelfishCompass MyReport4 C:\temp\MyApp.sql -reportfile MyApp.xref -reportoption xref

Generate a combined report for applications Sales and two applications Finance and Inventory, each

of which consists of a directory tree containing .sql files on multiple levels, and perform automatic

rewriting where possible:

 BabelfishCompass MyReport5 -importonly C:\temp\Sales.sql

 BabelfishCompass MyReport5 -add -importonly -appname Finance -recursive C:\Finance\install

15

 BabelfishCompass MyReport5 -add -importonly -appname Inventory -recursive C:\Inventory\install

 BabelfishCompass MyReport5 -analyze -rewrite -reportoption apps

Automatic rewriting of unsupported features
As of version 1.2 (or later) of Babelfish Compass, you can use the -rewrite option to address certain

SQL features which are not currently supported by Babelfish, by rewriting the SQL feature in question

in such a way that Babelfish is able to process it. One example is the MERGE statement.

• When not specifying the -rewrite option, the assessment report will include a section

"Automatic SQL Rewrite Opportunities" which lists the SQL features that could be addressed

with -rewrite, but without actually rewriting them.

• When specifying the -rewrite option, Babelfish Compass creates a subdirectory rewritten in

the report directory, containing a copy of the original SQL source file in which specific features

have been rewritten (if nothing is rewritten, no copy will be created in rewritten).

The assessment report will contain a section with the specific rewritten features.

When -reportoption xref is used, the cross-reference links in the 'rewritten' sections point to

the rewritten SQL file (instead of to the original SQL file).

In a rewritten SQL file, the bottom of the file contains a list of all changes made by Babelfish Compass.

When using the -rewrite option, you should execute the rewritten SQL file against Babelfish instead of

the original SQL file.

Note that using -rewrite may cause Babelfish Compass to run slower than without -rewrite, especially

for large files in which many features are rewritten. It may therefore be practical to first run an

analysis without -rewrite; when the Compass report indicates that rewrite opportunities were

identified, then re-run Compass with the -analyze -rewrite flags.

16

File handling
An assessment report is an HTML file located in the report directory:

• On Windows: %USERPROFILE%\BabelfishCompass\<report-name>

A flat text version of the report is available in the same directory as the HTML file; this text version is

named identically, but ends in .txt instead of .html.

The report directory contains multiple subdirectories as described below. You should not rename or

edit the files in these subdirectories, as future invocations of Babelfish Compass for this report may no

longer work correctly (or at all):

• imported: contains a copy of the original SQL/DDL input scripts. These are stored to allow re-

running the analysis at a later time (for example, for a newer version of Babelfish). If the

original input files used a specific encoding, the files in the imported directory are in UTF8

format.

For each imported file, an HTML version is also located in the imported\html directory. When

generating a cross-reference in the assessment report, hyperlinks are generated to the actual

line in the original document where the SQL feature was found.

• imported\sym: contains files with symbol table information, for internal use.

• captured: contains files that contain items that were captured during analysis. These are SQL

features and options, which are reflected in the assessment report. The files in this directory

can be imported into a PostgreSQL database table using the -pgimport option

• log: contains the session log file for each invocation of Babelfish Compass.

• errorbatches: is a directory created only when syntax errors were found in the imported

SQL/DDL scripts. In this case, the input batches with the errors are saved in a file so that the

user has access to this information. If desired, you can rename or delete these files as they are

not used as input for any further processing steps.

• rewritten: contains rewritten input files as a result of using the -rewrite option. Only input files

where actual rewriting was performed, will be present here.

17

The BabelfishFeatures.cfg file
The compatibility assessment performed by the Babelfish Compass tool is driven by the file

BabelfishFeatures.cfg, which is located in the Babelfish Compass installation directory. This file

contains definitions of features that are (not) supported in a specific Babelfish version.

For each Babelfish release containing changes in functionality, a new version of the

BabelfishFeatures.cfg will also be released. When Babelfish Compass is already installed, the existing

version of BabelfishFeatures.cfg should be replaced (overwritten) by the newer version of this file.

Do not edit, modify, or rename the BabelfishFeatures.cfg file; Babelfish Compass will detect changes,

and terminate immediately.

SQL feature classifications

The general principle behind BabelfishFeatures.cfg is that features which are not listed in this file are

supported by Babelfish. Features that are not supported may fall in either of these categories:

• Not Supported : the feature is currently not supported by Babelfish.

• Review Semantics : the feature involves aspects which cannot be addressed by Babelfish, but

requires review to determine whether or not it requires changes to be made as part of the

migration process.

• Review Performance : the feature involves a performance-related aspect in SQL Server, and

therefore you should review this carefully to determine if performance may be impacted when

running on Babelfish.

• Review Manually : the feature cannot be assessed by Babelfish Compass, but needs to be

manually examined. For example: SET LANGUAGE @v : Babelfish Compass cannot determine if

@v contains a Babelfish-supported language name.

• Ignored : the feature is currently ignored by Babelfish.

Example: BabelfishFeatures.cfg

The following example denotes that ALTER VIEW is not supported, and is reported in a group named

Views:

[ALTER VIEW]

rule=create_or_alter_view

report_group=Views

18

The following example denotes that the only supported option for FETCH is FETCH NEXT; any FETCH

options are reported in a group named Cursors:

[FETCH cursor]

rule=fetch_cursor

list=NEXT,PRIOR,FIRST,LAST,ABSOLUTE,RELATIVE

supported-1.0.0=NEXT

report_group=Cursors

For more information about the contents of BabelfishFeatures.cfg, see the file header.

19

The BabelfishCompassUser.cfg file (classification
overrides)
As described in the previous section, the BabelfishFeatures.cfg file defines which features are or are

not supported in a particular version of Babelfish. In version 1.1 (or later) of Babelfish Compass, for

SQL features that are not supported, you can override the classification defined by

BabelfishFeatures.cfg. For this purpose, Babelfish Compass generates a file named

BabelfishCompassUser.cfg, which is located in the report root directory; see Report directory location

for more information. The default location of this file is

C:\Users\username\Documents\BabelfishCompass\BabelfishCompassUser.cfg. You can edit this file

(unlike BabelfishCompass.cfg, which should not be modified by the user). BabelfishCompassUser.cfg

is not overwritten when installing a new version of Babelfish Compass, as opposed to

BabelfishFeatures.cfg, which will always be replaced in a new version of Babelfish Compass.

In v.2022-12, the user-defined .cfg file to be used can be specified with -userconfigfile; the default

remains BabelfishCompassUser.cfg.

Use of the BabelfishCompassUser.cfg file is not recommended for new users of Babelfish Compass.

However, if you are an experienced user, you can use BabelfishCompassUser.cfg to tailor your

assessment reports by putting more or less focus on specific SQL features.

BabelfishCompassUser.cfg contains all of the sections that are present in BabelfishFeatures.cfg, like

[Datatypes] or [Built-in functions]. You shouldn’t modify these section headers, but can add certain

items to a section, as described below.

Note that any modifications made to the BabelfishCompassUser.cfg will not be saved or stored by

Babelfish Compass. Ensure that BabelfishCompassUser.cfg is properly backed up.

Babelfish Compass will create the BabelfishCompassUser.cfg file if it does not exist. If new sections

have been defined in BabelfishFeatures.cfg, which are not yet in BabelfishCompassUser.cfg, the new

sections will be appended. If you manually delete sections from BabelfishCompassUser.cfg, those

section will be appended again the next time Babelfish Compass runs.

Note:

• User-defined overrides are applied during analysis, and any overridden values are recorded in

the captured items; the assessment report is generated from these captured items. When only

generating a report (e.g. with -reportonly), no overrides will be applied.

When the user has modified override entries in BabelfishCompassUser.cfg and wants to apply

this to a report, the -analyze flag should be used.

• When a user-defined override is applied, the captured items will reflect the values after the

overrides have been applied; the original values have been lost. This means that it is not

20

possible to determine for individual captured items whether an override was applied (for

example, after using -pgimport).

Example: overriding default classification and reporting group
By default, CLUSTERED indexes and constraints are classified as Review Semantics by Babelfish

Compass. If you decide you don’t care about those aspects, and you want these to be ignored in the

assessment report, the classification can be overridden in BabelfishCompassUser.cfg by adding

default_classification=Ignored :

[CLUSTERED index]

default_classification=Ignored

Likewise, the FORMAT() and STR() functions are not supported in Babelfish version 1.0.0, and will be

reported accordingly. If you want these functions to be classified as Review Manually and reported

under Formatting functions, then add the following lines to the section [Built-in functions] in

BabelfishCompassUser.cfg :

[Built-in functions]

default_classification-ReviewManually=FORMAT,STR

report_group-Formatting functions=FORMAT,STR

Note that these changes only affect how SQL features are classified in the Babelfish Compass report.

There is no impact on how Babelfish itself processes the SQL features for which you changed the

classification.

For more information about possible modifications that you can make to BabelfishCompassUser.cfg,

see the file header.

21

User-defined estimates in .csv file

Complexity estimates
As of Compass version 2022-09, Compass generates a .csv file with the same filename as the report

file, to assist specialist Compass users in estimating the amount of work required to address not-

supported items (as reported by Compass). The .csv file has a column 'Complexity' which, for each

not-supported item, contains a value LOW, MEDIUM or HIGH reflecting a very rough complexity

estimate for resolving the item in question.

The Compass user can override these default estimates by adding their own complexity scores in the

BabelfishCompassUser.cfg file using the complexity_score keys (see examples below).

The .csv file is intended to be imported into a spreadsheet, and Compass user should add their own

formulas to the spreadsheet for performing calculations.

It should be noted that the default Compass complexity estimates are generalized and somewhat

arbitrary since the experience and expertise of the team performing the migration is a much more

deciding factor for the overall effort required. These Compass-provided complexity estimates should

therefore be taken as very rough high-level guidance only; Compass users are urged to evaluate and

adjust all values in the context of the actual customer application being analyzed.

The user-specific override values in BabelfishCompassUser.cfg can be LOW, MEDIUM or HIGH, but

also an arbitrary number between 0 and 100 (so as to allow Compass users to use more detail).

As of v.2022-12, the Compass report itself includes a summary of the complexity score for each item

classified as 'Not Supported', displayed between square brackets:

By specifying the -noreportcomplexity option, the complexity scores will not be included in the

Compass report; the .csv file containing the complexity scores will however always be generated.

As of v.2022-12, when uploading analysis details into PG using the -pgimport option, the complexity

score is available in column misc; user-defined effort estimates (see below) are not uploaded.

Effort estimates
Apart from the Compass-provided complexity estimates, it is also possible to define your own effort

estimates, expressed in minutes, hours or days, in the BabelfishCompassUser.cfg file using the

effort_estimate keys (see examples below).

When user-defined effort estimates are used, these values will show up in two additional 'Effort'

columns in the .csv file: the first column is a textual representation of the user-configured value (e.g.

22

'5 minutes' or '1 hour'), and the second is the corresponding number of minutes, for calculation

purposes (e.g. 5 or 60).

Examples
The precise way of specifying these values is explained a bit more in the header of the

BabelfishCompassUser.cfg file. The sections in this file correspond to the same section in

BabelfishFeatures.cfg (which you cannot edit yourself), and in most cases correspond quite obviously

to the grouping of reported items in the Compass report.

(NB. the actual values shown below are chosen arbitrarily and should not be used as guidance)

[Built-in functions]

complexity_score-HIGH=SOUNDEX # complexity = HIGH for this function, if unsupported

complexity_score=LOW # complexity = LOW for any other unsupported function

complexity_score-60=COL_LENGTH # complexity = 60 for this function, if unsupported

[Cursor options]

effort_estimate-4hours=SCROLL,FOR_UPDATE # 4 hours for these options, if unsupported

effort_estimate=1hour # 1 hour for any other unsupported options

23

Using -pgimport
As described earlier, the -pgimport flag lets you load all captured items into a PostgreSQL table. From

here, you can perform customized additional operations on this data. Before you can use -pgimport,

the PostgreSQL psql client needs to be installed on your system, and needs to be in the PATH.

By default, data is imported into a table named public.BBFCompass, but a different name can be

specified with the -pgimporttable option.

Examples of what you may be able to do with -pgimport:

• Run SQL queries to find objects with a complex combination of attributes. For example: find all

SQL functions with at least two parameters, including a MONEY-type parameter, a

SMALLDATETIME result type, and a table variable operation in the function body.

• The Babelfish Compass assessment report deliberately does not report any 'compatibility

percentage', because it is difficult to define such a number in a meaningful way. A simple way

to calculate such a percentage would be to take the ratio of non-supported features vs.

supported features. However, some unsupported features may be very difficult to work

around while other may be easy. Yet, they would both weigh equally heavy in such a

calculation.

You can decide how to calculate a viable compatibility percentage for your evaluation. For

example, you could write a SQL-based application that assigns different weights to different

non-supported features, thus calculating a more realistic compatibility percentage on the basis

of the captured items that were loaded with -pgimport.

Note: any such calculations are the exclusive responsibility of the Babelfish Compass user.

• When a migration opportunity is discussed, a key question is to estimate the time and cost of

performing a migration. While this question is realistic, the Babelfish Compass tool does not

attempt to make any estimates with respect to the amount of time or effort it may require to

address the non-supported issues that were identified. The reason is that the actual effort

required will be highly dependent on skills and experience of the individuals doing the actual

work (picture a team of seasoned DBAs with decades of database experience vs. a team of

newly arrived university graduates). Since it is not realistic to generalize such effort estimates,

Babelfish Compass does not attempt this.

However, you could try to build such functionality yourself on the basis of the captured items

that were loaded with -pgimport. Imagine an experienced team of migration experts who have

collected detailed data points from their past migration projects; such a team might be able to

quantify the effort required for the non-supported items in the Babelfish Compass assessment

report, specifically aimed at their own team with their specific experience. The -pgimport

function makes it possible to build an application using the imported items for making effort

estimates.

Note: any such estimates are the exclusive responsibility of the Babelfish Compass user.

https://www.postgresql.org/docs/current/app-psql.html

24

Schema for imported items
When you include the -pgimport flag, Babelfish Compass creates a PostgreSQL table with the

following definition:

CREATE TABLE BBFCompass(

 babelfish_version VARCHAR(20) NOT NULL,

 date_imported TIMESTAMP NOT NULL,

 item VARCHAR(200) NOT NULL,

 itemDetail VARCHAR(200) NOT NULL,

 reportGroup VARCHAR(50) NOT NULL,

 status VARCHAR(20) NOT NULL,

 lineNr INT NOT NULL,

 appName VARCHAR(100) NOT NULL,

 srcFile VARCHAR(300) NOT NULL,

 batchNrinFile INT NOT NULL,

 batchLineInFile INT NOT NULL,

 context VARCHAR(200) NOT NULL,

 subcontext VARCHAR(200) NOT NULL,

 misc VARCHAR(20) NOT NULL

);

The columns represent the following:

• babelfish_version : is the Babelfish version for which analysis was performed.

• date_imported : is the date/time that -pgimport ran.

• item : is a line item as shown in the report.

• itemDetail : is additional info about a line item.

• reportGroup : is the report group as show in the report.

• status : is the classification of the item; for example, SUPPORTED or NOTSUPPORTED.

• lineNr : is the line number of the item in the T-SQL batch.

• appName : is the application name.

• srcFile : is the SQL source file name.

• batchNrinFile : is the batch number of the T-SQL batch in SQL source file.

• batchLineInFile : is the line number in the file at the start of the batch.

• context : is the name of an object, or T-SQL batch.

• subcontext : is the (optional) name of a table in the object.

• misc : as of v.2022-12: complexity score; in previous versions: not used.

25

Example query
You can run SQL queries against the imported items to locate specific information. For example, to find

this information:

"find all SQL functions with at least two parameters, including a MONEY-type parameter, a

SMALLDATETIME result type, and a table variable operation in the function body"

…use this SQL query:

select distinct context from BBFCompass

-- filter on table variable operation:

where item like '% @tableVariable'

-- filter on function with >= 2 parameters:

and context in (

 select context from BBFCompass

 where context like 'FUNCTION %'

 and item like '% parameter'

 group by context

 having count(*) >= 2)

-- filter on MONEY-type parameter:

and context in (

 select context from BBFCompass

 where context like 'FUNCTION %'

 and item like 'MONEY %function parameter%')

-- filter on function result type:

and context in (

 select context from BBFCompass

 where context like 'FUNCTION %'

 and item like 'SMALLDATETIME %scalar function result%')

Note: On large tables, performance may benefit from adding indexes to one or more columns of this

table. This is left for the user to explore.

26

Processing captured SQL queries
Apart from server-side DDL, also client-side SQL queries should be considered during a database

migration. When capturing client-side SQL queries as described below, Babelfish Compass can extract

the SQL queries from the capture files and perform a Compass assessment on them.

In order to process capture files, specify the command-line option -importfmt format, as shown

below.

Since captured SQL often contains many near-duplicate statements that only differ in the value of a

lookup key or a constant, by default Compass de-duplicates the captured SQL prior to analysis. De-

duplication is performed by masking the values of all string/numeric/hex constants.

To suppress de-duplication, specify the command-line option -nodedup.

The extracted and de-duplicated SQL queries/batches are saved into a file in directory extractedSQL: a

file named MyCapture.xml will be saved into extractedSQL/MyCapture.xml.extracted.sql. This file is

then used as input for the Compass analysis.

SQL Server Profiler
To capture SQL statements with SQL Server Profiler, take these steps:

1. In SQL Server Profiler, under "Trace Properties", use the TSQL_Replay template

2. Initiate the tracing in SQL Server Profiler

3. Run the client application against the SQL Server database

4. When done capturing the client application's SQL, save the captured results (in SQL Server

Profiler) with Save As➔Trace XML File for Replay . This creates an XML file containing the

captured SQL batches.

5. Run Babelfish Compass with the just-created XML file as input, and specify the command-line

option -importfmt MSSQLProfilerXML

o The extracted SQL batches are saved into a file in directory extractedSQL: a file named

MyCapture.xml will be saved into extractedSQL/MyCapture.xml.extracted.sql

SQL Server Extended Events
To capture SQL statements with SQL Server Extended Events, take these steps:

1. Run the client application against the SQL Server database

2. Use SQL Server Extended Events to capture SQL queries

3. Extract the captured events from the .xel file as .xml files containing <event…> …

</event> XML documents. Note that the .xel files cannot be processed by Compass.

4. Run Babelfish Compass with the XML file as input, and specify the command-line option -

importfmt extendedEventsXML

27

Examples

BabelfishCompass MyReport C:\temp\MyProfilerCapture.xml -importfmt MSSQLProfilerXML

BabelfishCompass MyReport C:\temp\MyXECapture.xml -importfmt extendedEventsXML

28

Security
The Babelfish Compass tool is a stand-alone, on-premises program which does not store any

confidential or sensitive information: all information stored is derived from the SQL/DDL scripts which

the user provides as input.

The Babelfish Compass tool operates offline and does not perform any network access, with the

exception of -pgimport option and the automatic check-for-updates (see below). Other than these

two cases, the Babelfish Compass tool makes no network connections invisible to the user, and does

not "phone home".

The -pgimport option
The -pgimport option is the only function where network access takes place, by connecting to a

PostgreSQL instance and loading captured items into a database table.

Technically, Babelfish Compass creates files pg_import.bat (on Mac/Linux, pg_import.sh) and

pg_import.psql in the captured directory. The pg_import.bat/pg_import.sh file executes

pg_import.psql, which runs a CREATE TABLE and a COPY statement in PostgreSQL.

Babelfish Compass executes this function by spawning a subprocess to run

pg_import.bat/pg_import.sh.

To make a connection to the PostgreSQL instance, the user must specify connection attributes on the

Babelfish Compass command line, including the PostgreSQL username and password. These

connection attributes are not written to any file, but are supplied as environment variables in the

short-lived spawned subprocess. These environment variables are not accessible from outside the

spawned subprocess.

Note that the connection attributes may be accessible through the command-line history in the

command-line session that runs Babelfish Compass.

As for the uploaded captured items, it is assumed that the user owns the PostgreSQL instance and is

responsible for granting access to the uploaded data.

Automatic update check
Starting with Babelfish Compass version 2022-04, Compass checks whether a more recent version of

itself is available at GitHub by making a REST call to GitHub repository. If so, it will print a message to

inform the user, but not take any further action: the user must still download and install the update

manually.

No information about these REST calls is collected or stored, other than by GitHub's default behavior.

To suppress the update check, specify the -noupdatechk option.

29

Using Babelfish Compass to migrate to
PostgreSQL
Babelfish Compass analyzes the SQL/DDL code for a SQL Server-based application for compatibility

with Babelfish. The purpose of this analysis is to inform a Go/No Go decision about starting a

migration project from SQL Server to Babelfish. For this purpose, Babelfish Compass produces an

assessment report which lists (in great detail) all SQL features found in the SQL/DDL code, and

whether or not these are supported by the latest version of Babelfish.

On a high level, the sequence of steps involved in a migration is as follows:

1. The application owner identifies the SQL Server databases required for the application that is

considered for migration to Babelfish. The application owner must ensure there are no legal

restrictions with respect to migrating the application in question.

2. Reverse-engineer the SQL Server database(s) in question with SQL Server Management Studio

(SSMS). This is done in the SSMS Object Explorer by right-clicking a database and selecting

Tasks ➔ Generate Scripts, and following the dialog (making sure to turn on triggers, collations,

logins, owners and permissions (turned off in SSMS by default), by clicking the Advanced

button and turning on the respective options).

• Babelfish Compass requires input scripts to be syntactically valid T-SQL, using go as a

batch delimiter (i.e. sqlcmd-style scripts). Some tools may be able to reverse-engineer,

but don’t do this correctly or completely, or don’t generate the required batch

delimiters (like DBeaver). Therefore, we recommend using SSMS to generate a DDL

script of the database(s).

3. SSMS produces a DDL/SQL script as output. Use this script (or scripts) as input for Babelfish

Compass to generate an assessment report (see instructions and examples earlier in this User

Guide).

4. Optionally, generate additional cross-reference reports to obtain additional details about the

unsupported features.

5. Discuss the results of the Babelfish Compass assessment and interpret the findings in the

context of the application to be migrated. In these discussions, it may be possible to descope

the migration by identifying outdated or redundant parts of the application which do not need

to be migrated.

6. Use the assessment results that show the unsupported SQL features in the SQL/DDL code, to

decide if it is opportune to start a migration project to Babelfish. If the current version of

Babelfish is deemed to be insufficiently compatible with the application in question, we

30

recommended you re-run the analysis when future releases of Babelfish are available which

will provide more functionality.

7. If proceeding with a migration, modify the SQL/DDL scripts to rewrite or remove the SQL/DDL

statements that are reported as not supported or requiring review. Then, invoke the SQL/DDL

script against Babelfish (with sqlcmd) to recreate the schema in Babelfish.

8. Finally, perform a data migration, and reconfigure the client applications to connect to

Babelfish.

Please keep the following in mind:

• Admittedly, the amount of detail in a Babelfish Compass assessment report can be large. When

discussing the Babelfish Compass findings with an application owner, make sure to highlight

the many aspects that are supported by Babelfish: experience has shown that when focusing

primarily on the non-supported features, SQL Server users may easily end up with an

unnecessary negative perception of Babelfish's capabilities.

• A Babelfish migration involves more than just the server-side SQL/DDL code, for example,

interfaces with other system; ETL/ELT; SSIS/SSRS, replication, etc. These aspects may not be

reflected in the server-side view provided by Babelfish Compass.

31

Troubleshooting
This section contains some troubleshooting tips. If you encounter unexpected behavior by Babelfish

Compass, we recommend you first read this User Guide in detail.

• Syntax errors: while the SQL/DDL input scripts are reverse-engineered from existing applications

and their contents are assumed to contain syntactically valid SQL code, it is possible that the SQL

code contains syntax errors. A syntax error might be the result of manual editing or

inconsistencies. For example, MERGE statements must be terminated with a semicolon, while such

a terminator is optional for most other T-SQL statements.

In case of a syntax error, this will be printed to stdout, and the offending batch will be logged in a

file in the errorbatches subdirectory of the report directory. A batch containing syntax errors is not

analyzed by Babelfish Compass.

Remedy: correct any SQL syntax errors and re-run the script through the Babelfish Compass tool

using the -replace flag.

• If syntax errors are printed that show garbage characters, it may be that the input file encoding is

not correctly specified. The default encoding, and all available encodings, are displayed with the

-encoding help option.

Remedy: specify the correct encoding with -encoding on the command line.

Licensing
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

SPDX-License-Identifier: Apache-2.0

GitHub: https://github.com/babelfish-for-postgresql/babelfish_compass

http://amazon.com/
https://github.com/babelfish-for-postgresql/babelfish_compass

