
Babelfish Compass: User Guide

Document history:

1.0, Oct-2021, first version

What Is Babelfish Compass?
The Babelfish Compass (short for “COMPatibility ASSessment”) tool analyzes SQL/DDL code for one or

more Microsoft SQL Server databases to identify the SQL features which are not compatible with

Babelfish for PostgreSQL.

Users of SQL Server can use Babelfish Compass to analyze the SQL/DDL code for their current SQL

Server-based applications for compatibility with Babelfish. The purpose of such analysis is to inform a

Go/No Go decision about whether it makes sense -or not- to consider starting a migration project

from SQL Server to Babelfish. For this purpose, Babelfish Compass produces an assessment report

which lists -in great detail- all SQL features found in the SQL/DDL code, and whether or not these are

supported by the latest version of Babelfish.

A new version of Babelfish Compass will be available as part of every Babelfish release containing new

or changed functionality.

Note that Babelfish Compass is a stand-alone, on-premises tool. While Babelfish Compass is part of

the Babelfish product, it is technically separate from Babelfish itself as well as from the Babelfish code,

and is located in a separate GitHub repository.

Installing Babelfish Compass

Requirements
The Java Runtime Environment (JRE) is required to run Babelfish Compass. The Java JRE version must

be 8 or higher (64-bit version).

Babelfish Compass produces compatibility assessment reports in HTML format. For viewing the HTML

output, it is recommended to use a recent release of the Google Chrome or Mozilla Firefox browsers.

Downloading Babelfish Compass

Babelfish Compass is available as open-source at https://github.com/babelfish-for-
postgresql/babelfish_compass
A binary version can be downloaded from https://github.com/babelfish-for-

postgresql/babelfish_compass ; pick the most recent BabelfishCompass_<version>.zip file.

The installation instructions below are based on this download.

On Mac/Linux (currently in beta), you need to be able to run a bash script (e.g. with #!/bin/bash).

Installation
Babelfish Compass is distributed as an "executable JAR", which requires no CLASSPATH settings. The

only environmental requirement is that the Java JRE is in the PATH.

Installation steps on Windows:

1. Download the BabelfishCompass.zip file (see previous section)

2. Unzip this file so that the contents are placed in an installation directory of choice; the rest of

this document will assume C:\BabelfishCompass

3. In case a previous installation is already present in your installation directory, you can

overwrite this (but it is recommended to make a backup copy first)

4. Installation is complete.

Installation steps on Mac/Linux (currently in beta):

1. Download the BabelfishCompass.zip file (see previous section)

2. Unzip this file so that the contents are placed in a installation directory of choice, for example

/opt/BabelfishCompass

3. In case a previous installation is already present in your installation directory, you can

overwrite this (but it is recommended to make a backup copy first)

4. Verify the shell script BabelfishCompass.sh is executable by running ./BabelfishCompass.sh

If not, run: chmod + x BabelfishCompass.sh

5. Installation is complete.

https://github.com/babelfish-for-postgresql/babelfish_compass
https://github.com/babelfish-for-postgresql/babelfish_compass
https://github.com/babelfish-for-postgresql/babelfish_compass
https://github.com/babelfish-for-postgresql/babelfish_compass

Running Babelfish Compass (Windows)
On Windows, Babelfish Compass is invoked by opening a cmd command prompt (a.k.a. "DOS box") in

the directory where Babelfish Compass is installed. By default, this is located at C:\BabelfishCompass.

At the command prompt, run BabelfishCompass (or BabelfishCompass.bat) with various additional

command-line options as needed (see further in this document).

To see online help information on the various command options, specify -help:

C:\BabelfishCompass> BabelfishCompass -help

Babelfish Compass usage typically starts with command-line execution to create an assessment report

file. The assessment report output file provides a detailed summary of the supported and

unsupported SQL features in Babelfish for the analyzed SQL Server script(s).

In the simplest, and likely most common case, a single SQL/DDL script is analyzed. This requires

specifying a report name and an input file, for example:

C:\BabelfishCompass> BabelfishCompass MyFirstReport C:\temp\AnyCompany.sql

This creates an assessment report named MyFirstReport, containing the analysis for SQL/DDL script

AnyCompany.sql.

When the report is created, BabelfishCompass will automatically:

1. Open an explorer window in the directory where the report files are stored

2. Open the generated assessment report in the default browser

The full pathname of the report file is also printed to stdout.

Many additional command-line options can be used, such as processing multiple input scripts (for one

application or multiple applications), generating more detailed output reports. See below for details.

Running Babelfish Compass (Mac/Linux)
On Mac/Linux (currently in beta), Babelfish Compass is invoked by opening a bash command prompt

session in the directory where Babelfish Compass is installed.

At the bash command prompt, run BabelfishCompass.sh:

$./BabelfishCompass.sh -help

The automatic opening of the generated report in the browser, as on Windows, may not currently

work on Mac/Linux. In this case, the user should explicitly open the generated report in a browser

themselves.

Otherwise, Babelfish Compass is operated as on Windows. For further details, please see the rest of

this User Guide, which assumes a Windows environment.

Reports, applications & input files
The Babelfish Compass tool is based on the concept of a report – the user must specify a report name

which can be chosen freely. A report is the result of analyzing one or more SQL/DDL scripts. In the

simplest case, a single SQL/DDL script is analyzed. Multiple input scripts are also possible.

Each input script is associated with an application name. By default, the application name is taken

from the input script file name, e.g. a script named Account.sql is assumed to be for application

Accounts. However, the application name can also be explicitly specified with the -appname flag.

A report can cover multiple input scripts for the same application, as well as multiple scripts for

different applications. Examples:

-- single input file for application Accounts:

BabelfishCompass MyReport C:\temp\Accounts.sql

-- single input file for application Sales

BabelfishCompass MyReport C:\temp\ddl.20210913.sql -appname Sales

-- multiple input files for application Sales

BabelfishCompass MyReport C:\temp\ddl.20210913*.sql -appname Sales

-- multiple input files for applications Accounts, Sales and HR

BabelfishCompass MyReport C:\temp\Accounts.sql C:\temp\Sales.sql C:\temp\HR.sql

When a report is created for multiple applications, the assessment report can optionally indicate

which applications contribute to a particular line item. To indicate this, use -reportoption apps. The

report will contain lines like the following. This means 45 cases of the SOUNDEX() built-in function

were found, in three applications as indicated:

SOUNDEX() : 45 #apps=3: Accounts(16), Support(20), HR(9)

Specifying the Babelfish version
By default, Babelfish Compass delivers a compatibility assessment for the most recent version of

Babelfish, as indicated in the BabelfishFeatures.cfg file. It is possible to perform the assessment for an

earlier version of Babelfish by specifying the older version, e.g. -babelfish-version 1.0.3

The initial GA version of Babelfish is version 1.0.0. Since no older version exists at the time of the

initial release, this option will only be available with later Babelfish releases.

Command-line options
To display all command-line options, run BabelfishCompass -help. All command-line options are

optional.

• -version: displays the version of the Babelfish Compass tool

• -explain: displays some high-level guidance on how to use the Babelfish Compass tool

• -encoding <encoding>: specifies the encoding of the input files, in case these are not ASCII or

the default encoding (this default is shown by -help).

When specifying -encoding, this encoding is applied to all input files. To process multiple input

files with different encodings, import these separately (with -add) with the correct encoding

for each input file.

Unicode-formatted files with BOM bits are automatically detected and processed accordingly,

so -encoding does not need to be specified.

To see the supported encodings, run -encoding help

• -babelfish-version <version>: performs analysis for an older BBF version. See section
'Specifying the Babelfish version'

• -add: import an additional SQL/DDL script to an existing report; perform analysis and generate

a report

• -replace: replace an already-imported SQL/DDL script in an existing report; perform analysis

and generate a report

• - delete: for an already existing report, delete all files first before recreating it

• -noreport: perform analysis, but do not generate a report. This can be useful when multiple

files are imported; without -noreport, a report would be generated after every imported file.

To generate a report after importing all files, use -reportonly.

• -reportfile: specifies the filename for the report. This does not affect the directory where the

report files are located. See the examples below.

• -importonly: import the SQL/DDL script, but do not perform analysis or generate a report. This

can be useful when importing multiple files, as the analysis would otherwise be performed

after every imported file.

• -analyze: performs analysis on imported files, and generates a report. This can be used after

importing files with -importonly, or to re-run analysis on imported files in an earlier report (for

example, when re-running the analysis when a later version of Babelfish has become available)

• -list: displays the files/applications that have been imported for a report

• -reportonly: generate a report for already-imported and analyzed SQL/DDL scripts. The report

name should be specified, and no input files can be specified. This option is useful to generate

additional detailed assessment reports, for example with a cross-reference or additional

filtering (see -reportoption).

• -reportoption <options>: specifies options for generating the final assessment report. Different

options can be specified in a comma-separated list (without spaces), and/or by using multiple

-reportoption flags. The cross-reference is not generated by default, as this potentially makes

the assessment report very long.

Possible options are:

o xref or xref=all: generates two cross-references for all items that are marked as "not

supported" or "review". One cross-reference is ordered by SQL feature, the other by

objects for which such items were detected.

o xref=feature or xref=object generates only the cross-reference by feature, or by object,

respectively.

o status=<status>: with xref, specifies the categories for which the cross-reference should

be generated. Without this option, a cross-reference is generated only for items

marked as "not supported" or "review". To generate a cross-reference for a different

category, specify (for example) status=supported or status=ignored. With status=all, a

cross-reference for all items is generated.

Note that using this option can result in a longer assessment report.

o detail: with xref, generates additional detail for a reported item. For example, when

reporting an object which cannot be created, specifying detail will include the name of

the object. The report may get significantly longer as a result.

o filter=<string>: with xref, only include items which match the specified string(case-

insensitive). This can be useful when the generated cross-reference is very long, for

example to cross-reference only specific items of interest. Note that the Summary

section is not affected by this option.

o linenrs=<number>: with xref, define the maximum number of line numbers mentioned

in the cross-reference before suppressing the rest and adding "+ NNN more". By

default, the maximum number is 10.

o notabs: with xref, the hyperlinks to the original SQL source code will open in the same

browser window instead of in a new tab. By default, a hyperlink opens in a new tab.

NB: For large SQL source files, it may take some time before the browser displays the

desired line. If this takes too long, it is also possible to manually access the

corresponding flat text file (same filename, but with a .dat suffix instead of .html).

o apps: when a report covers multiple applications, this option will show the which

applications contribute to a particular line item in the Summary section. For example,

the following means that 45 cases of the SOUNDEX() built-in function were found, in

three applications as indicated:

SOUNDEX() : 45 #apps=3: Accounts(16), Support(20), HR(9)

o batchnr: with xref, displays the location of an item as a combination of the batch

number in the file, the starting line number of the batch in the source file, and the line

number in the batch. By default, the location is shown as the line number in the source

file.

• -quotedid {on|off}: sets QUOTED_IDENTIFIER at the start of each SQL/DDL script. Default = ON

• -pgimport "pg-connection-attributes": Creates a database table BBFCompass in a PostgreSQL

database, and loads all captured items into the table. This table can then be accessed with SQL

queries to determine additional details (example: find all SQL functions with at least two

parameters, a MONEY result type, and a table variable operation in the function body).

The PostgreSQL connection attributes are specified as a comma-separated list as follows:

host,port,username,password,dbname . The import is performed through a script created in

the captured subdirectory. The psql utility must be installed and in the PATH.

Note that the password is not saved anywhere and not written to any file (also not to

temporary files).

• -pgimportappend: with -pgimport, appends to an already-existing PostgreSQL table. Without

this option, -pgimport will drop the table if it exists, before recreating it.

Examples
Generate a default report without cross-reference for application Sales:

BabelfishCompass MyReport C:\temp\Sales.sql

Generate a default report without cross-reference for application Sales,

deleting the report first if it already existed:

BabelfishCompass MyReport C:\temp\Sales.sql -delete

Generate a report for applications Accounts and Sales, with a cross-reference for all categories,

including additional detail, and allowing up to 100 line numbers to be enumerated in the cross-

reference:

BabelfishCompass MyReport2 C:\temp\account*.sql -appname Accounts -add -noreport

BabelfishCompass MyReport2 C:\temp\sales.sql -add -noreport

BabelfishCompass MyReport2 -reportoptions xref,status=all,detail,linenrs=100

Display all files/applications imported for MyReport2:

BabelfishCompass MyReport2 -list

Re-run analysis for an existing report, but specifically for Babelfish version 1.3.0 (assuming the latest

version of Babelfish is later than 1.3.0):

BabelfishCompass MyReport3 -analyze -babelfish-version 1.3.0

Import all captured items into a PostgreSQL database table:

BabelfishCompass MyReport3 -pgimport "mybighost.anycompany.com,5432,bob,B!gbob72,mydb"

Generate a cross-reference report named : C:\...\BabelfishCompass\MyReport4\MyApp.xref.html .

(without -reportfile, the report file name would be something like C:\...\BabelfishCompass\

MyReport4\report-MyReport4-2021-Sep-13-21.22.23.html):

BabelfishCompass MyReport4 C:\temp\MyApp.sql -reportfile MyApp.xref -reportoption xref

File handling
An assessment report is an HTML file located in the following directory:

• Windows: %USERPROFILE%\BabelfishCompass\<report-name>

A flat text version of the report is available in the same directory as the HTML file; this text version is

named identically, but ends in .txt instead of .html.

If desired, the report file itself may be renamed.

The report directory contains multiple subdirectories as described below. Users of Babelfish Compass

should not rename or edit the files in these subdirectories, as future invocations of Babelfish Compass

for this report may no longer work correctly (or at all):

• imported: contains a copy of the original SQL/DDL input scripts. These are stored to allow re-

running the analysis at a later time, for example for a newer version of Babelfish. In case the

original input files were using a specific encoding, the files in the imported directory are in

UTF8 format.

For each imported file, an HTML version is also located in this directory. When generating a

cross-reference in the assessment report, hyperlinks are generated to the actual line in the

original document where the SQL feature was found.

• imported\sym: files in this directory contain symbol table information, for internal use.

• captured: files in this directory contain items that were captured during analysis. These are

SQL features and options, which are reflected in the assessment report. The files in this

directory can be imported into a PostgreSQL database table using the -pgimport option

• log: contains the session log file for each invocation of Babelfish Compass.

• errorbatches: this directory is created only when syntax errors were found in the imported

SQL/DDL scripts. In this case, the input batches with the errors are saved in a file so that the

user has access to this information. If desired, the user can rename or delete these files as they

are not used as input for any further processing steps.

The BabelfishFeatures.cfg file
The compatibility assessment by the Babelfish Compass tool is driven by the file

BabelfishFeatures.cfg, which is located in the Babelfish Compass installation directory. This file

contains definitions of features that are (not) supported in a specific Babelfish version.

Users should not edit, modify or rename this file, since Babelfish Compass will detect this and

terminate immediately.

For each Babelfish release that contains changes in functionality, a new version of the

BabelfishFeatures.cfg will be created. When Babelfish Compass is already installed, the existing

version of BabelfishFeatures.cfg can be replaced (overwritten) by a newer version of this file.

Security
The Babelfish Compass tool is a stand-alone, on-premises program which does not store any

confidential or sensitive information: all information stored is derived from the SQL/DDL scripts which

the user provided as input.

The Babelfish Compass tool operates offline and does not perform any network access (with the

exception of the -pgimport option, see below).

The Babelfish Compass tool does not "phone home" and makes no network connections invisible to

the user. For example, it does not perform a "check for updates": installing an update must be

performed manually by the user.

The -pgimport option is the only function where network access takes place, by connecting to a

PostgreSQL instance and loading captured items into a database table.

Technically, Babelfish Compass creates file pg_import.bat and pg_import.psql in the captured

directory. The pg_import.bat file executes pg_import.psql, which runs a CREATE TABLE and a COPY

statement in PostgreSQL.

Babelfish Compass executes this function by spawning a subprocess to run pg_import.bat.

To make a connection to the PostgreSQL instance, the user must specify connection attributes on the

Babelfish Compass command line, including the PostgreSQL username and password. These

connection attributes are not written to any file, but are supplied as environment variables in the

short-lived spawned subprocess. These environment variables are not accessible from the outside the

spawned subprocess.

Note that the connection attributes may be accessible through the command-line history in the cmd

prompt session.

As for the uploaded captured items, it is assumed that the user owns the PostgreSQL instance and is

responsible for granting access to the uploaded data.

Using Babelfish Compass in PostgreSQL
Migrations
Users of SQL Server can use Babelfish Compass to analyze the SQL/DDL code for their current SQL

Server-based applications for compatibility with Babelfish. The purpose of such analysis is to inform a

Go/No Go decision about whether it makes sense -or not- to consider starting a migration project

from SQL Server to Babelfish. For this purpose, Babelfish Compass produces an assessment report

which lists -in great detail- all SQL features found in the SQL/DDL code, and whether or not these are

supported by the latest version of Babelfish.

On a high level, the sequence of steps to be taken is as follows:

1. The application owner identifies the SQL Server databases required for the application that is

considered for migration to Babelfish. The application owner is recommended to ensure there

are no legal restrictions with respect to migrating the application in question.

2. Reverse-engineer the SQL Server database(s) in question with SQL Server Management Studio

(SSMS). This is done in the SSMS object explorer by right-clicking a database. Then select Tasks

➔ Generate Scripts, and follow the dialog (make sure to enable triggers, collations, logins,

owners and permissions (these disabled in SSMS by default), by clicking the 'Advanced' button

and turning on the respective options).

3. SSMS produces a DDL/SQL script as output. Use this script (one or more) as input for Babelfish

Compass to generate an assessment report (see instructions and examples earlier in this User

Guide).

4. Optionally, generate additional cross-reference reports to obtain additional details about the

unsupported features.

5. Discuss the results of the Babelfish Compass assessment with the application owner and

interpret the findings in the context of the application to be migrated. In these discussions, it

may be possible to descope the migration by identifying outdated or redundant parts of the

application which do not need to be migrated.

6. The owner of the application to be migrated needs to take a decision whether, given the

assessment results that show the unsupported SQL features in the SQL/DDL code, it is

opportune to start a migration project to Babelfish. If the current version of Babelfish is

deemed to be insufficiently compatible with the application in question, it is recommended to

re-run the analysis when future releases of Babelfish are available which will provide more

functionality.

7. When proceeding, modify the SQL/DDL scripts to rewrite or remove the SQL/DDL statements

that were reported as 'not supported' or requiring 'review'. Then execute the SQL/DDL script

against Babelfish (with sqlcmd) to recreate the schema in Babelfish.

8. Finally, perform data migration, and reconfigure the client applications to connect to Babelfish.

Please keep the following in mind:

• Admittedly, the amount of detail in a Babelfish Compass assessment report can be large. When

discussing the Babelfish Compass findings with the application owner, make sure to highlight

the many aspects that are supported by Babelfish: experience has shown that when focusing

primarily on the non-supported features, SQL Server users may easily end up with an

unnecessary negative perception of Babelfish's capabilities.

• A Babelfish migration involves more than just the server-side SQL/DDL code, for example,

interfaces with other system; ETL/ELT; SSIS/SSRS, replication, etc. These aspects may not be

reflected in the server-side view provided by Babelfish Compass.

Troubleshooting
This section contains some troubleshooting tips. It is recommended to first read this User Guide in

detail when encountering unexpected behavior.

• Syntax errors: while the SQL/DDL input scripts are reverse-engineered from existing applications

and their contents are therefore assumed to contain syntactically valid SQL code, it is possible that

the SQL code contains syntax errors, for example as a result of manual editing (one example: it is

mandatory to terminate the MERGE statement with a semicolon, while such a terminator is

optional for most other T-SQL statements).

In case of a syntax error, this will be printed to stdout, and the offending batch will be logged in a

file in the errorbatches subdirectory in the report directory. A batch containing syntax errors is not

analyzed by Babelfish Compass.

Remedy: correct any SQL syntax errors and re-run the script through the Babelfish Compass tool

using the -replace flag.

• If syntax errors are printed which show garbage characters, it may be that the input file encoding is

not correctly specified. The default encoding , and all available encodings, are displayed with the

-encoding help option.

Remedy: specify the correct encoding with -encoding encoding on the command line.

• On Mac/Linux (currently in beta), it has been observed that UTF16-encoded input files are not

always automatically recognized despite having the required BOM bits. This can lead to errors

being reported like:

Line 2 contains only 0x00. Please verify input file encoding.

Continuing, but errors may occur.

Remedy: specify -encoding UTF-16 on the command line.

Licensing
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

SPDX-License-Identifier: Apache-2.0

GitHub: https://github.com/babelfish-for-postgresql/babelfish_compass

http://amazon.com/
https://github.com/babelfish-for-postgresql/babelfish_compass

