J Object Dictionary

A code, test, and documentation refactoring addon for J

Author:
John D. Baker

bakerjd99@gmail.com

Release:
1.1.1
February 10, 2024

Print dimensions: US Letter
Bound printed version at amazon.com
Amazon ASIN key: BO8M2KBMND

Document Version History

Date | Version | Description
February 10, 2024 1.1.1 j 9.52 minor update
February 5, 2024 1.1.0 j 9.52 update - hash sidecar files
April 4,2023 1.0.25 j 9.42 update
February 28, 2023 1.0.24 j9.41 update
January 26, 2023 1.0.23 j9.04 3 update
December 11, 2021 | 1.0.22 direct definition update
October 28, 2020 1.0.2 Amazon edition BO8SM2KBMND
March 28, 2020 1.0.1 prior pacman release

see: https://github.com/bakerjd99/ joddoc

Table 1: Abbreviated Document Version History

https://bakerjd99.wordpress.com/the-jod-page/
https://www.amazon.com/dp/B08M2KBMND
https://www.amazon.com/dp/B08M2KBMND
https://github.com/bakerjd99/joddoc

CONTENTS CONTENTS
Contents
1 Introduction 4
1.1 WhatisJOD? o 4
1.2 WhyJOD? 4
2 Installing and Configuring JOD 5
3 Quick Tutorial 6
4 Best Practices 11
S JOD Interface Words 15
5.1 abv—allbackupversions 16
5.2 addgrp — add words/tests to group/suiteo e 16
5.3 bget —backupget 17
54 bnl—backupnamelists 18
5.5 compj—compressJcodeo 20
5.6 del—deleteobjects e 23
5.7 delgrp — remove words/tests from group/suite L. 24
5.8 did—dictionary identification Lo 25
5.9 disp—display dictionaryobjects. 25
5.10 dnl —dictionaryname lists 26
5.11 doc—formatcomments e e 28
5.12 dpset — set and change parameters 30
5.13 ed —editdictionary objects 32
5.14 et —puttextintoeditwindow oL 33
5.15 gdeps —groupdependents Lo e 33
5.16 get —getobjects e e 34
5.17 getrx —getrequired toO €XECULe i e e 36
5.18 globs —globalreferences 37
5.19 grp —create and modify groups Lo L Lo 38
520 gt —geteditwindow text 39
5.21 hlpnl — display short object descriptions 40
5.22 jodage —ageofJODobjects e 41
5.23 jodhelp—displayhelp 41
524 lg—makeandloadgroup 42
5.25 locgrp — list groups/suites with word/test 43
5.26 make — generates dictionary SCripts 43
527 mls—makeload script 44
528 mnl —mastername lists L 45

O
‘J D release 1.1.1

February 10, 2024

CONTENTS

CONTENTS

5.29 newd — create a new dictionary
5.30 notgrp—notgrouped
531 nw—editanewword
5.32 nt —editanewtest
5.33 od —opendictionaries

5.34 packd — backup and pack dictionaries

5.35 put — store objects in dictionary
5.36 regd — register dictionaries
5.37 restd—restore backup dictionaries
5.38 revo — listrecently revised objects
539 rm—runmacros
5.40 rtt —runtautologytests
5.41 rxs —regular expressionsearch.
542 uses —returnworduses L.

6 JOD Scripts

6.1 Generated Script Structure
6.2 Dependent Section

7 JOD Directory and File Layouts

7.1 Master File — jmaster.ijf.
7.2 Words File — jwords.i3f.
7.3 TestsFile — jtests.ijf
7.4 Groups File — jgroups.ijf
7.5 Suites File — jsuites.ijf
7.6 Macros File — jmacros.ijf
7.7 UsesFile — juses.ijf
JOD Distribution

Building JOD

Testing JOD

JOD Classes

Reference Path

JOD Argument Codes

Q =2 =2 2 O =

jodparms.ijs

‘CD
J D release 1.1.1 2

72
74
77
78
79

81

February 10, 2024

CONTENTS CONTENTS
H jodprofile.ijs 83
I joduserconfigbak.ijs 87
J JOD startup.ijs entries 88
K Turning JOD Dump Script Tricks 89
L JOD Direct Definition Support 93
M JOD and Version Control Systems 95
N Hungarian Notation for J 99

N.1 Whither Hungarian 99

N.2 JNounTypes i e e e 99

N.3 Hungarian Noun Descriptions 101
O JOD Mnemonics 104
References 105
List of Tables 107
List of Figures 107
Index 108

O
J D release 1.1.1

3 February 10, 2024

1 INTRODUCTION

1 Introduction

1.1 Whatis JOD?

JOD is a code, test and documentation refactoring Addon for the J programming language [3] [16].
JOD has been programmed entirely in J! and can be quickly ported to any system that supports J.

1.2 Why JOD?

Programming in J has a charming and distinctive flavor. Tasks decompose into scores of tiny pro-
grams called words. JOD stores and organizes J words and other objects in a dictionary database:
hence the name J Object Dictionary.

Code databases are not new. Similar systems have been developed for many programming
environments. Storing code in a database might strike you as obtuse. Why compromise the ease
of use, portability, and broad support of standard source code files? Believe me, there are good
reasons.

* J encourages brevity: microscopic programs, words, accumulate rapidly. Short J words are
often general-purpose words. They can be used in many contexts. How are scores of terse
words best employed? Scattering them in many scripts leads to error-prone copy-and-pasting
or rampant over-inclusion.> The best way to reuse short words is to put them in a system
like JOD and fetch them as required.

* With JOD, there is only one definition for a given word. When word copies are found in
many files, it’s not always easy to find the current version.

* With JOD, there are no significant limits on vocabulary size. Scripts can hold thousands of
words, but it’s a nuisance to maintain and include such large files.

* The complete definition of a word can be quickly examined. Good English dictionaries
contain far more than definitions. There are etymologies, synonyms, usage comments, and
illustrations. Similarly, literate software documentation contains far more than source code.
You will find descriptions of basic algorithms, remarks about coding techniques, references
to published material, program test suites, detailed error logs, and germane diagrams. Storing
such material in source code would horribly clutter programs. A dictionary is where this
material belongs.

* Relationships between words can be stored. Accurate word references make it easier to
understand code. This is especially true if references and documentation are linked.

1JOD makes a few OS calls to move files and generate GUIDs.
2Qver-inclusion occurs when you load an entire class and only use a tiny portion of it. Unused code is not harmless.
It always confuses programmers.

O
N erease 1.1.1 4 February 10, 2024

https://www.jsoftware.com/jwiki/Addons
https://www.jsoftware.com

2 INSTALLING AND CONFIGURING JOD

* JOD facilitates the generation of scripts and the distribution of code. When I program with
JOD, I rarely write 1oad scripts. I use JOD to generate and distribute J scripts. JOD can
fetch and execute arbitrary J scripts, so you can manage elaborate generation and distribution
procedures.

* Finally, JOD encourages a different way to think about programming. When programs are
reduced to their primary reusable units, words in J’s case, many traditional software engi-
neering problems almost disappear. With JOD, code reuse and refactoring are fluid, natural,
and darn near unavoidable.

2 Installing and Configuring JOD

Before using JOD, you need to install the current Windows, Linux, or Mac version of J 3 Jcanbe
downloaded from www. jsoftware.com.

In addition to J, you need to install several J addons. JOD uses the jfiles, regex, and
task addons. Some J versions include these addons as part of the basic J system. If you can run
the following J command without errors, your system is ready for JOD.

require ’ jfiles regex task’

If you encounter any errors use pacman to install missing addons.
JOD can be installed in two ways.

1. Use pacman, J’s package manager [1], to download JOD. Using pacman is the easiest way
to install and maintain JOD.

2. Download the current JOD distribution from OneDrive* and unzip, preserving directories,
to the relative directory’ ~addons/general

After installation JOD can be loaded with:°®

load "general/jod’
To configure and maintain JOD, you must be aware of the following:

1. JOD uses the J startup file "config/startup.ijs to store load scripts: see mls on
page 44. Exercise caution when manually editing JOD’s load script section.

3JOD runs onJ 8.x and J 9. x systems. Currently, there are no I0S or Android versions of JOD. Porting JOD
to any J system is a simple task. If you are interested in helping me create ports, please get in touch with me at:
bakerjd99@gmail.com

“https://1drv.ms/f/s! AhkVADYOM2T54yK3-aY3vCrtk89p?e=WoQiHg

SPaths that begin with the ~ character are relative directories. The full path can be obtained with jpath verb.

®The ’ character is a single quote: in J notation, itis: 39 { a.

O
N erease 1.1.1 5 February 10, 2024

https://www.jsoftware.com
https://code.jsoftware.com/wiki/Pacman
https://code.jsoftware.com/wiki/Pacman
https://1drv.ms/f/s!AhkVADYOM2T54yK3-aY3vCrtk89p?e=WoQiHg
https://1drv.ms/f/s!AhkVADYOM2T54yK3-aY3vCrtk89p?e=WoQiHg

3 QUICK TUTORIAL

2. To run JOD labs you must download and install the jodsource addon [5]. jodsource
can be installed with pacman.

3. JOD labs and test scripts assume some J folders have been configured. Open J’s configuration
tool, see Figure 1 on page 7, and define folders like:

JOD c:/jod

JODDUMP S c:/jod/joddumps
JODSOURCE c:/Jjodtest/labtesting
JODTEST c:/jodtest/test

Use fully qualified directory paths that are not in the J install tree. For macOS and Linux
systems, use paths like:

JOD /users/john/jod

JODDUMP S /users/john/jod/joddumps
JODSOURCE /users/john/jodtest/labtesting
JODTEST /users/john/jodtest/test

4. jodhelp (41) uses a PDF reader to display JOD documentation. Use J’s configuration tool
to set your preferred PDF reader.’

3 Quick Tutorial

The best way to get started with JOD is to work through the lab JOD (1) Introduction.® JOD labs
are listed in the Addons category: see Figure 2 on page 8. If JOD labs are not listed in the
Addons category browse the directory:

“addons/general/jod/jodlabs

This tutorial uses lab material; work through the JOD labs after reading this section.

Start JOD. After installation JOD can be started from a J session with:

load "general/jod’ NB. start JOD

Create dictionaries. To use JOD you must create some dictionaries with newd: see page 47.
JOD words, with a few exceptions, return boxed list results. The first item is a return code
where 1 indicates success and 0 means failure.

’See the blog post JOD Update: Version 0. 9. 97« for J configuration advice.
8The number “(n)” in JOD lab titles is a suggested order.

O
N erease 1.1.1 6 February 10, 2024

https://code.jsoftware.com/wiki/Labs/Migration
https://www.jsoftware.com/jwiki/Addons/general/jodsource
https://github.com/bakerjd99/jod/blob/master/jodnotebooks/JODIntroductionLab.pdf
https://bakerjd99.wordpress.com/2015/03/22/jod-update-version-0-9-97/

3 QUICK TUTORIAL

J

User/config/folders.cfg - [Projects/jodprj] - Edit = o

File Edit View Run Tools Script Project Window Help
files | source (P G @b

EfRY config/folders.cfg B
Projects/jodprj INB. folders.cfg
NB.

"'_ . NB. each non-empty line is a pair: name path, e.g.
[build.js NB. Van /home/guest/van/source
[initijs NE. . . .

. L NB. name begins with Towercase - added to SystemFolders_j_
[jodprijproj NB. name begins with uppercase - defines UserFolders_j_
[runijs

NEB.
Job c:/jod

JODDUMPS c:/jod/joddumps
JODSOURCE c:/jodtest/labtesting
JODTEST c:/jodtest/test

Demos ~addons/demos
Projects ~user/projects
User ~user

standard JoD folders

NB. pet project folders
BLOG c:/jod/jacks/texfrwpxml

JODUNIT c:/jod/joddev/alien/stage/jodunit
JODIJS c:/jod/joddev/alien/jodgit/jodijs

(a) J 9.x Windows JQT configuration editor

.J User/config/folders.cfg - Edit

| [INB. folders.cfg

wll sp
[toucan.jpg
[toucan.png

NB.
[buildjodcompressed.ij: |,

NB. each non-empty line is a pair: name path, e.g.

8 006

Iig source | defs H & o b
B &9

!temp

i -

[blue.bmp

Van /home/guest/van/source

NB. name begins with lowercase - added to SystemFolders_j_
NB. name begins with uppercase - defines UserFolders_j_

“Demos ~addons/demos
Projects ~user/projects
User ~user

JOD /Users/malihesoheil/jod

JODDUMPS /Users/malihesoheil/jod/joddumps
JODSOURCE /Users/malihesoheil/jodtest/labtesting
JODTEST /Users/malihesoheil/jodtest/test

(b) J 8.x Mac JQT configuration editor

Figure 1: This folder configuration is recommended for running JOD labs and test scripts. When
defining JOD folders the full path, including the drive letter on Windows and a leading / for Linux
and the Mac, must be used: see page 6.

O
I"] DI release 1.1.1

7 February 10, 2024

3 QUICK TUTORIAL

J Lab Select - O

Options Help

Select a lab Browse...

Category: | Addons ©

FVJ4: raster ja.ijs (jandroid) Raster ir A
Fast Fourier Transform

[1oD (1) Introduction

JOD (2) Source Code Dump Scripts
JOD (3) Best Practices

LAPACK

Scientific Units

Print

Strings conversion package
Strings conversion: BARE converter
Strings conversion: converter verbs

< > Close

Figure 2: JOD Labs are installed in the Addons or General category.

newd ’lab’;’c:/jodtut/lab’ NB. create (lab)
t—t——— ———t—— +
|1|dictionary created ->|lab|c:/Jjodtut/lab/|
t—t——— t———t—— +

Open dictionaries. To use a dictionary it must be open. Open dictionaries with od: see page 50.

od ' labdev’ NB. open read/write
t—t——————— t——— +
|1 |opened (rw) ->]|labdev]|
+—t—————— t—— +

2 od "lab’ NB. open read/only
t—t——————— +———
|1l]opened (ro) —>|lab|
t—t——————— +———

|<)
N erease 1.1.1 8 February 10, 2024

3 QUICK TUTORIAL

Show open dictionaries. Open dictionaries define a reference path, see appendix E on page 78.
did, see page 25, displays information about open dictionaries.

did 0 NB. show open dictionary path
o +———+
|1|1labdev]lab]|
o +———+

Create some words to store. You can store all types of J words in JOD dictionaries.

NB. create some words in the base locale

random=: 2?10 108100 NB. numeric noun

text=: 'this is a test of the one pure thing’
floats=: 2 + % 100#100

symbols=: s: ' once more with feeling’

boxed=: <"1 i. 2 3

rationals=: 100 + % (>:1. 10x) ~ 50
unicode=: u: ‘this is now unicode’
each=: &.> NB. tacit adverb

explicit=: 4 : O
NB. explicit verb
X +. vy

)

NB. 1ist of defined words
words=: ;:’random text floats symbols’
words=: words, ;:’boxed rationals unicode each explicit’

Store words in put dictionary. The first dictionary on the path is the only dictionary that can be
updated. Most updates are put operations so the first dictionary is called the put dictionary:
see put on page 52.

put words NB. save words
t——— o +
[1]19 word(s) put in —->|labdev|
- - +

erase words NB. erase words
111111111

O
N erease 1.1.1 9 February 10, 2024

3 QUICK TUTORIAL

Retrieve words from dictionaries. get, see page 34, fetches words from dictionaries.

get words NB. get words
e +

119 word(s) defined|
Fotom +

Make a group. Dictionary words can be grouped: see grp page 38.
grp 'tutgroup’ ; words
e o +

| 1]group <tutgroup> put in ->|labdev|
e o +

Make a load script from a group. Load scripts are J scripts that can be loaded with the standard
load utility. Standard J load scripts are defined in the scripts. i js file. This file is reset
by pacman updates so JOD load scripts are stored in the user’s startup.ijs file: see

appendix J on page 88.

mls ’'tutgroup’
B e o +
|1|load script saved ->|c:/jodtut/labdev/script/tutgroup.ijs|
e o +

NB. load with standard utility
load ’"tutgroup’

Back up the put dictionary. You're either backed up or f’ed up—there are no other options! JOD

makes backing up easy: see packd on page 52. Dictionary backups can be restored with
restd: see page 56.

packd " labdev’
R e et e +o—— +—+
|1l]dictionary packed —->|labdev|1]
e et e T +o—— +—+

Dump dictionaries on path. make, see page 43, can dump all open dictionaries as a single dump

script.

make 7
Fo o e +
|1|object(s) on path dumped —>|c:/Jjodtut/labdev/dump/labdev.ijs|
Fo o e +

O
N erease 1.1.1 10 February 10, 2024

4 BEST PRACTICES

3 od "’ NB. close all dictionaries
fopmm e +———+
|1l|closed —>|labdev|lab]
s +————— +-——+

This brief tutorial has just touched JOD’s surface. To learn more work through the JOD labs
and read the JOD Jupyter [14] notebooks on Github at: https://github.com/bakerjd99/jod.

4 Best Practices

Here are some JOD practices I have found useful. A JOD lab, JOD (3) Best Practices, elaborates
and reiterates this material. After reading these notes I recommend you run this lab. JOD labs are
found in the Addons lab category.’

JOD does not belong in the J tree. Never store your JOD dictionaries in J install directories!
Create a JOD master dictionary directory root that is independent of J: see newd on page 47.
It’s also a good idea to define a subdirectory structure that mirrors J’s versions.

NB. create a master JOD directory root outside of J’s directories.
newd ’‘bptest’;’c:/jodlabs/j701/bptest’;’best practices dictionary’

NB. linux and mac paths start with a leading /
newd ’‘bptest’;’/home/john/jodlabs/bptest’

Back up, back up, and then back up. It’s easy to back up with JOD so back up often: see packd
and restd on pages 52 and 56.

NB. open the best practice dictionary
od "bptest’” [3 od "’

NB. back it up
packd "bptest’

Take a script dump. It’s a good idea to “dump” your dictionaries as plain text. JOD can dump
all open dictionaries as a single J script: see make on page 43. Script dumps are the most
stable way to store J dictionaries. The jodsource addon distributes all JOD source code
in this form.

9Prior J versions put JOD labs in the General category.

O
N erease 1.1.1 1 February 10, 2024

https://jupyter.org/
https://github.com/bakerjd99/jod
https://github.com/bakerjd99/jod/blob/master/jodnotebooks/JODBestPracticesLab.pdf
https://www.jsoftware.com/jwiki/Addons/general/jodsource

4 BEST PRACTICES

NB. (make) creates a dictionary dump in the dump subdirectory
make "7’

Dump scripts are essential JOD dictionary maintenance tools: see appendix K on page 89.

Make a master re-register script. JOD only sees dictionaries registered in the jmaster.ijf
file: see Table 3 on page 63. Maintaining a list of registered dictionaries is recommended.
JOD can generate a re-register script: see od on page 50. Generate a re-register script and
put it in your main JOD dictionary directory root.

NB. generate re-register script
rereg=: ;{: 5 od "’

Set library dictionaries to READONLY. Open JOD dictionaries define a search path. The first
dictionary on the path is the only dictionary that can be changed. It is called the put dic-
tionary. Even though nonput dictionaries cannot be changed by JOD it’s a good idea to set
them READONLY because:

1. READONLY dictionaries can be accessed by any number of JOD tasks. READWRITE
dictionaries can only be accessed by one task.

2. Keeping libraries READONLY prevents accidental put’s as you open and close dictio-
naries.

NB. make bptest READONLY
od "bptest’ [3 od "’
dpset ’READONLY’

Keep references updated. JOD stores word references: see globs on page 37. References en-
able many useful operations. References allow get rx, see page 36, to load words that call
other words in new contexts.

NB. only put dictionary references need updating
0 globs&> }. revo '’/

Document dictionary objects. Documentation is a long standing sore point for programmers.
Most of them hate it. Some claim it’s unnecessary and distracting. Many put in half-assed
efforts. In my opinion this is “not even wrong!” Good documentation elevates code. In
Knuth’s [8] opinion it separates “literate programming” from the odious alternative. JOD
provides a number of easy ways to document code: see doc on page 28, put on page 52
and nw on page 48.

O
N erease 1.1.1 12 February 10, 2024

https://www-cs-faculty.stanford.edu/~knuth/

4 BEST PRACTICES

Define your own JOD shortcuts. JOD words can be used within arbitrary J programs. If you

don’t find a JOD primitive that meets your needs do a little programming.

NB. describe a JOD group - (ijod) is JOD’s interface locale
hg_ijod_=: [: hlpnl [: }. grp

NB. re-reference put dictionary show any errors
reref_ijod_=: 3 : ' (n,.s) # —-.;0{"1l s=.0 globs&>n=.}.revo’’"" [y’

NB. words referenced by group words that are not in the group
jodg_ijod_=: ’"agroup’
nx_ijod =: 3 : " (allrefs }. gn) —-. gn=. grp jodg’

NB. missing from (agroup)
nx rr

Customize JOD edit facilities. The main JOD edit words nw on page 48 and ed on page 32 can

be customized by defining a DOCUMENTCOMMAND script.

NB. define document command script - { N7} is word name placeholder
DOCUMENTCOMMAND_ijod_ =: 0 : O

smoutput pr ’{ "N}’

)

NB. edit a new word — opens edit window
nw "bpword’

Define JOD project macros. When programming with JOD you typically open dictionaries, load

‘<>

system scripts and define nouns. This can be done in a project macro script: see rm on
page 57.

NB. define a project macro - I use the prefix prj for such scripts
prijsunmoon=: 0 : O

NB. standard j scripts
require ’"debug task’

NB. local script nouns
jodg_ijod_=: ’sunmoon’
jods_ijod_=: ’sunmoontests’

NB. put/xref
DOCUMENTCOMMAND_1ijod_ =: ’smoutput pr "/ {"N"}""'

N erease 1.1.1 13 February 10, 2024

4 BEST PRACTICES

NB. store macro
4 put "prjsunmoon’;JISCRIPT_ajod_;prjsunmoon

NB. setup project
rm ’prjsunmoon’ [od ; :"bpcopy bptest’ [3 od 7’

Maintain a make load scripts macro or test. To simplify the maintenance of JOD generated load
scripts create a macro or test script that rebuilds load scripts when executed with rm on
page 57 or rtt on page 57 .

NB. »make load scripts s—— generates load scripts.
NB.
NB. Can run as a tautology test see: rtt

cocurrent ’'base’
require ’"general/jod’
coclass 'AAAmMake999’ [coerase <’'AAAmMake999’

>0{OPENDIC=: did O
>0{od "utils’” [3 od "’

NB. utils scripts
>0{mls ’"bstats’
>0{mls ’"xmlutils’
>0{3 od "’

NB. jod tester

>0{od ;:’ joddev jod utils’
>0{mls ’ jodtester’

>0{3 od "’

NB. exif image utils

>0{od ; :’smugdev smug image utils’
>0{mls ’"exif’

>0{3 od "’

cocurrent ’AAAmake999’
>0{od }. OPENDIC

cocurrent ’'base’
coerase <’'AAAmake999’
I()
N erease 1.1.1 14 February 10, 2024

5 JOD INTERFACE WORDS

Edit your jodprofile.ijs. When JOD loads the profile script
“addons/general/jod/jodprofile.ijs

is run: see appendix H on page 83. Use this script to customize JOD. Note how you can
execute project macros when JOD loads with sentences like:

NB. open required dictionaries and run project macro
rm ‘prjsunmoon’ [od ; :’bpcopy bptest’

Use JOD documentation. JOD documentation is available as a PDF document jod.pdf that
can be read with jodhelp: see page 41.

NB. display JOD help - requires general/joddocument addon
jodhelp 0O

5 JOD Interface Words

This section describes all JOD user interface words in alphabetical order. Each word description
consists of a short explanation followed by examples. Examples show J inputs; outputs are omitted.
Word arguments are summarized with a form of Hungarian notation: see appendix N on page 99.

When JOD loads, it creates several locale classes (see appendix D on page 77), and defines an
i jod user interface locale: ijod is placed on the base locale’s path. JOD’s i1 jod user interface
consists of definitions like:

get NB. display get interface
get_1_ ::jodsf

mls NB. display mls interface
mls_8_ ::jodsf

jodst NB. display error trap
o"_ ; "JOD SYSTEM FAILURE: last J error -> '""_ , [: 13!':12 "'"_ []

Each interface word calls a corresponding object instance word. The default interface is an error
trapping interface.'® If any JOD word fails jods £ will catch the error and return JOD’s standard
(paRc; clMessage) result.

10Provisions for defining a non-error-trapping interface exist in JOD source code.

O
N erease 1.1.1 15 February 10, 2024

5.1 abv — all backup versions 5 JOD INTERFACE WORDS

5.1 abv — all backup versions

abv searches binary backups and returns lists of backup names. abv is used with bget, see
page 17, to recover objects in backups.

Monad: abv clPstr

NB. 1list all backup words from most recent to oldest
abv "’

NB. 1ist backup words starting well
abv "well’

NB. get scary backup words
"rc ncv’=. bget }. abv ’scary’

NB. edit all backup words starting out
ed > 1 { bget }. abv "out’
Dyad: 1iaObject abv clPstr

(iaObject, iaOption) abv clPstr

NB. backup smoke tests
1 abv ’smoke’

NB. 1ist backup macro post processors
4 abv "POST_'

NB. edit all group headers with prefix foo

"rc ncv’=. 2 bget }. 2 abv ’"foo’
ed ncv

5.2 addgrp — add words/tests to group/suite

addgrp adds words to a group and tests to a suite.

Dyad: clGroup addgrp clName V blclNames
(clSuite;ia0Object) addgrp clName V blclNames

O
N erease 1.1.1 16 February 10, 2024

5.3 bget — backup get 5 JOD INTERFACE WORDS

NB. add a word to a group
"group’ addgrp ’‘word’

NB. add many words to a group
"groupname’ addgrp ;:’word names to group’

NB. boxed (x) 1s used for suites - 3 denotes suite
("suitename’;3) addgrp ;:’'tests added to suite’

JOD argument codes have noun definitions see JOD Argument Codes on page 79.

("suitename’ ; SUITE_ajod_) addgrp ;:'more basic test bitches’

5.3 bget — backup get

bget fetches objects from either the last dictionary binary backup or particular backups. Backups
are created by packd, see page 52.

Fetched objects are not defined in locales for the simple reason that backup fetches may return
many versions of the same object. bget like bn1, only searches put dictionary backups and unlike
get, (see page 34), bget does not fetch name classes, timestamps or byte sizes.

The (y) argument of bget is similar to the (y) argument of get. Both take lists of names.
get takes lists of J names that do not reference locales or objects and bget takes get names
and backup names where a backup name is a get name that may end with a backup suffix. The
following bget examples illustrate backup names.

Monad: bget clBName V blclBNames

NB. get word from last backup
bget ’"oops’

NB. fetch words from last backup
bget ;: ’shawn of the dead’

NB. fetch words from particular backups - backup names
bget <;._1 7 us.1l2 poor.10 little.08 words.08 lastback’

NB. fetch many versions of a word — backup names
bget <;._1 " me me.1l2 me.09 me.08 me.02'

NB. all words from last backup
bget }. bnl 7’

O
N erease 1.1.1 17 February 10, 2024

5.4 bnl — backup name lists 5 JOD INTERFACE WORDS

NB. all words from backup #55
bget (}.bnl ".55") ,&.> <’ .55’

Dyad: 1iaObject bget clBName V blclBNames V uulgnore
(1iaObject, iaOption) bget clBName V blclNames

5 bget 7’ NB. dictionary document from last backup
5 bget ’.12’ NB. dictionary document from particular backup
5 bget }. bnl ".’” NB. documents from all backups

NB. fetch a suite header from a particular backup
3 bget ’"sweet.04’

NB. fetch a particular suite test 1list
3 1 bget "sweet.04’

NB. three versions of a group’s header - similar to (get)
NB. where (2 get ’‘group’) returns the group header
2 bget <;._1 7" gfoo.12 gfoo.05 gfoo.00’

NB. three versions of a group’s word 1ist - backup names
2 1 bget <;._1 7" gfoo.12 gfoo.05 gfoo.00’

NB. fetch many versions of a macro — backup names
4 bget <;._1 7 mymacro.l3 mymacro.09 mymacro.07 mymacro.02’

5.4 bnl — backup name lists

bn1l searches put dictionary backups, see page 9 and appendix E on page 78, and returns backup
name lists. bn1’s arguments are similiar to dn1, see page 26.

Monad: bnl z1l V clPstr

NB. 1ist all put dictionary backup numbers
bnl 7.’/

NB. words 1in last put dictionary backup
bnl 7’

NB. all words in all backups
l()
N erease 1.1.1 18 February 10, 2024

5.4 bnl — backup name lists 5 JOD INTERFACE WORDS

bnlé&> }. bnl 7.7

NB. words in last backup matching prefix
bnl "prefix’

NB. words in backup #42 matching prefix
bnl "prefix.42’

Dyad: iaObject bnl zl V clPstr
(iaObject, 1aOption) bnl zl1 V clPstr
(iaObject, iaOption, iaQualifier) bnl =zl
(iaObject, iaOption, iaQualifier) bnl clPstr

0 bnl "’ NB. all words in last backup (monad)
0 bnl .11 NB. all words in backup #11

1 bnl 77 NB. all tests in last backup
1 bnl ".13"” NB. all tests in backup #13

2 bnl 7' NB. all groups in last backup
2 bnl 7.7’ NB. all groups in backup #7

NB. suites in backup #14 beginning with boo
3 bnl "boo.14’

NB. words in last backup containing the string str
0 2 bnl "str’

NB. words in backup #6 containg the string ass
0 2 bnl "ass.6’

NB. words in all backups containing yada
0 2&bnl&> (<'yada’) ,&.> }. bnl 7.’

NB. word names in last backup ending with string str
0 3 bnl ’"str’

NB. adverbs in backup #17 beginning with str
011bnl "str.17’

NB. verb names in last backup containing str
0 2 3 bnl "str’

Lf>
D release 1.1.1 19 February 10, 2024

5.5 compj— compress J code 5 JOD INTERFACE WORDS

NB. nouns in backup #9 ending with str
0 3 0 bnl "str.9’

NB. nouns 1in all backups ending with EX
0 3 0&bnls&> (K'EX’) ,&.> }. bnl 7.’

NB. J macro names beginning with jscript
4 1 21 bnl ’Jjscript’

NB. MARKDOWN macro names in backup #18 containing mark
4 2 27 bnl "mark.18’

NB. TEXT macro names 1in backup #23 ending badly
4 3 25 bnl '"badly.23’

NB. put dictionary backup numbers and file timestamps
14 bnl .’

NB. check put dictionary backup files against hashes in (n) jhashes.txt
17 bnl 7.7

NB. scan all dictionaries listing backups and checking hashes
{{y;<14 17 bnl"0 7. [ody [3 od ""}}&> }. od "’

5.5 compj— compress J code

comp j compresses J code by removing comments, white space and shortening safe local identi-
fiers to single characters.!! Code compression is useful when preparing production scripts. The
JOD system script:

“addons/general/jod/jod.ijs

is an example of a compressed J script. In its fully commented form this script is about 244
kilobytes when squeezed with comp j it shrinks to about 85 kilobytes. comp j does not compress
words in JOD dictionaries it returns a compressed script result.

Warning: to safely use comp j you must understand how to:

1. mark ambiguous names.

""If more than one character is required to rename all local identifiers compj uses a letter prefixed high base
numbering scheme.
‘<>
N erease 1.1.1 20 February 10, 2024

5.5 compj— compress J code 5 JOD INTERFACE WORDS

2. exclude words with local names that match quoted text.

If you do not properly mark ambiguous names and exclude words with local names
that match quoted text comp j will break your code!

Prior to compressing a word apply globs, see page 37, to expose any name problems.

Ambiguous names in J are words created in object instances, temporary locale globals, names
masked by indirect assignments and objects created with execute. When you use ambiguous names
augment your code with sufficient information to clearly resolve and cross reference all names.

JOD provides two comment scope tags (*)=.and () =: to clarify ambiguous names. Com-
ment scope tags override J scope.

1. localtag NB. (#x)=. local names declared after tag

2. globaltag NB. (x)=: global names also declared

The following examples show how to use these tags:

indirectassignments=: 3 : O

NB. Indirect assignments often create objects that elude static
NB. cross referencing. Declaring the names global and local

NB. makes it possible to cross reference this verb with (globs)
globref=. ;:’one two three’

NB. declared global (*)=: one two three
(globref)=: vy

NB. declared local (*)=. we are hidden locals
locref=. ; :’we are hidden locals’
(locref)=. i. 4

NB. without tags these names appear to
NB. be used out of nowhere

one * two x three

we + are + hidden + locals

)

createobject=: 3 : 0

NB. Object initialization often creates global nouns
NB. that are not really globals. They only exist within
NB. the scope of the object. Tags can over ride J’s

NB. global scope for cross referencing.

|<)
N erease 1.1.1 21 February 10, 2024

5.5 compj— compress J code 5 JOD INTERFACE WORDS

NB. create "globals" in an object instance
THIS=: STUFF=: IS=: INSIDE=: AN=: OBJECT=: 1

NB. over ride J’s scope by declaring names local.
NB. ! (*#)=. THIS STUFF IS INSIDE AN OBJECT

1

)

comp j recognizes two additional comment tags (—.)=: and (/:) =:. The first limits com-

pression to only white space removal and the second obfuscates local names.

1. comp j compression can be limited to white space removal by marking explicit words with

12

the comment tag (—.) =:. Consider the following verb donot squeeze.

donotsqueeze=: {{

NB. I have local names that occur in quoted strings.
NB. Compressing me will end civilization as we know It.
NB. Use the comment tag (—.)=: anywhere to save the day.

NB. do not compress (—.)=:
home=. 2 * y
heart=. x - 1
if. O=|home do.

"home is where the heart is’
else.

"heart health helps’
end.

H}

. comp j will obfuscate local names when explicit words are marked with the comment tag
(/:)=:. Name obfuscation makes code difficult to read and should only be used when
words are running general scripts with 0! : k foreigns. (—.)=: overrides (/:)=:.

obfuscateme=: 3 : 0

NB. I run a script that may reassign my names.
NB. Obfuscation makes this unlikely.

NB. (/:)=: do not eschew obfuscation
script=. vy

2Direct definition of donot squeeze. Requires J version 9.02 or newer.

release 1.1.1 22 February 10, 2024

5.6 del — delete objects 5 JOD INTERFACE WORDS

NB. running (script) may clash with local (script)
0!':000 vy

"bytes run’ , ":# script

)

More examples of the use of comment tags can be found in JOD source code. JOD source code
is not distributed with JOD. You can get JOD source code by installing the jodsource addon or
by downloading from 7he JOD Page [7]. JOD source is distributed as JOD dictionary dump scripts
and as fully commented scripts at https://github.com/bakerjd99/jod/tree/master/jodi js.

Monad: compj clName V blclNames

NB. compress a single word
comp]j ’squeezeme’

NB. compress words beginning with fat
compj }. dnl ’fat’

NB. compress all words in a group
"rc script’=. compj }. grp ‘group’

Dyad: 1iaOption compj clName V blclNames

NB. remove comments preserving leading whitespace and
NB. original identifiers - useful for reading code
NB. without distracting comments

>1{ 1 compj " Jjustthecode’

5.6 del — delete objects

del deletes dictionary objects. If objects are on the search path but not in the put dictionary
nothing will be deleted and the nonput dictionary objects will be identified in an error message.

Warning: del will remove objects that are in use without warning. This can lead to broken
groups and suites.'® Deleting a word that belongs to a group breaks the group: similarly for suites.
An attempt to get or make a broken group or suite will result in an error. You can recover from
this error by deleting references, (see below), and regrouping.

13In database terms de 1 can violate referential integrity. Early versions of JOD maintained referential integrity but
this proved cumbersome and was dropped.

O
N erease 1.1.1 23 February 10, 2024

https://www.jsoftware.com/jwiki/Addons/general/jodsource
https://bakerjd99.wordpress.com/the-jod-page/
https://github.com/bakerjd99/jod/tree/master/jodijs

5.7 delgrp — remove words/tests from group/suite

5 JOD INTERFACE WORDS

Monad: del clIName V blclNames

NB. delete one word
del ’"word’

NB. delete many words
del 'go’;’"ahead’;’delete’;’us’

Dyad: 1iaObject del clName V blclNames

NB. delete a test
1 del "test’

NB. delete a group - words 1in the
NB. group are not not deleted
2 del ’"group’

NB. delete many groups
2 del ;:"we are toast’

NB. delete suites and macros
3 del ’"suite’
4 del ’"macro’

NB. delete many macros
4 del "macro’;’'byebye’

NB. delete word references
11 del ; :’remove our references’

5.7 delgrp — remove words/tests from group/suite

delgrp removes words from a group and tests from a suite.
Removing objects from groups and suites does not delete them. To delete objects use del.

Dyad: clGroup delgrp clName V blclNames
(clSuite;iaObject) delgrp clName V blclNames

(@)

Jp release 1.1.1 24

February 10, 2024

5.8 did— dictionary identification

5 JOD INTERFACE WORDS

NB. remove a word from a group
"group’ delgrp ’‘word’

NB. remove many words from a group
"groupname’ delgrp ;:’word names to remove’

NB. boxed (x) 1s used for suites - 3 denotes suite

("suitename’;3) delgrp ;:’'tests removed from suite’

5.8 did — dictionary identification

did identifies open dictionaries.

Monad: did uulgnore

NB. 1ists open dictionaries in path order
did O

Dyad: uulIgnore did uulgnore

NB. open dictionaries and basic statistics
0 did O

NB. handy idiom
did™ 0

5.9 disp — display dictionary objects

disp displays dictionary objects. disp returns a character list when successful and the standard

boxed (paRc; clMessage) when reporting errors.

Monad: disp clName V blclNames

NB. display a word
disp "word’

NB. display many words
disp ;:"go ahead show us’

O
J D release 1.1.1 25

February 10, 2024

5.10 dnl — dictionary name lists 5 JOD INTERFACE WORDS

Dyad: 1iaObject disp clName V blclNames
(iaObject, iaOption) disp clName V blclNames

NB. show a test
1 disp "test’

NB. generate and display a group
2 disp ’"group’

NB. display group header
2 1 disp "group’

NB. display group documentation
2 9 disp "group’

NB. display all short group explanations
2 8 disp }. grp '’

NB. generate and display a suite
3 disp ’suite’

NB. display suite header
3 1 disp "suite’

NB. display suite documentation
3 9 disp ’'suite’

NB. display one macro
4 disp ’"macro’

NB. display many macros
4 disp ’'macro’;’byebye’

NB. display put dictionary documentation
5 disp 7’

5.10 dnl — dictionary name lists

dnl searches and returns dictionary name lists. The entire path is searched for names and dupli-
cates are removed. A negative option code requests a path order list. A path order list returns the
objects in each directory in path order. Raising, removing duplicates and sorting a path order list
gives a standard dn1 list. dnl arguments follow the pattern:

‘<>
N erease 1.1.1 26 February 10, 2024

5.10 dnl — dictionary name lists 5 JOD INTERFACE WORDS

(n, (p,(d))) dnl ’str’
where:

nisoneof 0 1 2 3 4
optional pisoneof 1 2 3 _1 _2 _3

optional d is word name class or macro type

Monad: dnl z1 V clPstr

NB. 1ist all words on current dictionary path
dnl 7’

NB. 1ist all words that begin with prefix
dnl "prefix’

Dyad: iaObject dnl zl V clPstr
(iaObject, iaOption) dnl zl1 V clPstr
(iaObject, iaOption, iaQualifier) dnl =zl
(iaObject, iaOption, iaQualifier) dnl clPstr

dnl "’ NB. all words (monad)
dnl "’ NB. list all tests
dnl '’ NB. 1list all groups
dnl "’ NB. list all suites
dnl "’ NB. 1list all macros

DSw N O

A word can appear in two dictionaries. When getting such a word the first path occurrence is
the value returned. The second value is shadowed by the first as only one value can be retrieved.

NB. match word names beginning with str
0 1 dnl ’"str’

NB. match word names containing the string str
0 2 dnl ’"str’

NB. match word names ending with string str
0 3 dnl ’"str’

NB. words and macros have an optional third
NB. item that denotes name class or type

|<>
N erease 1.1.1 27 February 10, 2024

5.11 doc — format comments 5 JOD INTERFACE WORDS

NB. adverb names beginning with str
0 1 1 dnl "str’

NB. verb names containing str
0 2 3 dnl ’"str’

NB. nouns ending with str
0 3 0 dnl "str’

NB. J macro names beginning with jscript
4 1 21 dnl ' Jjscript’

NB. LaTeX macro names containing latex
4 2 22 dnl ’"latex’

NB. HTML macro names ending with html
4 3 23 dnl "html’

A negative second item option code returns a path order list.

NB. words containing str (result is a list of 1ists)
0 _2 3 dnl ’"str’

NB. group names beginning with so
2 1 dnl ’"so’

NB. suite names ending with str
3 _3 dnl ’"str’

5.11 doc — format comments

doc formats the leading comment block of explicit words, tests, group/suite headers and macros.
The comment block must follow J scriptdoc compatible conventions. The comment style
processed by doc is illustrated in the following example. More examples of doc formatting can
be examined by displaying words in the distributed JOD dictionaries. Install the jodsource
addon to get the distributed JOD dictionaries.

docexamplelO=: 3 : O

NB. xdocexampleO v—— the leading block of comments
NB. can be a scriptdoc compatible mess as far

NB. as formatting goes.

NB.

NB. However, 1f you run doc over

‘<>
N erease 1.1.1 28 February 10, 2024

https://www.jsoftware.com/jwiki/Addons/general/jodsource

5.11 doc — format comments 5 JOD INTERFACE WORDS

NB. a word in a JOD dictionary your

NB. mess 1s cleaned up. See below.

NB. monad: docexample uuHungarian

NB.

NB. text below monad: and dyad: 1is left unformatted
NB. this region is used to display example calls

J code from now on

)

docexamplel0=:3 : O

NB. xdocexample(O v—— the leading block of comments can be a
NB. scriptdoc compatible mess as far as formatting goes.
NB.

NB. However, 1f you run doc over a word in a JOD dictionary
NB. your mess 1s cleaned up. See below.

NB.

NB. monad: docexample uuHungarian

NB.

NB. text below monad: and dyad: 1is left unformatted
NB. this region is used to display example calls

j code from now on

)

Monad: doc clName

NB. format leading comment block
doc ' formatme’

Dyad: 1iaObject doc clName
(iaObject, iaOption) doc clName

NB. format leading test script comments
1 doc ’"tidytest’

NB. format J script macros — only J scripts formatted
4 doc 'macroname’

NB. group and suite headers

2 1 doc "thisgroup’
3 1 doc ’"thissuite’

Ny
release 1.1.1 29 February 10, 2024

5.12 dpset — set and change parameters 5 JOD INTERFACE WORDS

doc also formats the long document text of all dictionary objects. Long document text differs
from J script text in that it is not prefixed with leading NB. ’s.

NB. format long documents
doc "word’

doc ’"test’

doc ’"group’

doc "suite’

doc "macro’

S w N O
O W W W O

5.12 dpset — set and change parameters

dpset modifies dictionary parameters. JOD uses a variety of values that control putting, getting
and generating objects. Parameters are stored in individual dictionaries and the master file.!* Mas-
ter file parameters are initially set from the jodparms.ijs file, see appendix G, on page 81,
and cannot be reset without editing jodparms. ijs and recreating the master file. Individual
dictionary parameters can be changed at any time with dpset. dpset is permissive; it will allow
parameters to be set to any value. Invalid values will crash JOD! Before setting any values examine
the jodparms. i js file. This file is used to set the default values of dictionary parameters.

Note: If you set an invalid parameter value you can recover using dpset’s DEFAULTS option.

Not all dictionary parameters can be set by dpset. The parameters dpset can change are
dictionary specific user parameters. There are a number of system wide parameters that are set in
code and require script edits to change.

If JOD, or the host OS crashes, the master file could be left in a state that makes it impossible
to reopen dictionaries. dpset ’'RESETME’ and dpset ’RESETALL’ clear read status codes
in the master file. RESETME resets all dictionaries recently opened from the current machine.
RESETALL resets all dictionaries in the master file. In the worst case you can rebuild the master
file by:

1. Exiting J.

2. Deleting the files:
“addons/general/jod/jmaster.ijf
“addons/general/jod/jod.ijn

3. Restarting J.
4. Reloading JOD with: 1oad ’"general/jod’

Monad: dpset z1 V clName V (clName;uuParm)

14JOD’s master file will not be renamed. See the blog post GitHub’s Silly Master Plan for details.

O
N erease 1.1.1 30 February 10, 2024

https://analyzethedatanotthedrivel.org/2020/06/20/githubs-silly-master-plan/

5.12 dpset — set and change parameters 5 JOD INTERFACE WORDS

NB. 1ist all parameters and current values
dpset '’

NB. restore default settings in put dictionary
dpset ’'DEFAULTS’

NB. option names are case sensitive
NB. resets current machine dictionaries
dpset 'RESETME’

NB. resets all dictionaries
dpset 'RESETALL/

Note: if a JOD dictionary is being used by more than one task never use RESETALL unless
you are absolutely sure you will not reset other tasks!

NB. clears the put dictionary reference path
dpset ’CLEARPATH’

NB. makes the current put dictionary read-only
dpset ’READONLY’

NB. makes the current put dictionary read-write
dpset 'READWRITE’

NB. use ascii85 in dump scripts
dpset "ASCII85’;1

NB. turn off SHA-256 hash on dump scripts
dpset ’HASHDUMP’ ;0

NB. retain age of objects in dump scripts
dpset 'RETAINAGE’;1

NB. set J configured make script directory
dpset ’ROOTFOLDER’;’ "USERROOT/mlsscripts/’

If JOD dictionary files are moved after creation, a master dictionary path mismatch may result.
You can recover from mismatches by forcing the registered master path into dictionaries. Close
and reopen forced dictionaries to activate changes.

NB. force the master path into the put dictionary even
NB. 1if the put dictionary 1is READONLY - used to reset
NB. paths when dictionary files are moved
l()
N erease 1.1.1 31 February 10, 2024

5.13 ed— edit dictionary objects 5 JOD INTERFACE WORDS

dpset ’'FORCEMASTERPATH’

5.13 ed — edit dictionary objects

ed fetches or generates dictionary objects and puts them in an edit window for editing.

Monad: ed clIName V blclNames V btNameClassValue

NB. retrieve word and place in edit window
ed "word’

NB. put many words in edit window
ed ; :'many words edited’

NB. edit objects in (name, [class],value) tables
"rc ncv’=. 4 get }. 4 1 21 dnl ’"build’
ed ncv

NB. edit backup versions of a word in a single edit window
"rc ncv’'=. bget <;._1 " me.1l2 me.09 me.08 me.02’
ed ncv

NB. edit all words in last backup in a single edit window
"rc ncv’=. bget }. bnl "’
ed ncv

Dyad: iaObject ed clName V blclNames V btNameClassValue
(iaObject, iaOption) ed clPstr

NB. edit test
1 ed "test’

NB. generate group and place in edit window
2 ed "group’

NB. generate test suite and place in edit window
3 ed ’'suite’

NB. edit macro text
4 ed 'macro’
D

D vetease 1.1.1 32 February 10, 2024

5.14 et — put text into edit window 5 JOD INTERFACE WORDS

NB. edit group header text
2 1 ed "group’

NB. edit suite header text
31 ed "suite’

5.14 et — put text into edit window

et load character lists into edit windows.

Monad: et clText

NB. put character data into edit window
et "put text in edit window’

NB. read text and put in edit window
et (1':1) <’c:\temp\text.txt’

5.15 gdeps — group dependents

gdeps returns lists of global names in the dependent section of group and suite headers: see
page 61.

Monad: gdeps clGroup

NB. globals in the dependent section of group jod
gdeps ' jod’

NB. all dependent section globals in all groups
gdeps&> }. grp '’

Dyad: 1iaOption gdeps clName

NB. globals in the dependent section of suite testenv
3 gdeps ’'testenv’

O
N erease 1.1.1 33 February 10, 2024

5.16 get — get objects 5 JOD INTERFACE WORDS

5.16 get — get objects

get retrieves dictionary objects and information about dictionary objects. There is a close corre-
spondence between the arguments of get and put, see page 52. A basic JOD rule is that if you
can put it you can get it.

Monad: get clName V blclNames

NB. get word and define in current locale
get "word’

NB. get a group
get }. grp "’

Dyad: 1il10ptions get clName V blclNames V uulgnore
clLocale get clName V blclNames

NB. get word (monad)
0 get "word’

NB. get words (monad)
0 7 get ;:’"words are us’

For words a character left argument is a target locale.

NB. get into locale
"locale’ get ;:"hi ho into locale we go’

NB. allow numbered locales
"666" get ;:’beast code’

NB. explain words
0 8 get ;:’explain us ehh’

NB. word documentation
0 9 get ;:"document or die’

NB. get word scripts without defining
0 10 get ’"define’;’ not’

Information about stored words can be retrieved with get.

‘<>
N erease 1.1.1 34 February 10, 2024

5.16 get — get objects 5 JOD INTERFACE WORDS

NB. J name class of words
0 12 get ;:’our name class’

NB. word creation dates
0 13 get ;:’our creation’

NB. last word put dates
0 14 get ;:"last change’

NB. word size 1in bytes
0 15 get ;:"how big are we’

NB. get test scripts
1 7 get "1i7; test’;’71it’

NB. test explanations
1 8 get ;:"explain tests’

NB. test case documentation
1 9 get ’"radical’

NB. get word names and timestamps
0 _14 get ;:’our time stamps’

NB. get macro names and timestamps
4 _14 get ;:'macro creation lastput’

get fetches information about stored tests.

NB. test creation dates
1 13 get ;:’our creation’

NB. last test put dates
1 14 get ;:’last change’

NB. test size 1in bytes
1 15 get ;:"how big are we’

NB. get group scripts
2 7 get ;:’groupies cool’

NB. get group explanation text
2 8 get ’'group’;’explain’

Lf>
D release 1.1.1 35 February 10, 2024

5.17 getrx — get required to execute 5 JOD INTERFACE WORDS

NB. get group document text
2 9 get ’"document’

NB. suite text
3 7 get ;:"this suites me’

NB. explain suites
3 8 get ;:’"suites need comments’

NB. document suites
3 9 get ;:’document your suites’

NB. get various macros
4 get /" jmacro’;’html’;’latex’

NB. explain macros
4 8 get ;:'macros need explaining’
4 9 get ;:’and documents too’

NB. get dictionary documentation - ignores (y) argument
5 get 7

5.17 getrx — get required to execute

getrx gets all the words required to execute words on (y) .
Warning: if the words listed on (y) refer to object or locale references this verb returns an
error because such words generally cannot be run out of context.

Monad: getrx clName V blclNames

NB. load required words into base locale
getrx ’'stuffineed’

NB. get all words required to run many words
getrx ;:’stuff we need to run’

Dyad: clLocale getrx clName V blclNames

NB. load all required words into locale
"locale’ getrx ;:’"load the stuff we need into locale’

I<>
N erease 1.1.1 36 February 10, 2024

5.18 globs — global references 5 JOD INTERFACE WORDS

5.18 globs — global references

globs analyzes global references in words and tests. A global reference is a nonlocal J name
where nonlocality is with respect to the current word’s scope. Names with locale references, for
example:

Jjread_Jjfiles_ NB. direct locale reference

did__ jd2 NB. indirect locale (object) reference
did_3_ NB. direct numbered local reference
boo__hoo__too NB. two levels of indirection

NB. suffix nouns: jd2 hoo too

are treated like primitives. This makes it possible to define clean locale/object interfaces. In the
case of indirect locale references the suffix noun(s) must exist to determine the name class of the
word. This makes static name analysis difficult. By treating such references as “primitives” this
problem is swept under the proverbial rug.

For example the jfiles utility is often accessed with z locale definitions like:

jread_z_ =: Jjread_jfiles_ NB. z interface for jread

Words that use jread can call it without locale suffixes. For this case globs will detect the
use of jread but will cease searching the call tree when it encounters jread_jfiles_.

Globals referenced by test scripts are not stored because tests often manipulate their working
environments in ways that make static name analysis unfeasible. globs is one of two verbs,
(globs, grp), that create references. For globs to store references the word must be in the
put dictionary, all word references must exist on the path and the current path must match the put
dictionary reference path.

Finally, globs expects all assigned local and global word names to differ. If globs finds
names that are both globally and locally assigned it returns a mixed assignments error.

mixedassignment=: 3 : O

NB. I have a mixed global and local assignment. Usually, this 1is
NB. poor name choice but there are good reasons for such assignments.

names=. ;:’'we are going to be globals’

(names)=: <’clandestine global’

)

To override gl obs mixed assignment handling use the comment tag (<:) =:. If this tag is used

anywhere in a word definition globs will ignore any mixed assignments in the tagged word.

confusing=: 3 : O

O
N erease 1.1.1 37 February 10, 2024

5.19 grp — create and modify groups 5 JOD INTERFACE WORDS

NB. allow mixed assignments (<:)=:
scopeless=. <'cis_scoping_1is_so_un_woke’
(scopeless)=: scopeless

)

Monad: globs clName

NB. 1ist globals in locale word
globs ’"word’

Dyad: 1iaObject globs clName

NB. update referenced globals
0 globs "word’

NB. update all words 1in a group
0 globs&> }. grp "group’

NB. 1ist global references in test text
1 globs ’"test’

NB. classify name references in locale word.
11 globs "word’

5.19 grp — create and modify groups

grp creates and modifies word groups and test suites. A group is a list of objects. Operations
on groups do not change the objects that belong to groups. When a group is created the put
dictionary’s reference path is compared to the current dictionary path. If the paths do not match an
error is returned and the group is not created.

Monad: grp zl1 V clName V blclNames

NB. 1ist all word groups (2 dnl ’7)
grp rrs

NB. 1list words in group
grp ‘group’

O
N erease 1.1.1 38 February 10, 2024

5.20 gt — get edit window text

5 JOD INTERFACE WORDS

NB. create empty group
grp "soempty’;’’

NB. create/reset group first name 1is the group name
grp 'group’;’list’;’of’;’group’;’ names’

NB. has effect of emptying but not deleting group
grp <’group’

Dyad: iaObject grp zl V clName V blclNames

NB. 1list all test suites (3 dnl ’7)
3 grp r s

NB. 1list tests in suite
3 grp ’suite’

NB. (monad)
2 grp ’"group’;’list’;’of’;’group’;’ names’

NB. create/reset suite
3 grp ’suite’;’list’;’o0f’;’test’ ;' names’

NB. empty suite
3 grp <’suite’

5.20 gt — get edit window text

Fetch text from edit window.

Monad: gt zl1 V clName

NB. returns text from the word.ijs edit window
gt "word’

NB. using gt to update a test and macro.
1 put "test’;gt ’"test’

4 put 'macro’;21;gt 'macro’

O
J D release 1.1.1 39

February 10, 2024

5.21 hlpnl — display short object descriptions 5 JOD INTERFACE WORDS

5.21 hlpnl — display short object descriptions

hlpnl displays short object descriptions.

Short object descriptions are always a good idea. If you cannot fersely describe an object you

probably don’t understand it. Short descriptions are stored with put.

Monad: hlpnl clName V blclNames

NB. put short word description
0 8 put ’"describeme’;’briefly describe me’

NB. display short word description
hlpnl ’'describeme’

NB. display many descriptions
hlpnl ; :’show our short word descriptions’

NB. describe all the words in a group
hlpnl }. grp ’'groupname’

NB. describe all the words called by a word
hlpnl allrefs <’wordname’

NB. describe all dictionary words
hlpnl }. dnl 7’

Dyad: iaObject hlpnl clName V blclNames

NB. display short word description (monad)
0 hlpnl "word’

NB. display test, group, suite, macro descriptions

1 hlpnl ’"testname’

2 hlpnl ’'groupname’
3 hlpnl ’'suitename’
4 hlpnl "macroname’

NB. describe a test suite
3 hlpnl }. 3 dnl ’"testsuite’

NB. describe a group

2 hlpnl }. 2 dnl ’"groupname’
O
|J D release 1.1.1 40

February 10, 2024

5.22 jodage — age of JOD objects 5 JOD INTERFACE WORDS

NB. describe macro scripts with prefix prj
4 hlpnl }. 4 dnl "prij’

5.22 jodage — age of JOD objects

jodage returns the age of JOD objects. When an object is put into a dictionary the date is
recorded.

The monad returns the age of words and the dyad returns the age of other objects. JOD dates
are stored in a fractional day yyyymmdd . £d floating point format.'

Monad: jodage clWord V blclWords

NB. show age of (jodage)
jodage ' jodage’

NB. age of all group words
jodage }. grp ’'bstats’

Dyad: ia jodage clWord V blclNames

NB. age of all test scripts
1 jodage }. 1 dnl "7’

NB. age of group script
2 jodage 'mygroup’

NB. age of all macro scripts
4 jodage }. 4 dnl 7’

5.23 jodhelp — display help

jodhelp displays JOD documentation. The monad starts the configured J PDF reader and dis-
plays jod.pdf.
jod.pdf is omitted from the core JOD addon pacman package to reduce download size.

Installing the addon general/joddocument saves jod.pdf in the directory searched by
jodhelp.

15JOD times are derived from local computer clock times. UTC is not used.

O
N erease 1.1.1 41 February 10, 2024

5.24 1g— make and load group 5 JOD INTERFACE WORDS

NB. JOD addon PDF document directory
“addons/general/joddocument/pdfdoc

Monad: jodhelp uulgnore

NB. display help - requires general/joddocument addon
jodhelp O

NB. argument is ignored
jodhelp "I don’’t hear you!’

5.24 1g— make and load group

1g assembles and loads JOD group scripts. The monad loads without the postprocessor script and
the dyad loads with the postprocessor.

The postprocessor is a JOD macro script that is associated with a group. If a group is named
numtut ils the associated postprocessor is named POST_numut ils. The prefix POST__labels
J macro scripts as postprocessors.'® The postprocessor is appended to generated group scripts and
is often used to start systems.

Monad: 1g clGroup

NB. make and load group without postprocessor
lg "groupname’

Dyad: 1iaOption lg clGroup

NB. monad
2 lg "groupname’

NB. define a group postprocessor macro sScript
NB. 21 identifies macro text as an arbitrary J script
4 put "POST_groupname’;21;’smoutput ""hello world’’’

NB. make and load appending postprocessor
lg”™ ’groupname’

16 A macro must be coded as a J script, (code 21), to be used as a postprocessor.

O
N erease 1.1.1 4 February 10, 2024

5.25 locgrp — list groups/suites with word/test 5 JOD INTERFACE WORDS

5.25 locgrp — list groups/suites with word/test

locgrp lists groups and suites with word or test (y). A word or test can belong to many groups
or suites.

Monad: Ilocgrp clName

NB. 1list all groups that contain myword
locgrp "'myword’

NB. 1list all suites that contain this test
locgrp ’"thistest’

5.26 make — generates dictionary scripts

make generates J scripts from objects stored in dictionaries. The generated scripts can be returned
as results or written to file: see subsection 6.1 on page 60.

Generated scripts are stored in the standard dump, script and suite subdirectories. Monadic
make dumps all the objects on the current path to a J script file. The dump file is a single J script
that can be used to rebuild dictionaries.

make uses the reference path to generate words, tests, groups and suites. When generating
groups and suites make returns an error if the current path does not match the reference path.
By default dyadic make generates objects that exist in the current put dictionary. This can be
overridden with a negative option code.

Monad: make zl V clDumpfile

NB. Dump objects on current path

NB. to put dictionary dump directory.
NB. The name of the put dictionary 1is
NB. used as the dump file name.

make "’

NB. dump to specified Windows file
make ’c:/dump/on/me.ijs’

NB. linux and mac paths must begin with /
make ’/home/john/temp/joddumps/metoo.1ijs’

Dyad: iaObject make zl V clName V blclNames
(iaObject, iaOption) make clName
O
N erease 1.1.1 43 February 10, 2024

5.27 mls — make load script 5 JOD INTERFACE WORDS

0 make ;:"an arbitrary list of words into a script’
0 2 make ;:’generate a character list script result’

NB. make J script that defines a group
2 make ’"group’

NB. make J script that defines a suite
3 make ’suite’

An option code controls whether results are written to file, (1 default), or returned, (2 return),
for word lists, groups and suites. Default dictionary file locations are the subdirectories created by
newd: see page 47.

NB. make and return group script
2 2 make "group’

NB. make put dictionary suite script and write to file
3 1 make ’'suite’

NB. make and file group script. The group does not
NB. have to exist in the put dictionary but can
NB. occur anywhere on the path.

2 _1 make ’"group’

NB. make suite script and write to file
3 _1 make ’'suite’

5.27 mls — make load script
mls generates J load scripts. The generated script is added to the current user’s start up script
“config/startup.ijs

and inserted in the session’s Public_j_ table."”
An mls load script is independent of JOD and can be used like any other J load script, for
example:

load "mlsmademe’
The generated script can be written to file or returned. Generated scripts are stored in the

put dictionary script subdirectory. mls appends any postprocessor to the generated script: see
subsection 6.1 Generated Script Structure, on page 60.

70n J 6. 0x systems the public script noun is named PUBLIC_J_.

O
N erease 1.1.1 44 February 10, 2024

5.28 mnl — master name lists 5 JOD INTERFACE WORDS

Monad: mls clGroupname

NB. add a postprocessor script for (addgroup)
postproc=. ’smoutput ’'’’’this is a post processor’’’’’
4 put "POST_appgroup’;JSCRIPT_ajod_;postproc

NB. generate group script with
NB. postprocessor and add to startup.ijs
mls ’appgroup’

NB. load group - postprocessor runs
load ’"appgroup’

NB. redirect generated script by setting
NB. ROOTFOLDER to a configured J folder
jpath ’ “user/jodroot’

dpset ’'ROOTFOLDER’;’ “user/Jjodroot’

mls ’appgroup’

Dyad: 1iaOption mls clGroupname

NB. make J script file but do
NB. not add to startup.ijs
0 mls "bstats’

NB. monad
1 mls "bstats’

NB. return generated script as result
NB. does not add to startup.ijs
2 mls ’"bstats’

5.28 mnl — master name lists

mnl searches the name lists of all registered dictionaries, see regd on page 55. mnl does not
require open dictionaries. mnl’s arguments mirror dnl with the exception of negative option
codes, see page 26. The primary use of mn1 is looking for duplicate names. Duplicate names limit
the utility of words and make it difficult to use dictionaries on arbitrary paths. If the dictionaries
d0, d1 and d2 contain common names the paths resulting from the following commands are not
necessarily the same.

‘CD
N erease 1.1.1 45 February 10, 2024

5.28 mnl — master name lists

od ;
od ;

:7d0 dl dz2’
:7d2 d0 di1’

Monad: mnl zl1 V clPstr

NB.
mnl

NB.
mnl

list all words in all registered dictionaries

rrs

list all words in all dictionaries that begin with prefix
"prefix’

Dyad: iaObject mnl zl V clPstr

Sw N RO

NB.
01

NB.
0 2

NB.
03

NB.
NB.

NB.
01

NB.
0 2

O
D vetease 1.1.1 46 February 10, 2024

(iaObject, iaOption) mnl zl1 V clPstr
(iaObject, iaOption, iaQualifier) mnl zl
(iaObject, iaOption, iaQualifier) mnl clPstr

mnl "' NB. all words 1in all dictionaries (monad)
mnl '’ NB. all tests in all dictionaries
mnl '’ NB. all groups in all dictionaries
mnl '’ NB. all suites in all dictionaries
mnl '’ NB. all macros in all dictionaries

match word names beginning with str
mnl ’str’

match word names containing the string str
mnl "str’

match word names ending with string str
mnl ’str’

words and macros have an optional third
item that denotes name class or type

adverb names beginning with str
1 mnl "str’

verb names containing str
3 mnl "str’

5 JOD INTERFACE WORDS

5.29 newd — create a new dictionary 5 JOD INTERFACE WORDS

NB. nouns ending with str
0 3 0 mnl "str’

NB. J macro names beginning with jscript
4 1 21 mnl ’Jjscript’

NB. LaTeX macro names containing latex
4 2 22 mnl ’latex’

NB. HTML macro names ending with html
4 3 23 mnl "html’

A negative second item option code returns duplicate names.

NB. duplicate words containing str
O _2 3 mnl "str’

NB. duplicate group names beginning with so
2 1 mnl "so’

NB. duplicate suite names ending with str
3 _3 mnl ’"str’

5.29 newd — create a new dictionary

newd creates a new dictionary. Dictionary creation generates a set of files in a standard dictionary
directory structure: see Figure 3 on page 66. The root directory, dictionary name, and optional
dictionary documentation can be specified. All other dictionary creation parameters are taken
from the master file.

Monad: newd clDictionary
newd (clDictionary;clPath)
newd (clDictionary;clPath;clDocumentation)

NB. if no location is specified the dictionary
NB. 1is created in the default directory
newd ’'makemydictionary’

NB. create with name in location
newd ’'new’;’c:/location/’
newd ’'deep’;’d:/we/can/root/dictionaries/down/deep’

NB. on linux create dictionaries in your SHOME directory
|<>
N erease 1.1.1 47 February 10, 2024

5.30 notgrp — not grouped 5 JOD INTERFACE WORDS

newd ’‘homeboy’;’ /home/john/where/the/dictionaries/are’

NB. optional third item is dictionary documentation
newd 'new’;’c:/location/’;’Dictionary documentation ...’

5.30 notgrp — not grouped

notgrp list words or tests from (y) that are not in groups or suites. Useful for finding loose ends
and dead code.

Monad: notgrp clName V blclNames

NB. recent ungrouped words
notgrp }. revo '’

NB. all ungrouped words

notgrp }. dnl "’

Dyad: 1iaOption notgrp clName V blclNames

NB. ungrouped words (monad)
2 notgrp }. dnl 7’

NB. tests that are not 1in suites
3 notgrp }. 1 dnl 77’

5.31 nw — edit a new word

nw edits a new word in an edit window using JOD format conventions. nw assumes the new word
is explicit but you can edit the default text to define racit words. nw will append the character
list DOCUMENTCOMMAND to the text placed in an edit window. This allows the user to define an
arbitrary script that is run when a word is defined. '

Monad: nw clName

18Key combinations like CTRL-W that run editor scripts depend on the J platform.

O
N erease 1.1.1 48 February 10, 2024

5.32 nt — edit a new test 5 JOD INTERFACE WORDS

NB. open an edit window with an explicit newword
nw "newword’

NB. define a script that is run when the J editor
NB. window is run. { N7} placeholders are replaced
NB. with the name of the new word

DOCUMENTCOMMAND_ijod_=: 0 : O
smoutput pr " { "N}’
)

NB. edit a word with DOCUMENTCOMMAND
nw 'placeholdername’

Dyad: iaNameclass nw clName

NB. edit an explict adverb
1 nw ’adverb’

NB. edit an explict conjunction
2 nw "conjunction’

NB. edit an explicit text noun
0 nw "text’

NB. edit an explicit word (monad)
3 nw "word’

NB. edit dyadic word
4 nw "dyad’

5.32 nt — edit a new test

nt edits a new test script in an edit window. nt looks for the test script te st stub on the path and
inserts test stub text in the edit window. test stub allows users to define dictionary specific
custom script formats.

nt searches test stub text and replaces the markers { T~ }, {"TA7}, { "D} and { "SD"}
with optional title, author, date, (yyyymondd format), and short date, (yymondd format). The
dyad makes additional delimited string replacements after processing markers.
‘CD
N erease 1.1.1 49 February 10, 2024

5.33 od — open dictionaries 5 JOD INTERFACE WORDS

Monad: nt clTestName

NB. open an edit window
nt "newtest’

testheader=: 0 : O

NB.*{ T} t—-— custom test script header

NB.

NB. This is my custom test script header.
NB. The {"T"} strings are replaced with test
NB. name and creation time { D7}

NB.

NB. author: {A7}

NB. created: {°D7}

)

NB. save custom header in put dictionary
1 put "teststub’;testheader

NB. CLASSAUTHOR replaces { A7}
CLASSAUTHOR_ijod_=: ’"Mansong Hydrogen’

NB. edit a new test using the custom header
NB. where title {"T"} is set from the (y) argument
nt ’'customtest’

Dyad: clReplacements nt clTestName

NB. apply string replacements, delimited by first
NB. character, to teststub text then open edit window
" #I#can#CHANGE#you’ nt ’'newtest’

5.33 od — open dictionaries

od opens dictionaries. Open dictionaries are appended to the path in the order they are opened.
Dictionaries can be opened READWRITE (default) or READONLY. Only one J task can open a
dictionary READWRITE. Any number of tasks can open a dictionary READONLY. If any task has
a dictionary open READONLY it can only be opened READONLY by other tasks. If a dictionary is
opened READWRITE by a task it cannot be opened by other dictionary tasks. This harsh protocol
insures that only one task can update a dictionary.

‘CD
N erease 1.1.1 50 February 10, 2024

5.33 od — open dictionaries 5 JOD INTERFACE WORDS

The first dictionary on the search path is special! It is the only dictionary that can be updated
by JOD verbs. Because most updates are puts the first dictionary is called the put dictionary.

Monad: od zl1 V clDictionary V blclDictionaries

NB. 1list registered dictionaries
Od rrs

NB. open read/write
od ’"dictionary’

NB. opens d(i) read/write
od "dl’;’"d2’;"d3’

Dyad: iaOption od zl V clDictionary V blclDictionaries

NB. 1list registered dictionaries (monad)
1 od "’

NB. close all open dictionaries (related to did 4)
3 od "’

NB. open read/write (monad)
1 od ’dictionary’

NB. open read only and append to any path
2 od ’"dictionary’

NB. open d(i) read only and append to any path
2 od "dl’;"dz2’";"d3’

NB. close dictionaries and remove from path
3 od ;:"d0 dl1 d2’

NB. all dictionary root directories
4 od "’

NB. 1list all dictionaries as regd script
5 o0d "’

NB. open all dictionaries on (dl)’s path and make (dl) put
6 od "dl’
I()
N erease 1.1.1 51 February 10, 2024

5.34 packd— backup and pack dictionaries 5 JOD INTERFACE WORDS

5.34 packd — backup and pack dictionaries

packd removes all unused space from dictionary files by copying active components to new files.
After the packd operation is complete, the new dictionary files are renamed to match the original
files. During the copy operation, directories are checked against the items in dictionary files.
If a directory data discrepancy is detected, the pack operation ends with an error. Old files are
renamed with an increasing sequential backup number prefix, e.g., 13 jwords. i Jf, and retained
in the backup subdirectory. Every successful backup is paired with a sidecar text file of SHA-256
hashes. Backup 13’s sidecar fileis 13 jhashes. txt. If a packd operation succeeds, the backup
dictionary has no directory data inconsistencies.

A packd operation can be reversed with restd. Individual objects in backups can be re-
trieved with bget, see page 17. There is no JOD facility for deleting backup files. To erase
backup files, use OS facilities.

The read/write status of a dictionary is recorded in the master file. JOD assumes all tasks point
to the same master file.'

Monad: packd clDictionary

NB. packd requires an open READWRITE dictionary
od ’"dictionary’

NB. reclaim unused file space in dictionary
NB. and retain original files as a backup
packd ’"dictionary’

5.35 put — store objects in dictionary

The put verb stores objects in the put dictionary. It can store words, tests, groups, suites and
macros. As a general rule: if something can be stored with put it can be retrieved by get: see
page 34.

Monad: put clName V blclNames

NB. default is put words from base locale
put "word’

NB. store all base locale verbs in dictionary
put nl 3

9There is one important exception to the single jmaster.iJf rule. READONLY dictionaries can be safely regis-
tered in different master files. This allows easy sharing of READONLY library dictionaries on network drives with the
standard JOD setup.

O
N erease 1.1.1 52 February 10, 2024

5.35 put — store objects in dictionary 5 JOD INTERFACE WORDS

Dyad: 1iaObject put clName V blclNames
iaObject put clDocument V btNvalues
clLocale put clName V blcINames V btNvalues
(iaObject, iaQualifier) put clName V blclNames
(iaObject, iaQualifier) put clName V btNvalues

NB. put words (monad)
0 put ;:"w0 wl w2 w3 w4’

NB. put words from specified locale
"locale’ put "wO’;’'w2’;’ w3’

NB. numbered locales
799’ put ’"word’

NB. put explain/document text

NB. words must exist in dictionary

put (;:"wO0 wl”),.("text ...7;"text ...7)
put (;:'w0 wl”),.("text ..."; text ...")

NB. put words from name class value table
0 10 put ('wO0’; ’"wl’),.(3;3),.’code0 ...";’codel ...’

NB. put tests from name value table
1 put (;:7t0 tl1"),.("text ..."; text ...")

NB. put test explain/document text
1 8 put (;:7t0 tl"),.("text ..."; " text ...")
1 9 put (;:7t0 tl"),.("text ..."; text ...")

A group or suite header script is an arbitrary J script that preceeds the code generated by make
on page 43.

NB. put group header scripts from name,value table
2 put (;:"g0 gl’),.("text ...";"text ...")

NB. group header scripts can be put
NB. with 2 1 as well - maintains put/get symmetry
2 1 put (;:790 gl’),.("text ..."; "text ...")

NB. put group explain/document text
2 8 put (;:79g0 gl’),.("text ..."7; 'text ...")
2 9 put (;:790 gl’),.("text ..."; text ...")

O
D vetease 1.1.1 53 February 10, 2024

5.35 put — store objects in dictionary 5 JOD INTERFACE WORDS

NB. put suite header scripts from name value table
3 put (;:7s0 sl’),.("text ...7; text ...7)
31 put (;:7s0 s17),.("text ...";"text ...")

NB. put suite explain/document text
3 8 put (;:"s0 s17),.("text ..."; text ...")
3 9 put (;:7s0 s17),.("text ..."; text ...")
NB. put macro scripts from name, type, value table

NB. J scripts - can be run with (rm)
4 put (;:' 'm0 ml”),.(21;21),.(text ...";7...")

The text types LaTeX, HTML, XML, ASCII, BYTE, MARKDOWN, UTFS8 are stored
as J character lists.

NB. LaTeX

4 put (;:' 'm0 ml”),.(22;22),.("text ...";7...7)
NB. HTML

4 put (;:'m0 ml”),.(23;23),.(text ...7;7...7)
NB. XML

4 put (;:'m0 ml’),.(24;24),.(text ...7;7...7)

NB. plain ASCII text
4 put (;:'m0 ml”),.(25;25),.(text ...";7...")

NB. 1ist of arbitrary bytes
4 put (;:'m0 ml”),.(26;26),.("bytes ...7;"7...")

NB. UTF-8 unicode text
4 put (;:'m0 ml’),.(28;28),.("utf8 text ...7;"...")

NB. put macro explain/document text
4 8 put (;:'mO0O ml”),.("text ..."; text ...")
4 9 put (;:'m0O ml”),.("text ...";"text ...")

NB. update dictionary documentation text
5 put "go ahead document this dictionary’

NB. dictionary documentation is controlled

NB. by DOCUMENTDICT with default 1
dpset ’DOCUMENTDICT’;Q

O
D vetease 1.1.1 54 February 10, 2024

5.36 regd — register dictionaries 5 JOD INTERFACE WORDS

5 put "this will not be stored’

Finally put can store timestamps in the form returned by get.

NB. push yyyymmdd.fd lastput dates 15 years forward
"rc nts’=: 0 _14 get }. dnl ’"new’
0 _14 put (<0 150000 + "0 1 ;1l{nts) 1} nts

5.36 regd — register dictionaries

regd registers and unregisters dictionaries in the master file.

A dictionary is a set of files in a standard directory structure: see page 62. The newd verb
creates JOD directories and files. There is no JOD verb that destroys dictionaries; actual deletion
of dictionary files and directories must be done using other means. However, you can unregister
a dictionary. When a dictionary is unregistered it is removed from the main dictionary directory
in the master file. It will no longer appear on od lists and will no longer be accessible with JOD
interface verbs. Conversely, you can also register dictionaries with regd.

Monad: regd (clDictionary;clPath;clDocumentation)

NB. register dictionary with name
NB. directory and dictionary must exist
regd ’'name’;’c:/location/’

NB. register linux dictionary with optional documentation
regd ’'name’;’ /home/john/location/’;’Documentation text’

Dyad: 1iaOption regd clDictionary

NB. unregistering a dictionary does not delete files
3 regd ’"name’

NB. regd can be used to rename dictionaries
NB. and update dictionary documentation

NB. unregister
"name path’ =. _2 {. 3 regd ’"badname’

NB. re-register with new name and documentation

doc =. ’'brand spanking new documenation’
regd ’"goodname’ ;path;doc

O
N erease 1.1.1 55 February 10, 2024

5.37 restd — restore backup dictionaries 5 JOD INTERFACE WORDS

5.37 restd — restore backup dictionaries
restd restores backups created by packd.

Monad: restd clDictionary
NB. open dictionary READWRITE
NB. must be first dictionary on the path
od "lastbackup’” [3 od '’

NB. restore last dictionary backup
restd ’lastbackup’

NB. 1list backup numbers and dates
14 bnl 7.’

NB. restore backup 19
restd ’lastbackup’;19

NB. restore backup 19 ignoring hashes
restd ’lastbackup’;19 17

5.38 revo — list recently revised objects

revo lists recently recently revised objects. Only put dictionary objects can be revised and only

put operations are considered revisions.

Monad: revo zl V clName

NB. all put dictionary words in last put order
revo "’

NB. revised words with names beginning with boo
revo "boo’

Dyad: 1iaObject revo zl V clName

NB. 1list all revised tests
1 revo "’

NB. revised suites with names prefixed by boo
3 revo ’"boo’
D

‘J release 1.1.1 56

February 10, 2024

5.39 rm — run macros 5 JOD INTERFACE WORDS

5.39 rm — run macros

A JOD macro is an arbitrary J script. rm fetches J macro scripts and runs them. rm will only run
J, code 21, macros; other types return errors.
rm sets the current locale to base and starts executing macro scripts in base.

Monad: rm cl V blclNames

NB. run J macro
rm "macro’

NB. run macros with names starting with DoUs
rm }. dnl "DoUs’

Dyad: iaOption rm zl V clName V blclNames

NB. run J script and suppress output
1 rm "quiet’

NB. note the repeat
1 rm ;:"run silent run deep’

5.40 rtt — run tautology tests

rtt runs tautology test scripts stored in JOD dictionaries.

J has a built in test facility see: (0! :2) and (0! :3). These foreigns run scripts and stop if
the result deviates from arrays of 1’s. This facility is used by J’s developers and rtt applies it to
dictionary test scripts.

rtt starts scripts in the base locale.

Monad: rtt clIName V blclNames

NB. run test script as a tautology
rtt 'tautologytest’

NB. run all tautology tests 1in a suite
rtt }. 3 grp ’"testsuite’

Dyad: iaOption rtt clName V blclNames

O
N erease 1.1.1 57 February 10, 2024

5.41 rxs — regular expression search 5 JOD INTERFACE WORDS

NB. same as monad
0 rtt 'tautologytest’

NB. run tautology test and suppress output
1 rtt ’'silenttautology’

NB. run test as plain script
2 rtt ’"plaintest’

NB. generate test suite and run as tautology
3 rtt ’"suitename’

NB. generate test suite and run as silent tautology
4 rtt ’"silentsuite’

5.41 rxs — regular expression search

rxs searches dictionary text objects with regular expressions. Text objects are essentially all
nonnouns. Typical text objects are verbs, test cases, macros, group and suite headers, long and
short documentation texts, and dictionary documentation. rxs’s arguments use JOD object and
qualifier codes: see appendix F on page 79.

Monad: rxs blclNames

NB. all nonempty nonnoun search text
rxs }. dnl '’

NB. nouns are excluded from searches
rxs }. 01 0 dnl 7’

Dyad: clRegex rxs blclNames
(clRegex ; iaOption) rxs zl V blclNames
(clRegex ; 1lO0ptions) rxs zl V blclNames

NB. empty patterns return nonempty nonnoun search text
"' rxs }. dnl’’

NB. nonemtpy group and suite headers
("";2) rxs }. 2 dnl "’
("";3) rxs }. 3 dnl 7’
‘<>
N erease 1.1.1 58 February 10, 2024

5.42 uses — return word uses 5 JOD INTERFACE WORDS

NB. first match of wunique in nonnouns with names starting with re
"unique’ rxs }. dnl ’re’

NB. first match of catch. in path words - note pattern escape
("catch\.”;0 7 1) rxs }. dnl "’

NB. words in group mytheory containing NIMP:
"NIMP:’ rxs }. grp 'mytheory’

NB. all J quoted text in nonnoun path words starting with s
(III(IIII‘["II])*III;O72) rxs }. dnl ISI

NB. all digits in nonempty long word document text
("[[:digit:1]+";0 9 2) rxs }. dnl "’

NB. digits in long word document text with match position arrays
("[[:digit:1]+";0 9 3) rxs }. dnl "’

NB. many useful J regex patterns are in the jregex locale

NB. all J quoted text with match position arrays
(Jchar_jregex_;0 7 3) rxs }. dnl ’s’

NB. all J names 1in nonempty group header text
(Jname_jregex_;2 7 2) rxs }. 2 dnl 7'

NB. first match of github in dictionary document
("github’;5) rxs 7'

NB. all matches of github in dictionary document with position arrays
("github’;5 7 3) rxs '’/

5.42 uses — return word uses

uses lists words used by other words. The lists are derived from the cross references stored by
globs. The typical result of uses is a boxed table. Column O is a list of names and column 1 is
list of pairs of boxed lists. Each boxed list pair contains nonlocale and locale global references.
When computing the uses union, (option 31), only nonlocale references are searched for further
references. In general it is not possible to search locale references as they typically refer to objects
created at runtime. In this system such references are treated as black boxes. It is important to

|<>
N erease 1.1.1 59 February 10, 2024

6 JOD SCRIPTS

know an object is being referenced even if you cannot peer inside the object.

Monad: uses blclName V clName

NB. 1ist all words used by words (0 globs)
uses ; :’'word globals’

Dyad: 1iaObject uses blclName V clname

NB. same as monad
0 uses ’'word’

NB. uses union of word
31 uses ;:’"all known words we call’

6 JOD Scripts

6.1 Generated Script Structure

To use dictionary words it is necessary to generate scripts. JOD scripts come in three flavors:
1. Arbitrary J scripts
2. Header and list scripts
3. Dump scripts

JOD test, macro and group/suite headers are arbitrary J scripts. There are no restrictions on
these scripts. Group and suite scripts generated by make, m1s and 1g, (see pages 43, 44, 42), are
header and list scripts. make produces dump scripts.

JOD script structure mirrors what you typically do in a J application script. With most J appli-
cation scripts you:

1. Setup the application’s runtime environment.
2. Load the classes, words and data that comprise the application.
3. Start the application.

This pattern of setup, load and start is seen over and over in J scripts: see Table 2 on page 61.

O
N erease 1.1.1 60 February 10, 2024

6.2 Dependent Section 6 JOD SCRIPTS

Generated Script Structure
Section | Type Description Example
NB. define a group header
. Define group and Suite headers. 2 1 put ’'groupname’;’ ... script text ...
Setup Active Headers may contain one depen-
dent section: see page 61. NB. define a suite header
3 1 put ’suitename’;’ ... suite text ... '
NB. form group from stored words
Load lists of words or tests. Only grp ’'groupname’ ; ;:’words in group’
Load Passive | word lists are passive. Tests are
typically active scripts. NB. form suite from stored tests
3 grp ’'suitename’ ; ;:’stored tests’
NB. group postprocessor
Associate a postprocessor macro 4 put ’'POST_groupname’;21;’ ... script ... '
Start Active with a group or suite. Postproces-
sors are prefixed with POST_ NB. test suite postprocessor
4 put 'POST_suitename’;21;’ ... script ... '

Table 2: JOD generated script structure

6.2 Dependent Section

A dependent section is a delimited subsection of a group or suite header, (see grp on page 38), that
is used to define related words and runtime globals. Global words defined in a dependent section
are removed from group lists when groups are generated with make, m1s and 1g: see pages 43,
44 and 42. This insures that the values assigned in the dependent section are maintained when the
group script loads.

A dependent section is delimited with NB. xdependent s and NB. renddependent s and
only one dependent section per group header is allowed. The following is the dependent section in
the jod class group header. Globals in a dependent section are returned by gdeps, see page 33.

NB. xdependents x—-—- words defined in this section have related definitions
NB. host specific z locale nouns set during J profile loading

NB. (#x)=: IFWIN UNAME

LF=:10{a.

CR=:13{a.

TAB=:9{a.

CRLF=:CR, LF

NB. option codes - to add more add a new object code

NB. and modify the following definition of MACROTYPE

JSCRIPT=:21

LATEX=:22
HTML=:23
XML=:24
TEXT=:25
BYTE=:26
UTF8=:28

NB. macro text types, depends on: JSCRIPT,LATEX,HTML,XML,TEXT,BYTE,UTFS8

O
N erease 1.1.1 61 February 10, 2024

7 JOD DIRECTORY AND FILE LAYOUTS

MACROTYPE=:JSCRIPT, LATEX, HTML, XML, TEXT, BYTE, UTF8

NB. object codes

WORD=:0

TEST=:1

GROUP=:2

SUITE=:3

MACRO=:4

NB. object name class, depends on: WORD,TEST, GROUP,SUITE,MACRO
OBJECTNC=:WORD, TEST, GROUP, SUITE, MACRO

NB. bad object code, depends on: OBJECINC

badobj=:[: —-. [: *./ [: ,] e. OBJECTNC"_

NB. path delimiter character & path punctuation characters
PATHDEL=: IFWIN { ’/\’

PATHCHRS=:" :.-’,PATHDEL

NB. default master profile user locations
JMASTER=: jodsystempath ’ jmaster’

JODPROF=: jodsystempath ’ jodprofile.ijs’
JODUSER=: jodsystempath ’ joduserconfig.ijs’
NB. xenddependents

7 JOD Directory and File Layouts

JOD stores J objects in binary jfiles. When newd creates a dictionary it registers the location of
the dictionary in Jmaster. ijf, see Table 3 on page 63, and creates a set of standard directories:
see Figure 3 on page 66. This section describes the internal structure of JOD’s binary jfiles.

7.1 Master File — jmaster.ijf

jmaster.ijf is a binary component jfile. Touse jfiles you load or require the standard
jfiles script.

jmaster.ijf is an index of currently registered dictionaries and standard dictionary meta-
data. The component layout of jmaster.ijf is given in Table 3 on page 63.

7.2 Words File — jwords .ijf

jwords.1ijfisabinary component jfile. jwords. i7jf contains word definitions and meta-
data. The component layout of jwords. i Jf is given in Table 4 on page 64.

7.3 Tests File — jtests.ijf

jtests.ijf is a binary component jfile. jtests.ijf contains test definitions and meta-
data. The component layout of jtests.i7jf is given in Table 5 on page 65.

O
N erease 1.1.1 62 February 10, 2024

7.3 Tests File — jtests.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

jmaster.ijf

Component | Hungarian Description
Use bit and last master change.

co (pajil)

The use bit is set by all processes that update this file - while set the use bit blocks other
dictionary tasks from updating this file.

c1 (cl;1i,X) Version m.m. p character, build count and unique master file id.

Dictionary names, numbers, directories and read-write status.

o bt When a dictionary is opened for update (READWRITE default) by od (pp. 50) the status is
set and stays on until closed by od. This blocks all other dictionary tasks from updating the
dictionary. This harsh treatment prevents garbled files. Dictionaries can also be opened read
only. This allows multiple readers but no writers.

Previous master directory.

c3 bt
Essentially a copy of component two less at most one deleted or new dictionary.

cq4 — C6 Reserved.

Active dictionary parameters.

cr bt 0 { - blcl; parameter names
1 { - blcl;short parameter explanation
2 { - bluu; default values

cg bt Copy of active dictionary parameters.

() bt Default dictionary parameters.

Dictionary log.

The dictionary log is a simple, (append only), list of all the extended dictionary numbers
€10 X1 (DIDNUMs) that have ever been registered. When a dictionary is registered it is appended to

this list. If it is unregistered and then re-registered the same dictionary number will appear

more than once. I don’t expect this list to be very large. Hundreds, maybe thousands, over

the lifetime of the master file.

Table 3: jmaster.if file component layout

O
N erease 1.1.1 63 February 10, 2024

7.3 Tests File — jtests.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

jwords.ijf
Component | Hungarian Description
co blnl Length and last directory change.
c1 fl Pack count and last backup or restore timestamp. Pack count prefixes backup and dump files.
c2 cl Dictionary documentation newd, regd. (pp. 47,55)
Dictionary parameters.
0 { - cl;dictionary name
1 { - Xa;dictionary number DIDNUM (extended precision)
2 { — il ;dictionary creation date
3 { — il ;last dump date (not updated)
4 { - cl;scriptdirectory
5 { — cl; suite directory
6 { - cl;macro directory
c3 bluu 7 { - cl;document directory
8 { - cl;dump directory
9 { - c1l;alien directory
10 { - cl1;]J version that created dictionary
11 { - ia;Jsystem code that created dictionary
12 { - uu;unused - reserved
13 { - Dbt ;user dictionary parameters see: jmaster.ijf (pp. 63).
0 { cl;parameter
1 { uu;value
Main inverted items, c4 — c11 have the same length.
c4 blcl Word list (main index 1).
cs il Word components (main index 2).
c6 il Name class list.
cr f1 Last put date list yyyymmdd . £d (fractional day).
cs f1 Creation put list yyyymmdd . £d (fractional day).
c9 il Word size in bytes.
C10 Reserved.
c11 blcl Short word explanations.
c12 cl J version string 9! :14 '’ or empty.
Reserved. The remaining component pairs contain word data. The word names match the
€13 = c38 entries in the word index list.
Word definition.
c30 bluu 0 { - cl;wordname
1 { - ia;name class
2 { - clV uu;word value: nouns binary, all others character lists
Word documentation and other.
0 { - cl;wordname
c40 bluu 1 { - uu;unused - reserved
2 { — uu;unused - reserved
3 { - cl;textdocumentation
c41 bluu Like c39
(D) bluu Like c40
Cn .. Like ¢y, —2

Table 4: jwords. ijf file component layout

O
N erease 1.1.1 64 February 10, 2024

7.3 Tests File — jtests.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

jtests.ijf

Component | Hungarian Description
co blnl Length and last directory change.
c1 — c3 Reserved.

Main inverted items, c4 — c11 have the same length.

cq blcl Test list (main index 1).

cs il Test components (main index 2).

c6 Reserved to match jwords.ijf.

cr f1 Last put date list yyyymmdd . £d (fractional day).
cg f1 Creation put list yyyymmdd . £d (fractional day).
co il Test size in bytes.

C10 Reserved.

c11 blcl Short test explanations.

c12 — €38 Reserved.

The remaining component pairs contain test data. The test names match the entries in the test
index cy4 list.

Test definition.

€39 blcl
0 { - cl;testname
1 { - cl;testvalue
Test documentation and other.
0 { - cl;testname
€40 bluu
1 { - uu;unused - reserved
2 { - uu;unused - reserved
3 { - cl;text documentation
c41 blcl Like c39
C42 bluu Like c40
Cn e Like ¢, —2

Table 5: jtests.i]jf file component layout

O
VD release 1.1.1 65 February 10, 2024

7.4 Groups File — jgroups.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

JOD Directory Structure created by newd "name’ ;" .../’

.. ./name The dictionary root directory holds binary jfiles, see section 7 on page 62.
jwords.ijf, jtests.ijf

jgroups.ijf, Jsuites.ijf

jmacros.ijf

juses.ijf

| _name/alien Unused — reserved for files related to this dictionary.

| _name/backup Binary backups created by packd (52).

| name/document Unused — reserved for documents related to this dictionary.
. _name/dump J dump script files generated by make (43).

| _name/script J script files generated by make, m1s and 1g (43, 44, 42).

| _name/suite] testscripts generated by make (43).

Figure 3: newd generates this directory structure when a new JOD dictionary is created. The
locations of JOD directories are stored in directory objects when dictionaries are opened.

7.4 Groups File — jgroups.ijf

jgroups.ijf is a binary component jfile. jgroups.ijf contains group definitions and
group metadata. The component layout of jgroups.ijf is given in Table 6 on page 67.

7.5 Suites File — jsuites.ijf

jsuites.ijf is a binary component jfile. jsuites.iJf contains test suite definitions
and test suite metadata. The component layout of jsuites.ijf is given in Table 7 on page 68.

7.6 Macros File — jmacros.ijf

jmacros.ijfisabinary component jfile. jmacros.i]jf contains macro script definitions
and macro script metadata. The component layout of jmacros.ijf is given in Table 8 on
page 69.

7.7 Uses File — juses.ijf

juses.i]jf is a binary component jfile. juses.i]jf contains word references: see globs
subsection 5.18, on page 37.

O
N erease 1.1.1 66 February 10, 2024

7.7 Uses File — juses.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

jgroups.ijf

Component | Hungarian Description
co blnl Group count and last directory change.
c1 — c3 Reserved.

Main inverted items, c4 — c¢11 have the same length.

cq blcl Group list (main index 1).

cs il Group components (main index 2).

) Reserved to match jwords.ijf.

cr f1 Last put date list yyyymmdd . £d (fractional day).
cs f1 Creation put list yyyymmdd . £d (fractional day).
C9 — C10 Reserved.

c11 blcl Short group explanations.

c12 — €38 Reserved.

The remaining component pairs contain group data. The group names match the entries in
the group index c4 list.

Group definition.

c39 bluu 0 { - cl;group name
1 { - cl; group prefix script
2 { - blcl; group content list

Group documentation and other.

0 { - cl;group name
c40 bluu
1 { - uu;unused - reserved
2 { - uu;unused - reserved
3 { - cl;textdocumentation
c41 bluu Like c39
c42 bluu Like c40
Cn ... Like ¢y, —2

Table 6: jgroups.iJf file component layout

O
VD release 1.1.1 67 February 10, 2024

7.7 Uses File — juses.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

jsuites.ijf

Component | Hungarian Description
co blnl Suite count and last directory change.
c1 — c3 Reserved.

Main inverted items, c4 — c¢11 have the same length.

cyq blcl Suite list (main index 1).

cs il Suite components (main index 2).

) Reserved to match jwords.ijf.

cr f1 Last put date list yyyymmdd . £d (fractional day).
cs f1 Creation put list yyyymmdd . £d (fractional day).
C9 — C10 Reserved.

c11 blcl Short suite explanations.

C12 —> €38 Reserved.

The remaining component pairs contain suite data. The suite names match the entries in the
suite index cy4 list.

Suite definition.

c39 bluu 0 { - cl;suite name
1 { - cl; suite prefix script
2 { — blcl ; suite content list

Suite documentation and other.

0 { - cl;suite name
c40 bluu
1 { - uu;unused - reserved
2 { - uu;unused - reserved
3 { - cl;textdocumentation
c41 bluu Like c39
c42 bluu Like c40
Cn ... Like ¢y, —2

Table 7: jsuites.if file component layout

O
VD release 1.1.1 68 February 10, 2024

7.7 Uses File — juses.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

jmacros.ijf

Component | Hungarian Description
co blnl Macro count and last directory change.
c1 — c3 Reserved.

Main inverted items, c4 — c11 have the same length.

c4 blcl Macro list (main index 1).

cs il Macro components (main index 2).

c6 Reserved to match jwords.ijf.

cr f1 Last put date list yyyymmdd . £d (fractional day).
cg f1 Creation put list yyyymmdd . £d (fractional day).
co f1l Macro size in bytes.

C10 Reserved.

c11 blcl Short macro explanations.

c12 — €38 Reserved.

The remaining component pairs contain macro data. The macro names match the entries in
the macro index c4 list.

Macro definition.

€39 blcl
0 { - cl;macroname
1 { - cl;macro script
Macro documentation and other.
0 { - cl;macroname

€40 bluu
1 { - uu;unused - reserved
2 { - uu;unused - reserved
3 { - cl;text documentation

c41 blcl Like c39

C42 bluu Like c40

Cn e Like ¢, —2

Table 8: jmacros.iJf file component layout

O
VD release 1.1.1 69 February 10, 2024

7.7 Uses File — juses.ijf 7 JOD DIRECTORY AND FILE LAYOUTS

Jjuses.ijf
Component Hungarian Description
0 and and last directory change.
co blnl X X
The number of references stored is not tracked. 0O is the value in the count position of other
files.
Cl1 —> C4 Reserved.
Uses (reference) directory layout differs from jwords. i jf but occupies the same compo-
nent range for packd (pp. 52). Only non-empty reference lists are stored.
cs5 blcl Word uses words (index).
c6 il Component list.
Ccr —» C18 Reserved.
c19 X1 Put reference path. List of extended dictionary numbers DIDNUMS.
C20 —* €38 Reserved.
Note: remaining components contain reference lists where:
c1 is the name of the object being referenced.
ia is an object code - 0 means words used by words.
(<blcl), <blcl is a pair of boxed lists.
The first list contains all global references excluding locale references. Locale references, if
any, are in the second list.
€39 cljia; (<blel), <blcl References.
c40 Like c39
Cn ... Like ¢p,—1

Table 9: juses.i7jf file component layout

O
VD release 1.1.1 70 February 10, 2024

A JOD DISTRIBUTION

A JOD Distribution

JOD is distributed as a J addon. You can install JOD using pacman the J package manager [10].
The JOD distribution is broken into three pacman packages:

1. jod [4]: This is the only package that must be installed to run JOD. It contains JOD system
code and supporting files.

2. jodsource [5]: This addon consists of three JOD dictionary dumps and a setup script.
JOD dictionary dumps are J script files that can rebuild JOD dictionaries. Dump files are the
best way to distribute dictionary code since they are independent of J binary representations.
The jodsource addon contains.

(a) joddev.1ijs— development put dictionary

(b) jod.1ijs — main JOD source and test script dictionary

(¢c) utils.ijs — common utilities dictionary

(d) jodsourcesetup.ijs—IJscriptthatcreates and loads the three JOD development
dictionaries.

3. joddocument [6]: this package contains JOD PDF documents. Installing this package
places these documents on local drives for jodhelp, see page 41.

The packages listed above are built from source scripts that are found in several GitHub repos-
itories. To access raw JOD code see:

1. The official jsoftware.comrepositories are:

(@) https://github.com/Jjsoftware/general_jod
(b) https://github.com/jsoftware/general_joddocument
(c) https://github.com/jsoftware/general_jodsource

2. My development repositories are:

(@) https://github.com/bakerjd99/ jod
(b) https://github.com/bakerjd99/ joddumps
(c) https://github.com/bakerjd99/joddoc

O
N erease 1.1.1 71 February 10, 2024

https://code.jsoftware.com/wiki/Pacman
https://www.jsoftware.com/jwiki/Addons/general/jod
https://www.jsoftware.com/jwiki/Addons/general/jodsource
https://www.jsoftware.com/jwiki/Addons/general/joddocument
https://www.jsoftware.com
https://github.com/jsoftware/general_jod
https://github.com/jsoftware/general_joddocument
https://github.com/jsoftware/general_jodsource
https://github.com/bakerjd99/jod
https://github.com/bakerjd99/joddumps
https://github.com/bakerjd99/joddoc

B BUILDING JOD

B Building JOD

JOD is an open-source system. Anyone is free to examine and modify JOD source code. All JOD
source is stored in JOD development dictionaries. Installing the jodsource addon makes this
code available.

JOD dictionaries also contain utilities for building and distributing JOD.

NB. open JOD development dictionaries
od ;:’joddev jod utils’” [3 od "’

NB. before building create required directories
NB. directory creation is a one time step
"test’ getrx ’'setbuilddirs’

1 setbuilddirs_test_ O

NB. build JOD
rm 'buildjoddistribution’

buildjoddistribution extracts JOD source code from development dictionaries and
generates the compressed or minimized scripts used by the JOD addon.

NB. xbuildjoddistribution s—— full JOD distribution build.

NB. create temporary working locale

cocurrent ’"base’

coclass tmploc_AAAjodbuild999_=: ’"AAAJodbuild999’ [coerase <’'AAAJodbuild999’
coinsert ’ijod’

NB. record open dictionaries and open JOD dictionaries

ooo=: }. did O

od ;:’joddev jod utils’” [3 od’’

NB. get JOD build utilities and version tracking nouns
tmploc get }. grp ’"buildjod’

NB. set distribution directories

jddir=: " JODDOCDIR JODSTAGEDIR JODGITDIR JODSOURCESTAGEDIR JODSTAGEPDEFDIR JODSTAGEDOCDIR’
jddir=: jddir , ’ JODGITDOCDIR JODADDONDIR JODSCRIPTDIR JODEXTSDIR’
(jddir)=: setbuilddirs 0

NB. generate distribution scripts

updatejodmanifest O

JODVMD buildjodcompressed JODSTAGEDIR; JODGITDIR; JODADDONDIR; JODSCRIPTDIR
JODTOOLSVMD buildjodtoolscompressed JODSTAGEDIR; JODEXTSDIR; JODSCRIPTDIR
JODVMD updatejoddistribution JODSTAGEDIR; JODGITDIR; JODDOCDIR

JODVMD updatejodsourcedumps JODSOURCESTAGEDIR

JODVMD releasejod JODSTAGEDIR; JODSTAGEPDFDIR; JODSTAGEDOCDIR; JODGITDOCDIR

| O
N erease 1.1.1 72 February 10, 2024

https://www.jsoftware.com/jwiki/Addons/general/jodsource
https://en.wikipedia.org/wiki/Minification_(programming)

B BUILDING JOD

NB. destroy build locale
cocurrent ’'base’
coerase <tmploc_AAAjodbuild999_

O
N erease 1.1.1 73 February 10, 2024

C TESTING JOD

C Testing JOD

Software is either tested or trash! There are no other options! JOD aspires to be more than trash.
So, it shouldn’t surprise anyone to learn that JOD development dictionaries contain many test
scripts. Test scripts are organized into suites. Suites are collections of test scripts.

NB. open JOD development dictionaries to use test scripts.
od ;:’joddev jod utils’” [3 od '’

NB. make jodtester script - used by most test scripts
mls ’ jodtester’

NB. 1ist JOD test suites
80 list }. 3 dnl ’jod’

jodbasictests jodcrushtests joddualsystests jodextensiontests
jodlargetests jodmanwintests Jjodpjmtest jodpreparetests
jodpurgetests jodsmoketests jodstresstests

Because test scripts are often more revealing and informative than standard documentation, I have
posted them on GitHub at

https://github.com/bakerjd99/jod/tree/master/jodunit.

The majority of the scripts can be run with JOD’s rtt verb, see page 57.

NB. run silently - only explict output shown - expected result is 1
1 rtt "bnlSmoke02’

NB. show all input and output
rtt ’"bnlSmoke02’

The following test script is typical of JOD tests. Run with rtt.

NB. *bnlSmoke02 t—-— (bnl) test hash failure detection.

NB.

NB. assumes:

NB.

NB. 0) configured J test folder JODTEST, standard J utils (dir, dirtree)
NB.

NB. 1) (testjod00) dictionary

NB. newd ’test jod00’; jpath ’ "JODTEST/test jod00’ NB. create

NB. regd “test jod00’; jpath ’ “JODTEST/test jod00’ NB. register extant
NB

NB. created: 2024feb03
NB. changes: ———————————— =~~~

cocurrent ’'base’
require ’ jodtester’

coclass tmploc_AAAsmoke999_=: "AAAsmoke999’" [coerase <’'AAAsmoke999’
|<)
N erease 1.1.1 74 February 10, 2024

https://github.com/bakerjd99/jod/tree/master/jodunit

C TESTING JOD

coinsert ’ijod’

testenvironment ’good’;’JOD’
NB. —{TEST START}-

NB. is folder configured
iscf " “JODTEST’

NB. set test dictionary
er settdict tdict=: "testjod00’

NB. read and write bytes
read=: 1!:16& (] <Q@. (32&>@(3!:0)))
write=: 1!:2]'<@. (32&>Q@(3!:0))

NB. close any open and open test dictionary
er od tdict [3 od '’

NB. erase any current test dictionary backups
DL=: {: {.DPATH__ST__JODobj
0 OSferase 1 dir BAK__ DL, x.x’

NB. no backup error expected
ner 14 bnl 7.’

NB. insert random arrays between backups to insure
NB. hashes in the njhashes.txt sidecar files differ
hashhack=: 25 5 5$1000000

hashmsg=: ’first backup’

er tmploc put "hashhack’

er tmploc put "hashmsg’

er packd tdict

hashhack=: 2?5 5 5$1000000
hashmsg=: ’second backup’
er tmploc put ’hashhack’
er tmploc put "hashmsg’
er packd tdict

NB. all hashes should pass
er showpass hashes=: 17 bnl ’.’

*./ ; 1 1 }. rv_ajod_ hashes

NB. copy and rename older backup word files over

NB. newer backups — this will introduce a hash failure
jwords=: dirtree BAK__DL,’ xjwords.ijf’
jwords=: (\: 1 {"1 jwords) {jwords

(read ;0{{:jwords) write ;0{{.jwords

Lf>
D release 1.1.1 75 February 10, 2024

C TESTING JOD

14 14

er showpass hckhashes=: 17 bnl

NB. some hashes fail - 0Os in 17 bnl 7.’
0e. ; 11 }. rv_ajod_ hckhashes

NB. —{TEST SUCCESSFUL} -
ereopen O

cocurrent ’'base’
coerase <tmploc_AAAsmoke999_

‘ O
N erease 1.1.1 76 February 10, 2024

D JOD CLASSES

D JOD Classes

z
jodon jodoff

A

ijod
interface locale

Core JOD classes

gjodmake
script and dump
generation

ajodutil
edit objects
and other utilities

gjodstore
storage class

Figure 4: This diagram shows how JOD classes are related. JOD classes are loaded into J addon a
locales. The arrows indicate how J names are resolved. The blue diamond locales i jod and z are
on the base locale’s path: copath ’base’. Diagram Generated by Graphviz [9].

O
J D release 1.1.1 77

February 10, 2024

E REFERENCE PATH

E Reference Path

JOD groups and suites, (see grp on page 38), are defined with respect to a particular path. This
path is called the reference path. The reference path is stored when the first put dictionary group
or suite is defined. Group and suite generation with make, m1s and 1g, (see pages 43, 44, 42),
check the current path against the reference path. If the paths do not match an error is returned.

Reference paths display current dictionary names but the path is stored as a unique list of ex-
tended dictionary identification numbers: DIDNUMs. On Windows and Linux systems the DIDNUM
is based on GUIDs. DIDNUMs insure reference paths are unique.

A reference path can only be reset by clearing the put dictionary path, opening desired dictio-
naries and recreating a group or suite: see dpset on page 30.

NB. open first five dictionaries

od 5 {. }. od "’
I to———— s tom———— +———t
| 1|opened (rw/rw/ro/rw/rw) —>|budget|cbh|flick|flickdev|gps|
I to———— s tom———— +———t

NB. display dictionary information - reference paths in last column

did = 0
- +
|1 +-————— i - o e e Fmm +]
N | -—|Words|Tests|Groups«*|Suitesx|Macros|*Path |
| |+ e o o o e Fm +
| ||budget |rw]|l4 |0 | 2 |0 |0 | /budget |
| |+-—— i - o o e Fmm +]
| ||cbh lrw|145 |0 | 6 |0 | 6 | /cbh/utils |
| |+-—— i - o o e Fmm +]
| |1flick lrol296 |3 |9 |0 |9 | /flick/utils |
| |+ e o o o e Fm e ——— +
| |lflickdev|rw]| 96 | 2 |2 | O | 2 | /flickdev/flick/utils]| |
| |+-—— i - o o e Fmm +]
| |lgps lrw|11 |0 |0 |0 |0 | /gps/utils |
| |+ e o o o e Fm e ——— +
s +

O
N erease 1.1.1 78 February 10, 2024

F JOD ARGUMENT CODES

F JOD Argument Codes

The left, and some right, arguments of JOD verbs are specified with object, qualifier and option
codes. Object codes are typically the first argument code while options and qualifiers usually
occupy the second and third positions. Options and qualifiers are sometimes negative. Negative
values modify codes: see tables 10, 11 and 12 on pages 79, 79 and 80.

Object Codes

Noun Code Use Example
WORD 0 word code 0 dnl ’’ NB. 1list all words on path
TEST 1 test case code 1 put ’test’;’test code..’ NB. store test
GROUP 2 group code 2 put ’'name’;’group header ...’ NB. store group header
SUITE 3 suite code 3 grp ’'suite’ NB. get suite members, list of test names
MACRO 4 macro code 4 disp 'test’ NB. display macro
DICTIONARY | 5§ dictionary code 5 get '’ NB. get dictionary documentation

Table 10: JOD Object Codes

The meaning of negative option and qualifier codes depends on the word. For dn1 a negative
option requests a path order list. For get and put a negative option code gets and puts timestamp
arrays.

Negative Codes
Code Use Example
_1 path order list 0 _1 dnl "’ NB. path order list of words
_2 path order list 1 _2 dnl ’"boo’ NB. path order list of test names containing boo
_14 names and timestamps 1 _14 get }. revo'’ NB. names and timestamps array
_14 names and timestamps 4 _14 put tsarray NB. update macro timestamps

Table 11: JOD Negative Codes

O
N erease 1.1.1 79 February 10, 2024

F JOD ARGUMENT CODES

Qualifier Codes

Noun | Code Use Example
DEFAULT 7 default action 0 7 get "this’ NB. default behaviour
EXPLAIN 8 short explanation text 0 8 put ’'name’;’explain name’
DOCUMENT 9 documentation text 2 9 put ’'group’;’very long group document ...’
NVTABLE 10 name value table 0 10 get }. dnl ’’ NB. return all words in table
REFERENCE 11 reference code 11 del ’'earthdist’ NB. delete word references
NAMECLASS 12 J name class code 0 12 get }. dnl '’ NB. fetch J name class codes
CREATION 13 creation date 0 13 get }. dnl '’ NB. word creation dates
LASTPUT 14 last change date 0 14 get }. dnl '’ NB. recent changes
HASH 17 hash code 17 bnl ’.’ NB. check backup files against hashes
BYTESIZE 15 object byte size 0 15 get }. dnl '’ NB. word byte sizes
JSCRIPT 21 J script code 4 1 21 dnl "POST_' NB. 1list postprocessors
LATEX 22 IXTEX text code 4 get }. 4 3 22 dnl 'TEX’ NB. get LaTeX macros
HTML 23 HTML text code 4 put "HTMLtxt’;23;’<a>hello world’ NB. store html
XML 24 XML text code 4 put ’XMLtext24;’<p>baby step xml</p>’ NB. store xml
TEXT 25 ASCII text code 4 3 25 dnl "EPS’ NB. texts ending with EPS
BYTE 26 BYTE characters 4 put 'BYTEME';a.
MARKDOWN 27 MARKDOWN text code 5 put ’'Main x*dictionaryx* document’
UTF8 28 Unicode UTF8 text 4 put 'UTF8text’;UTF8_ajod_; (8 u: 4 u: 56788 4578,65+1.5)
PYTHON 29 Python script text 4 put ’'big_py’;PYTHON_ajod_;’2 *x 1024’
SQL 30 SQL script text 4 put ’'vyada_sqgl’;SQL_ajod_;’select x from yada’
JSON 31 JSON text 4 put ’'fleece_json’;JSON_ajod_;’' {"json": "golden-fleece"}’
IPYNB 32 Jupyter notebook 4 put ’notebook_ipynb’;IPYNB_ajod_;’... ipynb ’
LEAN 33 LEAN source code 4 put ’theorem_lean’;LEAN_ajod_;’... lean on me ...’
7Z1G 34 71G source code 4 put ’'code_zig’;ZIG_ajod_;’ ziggy code stuff ’

Table 12: JOD Qualifier Codes

Note: suffixes like notebook_ipynb are not required. I use them to make it easier to see
what type of code is stored in a JOD macro.

O
J D release 1.1.1

80

February 10, 2024

https://daringfireball.net/projects/markdown/
https://jupyter.org/
https://leanprover-community.github.io/
https://ziglang.org/

G JODPARMS.IJS

G jodparms.ijs

Jodparms. 1ijs is read when the master file jmaster. i jf is created and is used to set dictio-
nary parameters.

Dictionary parameters are distributed to dictionary files and runtime objects. New parameters
can be added by editing jodparms. i js and recreating the master file. The last few lines of the
following example show how to add COPYRIGHT and MYPARAMETER.

When a parameter is added its value will appear in the directory objects of all dictionaries but
will only be dpset’able in new dictionaries.

To change default master dictionary parameters:
1. Exit]J
2. Delete the files

“addons/general/jod/jmaster.ijf
“addons/general/jod/jod.ijn

3. Edit
“addons/general/jod/jodparms.ijs

4. Restart J and reload JOD with
load ’'general/jod’

NB. xjodparms s—- default dictionary parameters.

NB. This file is used to set the default dictionary parameters
NB. table 1in the master file. When a new dictionary 1s created
NB. the parameters 1in the master file are used to specify the
NB. parameters for a particular dictionary. The verb (dpset) can

NB. be used to modify parameter settings in individual
NB. dictionaries. Master file parameters can only be changed by
NB. editing this file and recreating the master file.

NB

NB. The master file can be recreated with the call:

NB

NB. createmast_ajod JMASTER ajod_

NB

NB. WARNING: all the parameters currently listed are required by
NB. the JOD system. If you remove any of them JOD will crash. You
NB. can safely add additional parameters but you cannot safely
NB. remove current parameters.

MASTERPARMS=: 0 : O

| O
N erease 1.1.1 81 February 10, 2024

G JODPARMS.IJS

NB. The format of this parameter file 1is:

NB. jname ; (type) description ; value

NB.

NB. jname is a valid J name

NB. (type) description documents the parameter - type 1is required

NB. only (+integer) 1is currently executed other types will

NB. be passed as character 1lists (see dptable).

NB. value 1s an executable J expression that produces a value

ASCIIS8S ; (+integer) when 1 use ascii85 in dumps (0 or 1) ; 1

COPYFACTOR ; (+integer) components copied in one loop pass (1<y<240) ; 100
DOCUMENTDICT ; (+integer) when 1 dictionary document is put (0 or 1) ;01
DOCUMENTWIDTH ; (+integer) width of justified document text (20<y<255) ; 61
DUMPFACTOR ; (+integer) objects dumped in one loop pass (1<y<240) ; 50
GETFACTOR ; (+integer) words retrieved in one loop pass (10<y<2048) ; 250
PUTFACTOR ; (+integer) words stored in one loop pass (10<y<2048) ; 100
RETAINAGE ; (+integer) when 1 timestamps are saved in dumps (0 or 1) ; 1
HASHDUMP ; (+integer) when 1 a hash is prefixed to dumps (0 or 1) ;1

NB. ROOTFOLDER is empty by default. If it is set to a (jpath) J configured
NB. folder ROOTFOLDER overrides default locations for (mls) generated scripts
ROOTFOLDER ; (character) redirects (mls) scripts to J folder ;

NB. typical nonempty setting
NB. ROOTFOLDER ; (character) redirects (mls) scripts to J folder ; “user/jodroot

NB. Any added parameters are stored in the master file when
NB. created and distributed to JOD directory objects.

NB. WARNING: when defining J expressions be careful about the ; character
NB. the JOD code (dptable) that parses this string is rudimentary.

NB. COPYRIGHT ; (character) ; All rights reserved
NB. MYPARAMETER ; (+integer) the answer ; 42
)

Ido
D release 1.1.1 82 February 10, 2024

H JODPROFILE.IJS

H Jjodprofile.ijs

jodprofile.ijs is an optional user profile script; it runs after JOD loads and can be used to
customize your working environment. The following is an example profile script.

NB. xjodprofile s—— JOD dictionary profile.

NB.

NB. An example JOD profile script. Save this script in

NB.

NB. ~addons/general/jod/

NB.

NB. with the name jodprofile.ijs

NB.

NB. This script 1s executed after all dictionary objects have
NB. been created. It can be used to set up your default JOD
NB. working environment.

NB.

NB. WARNING: Do not dpset ’"RESETME’ if more than one JOD task 1is
NB. active. If only one task is active RESETME’s prevent annoying
NB. already open messages that frequently result from forgetting
NB. to close dictionaries upon exiting J.

NB.

NB. Note to J developers. A shutdown sentence (a line of J the
NB. interpretor executes before terminating) would be very
NB. useful.

NB.

NB. author: John D. Baker
NB. email: bakerjd99@gmail.com

NB. set white space preservation on
9!:41 [1

NB. minimum print precision to show yyyymmdd dates (see jodage)
9!:11 [8

NB. set jgt windows console size - automatic for linux/mac/ios
Cwh_7j_=: 140 24

NB. do not reset 1if you are running more than one JOD instance
dpset ’'RESETME’

NB. JOD interface locale - (ijod) is a good place for ad hoc JOD addons
coclass ’"1ijod’

NB. (ijod) error/ message text

ERRIJOD00=: ’'current group name (Jjodg_ijod_) not set’
ERRIJOD01l=: ’current suite name (Jjods_1ijod_) not set’
OKIJOD00=: ’no matches’

Lf>
D release 1.1.1 83 February 10, 2024

H JODPROFILE.IJS

NB. add delete from current group or current suite

NB. requires direct definition introduced with J 9.02

ag=: {{if. wex_ajod_ <’ Jjodg’ do. jodg addgrp y else. jderr_ajod_ ERRIJOD0OO end.}}

as=: {{if. wex_ajod_ <’ jods’ do. (jods;3) addgrp y else. jderr_ajod_ ERRIJOD01 end.}}
dg=: {{if. wex_ajod_ <’ jodg’ do. jodg delgrp y else. jderr_ajod_ ERRIJOD0OO end.}}

ds=: {{if. wex_ajod_ <’ jods’ do. (jods;3) delgrp y else. jderr_ajod_ ERRIJOD01 end.}}
NB. referenced words not in current group

nx=: 3 : 0

if. -.wex_ajod_ <’ jodg’ do. jderr_ajod_ ERRIJOD0O0 return. end.

if. badrc_ajod_ gn=. grp Jjodg do. gn return. end.

(allrefs }. gn) —-. gn

)

NB. words 1in current group using a word

ug=: 3 : 0

if. -.wex_ajod_ <’ jodg’ do. jderr_ajod_ ERRIJOD0O0 return. end.

if. badrc_ajod_ gn=. grp Jjodg do. gn return. end.
y usedby }. gn

)

NB. generate current group and save load script

sg=: {{if. wex_ajod_ <’ jodg’ do. mls jodg else. jderr_ajod_ ERRIJODO1 end.}}
NB. top (put dictionary) words, groups 1in revision order

tw=: revo

tg=: 2&revo

NB. run tautology as plaintest - does not stop on nonzero results
rt=: 2&rtt

NB. run macro silently - will show explict smoutput

rs=: l&rm

NB. short help for group words

hg=: [: hlpnl [: }. grp

NB. short help on put objects in revised order from code:

NB. hr 4 NB. macro

NB. hr 2 NB. groups

NB. 10 hr 0 NB. last ten words

hr=: 3 : 0

if. badrc_ajod_ w=. y revo '’ do. w return. end.

y hlpnl }. w

if. badrc_ajod_ w=. y revo '’ do. w return. end.

y hlpnl x {. }. w

3P

release 1.1.1 84 February 10, 2024

H JODPROFILE.IJS

NB. search short help for string and list matching words
NB. hss ’"see long’ NB. search word short text
NB. 2 hss ’see long’ NB. search group short text

NB. 4 hss ’post’ NB. search macro short text
hss=: 3 : 0
0 hss y
if. badrc_ajod_ w=. x dnl '’ do. w return. end.
=. x hlpnl }. w
if. O=#w=. 1 >@{ d do. ok_ajod_ OKIJODOO return. end.

if. O=#s=. I. (,:y) +./"1@E. w do. ok_ajod_ OKIJOD00 return. end.
s&{ &.> d

NB. single line explanation

NB. slex ’"word’ NB. word

NB. 4 slex ’jodregister’ NB. macro
NB. 1 slex ’thistest’ NB. test

slex=: 3 : 0

0 slex vy

if. badcl_ajod_ sl=. x disp y do. sl return. end.
(x,8) put y;firstcomment__ JODtools sl

)

NB. regenerate put dictionary word cross references

reref=: 3 : 0
if. badrc_ajod_ r=. revo '’ do. r return. end.
(r,.s) #7 —.;0{"1 s=.0 globs&> r=.}.r

)

NB. handy cl doc helpers
docscr=: {{ctl_ajod_ (61;0;0;’'NB.’) docct2__UT__JODobj];._1 LF,y-.CR}}
doctxt=: {{ctl_ajod_ (61;0;0;"") docct2__UT__JODobj];._1 LF,y-.CR}}

NB. display noun on screen and return noun value
showpass=:] [1!:2&2

NB. edit command
DOCUMENTCOMMAND=: ’showpass pr "/ {"N }""’

NB. read & write files
read=:1!:1& (] ‘<@. (32&>@(3!:0)))

write=:1!:2]'<@. (32&>Q@(3!:0))
readnoun=:3!:2@ (1!:1& (] ‘<@. (32&>Q@(3!:0))))
writenoun=: ([: 3!:1 [) (1!:2]'<@.(32&>Q@(3!:0)))]

O
D vetease 1.1.1 85 February 10, 2024

H JODPROFILE.IJS

0 or elided display)

[3 od 77

NB. fetch edit text/macros

tt=:] ; gt

mt=:] ; 25"_ ; gt NB. *.txt

mi=:] ; 21"_ ; gt NB. #*.1i7js

md=:] ; 27"_ ; gt NB. #*.markdown

mx=:] ; 22"_ ; gt NB. #*.tex

NB. examples of JOD session start ups — shows

NB. how to open dictionaries and invoke project macros
NB. set up current project (1 suppress IO,

NB. 1 rm ’prjsmughacking’ [smoutput od ;:’smugdev smug utils’” [3 od 7’
NB. 1 rm ’prjjod’ [smoutput od ;:’joddev jod utils’
cocurrent ’"base’

co

insert ’ijod’

O
I‘J D release 1.1.1

86

February 10, 2024

I JODUSERCONFIGBAK.IJS

I joduserconfigbak.ijs

joduserconfigbak.ijsis an optional configuration script. joduserconfigbak.ijsis
in the directory.

“addons/general/ jod/ jodbak

joduserconfigbak.ijs can be used to redefine class words before any JOD objects are
created.

NB. xjoduserconfigbak s——- example JOD user configuration script.

NB.

NB. This script is executed BEFORE JOD objects are created. It
NB. can be used to redefine and customize various class words. To
NB. make this script active rename it to (joduserconfig.ijs) and
NB. copy it, with your edits, to the main jod directory:

NB.

NB. ~addons/general/jod

NB.

NB. The nouns listed below are good candidates for redefinition.

smoutput ’ joduserconfig.ijs executing ...’

NB. PDF reader in jodutil class - Reset for other PDF readers
PDFREADER_ajodutil_=:’C:\Adobe\Acrobat Reader DC\Reader\AcroRd32.exe’

NB. Reset J’s PDF reader to match JOD’s PDF reader - do for (jconsole.exe)
PDFReader_j_=: PDFREADER_ajodutil__

NB. Alternative Ghostscript compatible reader
NB. PDFREADER ajodutil_=:’C:\Program Files\Ghostgum\gsview\gsview32.exe’

NB. Preferred web browser in jodutil class - default Windows FireFox directory

WWWO_ajodutil_=:’C:\Program Files\Mozilla Firefox\firefox.exe’
NB. Secondary web browser in jodutil class — default Windows directory
WWW1l_ajodutil_=:’C:\Program Files\Internet Explorer\IEXPLORE.EXE’

NB. Text editor to use when running JOD in (jconsole.exe) on Windows systems
NB. QT/JHS configurations are not necessarily applied for (jconsole,exe)
EDCONSOLE_ajodutil_=:’""C:\Program Files (x86)\notepad++\notepad++.exe"’

Lf>
D release 1.1.1 87 February 10, 2024

J JOD STARTUP.I1JS ENTRIES

J JOD startup.ijs entries

startup.1ijsisJ’s optional user startup script. startup.ijs is in the directory.
“config

JOD uses startup.ijs to store load scripts generated by m1 s: see page 44.

NB. WARNING: JOD managed section do not edit!
NB.<JOD_Load_Scripts>

buildpublic_j_ 0 : O

bstats c¢:/jod/jutils/script/bstats.ijs

xmlutils c:/jod/utils/script/xmlutils.ijs
analystgraphs «c¢:/jod/franklin/script/analystgraphs.ijs
TeXfrWpxml c:/jod/docs/script/TeXfriWpxml.ijs

jodtester «c:/jod/Jjoddev/script/jodtester.ijs

waypoints c¢:/jod/gps/script/waypoints.ijs

Weeks c:/jod/docs/script/Weeks.iJs

MirrorXref c¢:/jod/smugpyter/script/MirrorXref.ijs
DudTeXPreprocess c:/jod/docs/script/DudTeXPreprocess.ijs
BiblioHelper c:/jod/docs/script/BiblioHelper.ijs
RecodeSchedZ c:/jod/mwecc/script/RecodeSchedZ.1ijs

)

NB.</JOD_Load_Scripts>

O
N erease 1.1.1 88 February 10, 2024

K TURNING JOD DUMP SCRIPT TRICKS

K Turning JOD Dump Script Tricks

Dump script generation is my favorite JOD feature. Dump scripts serialize JOD dictionaries; they
are mainly used to back up dictionaries and interact with version control systems: see appendix M
on page 95. However, dump scripts are general J scripts and can do much more! Maintaining a
stable of healthy JOD dictionaries is easier if you can turn a few dump script tricks.?’ The following
examples assume a configured folder JODTEST: see Section 2 on 5.

1. Flattening reference paths: Open JOD dictionaries define a reference path: see appendix E
on page 78. For example, if you open the following dictionaries:
NB. open four dictionaries
od ; :’smugdev smug image utils’
e fom e o +

|1]opened (ro/ro/ro/ro) —>|smugdev|smug|image|utils|
e e fom e +

The reference path is / smugdev/smug/image/utils.

When objects are retrieved each dictionary on the path is searched in reference path order.
If there are no compelling reasons to maintain separate dictionaries you can improve JOD
retrieval performance and simplify dictionary maintenance by flattening all or part of the
path.

To flatten the reference path do:

NB. reopen the first three dictionaries on the path

od ;:’smugdev smug image’ [3 od '’
s R e Fo—— - e Rttt +
|1]opened (ro/ro/ro) —->|smugdev|smug|image |
s R e Fo—— - e Rttt +

NB. dump to a temporary file (df)

df=: {: showpass make jpath " "JODTEST/smugflat.i]js’
e o +
|1]object (s) on path dumped ->|c:/jodtest/test/smugflat.ijs|
e et o +

NB. create a new flat dictionary

newd ’smugflat’;jpath 7 "JODTEST/smugflat’ [3 od '’
Fofm fo——————— e +
|1|dictionary created —>|smugflat|c:/jodtest/test/smugflat/ |
e Fom— e +

20Spicing up one’s rhetoric with a double entendre like “turning tricks” might be construed as a microaggression.
The point of colorful language is to memorably make a point. You are unlikely to forget turning dump script tricks.
O
N erease 1.1.1 89 February 10, 2024

https://thefederalist.com/2015/03/24/microaggressions-and-trigger-warnings-meet-real-trauma/

K TURNING JOD DUMP SCRIPT TRICKS

NB. open the flat dictionary and (utils)
od ; :’smugflat utils’

e e it - +
| 1|opened (rw/ro) —->|smugflat|utils]
oo o e +
NB. reload dump script ... output not shown
0!':0 df

The collapsed path /smugflat/utils will return the same objects as the longer path.
It is important to understand that the collapsed dictionary smugflat does not necessar-
ily contain the same objects found in the three original dictionaries smugdev, smug and
image. If objects with the same name exist in the original dictionaries only the first one
found will be in the collapsed dictionary.

2. Merging dictionaries: If two dictionaries contain no overlapping objects it might make
sense to merge them. This is easily achieved with dump scripts. To merge two or more
dictionaries do:

NB. open and dump first dictionary
od "dict0” [3 od "'

Fotm e Fo———= +
|1 |opened (rw) —->|dictO]
Fofm - o +

df0=: {: showpass make Jjpath ' “JODTEST/dict0.ijs’
Fo o Fo +
|1|lobject (s) on path dumped ->|c:/jodtest/test/dict0.1ijs|
e o +

NB. open and dump second dictionary
od "dictl” [3 od "'

R R fo——— +
|1 |opened (rw) —->|dictl]|
R R fo——— +

dfl=: {: showpass make Jjpath ' “JODTEST/dictl.ijs’
s Rt e S o +
|1]object (s) on path dumped ->|c:/jodtest/test/dictl.ijs]|
e S o +

NB. create new merge dictionary

newd 'mergedict’; jpath '/ "JODTEST/mergedict’ [3 od '’
Fofm fomm—————— e +
|1|dictionary created —>|mergedict|c:/jodtest/test/mergedict/ |
e Fom e +

O
N erease 1.1.1 90 February 10, 2024

K TURNING JOD DUMP SCRIPT TRICKS

NB. open merge dictionary and run dump scripts
od ’"mergedict’

- - +

|1|opened (rw) ->|mergedict|

F—fm——————— o +
NB. reload dump scripts ... output not shown
0!:0 dfo0
0!:0 dfl

Be careful when merging dictionaries. If there are common objects the last object loaded is
the one retained in the merged dictionary.

3. Updating master file parameters: When a new parameter is added to jodparms.ijs,
see appendix G on page 81, it will not be available in existing dictionaries. With dump
scripts you can rebuild existing dictionaries and update parameters. To rebuild a dictionary
with new or custom parameters do:

NB. save current dictionary registrations
(LOHOST ; 1 { 5 od ’") write_ajod_ jpath ' “JODTEST/jodregister.ijs’

NB. open dictionary requiring parameter update
od ’dict0’ [3 od "’

F—fm——————— +———— +

|1 |opened (rw) —->|dictO]

- +———— +

NB. dump dictionary and close
df=: {: showpass make jpath ' “JODTEST/dict0.1ijs’

e S o +

|1]object (s) on path dumped ->|c:/jodtest/test/dict0.i]js]|

o o +
3 od "’

ot fo——— +

|l]closed —>|dictO]

s e +——— +

NB. erase master file and JOD object id file
ferase jpath ’ “addons/general/jod/jmaster.ijf’

ferase jpath ’“addons/general/jod/Jjod.ijn’

O
N erease 1.1.1 91 February 10, 2024

K TURNING JOD DUMP SCRIPT TRICKS

NB. recycle JOD - this recreates (jmaster.ijf) and (jod.ijn)
NB. using the new dictionary parameters defined in (jodparms.ijs)
(jodon , jodoff) 1

11

NB. re-register dictionaries
load jpath 7 "JODTEST/jodregister.ijs’

NB. create a new dictionary — it will have the new parameters
newd ’‘dictOnew’

NB. open the new dictionary - taking care to include all
NB. dictionaries on (dict0)’s reference path

od ;:’dictOnew utils’ [3 od '’
NB. reload dump script ... output not shown
0!:0 df

Before executing complex dump script procedures back up your JOD dictionary folders
and play with dump scripts on test dictionaries. Dump scripts are essential JOD dictionary
maintenance tools but like all powerful tools they must be used with care.

|<:>
N erease 1.1.1 92 February 10, 2024

L JOD DIRECT DEFINITION SUPPORT

L JOD Direct Definition Support

J version 9.02 (February 2021) introduced direct definitions. The designers of APL languages, of
which J is a member, introduced direct definitions long after canonical or notorious “V editor” style
definitions. In retrospect, most agree the entire family of languages would be better off if direct
definition had come first. Direct definitions are more elegant, concise, versatile, and beautiful than
clunky canonical equivalents. They’re also easier to comprehend and compose than long J tacit
definitions. But history is history, and software history is hard to ignore because of the installed
base®'. We’re stuck with our kludges!

In JOD’s case this shows up in how globs, see page 37, classifies global and local names in
words that contain direct definitions. Consider the following:

make_my_def=: 3 : 0

NB. local to make_my_def
here=. we=. 2 + are=. 3 * local=. 4

global_adv=: {{*./"1 u/&> 2 <\"1 y}}

local_verb=. {{)d
NB. not local to make_my_def
we=. are=. not=. make_my_def=. local=. x
if. 1-:y do.
NB. deep global to make _my_def
{{deep_gbl=: "deep’;":v}} v
end.
+}

0 local_verb y
)

make_my_def contains local and global direct definitions. When executed it creates global_adv
and runs 1ocal_verb which in turn creates deep_gbl. When 1ocal_verb runs it creates a lo-
cal namespace like any explicitJ verb. Hence not and make _my_def are not strictlymake my _def
locals. The execution of directly defined local words is equivalent to calling explicit words. globs
does not track direct definition name scopes. It views all direct definition names as if they belonged
to the topmost word. For make _my_def globs this gives:

NB. JOD name classification
11 globs 'make_my_def’

2l Also known as users

O
N erease 1.1.1 93 February 10, 2024

L JOD DIRECT DEFINITION SUPPORT

s e +
[1]|+—————~ Femm +
| |lGlobal|+-——————~ - + |

|] | |deep_gbl|global_adv| |

|1 | == Fom s + N
e —— E——,—————————————- A A i Ait +|
	lLocal	+———4————+-————- R fom to——t——+]						
1	lare	here	local	local_verb	make_my_def	not	we]l	
1	+———+————F————— - F————— +———t——+]							
R —— ———————- o +								
)=z	N							
	+ o +]							
ol (x)=. | |

| |+ t——_— - + |
| Ilfor. | I
| |+ f——_—— + |
s e +

NB. execute and show name classes
make_my_def 1
+————t—+
|deep|1]
+————4—+
nc ;:’local_verb global_adv deep_gbl’
110

When embedding direct defintions in explicit words, or within other direct definitions, it’s a
good idea to make names distinct. For example, in embedded 1ocal_verb do something like:

local_verb=. {{)d
welLv=. arelLv=. notLv=. make_my_deflv=. locallv=. x
if. 1-:y do.
NB. deep global to make _my_def
{{deep_gbl=: "deep’;":y}} vy
end.
}}

O
N erease 1.1.1 94 February 10, 2024

M JOD AND VERSION CONTROL SYSTEMS

M JOD and Version Control Systems

Despite JOD’s backup and restore facilities, see bnl, bget, packd and restd on pages 18,
17, 52 and 56, JOD is not a source code version control system like Git [13] or Fossil [12].
JOD’s primary purpose is efficiently refactoring, shuffling and recombining J words not tracking
their detailed histories. Traditional version control systems focus on the history of source code and
provide detailed merge, security and multiuser network facilities that JOD lacks. However, since
JOD generates standard J source code scripts it’s easy to use JOD with version control systems.
The main difficulty is choosing a suitable level of detail: dictionary, script or word. The following
shows how Git can be used for each of these levels. Git has a number of graphical GUT interfaces
these examples use bash shell commands.

1. Dictionary: make, see page 43, can dump entire dictionaries as a single J script. Dump
scripts contain all*? dictionary word definitions, test scripts, groups, suites and macros. Stor-
ing dump scripts in version control systems is an effective and simple way of tracking dic-
tionary changes. To create dump scripts I run the macro dumpput. dumpput is stored in
the ut i1s dictionary; it dumps the put dictionary and copies the generated script to a com-
mon local directory. The common local directory hosts a Git repository that has a GitHub
remote repository set. A remote GitHub repository is good way to move dictionaries be-
tween machines and safely share them with others. In the following example local changes
are committed and then pushed to a remote repository.?’

NB. Step 1: J session commands — open dictionaries
od ;:"docs utils’ [3 od "’

s R Fo—— +

| 1|opened (rw/ro) —->|docs|utils]

et fom +

1 rm "dumpput’ NB. run dump macro — (utils) must be on path
T fom +
|1|lobject (s) on path dumped ->|c:/jod/docs/dump/docs.1ijs|
T Fm +

$ echo Step 2: Bash shell commands > /dev/null

bakerjd99@NINJA /c/jod/joddumps (master)
$ pwd
/c/jod/ joddumps

22Word references are not present in dump scripts. They can be easily regenerated with globs, see page 37.

2 A collection of JOD dictionary dump scripts is available at: ht tps://github.com/bakerjd99/joddumps.
O
N erease 1.1.1 95 February 10, 2024

https://git-scm.com/
https://www.fossil-scm.org/home/doc/trunk/www/index.wiki
https://www.gnu.org/software/bash/manual/bashref.html
https://github.com/bakerjd99/joddumps
https://github.com/bakerjd99/joddumps

M JOD AND VERSION CONTROL SYSTEMS

bakerjd99@NINJA /c/jod/joddumps (master)
$ git status -s

M docs.ijs

M joddev.ijs

M utils.ijs

bakerjd99@NINJA /c/jod/joddumps (master)

$ git commit -m ’recent changes to docs.ijs dictionary’
[master 1577dla] recent changes to docs.ijs dictionary
1 files changed, 46 insertions(+), 4 deletions(-)

bakerjd99@NINJA /c/jod/joddumps (master)
$ git remote

Jjoddumps

origin

bakerjd99@NINJA /c/jod/joddumps (master)
$ git push joddumps master

2. Script: Word and test scripts generated by JOD are stored in a dictionary’s script and
suite subdirectories, see Figure 3 on page 66. In the following a Git repository has been
created in the script subdirectory and the contents of the exim group have been edited
and regenerated.

NB. Step 1: J session commands — open dictionaries
od ; :’smugdev smug image utils’ [3 od '’
e fom e o +
|1]opened (rw/ro/ro/ro) —>|smugdev|smug|image|utils|
s R e e e e e e Fo—— e fo———- +

NB. edit (exim) content and save changes

NB. regenerate (exim) script

mls ’"exim’
fopo o o +
|1|load script saved —>|c:/Jjod/smugdev/script/exim.ijs]|
Fot e +

$ echo Step 2: Bash shell commands > /dev/null

bakerjd99@NINJA /c/jod/smugdev/script (master)
$ pwd
/c/jod/smugdev/script

bakerjd99@NINJA /c/jod/smugdev/script (master)

$ git status -s
M exim.ijs

O
N erease 1.1.1 96 February 10, 2024

M JOD AND VERSION CONTROL SYSTEMS

bakerjd99@NINJA /c/jod/smugdev/script (master)
$ git add exim.ijs

bakerjd99@NINJA /c/jod/smugdev/script (master)

$ git commit -m ’ (masspixels) added to description of (exim) interface’
[master e93ffeb5] (masspixels) added to description of (exim) interface
1 files changed, 13 insertions(+), 11 deletions(-)

3. Word: JOD does not directly generate individual word scripts but it is easy to define a simple
utility that does. pw£?* writes individual JOD put dictionary word files. pwf is stored in the
utils dictionary.

pwf=:3 : O

NB. xpwf v—-— write path dictionary words as script files.
NB.

NB. monad: pwf clPattern

NB.

NB. pwf 77 NB. write all path dictionary words
NB.

NB. dyad: clPath pwf clPattern

NB.

NB. ‘c:/temp’ pwf ’“de’ NB. write to given directory
" opwf y

NB. JOD references ! (#)=. dnl get badrc_ajod_ ok_ajod_
NB. ! (x)=. isempty_ajod_ jpathsep_ajod_makedir_ajod_ write_ajod_

pk=. >Q{
tsl=. 1 , ("\""_ = {:) }. "\""_
if. badrc_ajod_ ws=. 0 _1 dnl y do. ws return. end.

if. badrc_ajod_ ws=. 0 10 get 1 pk ws do. ws return. end.
NB. individual word scripts using short description text for tacits
if. badrc_ajod_ ws=. 0 0 1 wttext_ MK__JODobj 1 pk ws do. ws return. end.
try.
NB. if (x) path is empty use put dictionary directory (alien\words)
if. isempty_ajod_ x do.
DL=. {:{.DPATH__ST__JODobj NB. ! (x)=. DL
NB. insure subdirectory when (x) is empty
NB. when (x) 1s nonempty assume it exists
makedir_ajod_ <jpathsep_ajod_ tsl x=. ALI__ DL, "words’
end.

2pwf is not a complete solution to exporting individual JOD objects as scripts. It only exports words and ignores
tests, groups, macros and other objects. It does not address the issue of synchronizing exported objects with dictio-
nary state. For example, dictionary word deletions are not propagated. If you wish to track dictionary state use the
Dictionary (95) level method.
|<:>
N erease 1.1.1 97 February 10, 2024

M JOD AND VERSION CONTROL SYSTEMS

NB. write individual word files
ws=. 1 pk ws

wpf=. (<jpathsep_ajod_ tsl x) ,&.> (0 {"1 ws) ,&.> <’ .ijs’
ok_ajod_ wpf [(toHOST&.> 1 {"1 ws) write_ajod_&.> wpf
catchd. jderr_ajod_ ’"unable to write all word file(s)’
end.

)

Using pwf is a simple matter of getting and running it. The following exports joddev
words to joddev/alien/words and then commits differences in Git.

NB. Step 1: J session commands — open dictionaries
od ;:’joddev jod utils’ [3 od "’
i fom Fom +
|1]opened (rw/ro/ro) —->|joddev]|jod|utils]
s R o e +

NB. load (pwf, showpass) into the (ijod) locale
"ijod’ get ;:’pwf showpass’

s R +

112 word(s) defined|

s R +

NB. edit/modify/create words and save changes

#showpass pwf '’ NB. write and count word files

R e et +...
|1|lc:/jod/joddev/alien/words/ASCII85.1js]|...
e R +...
121

$ echo Step 2: Bash shell commands > /dev/null

bakerjd99@NINJA /c/jod/joddev/alien/words (master)
$ pwd
/c/jod/joddev/alien/words

bakerjd99@NINJA /c/jod/joddev/alien/words (master)
$ git status -s
M pwf.ijs

bakerjd99@NINJA /c/jod/joddev/alien/words (master)
$ git add pwf.ijs

bakerjd99@NINJA /c/jod/smugdev/script (master)
$ git commit -m ’ (pwf) comments added’
[master e93fgad] (pwf) comments added
1 files changed, 3 insertions(+), 2 deletions(-)
‘CD
N erease 1.1.1 08 February 10, 2024

N HUNGARIAN NOTATION FOR J

N Hungarian Notation for J

WHATS THAT Y/ A B W : . suoun
! ¢

WwE kIt
1T o2 4

Z{PPY 7

Figure 5: Zippy [2] isn’t the only one challenged by the awesome power of J.

N.1 Whither Hungarian

Jis a dynamically typed language! What this means is that you do not have to declare the types of
arguments and that types can change during program execution. Discarding the type declaration
machinery found in other programming languages simplifies J coding but it can impose its own
problems. Without declarations it’s not always clear what is a valid argument. J does not require
that you provide hints and, in J’s tacit case, it does not even require that you provide arguments!
Given the language’s terse nature this quickly leads to an incomprehensible style that J detractors
have dubbed line noise.

To distinguish my J code from line noise I have adapted a documentation style known as
Hungarian notation [17]. Hungarian notation inspires devotion and disgust. Many swear by it
and many swear at it. For me a convention is worthwhile if it helps me understand code. The style
outlined here helps me understand and maintain J code. It might help you too.

N.2 J Noun Types

There are two broad classes of arguments in J: nouns and verbs. Nouns are data; they correspond to
arguments found in other programming languages. Verbs are programs. J adverbs and conjunctions
take verb arguments.”> Adverbs and conjunctions roughly correspond to the higher order functions

25 Adverbs and conjunctions also take noun arguments.

| O
N erease 1.1.1 99 February 10, 2024

https://en.wikipedia.org/wiki/Hungarian_notation

N.2 J Noun Types N HUNGARIAN NOTATION FOR J

found in languages like LTSP [11] and Scheme [15]. J explicit definition syntax reserves the
characters x vy m n u v for arguments: see Table 13 on page 100.?® The Hungarian notation
described here focuses on noun arguments, (x and y), because they are the most common.

J Explicit Arguments

X

left verb noun argument

right verb noun argument

3 N

left conjunction noun argument

=)

right conjunction noun argument

u left adverb/conjunction verb argument

v right conjunction verb argument

Table 13: Characters reserved for J explicit definition arguments. 7acit definitions do not directly
refer to arguments.

To succinctly describe a J noun you need to be mindful of:
* Type

* Rank

* Boxing

J types are congruent to simple types in other languages. The standard J utility verb datatype
enumerates primitive J noun types.

datatype=: 3 : 0
n=. 1 2 4 8 16 32 64 128 1024 2048 4096 8192 16384 32768 65536 131072 262144
n=. n,5 6 7 9 10 11
t=. ' /boolean/literal/integer/floating/complex/boxed/extended/rational’
t=. t,’/sparse boolean/sparse literal/sparse integer/sparse floating’
t=. t,’/sparse complex/sparse boxed/symbol/unicode/unicoded’
t=. t,’/integerl/integer2/integerd/floating2/floating4/floatingls6’
(n i. 3!':0 y) pick <;._1 ¢t

NB. types of list items

datatype&.> (2x7128);1;’char’; (s: ’ symbol minded’);7 %~ i. 4 5
fo——— Fo—— Fo—— o Fo——— +
|extended|boolean|literal|symbol|floating]|
fom fom fom fom fomm +

Rank has a precise technical meaning in J but in this context it can be loosely thought of as
array dimension. Typical ranks in J are:

ZEarlier versionsof Jused x. y. m. n. u. v. forarguments. This inflected syntax has been deprecated.

O
N erease 1.1.1 100 February 10, 2024

https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://www-swiss.ai.mit.edu/projects/scheme/

N.3 Hungarian Noun Descriptions N HUNGARIAN NOTATION FOR J

« Single numbers like 42 and characters ’ a’ are called atoms. They have rank 0.?

* Lists like 1 2 3 and ' characters’ correspond to I-dimensional arrays in most lan-
guages and have rank 1.

Tables like 1. 3 2 are 2-dimensional arrays and have rank 2.

* n dimensional arrays have rank n.

Boxing is structural. J nouns are either boxed or simple. A simple noun has one of the types,
(excluding boxed), listed by the datatype verb. To mix types in a J array you must box.

NB. you must box < to mix types in J arrays
(<u: "unicode me’), (<i. 2 3),<’'types to mix’

N.3 Hungarian Noun Descriptions

To describe J nouns I use the following rules:*®

1. For basic descriptions I use TypeRank[Name] where Type comes from Figure 6 on page 102,
Rank is one of:

a atom - rank 0
1 list - rank 1
t table - rank 2
[n] general rank n

and Name is an optional descriptive name. The TypeRank prefix uses the case of Figure 6
on page 102 and Name begins with an uppercase letter.

paSwitch boolean (proposition) Switch
ilColors integer 1list Colors

ctDocument character table Document

Jt complex numerix table or matrix
s[3]Xref rank 3 array of Xref symbols

R1 extended rational 1list

bt boxed table

SClRare sparse character 1ist Rare
wlPersian unicode list Persian

ztHolder empty table Holder

ulWhatever universal list — any J 1list

uu universal universal — any J argument

2"Rank 0, or 0-dimensional objects occur in in all programming languages but are rarely recognized. This leads to
mountains of ugly special case code. J is more than a programming language; it’s a comprehensive and rigorous way
to think about arrays.

28 As in the film Pirates of the Caribbean these rules are more like guidelines!

O
N erease 1.1.1 101 February 10, 2024

N.3 Hungarian Noun Descriptions

N HUNGARIAN NOTATION FOR J

J Native Type Prefixes
Prefix Native Type (3!:0) code
P boolean 1
c literal 2
i integer 4
f floating 8
Jj complex 16
b boxed 32
X extended 64
R rational 128
SP sparse boolean 1024
SC sparse literal 2048
ST sparse integer 4096
SF sparse floating 8192
SJ sparse complex 16384
SB sparse boxed 32768
s symbol 65536
w unicode 131072

unicode4 262144

(a) J native type prefixes

O
J D release 1.1.1

Figure 6:

Generic Prefixes

Prefix Description
any numeric type including boolean
N any extended numeric type

universal - any J type

empty - has at least one 0 axis

(b) Generic prefixes

Hungarian type prefixes.

102

February 10, 2024

N.3 Hungarian Noun Descriptions

N HUNGARIAN NOTATION FOR J

2. For boxed nouns of depth one I use a TypeRankTypeRank[Name] where the right most
pairing describes the boxed types. Boxed nouns of depth one occur often.

blcl boxed
blit boxed
bljtCoord boxed
blul boxed

b[3]1s[4]Maps boxed

list of character lists

list of integer tables

list of complex tables

list any 1lists

rank 3 array of rank 4 symbol array Maps

3. For more complex nouns, when it’s helpful to expose some external structure, I use a mixture
of more basic noun descriptions and J syntax.

(<blcl),<jtPlane
pa; ftXy; <btuu
cl;ia; (<blcl),<blcl

two item 1list
three item 1ist
see Table 9 page 70

1tYYYYMMDD; slWords; (<bt),<clName four item list

saRed, saGreen, saBlue

emphasize items of simple noun

4. Finally, when more than one description is needed I separate individual descriptions with the
or symbol V and use as many consecutive lines as required.?’

dyadic put argument description see page 52
iaObject put clName V blclNames V btNvalues
clLocale put clName V blclNames V btNvalues
(iaObject,iaQualifier) put clName V blclNames
(iaObject,iaQualifier) put clName V DbtNvalues

dyadic dnl argument description see page 26
iaObject dnl zl V clPstr
(iaObject,ialOption) dnl zl V clPstr
(iaObject,ialOption, iaQualifier) dnl zl
(iaObject,ialOption, iaQualifier) dnl clPstr

2The V symbol was chosen because it falls outside of I’s ASCII vocabulary and suggests “either-or.”

O

J D release 1.1.1

103 February 10, 2024

O JOD MNEMONICS

O JOD Mnemonics

“Mnemonics Neatly Eliminate Man’s Only Nemesis - Insufficient Cerebral Storage.”

jodhelp us!
I getit!
dnl is not just a river in Egypt.
And Jesse bget old code.
put it where the sun don’t shine.
make my day.
globs of gunk.
We’re living in a golden jodage.
diddle me this!
grp’ing in the dark.
Am I going to live doc?
It was revolting.
He od’ed man.
et phone home.
It’s a brand newd.
He put on a fine display.
Dick uses Jane.
I feel well restd.
All packd up and nowhere to go.
bget me a backup shrubbery.

O
N erease 1.1.1 104 February 10, 2024

https://www.acronymfinder.com/Mnemonics-Neatly-Eliminate-Man's-Only-Nemesis-_-Insufficient-Cerebral-Storage-(MNEMONICS).html
https://www.youtube.com/watch?v=69iB-xy0u4A

REFERENCES REFERENCES

References

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

Chris Burke. Pacman J Package Manager, 2019.

J Wiki documentation about Pacman: the J package manager. Early versions of Pacman were
called JAL but Pacman is the preferred term. Pacman is the main tool for installing and
maintaining J addons.

https://code.jsoftware.com/wiki/Pacman.

Bill Griffith. Official site of Zippy the Pinhead, 2011.
Cartoonists get to the nub of cultural matters; they are the J programmers of the visual arts.
https://www.zippythepinhead.com/.

Roger K.W. Hui and Kenneth E. Iverson. J Dictionary, 1998.

The J Dictionary is the definitive reference for the J programming language. Printed versions
of the J Dictionary were produced for early versions of J but now (2020) the J Dictionary
exists as a set of HTML documents that are distributed with J and maintained online. I yearn
for a new printed edition of this magnificent book.
https://www.jsoftware.com/help/dictionary/title.htm

John D. Baker. jod addon, September 2008.
J Wiki download page for the jod addon.
https://www. jsoftware.com/jwiki/Addons/general/jod.

John D. Baker. jodsource addon, September 2008.
J Wiki download page for the jodsource addon.

https://www.jsoftware.com/jwiki/Addons/general/jodsource.

John D. Baker. joddocument addon, June 2012.
J Wiki download page for the joddocument addon.
https://www.jsoftware.com/jwiki/Addons/general/joddocument.

John D. Baker. The JOD Page, March 2020.
This website maintains references to all JOD related documents and downloads.
https://analyzethedatanotthedrivel.org/the-jod-page/.

Donald Knuth. Personal website, 2008.

The website of the legendary computer scientist Donald Knuth. Knuth created the typesetting
language TEX in the 1970’s and TgX is still going strong! Genius is hard to replace!
https://www-cs—-faculty.stanford.edu/~knuth/.

Oleg Kobchenko. J Graphviz addon, 2008.
J Wiki download page for the graphviz addon. After JOD this is my favorite J addon. Oleg

O
N erease 1.1.1 105 February 10, 2024

https://code.jsoftware.com/wiki/Pacman
https://www.zippythepinhead.com/
https://www.jsoftware.com/help/dictionary/title.htm
https://www.jsoftware.com/jwiki/Addons/general/jod
https://www.jsoftware.com/jwiki/Addons/general/jodsource
https://www.jsoftware.com/jwiki/Addons/general/joddocument
https://analyzethedatanotthedrivel.org/the-jod-page/
https://www-cs-faculty.stanford.edu/~knuth/

REFERENCES REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Kobchenko has created a jewel for J users!
https://www. jsoftware.com/jwiki/Addons/graphics/graphviz.

Oleg Kobchenko and Chris Burke. JAL J Application Library, 2008.

J Wiki documentation about JAL: the J package manager. JAL, also called Pacman, is the
main tool for downloading and installing J addons.
https://www.jsoftware.com/Jjwiki/JAL/Package_Manager.

Guy L. Steele. Common lisp the language, 2nd edition, 1990.

Common Lisp is the industrial strength version of the LISP family of programming lan-
guages. It’s star has been waning since the late 1980’s.
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html.

Fossil Website. Official Fossil website, 2019.
The Fossil version control website.

https://www.fossil-scm.org/home/doc/trunk/www/index.wiki.

Git Website. Official Git website, 2012.
The Git version control website.
https://git—-scm.com/.

Jupyter Website. Official Jupyter website, 2019.

Jupyter notebooks are open source literate programming and documentation tools. They have
attracted a wide following and are one of the more significant software developments in
decades.

https://jupyter.org/.

Scheme Website. Scheme, 2019.
All about the Scheme programming language.
https://www.scheme.com/tspl4d/.

J Software Wiki. NuVoc Wiki, February 2023.

The NuVoc J Wiki is the single best current “document” describing the J programming Pro-
gramming Language. It is zealously maintained and refined by the J community.
https://code. jsoftware.com/wiki/NuVoc.

Wikipedians. Hungarian notation, 2008.
Wikipedia entry for Hungarian Notation: it’s overwrought but conveys the essentials.

https://en.wikipedia.org/wiki/Hungarian_notation.

O
N erease 1.1.1 106 February 10, 2024

https://www.jsoftware.com/jwiki/Addons/graphics/graphviz
https://www.jsoftware.com/jwiki/JAL/Package_Manager
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://www.fossil-scm.org/home/doc/trunk/www/index.wiki
https://git-scm.com/
https://jupyter.org/
https://www.scheme.com/tspl4/
https://code.jsoftware.com/wiki/NuVoc
https://en.wikipedia.org/wiki/Hungarian_notation

LIST OF TABLES LIST OF FIGURES

List of Tables
1 Abbreviated Document Version History 1
2 JOD generated script structureo e e e 61
3 jmaster.ijf filecomponentlayout 63
4 jwords.ijf filecomponentlayout 64
5 jtests.ijf filecomponentlayout oL 65
6 jgroups.ijf filecomponentlayout 67
7 jsuites.ijf filecomponentlayout, 68
8 jmacros.ijf filecomponentlayout 69
9 juses.ijf file componentlayout 70
10 JOD ObjectCodes o o i i i e e 79
11 JOD Negative Codes ittt e e 79
12 JOD Qualifier Codes e 80
13 JArguments e e e e e e e e 100

List of Figures
1 JODFolders e 7
2 JOD Labs e 8
3 JOD Directories o o v i e e e e 66
4 JODClasses o i e e e 77
5 Zippythe Pinhead Lo 99
6 Hungarian Type Prefixes 102

O

N erease 1.1.1 107 February 10, 2024

Index

Addon, 4, 6 create
assignments newd, 47
indirect, 21 dump
make, 43
backup open
abv, 16 od, 50
bget, 17 parameters, 30, 91
bnl, 18 search
packd, 52 bnl, 18
restd, 56 dnl, 26
binary, see jfiles mnl, 45
building source

JOD distribution, 72 jodsource, 71, 72

DIDNUM, 63, 70, 78

classes, 77 i o
codes direct definition, 93
argument, 79 directories .
comment tag JOD Dl‘rectory Structure, 66
(%) =..21 documentation
(%)=1.21 doc, 28
(—.)=:.22 hlpr.ll,40
(/1)=1:.22 dump scripts, 60, 89
(<:)=1:,37 edit
compression, 20 ed, 32
configuration et, 33
Jodprofile.ijs,83 gt, 39
joduserconfigbak.ijs, 87 nt, 49
startup.ijs, 88 nw, 48
J folders, 6, 7
tool, 6 GitHub, 71, 95
cross references group
getrx, 36 addgrp, 16
globs, 37 delgrp, 24
uses, 59 grp, 38
names, 21 1g,42
dates, 41 Locgrp, 43
dependent section, 33, 61 hash, 20, 31, 52
dictionary help

108

INDEX INDEX
hlpnl, 40 scriptdoc, 28
jodhelp, 41 scripts

. dump

%]od 1nt§rface, 15,77 make, 43

1nstal!at1f)n ' generation
distribution, 71 1g,42
pacman, 5 make, 43

jﬁles mls, 44
jgroups.iif, 67 structure, 61
jmacros.ijf, 69 headers
jmaster.ijf, 63 put, 53
jsuites.ijf, 68 search
Jtests.ijf, 65 groups
Juses.ijf,70 locgrp, 43
jwords.ijf, 64 names

bnl, 18

labs, 6, 11 dnl, 26

load scripts, 44 mnl, 45

locale text
base, 57 rxs, 58
classes, 77 source code, 71

references, 59

macros
Jmacros.ijf, 69
rm, 57

master file, 30, 52, 62, 81, 91

parameters, see dictionary
dpset, 30
path order list, 26, 28, 79
postprocessor, 42, 44, 61, 80
put dictionary, 9, 12, 17, 23, 37, 52,71, 78

reference path, 38, 43, 70, 78, 89
registration

regd, 55
regular expressions

rxs, 58

scope tags, 21

O
J D release 1.1.1

tautology, 57
test suite, 4, 32, 40, 57
testing

get, 35

grp, 38

put, 52

rtt, 57

running test scripts, 74

uses
references, 59
uses union
uses, 59

version control
Fossil, 95
Git, 95

z interface, 77
Zippy, 99

109

February 10, 2024

	Introduction
	What is JOD?
	Why JOD?

	Installing and Configuring JOD
	Quick Tutorial
	Best Practices
	JOD Interface Words
	abv — all backup versions
	addgrp — add words/tests to group/suite
	bget — backup get
	bnl — backup name lists
	compj — compress J code
	del — delete objects
	delgrp — remove words/tests from group/suite
	did — dictionary identification
	disp — display dictionary objects
	dnl — dictionary name lists
	doc — format comments
	dpset — set and change parameters
	ed — edit dictionary objects
	et — put text into edit window
	gdeps — group dependents
	get — get objects
	getrx — get required to execute
	globs — global references
	grp — create and modify groups
	gt — get edit window text
	hlpnl — display short object descriptions
	jodage — age of JOD objects
	jodhelp — display help
	lg — make and load group
	locgrp — list groups/suites with word/test
	make — generates dictionary scripts
	mls — make load script
	mnl — master name lists
	newd — create a new dictionary
	notgrp — not grouped
	nw — edit a new word
	nt — edit a new test
	od — open dictionaries
	packd — backup and pack dictionaries
	put — store objects in dictionary
	regd — register dictionaries
	restd — restore backup dictionaries
	revo — list recently revised objects
	rm — run macros
	rtt — run tautology tests
	rxs — regular expression search
	uses — return word uses

	JOD Scripts
	Generated Script Structure
	Dependent Section

	JOD Directory and File Layouts
	Master File — jmaster.ijf
	Words File — jwords.ijf
	Tests File — jtests.ijf
	Groups File — jgroups.ijf
	Suites File — jsuites.ijf
	Macros File — jmacros.ijf
	Uses File — juses.ijf

	JOD Distribution
	Building JOD
	Testing JOD
	JOD Classes
	Reference Path
	JOD Argument Codes
	jodparms.ijs
	jodprofile.ijs
	joduserconfigbak.ijs
	JOD startup.ijs entries
	Turning JOD Dump Script Tricks
	JOD Direct Definition Support
	JOD and Version Control Systems
	Hungarian Notation for J
	Whither Hungarian
	J Noun Types
	Hungarian Noun Descriptions

	JOD Mnemonics
	References
	List of Tables
	List of Figures
	Index

