JOD Introduction Lab

December 14, 2021

1 JOD Introduction Lab

S
J

1.0.1 Whatis JOD?
JOD is a word storage and retrieval system. It is mainly used to refactor and reuse] words.

The basic idea behind JOD is that] programming is best viewed as organizing collections of words to perform a task. Organized
collections of words have a better name: dictionaries!

JODis a] addon. It is installed in the (Taddons\general\jod) branch of the current] system folder by the] package manager.

The next lab step initializes the JOD system.

[(11: | NB. display J wversion
9r:14 !

j903/j64avx2/windows/beta-w/commercial/www. jsoftware.com/2021-12-05T18:25:00/cla
ng-13-0-0/SLEEF=1

https://code.jsoftware.com/wiki/JAL/User_Guide
https://code.jsoftware.com/wiki/JAL/Package_Manager

1.0.2 Start JOD

[2]: | NB. used by this lab
require 'files dir task'

NB. start jod - creates master file if mecessary
load 'general/jod'

IB. use portable box drawing characters

NB. simplifies rendering notebooks as (*.tex)
portchars_ijod_=:[: 9!:7 '++ttttt++|-'"_ []
portchars ''

NB. Verb to show large bozed displays in
NB. the motebook without ugly wrapping.
sbx=: ' ... ' ,"17 73&{."10":

smoutput JODVMD_ajod_ NB. show JOUD wersion

o o +

[1.0.22 - dev|35|14 Dec 2021 08:32:08]|
o o +

1.0.3 Remove old lab dictionaries

JOD is installed without any dictionaries. To use JOD you must create some dictionaries. This lab uses four example dictionaries (1ab),
(labdev), (toy) and (playpen). JOD dictionaries are created with the (newd) “new dictionary” verb.

Before creating lab dictionaries remove any prior lab dictionaries. This step defines a utility that will erase dictionaries from default
locations. It is run in the next step.

WARNING: IF THE TEMPORARY LAB DICTIONARIES CONTAIN INFORMATION YOU CARE ABOUT DO NOT EXECUTE THE
NEXT LAB STEP!

[3]: RemoveLabDictionaries_ijod_=: 3 : 0
root=. jpath 'Tuser'

if. IFWIN do.

shell 'rd /s /q "',root,'\joddicts\labdev"'

shell 'rd /s /q "',root,'\joddicts\lab"'

shell 'rd /s /q "',root,'\joddicts\toy"'

shell 'rd /s /q "',root,'\joddicts\playpen"'

smoutput 'Lab temporary (win) dictionaries erased'
elseif. IFUNIX do.

NB. avoid blanks in paths on Linuz and Mac systems

shell 'rm -rf ',root,'/joddicts/labdev'

shell 'rm -rf ',root,'/joddicts/lab’

shell 'rm -rf ',root,'/joddicts/toy'

shell 'rm -rf ',root,'/joddicts/playpen'

smoutput 'Lab temporary (mac/linux) dictionaries erased'
elseif.do.

smoutput 'Erase any previous temporary lab dictionaries manually.
end.

)

1.0.4 Remove any prior lab dictionaries

[4]: NB. close any dictionaries - ignore errors
00¢% 304"

VB. reset master file
dpset 'RESETME'

NB. unregister any lab dictionaries - ignore errors
00 $ 3 regdk> ;:'labdev lab toy playpen'

NB. remove dictionary directories and all contents - ignore errors
RemovelLabDictionaries O

Lab temporary (win) dictionaries erased

1.0.5 This step creates the (1ab) and (1abdev) dictionaries

[6]: | NB. close any open dictiomaries
3 od "'

NB. create (lab) and (labdev) dictionaries
smoutput newd 'lab'

smoutput newd 'labdev'

VB. list available dictionaries

sbx od "'

e S s +
|1|dictionary created ->|lab|c:/users/john.baker/j903-user/joddicts/lab/|

e S s +
S oo i +
|1|dictionary created ->|labdev|c:/users/john.baker/j903-user/joddicts/labdev/|
oo oo o o . +
S Fommooo S S S S LT e

| 1|barf |bpcopy | bptest |bugs|docs|gps|image|imex|jacksons|jod|joddev|joddev ...

S S oo S S S Fommdommo o R

1.0.6 Opening and closing dictionaries
The JOD verb for opening and closing dictionaries is (od) or (open dictionary). JOD verbs are short and easy to type.
(0od) can open dictionaries READWRITE and READONLY. As you might expect READONLY dictionaries cannot be changed by JOD verbs.

[6]: NB. open read/write
smoutput od 'labdev'

NB. open read/only
smoutput 2 od 'lab'

NB. close (labdev)

3 od 'labdev'

oo Fommmom +
|1]opened (rw) ->|labdev|

oo Fommmom +
oo m e RS
[1]opened (ro) ->|labl|
oo RS
R oo - +
[1]closed ->|labdev]
Fotommmmmm tommoo- +

1.0.7 Some return code basics

AllJOD verbs return boxed list results. The first item is a return code: (1) good (0) bad. Remaining items are messages and, usually, error
related information. JOD verbs perform extensive argument checking. If you break a JOD verb please email me (bakerjd99@gmail . com)
and tell me what you did.

[(7]: | NB. bad open request
smoutput od 'i am a missing dictionary'

NB. bad types
smoutput od 9

NVB. bad ranks

od 3 3$'boo"

o o oo o +
|0 !'JOD error: invalid or missing dictionary name(s)|
o o oo o +
o o oo o +
|0 !'JOD error: invalid or missing dictionary name(s) |
o o oo +
e +

[011JOD error: invalid or missing dictionary name(s) |

1.0.8 Online JOD documentation
JOD has extensive (pdf) documentation. JOD documentation can be accessed with the (jodhelp) verb.

(jodhelp) spawns a PDF reader task. JOD uses]’s configured PDF reader on Windows and Linux systems and the “open” shell com-
mand on Macs.

[8]: NB. display JOD documentation
jodhelp O

S +
|1|starting PDF reader|

S +

1.0.9 Dictionary paths

The open dictionaries of JOD define a search and fetch path. The (did) (dictionary identification) verb lists the path.

[9]: | NB. reopen only (labdev) and (lab)
od ;:'labdev lab' [3 od ''

NB. show path

did 0O

oo - FRE
|1]|labdev]|labl]|
oo IR

The dyadic form of (did) returns details about the contents of each dictionary on the path.

[10]: |¥B. did ~ 0 NB. handy idiom

VB. dictionary details
0 did O

https://github.com/jsoftware/general_joddocument/blob/master/pdfdoc/jod.pdf

A +

[1]+------ S S SR oo oo oo oo +|
[11 | --|Words|Tests |Groups#*|Suites*|Macros|Pathx*| |
| |+-=----- E T . [E . E Fom - [+]
| |llabdevIrwlO |0 |0 |0 |0 |/ [l
| [+------ P S Fomo - Fom o Fome - Fom - Fomo o +|
| [llab |rwlO |0 |0 |0 |0 |/ [l
| [+------ P . Fomo o Fome - Fome - Fom Fomo o +|
gy +

1.0.10 Some object orientation

The JOD system is a complete and detailed example of object oriented programming in J. The system consists of a number of classes
(prefixed with 'ajod'). When the system loads a variety of objects are created. The basic architecture is a main dictionary object that
contains four subobjects. Each open dictionary is also associated with a directory object. Directory objects are created and destroyed as
required. The following diagram shows JOD’s class structure.

jodon jodoff

jod
mterface locale

Core JOD classes

ajodmake
script and dump
generation

ajodutil
edit obj ects
and other utilities

ajodstore
storage class

ajoddob
directory objects

ajodtools
extension tools

[11]: X¥B. objects beginning with 'ajod’ are the JOD classes.
smoutput 80 list conl O

NB. JOD comnsists of siz basic objects and as
NB. many directory objects as there are path items.

conl 1

ajod ajoddob ajodmake ajodstore ajodtools ajodutil base ijod

J jal jcompare jdebug jdefs jdemo jfif jfile
jfiles jfilesrc jhs jijs jijx jinter jlogin jregex
jsocket json jsp jtask pplatimg =z

e S e
[011121314151819]
S

1.0.11 The put dictionary concept

The first dictionary on the path is special. It is the only dictionary that can be modified by JOD verbs. Because most dictionary modifi-
cations are put’s I call this dictionary the “put” dictionary.

It’s important to understand that you can use the contents of the other dictionaries on the path but you cannot change them in any way.

[12]: W¥B. first path dictionary is the put dictionary

did O

oo IR
|1]labdev|labl]|
oo - IR

1.0.12 Creating new dictionaries
Before modifying the contents of any dictionary let’s create a new (toy) dictionary and make it the put dictionary.

[13]: NB. close open dictionaries
3 o0od "

NB. create (toy)
newd 'toy'

o o +

|1|dictionary created ->|toy|c:/users/john.baker/j903-user/joddicts/toy/ |
S Fmm o - +

Make (toy) a put dictionary.

[14]: ¥B. open toy, labdev and lab - toy zs the put dictionary
smoutput od ;:'toy labdev lab'

NB. insure toy is read/write
dpset 'READWRITE'

S Fommbomm oo S—
|1|opened (rw/rw/rw) ->|toyllabdev|lab]
S Fommtomom oo S —
gy RS

|1|put dictionary read/write status restored ->|toyl

gy RS

1.0.13 Getting and putting words

In the first section I said JOD is a word storage and retrieval system. Now we are ready to (put) and (get) some words.
First create some words to store.

[15]: | NB. create some words
random=: IlO 10$100 NB. numeric noun

text=: 'this is a test of the one pure thing'
floats=: 2 + % 100#100
symbols=: s: ' once more with feeling'

boxed=: <"1 1. 2 3
rationals=: 100 + % (>:i. 10x) =~ 50
unicode=: u: 'this is now unicode'

10

each=: &.> WNB. tacit adverd
explicit=: 4 : O

VB. ezxplicit wverd

X +.y

)
words=: ;:'random text floats symbols boxed rationals unicode each explicit'
(put) is the JOD command that stores words.
Save and erase the words. Take some time to convince yourself that the words have been erased before proceeding.

[16]: NB. save words
smoutput put words

NB. erase definitions
erase words

R S oot
[119 word(s) put in ->|[toyl
R S oot
111111111

Now retrieve the stored words and check that they are properly restored.

[17]: | ¥B. get words

get words

o +
[119 word(s) defined]|
o +

1.0.14 Documentation 101

One of my pet peeves is undocumented code!

11

How often have you had to face hundreds, maybe thousands, of lines of code with nary a comment in sight. Comments are not for
wimps and girly-men. Telling comments are a hallmark of good code.

JOD provides a number of ways to document words. When a word is introduced it’s a good idea to store a short one line description of
the word.

[18]: W¥B. store short word descriptions
smoutput O 8 put 'random';'random integer table'

O 8 put 'each';'applies left argument to array items'

S oot
[1]1 word explanation(s) put in ->|toyl
S oot
S oot

|1]1 word explanation(s) put in ->|toyl
S RS

Of course you can view your stored descriptions with (get).

[19]: W¥B. get short exzplanations
0 8 get 'random';'each'

o o o - +
[1]+------ R e e e L LT PP e et +]
| |lrandom|random integer table |l
[|+------ gy +|
| |leach |applies left argument to array items||
| [+------ o e +]
o o o - +

More detailed documentation can be stored and retrieved. This step loads a realistic example of word documentation into the current
put dictionary and then displays with (disp).

(disp) is a JOD utility. It is the only verb that returns a character list (when successful) instead of the usual boxed (rc;value)

12

[20]: NB. loads (changestr) and (changestr) documentation into the current put dictionary
script '~addons\general\jod\jodlabs\labexample0O1l.ijs'

This steps displays the long document loaded in the previous step.

[21]: ¥B. show long documentation
0 9 disp 'changestr'

*changestr v-- replaces substrings within a string.

This algorithm was adapted from an APL algorithm. It requires
high speed boolean bit manipulation and is not as effective
in current J systems as it 1is in some APL systems. Despite
J's non-optimal booleans this verb is still fast enough to be
fruitfully applied. On my 400MHZ NT machine you can make
20,000 length increasing replacements, (the worst case), in a
1 megabyte string in approximately one second. For 100
kilobyte strings typical operations complete is less than a
tenth of second.

High speed substring replacement is difficult to achieve in J
and APL environments. This verb would be a good candidate for
an external compiled routine.
dyad: clChanged =. clTargets changestr clStr
'/change/becomes' changestr 'change me'
'/delete' changestr 'delete me' NB. null replacement deletes
NB. first character is delimiter

'.remove..purge..wipe' changestr 'removepurgewipe'

'/' changestr 'nothing happens'

13

"' changestr 'nothing happens'

'/nothing/happens' changestr 'no matches to change'

NB. multiple replacements are made in left to right order
t =. 'once all things were many'
'/many/changes/all/at/once/ehh' changestr t

NB. even null subtring replacements are allowed

'//XX' changestr 'insert big x chars around us'

NB. finally all this applies in a clean elegant
NB. way to UNICODE strings as well

uchars=. u: 1033 + i. 500 NB. unicode string
datatype uchars NB. (datatype) from j profile

usubO=. (100+i.11){uchars NB. substrings
usubl=. (313+i.7){uchars

datatype usubO

datatype usubl

NB. strings that will not occur in the original
unewO=. u: 40027+1.33
unewl=. u: 50217+i.7

+./ unewO E. uchars NB. not in uchars
+./ unewl E. uchars

ucharsnew=. ('/',usub0,'/',unew0,'/"',usubl,'/"', ,unewl) changestr uchars

14

[22]:

[23]:

+./ unewO E. ucharsnew NB. now in string
+./ unewl E. ucharsnew

1.0.15 More putting and getting
(put) and (get) are quite flexible and can store entire locales. The locales can be named or numbered.

NB. save the (ajodmake) locale/class in "toy"
smoutput 'ajodmake' put zz=: nl_ajodmake_ i. 4

NB. retrieve the (ajodmake) words into an 'zzz' locale

'xxx' get zz

e S — "
[1180 word(s) put in ->|toyl
S +ooot
e S +

1180 word(s) defined|

e S +

1.0.16 Searching for words
Like most storage systems JOD provides facilities for searching the contents of its database.

The main search command is (dnl) (dictionary name lists).

NB. list all the words on the path beginning with 'du'
list }. dnl 'du’

dumpdictdoc dumpdoc dumpgs dumpheader dumpntstamps dumptext
dumptm dumptrailer dumpwords

(dnl) can search for words, tests, groups, suites and macros.

15

This step creates some groups and then lists all the groups on the path that begin with ' JOD'.

[24]: NB. create some groups
grp 'strings';'changestr'
grp 'loctest';nl_ajodmake_ i.4

NB. groups beginning with 'loc'

2 1 dnl 'loc'
fobommmmo o +
[1|1loctest|
fobommmm o +

1.0.17 What are these funny argument numbers?

By now you have probably noticed that many JOD verbs take integer arguments. JOD argument codes are of basically three types,
object codes, option codes and qualifiers.

The objects JOD stores and retrieves all have object codes. The next table displays JOD object codes.

[25]: X¥B. JOD object codes
(<"0 i. 6) ,. ;:'WORD TEST GROUP SUITE MACRO DICTIONARY'

-t - +
|0 |WORD I
ot +
1| TEST I
ot - +
| 2| GROUP I
ot +
| 3| SUITE I
Foto e +
| 4|MACRO I
Foto e +
|5|DICTIONARY |
Foto e +

16

Option and qualifier codes select and modify options. They are all integers. For more information about argument codes read JOD’s
documentation.

Now look at some more (dnl) commands.

[26]: ¥B. (group, option 1 - match prefiz) - case matters
smoutput 2 1 dnl '1'

NB. (macro, option 2 - mame contains string) - no macros yet
smoutput 4 2 dnl 'ar'

NB. make a macro and search again
smoutput 4 put 'arrgh';JSCRIPT_ajod_;'NB. my do nothing J macro'

4 2 dnl 'ar'

Fotoee o +

[1]loctest|

O +

+-++

[11]

+-++

ot A

[111 macro(s) put in ->|toyl

Y S—
s S +
|1larrgh|
S S +

1.0.18 Groups and suites

JOD provides a simple way to group words and tests. A group is a collection of] words. A suite is a collection of] test scripts. You
create and modify groups and suites with the (grp) verb.

17

https://github.com/jsoftware/general_joddocument/blob/master/pdfdoc/jod.pdf
https://github.com/jsoftware/general_joddocument/blob/master/pdfdoc/jod.pdf

[27]: NB. create a group of words with names beginning with 'ch'’
grp 'testgroup' ; }. dnl 'ch'

NB. create a test
1 put 'helloworld';'l [''JOD tests are J scripts that return 1s'''

NB. create a test suite - mote left argument code
3 grp 'testsuite' ; ;. 1 dnl "'

A e toet

|1|suite <testsuite> put in ->|toyl
S oot

1.0.19 You can list the contents of groups or suites with (grp)

[28]: W¥B. list contents of testgroup group
smoutput grp 'testgroup'

NB. contents of testsuite, note suite code left argument
3 grp 'testsuite'

S S +
|1|changestr]|

O +

ot +
[1[helloworld|
S +

1.0.20 Making groups and suites

One of the main advantages of storing] code in JOD vs. a plain script is that you can maintain a single version of a word, test, group or
suite and then generate many J load scripts that use dictionary objects. Database designers call this “one version of the truth.”

The following inserts a single word in a (toy) group and then generates scripts.

18

[29]: W¥B. left justify table verd
ljust=:"' '&$: :(J [."_17 i."1&00(] e. D))

NB. store im put dictionary
put 'ljust’

IB. insert inm all put dictionary groups
(}. 2 revo '') addgrp&> <'ljust'

NB. lookup (revo) in jod.pdf with (jodhelp)

NB. generate all put dictionary groups
smoutput sbx O mls&> }. 2 revo''

NB. if the left argument is elided the groups are made into (load) scripts
NB. mlsé> }. 2 revo''

S S o o o .
|1|file saved ->|c:/users/john.baker/j903-user/joddicts/toy/script/string ...
R S o o o .
|1|file saved ->|c:/users/john.baker/j903-user/joddicts/toy/script/loctes ...
S S o o o .
|1|file saved ->|c:/users/john.baker/j903-user/joddicts/toy/script/testgr ...
e S o o o

1.0.21 Macros
Tasks, like updating generated scripts, can be simplified with JOD macros. A JOD macro is an arbitrary] script that can be fetched and

executed with (rm).

[30]: ¥B. macro that generates all put dictionary groups
jodmacro=: 'NB. generate all put dictionary groups',LF,'O mls&> }. 2 revo''''

NB. store macro - code (JSCRIPT ajod_) tells JOD this is a J script
4 put 'makeputgrps';JSCRIPT_ajod_;jodmacro

19

Ty ot

[1]1 macro(s) put in ->|toyl
e S oot

Running a JOD macro is a simple matter of opening the appropriate dictionaries and using (rm) - run macro.

[31]: ¥B. fetch and exzecute silently - will only display emplicit code output
NB. 1 rm 'makeputgrps'

IB. fetch and exzecute
sbx rm 'makeputgrps'

NB. generate all put dictionary groups

0 mls&> }. 2 revo''
S S o o m .
+
|1|file saved ->|c:/users/john.baker/j903-user/joddicts/toy/script/strings.ijs
|
S S s
+
|[1|file saved ->|c:/users/john.baker/j903-user/joddicts/toy/script/loctest.ijs
|
S S o o m
+
[1|file saved
->|c:/users/john.baker/j903-user/joddicts/toy/script/testgroup.ijs|
S S e
+

Macros are not restricted to J scripts. You can also store HTML, LaTeX, XML, TEXT, BTYE, MARKDOWN, UTEFS, SQL, PYTHON and
JSON scripts in JOD dictionaries. Only] scripts can be run however.

[32]: | NB. store LaTeX (22) and HTML (23) texzts
4 put 'latex';22;'... LaTeX code ...'

4 put 'html';23;' ... HTML code ...'

20

NB. store XML and arbitrary TEXT (bytes).
4 put 'xml';XML_ajod_;'<test>this is lame xml</test>'

NB. BYTE 1s uninterpreted bytes and can store binaries - not recommended for large files.
4 put 'BIN';26;read_ajod_ jpath '“addons\generalljod\jmaster.ijf'

NB. byte size of macro
smoutput 4 15 get 'BIN'

NB. macro text types are contants in the main JOD class
JSCRIPT_ajod_, LATEX_ajod_, HTML_ajod_, XML_ajod_, TEXT_ajod_, BYTE_ajod_, MARKDOWN_ajod_, UTF8_ajod_,,
—~PYTHON_ajod_, SQL_ajod_, JSON_ajod_

ot +

[1157472]
S +

21 22 23 24 25 26 27 28 29 30 31

1.0.22 Loading dictionary dump scripts
To demonstrate other JOD features we need some words in our dictionary. The next step loads (1abdump.ijs).

[33]: ¥B. insure correct path
od ;:'toy labdev lab' [3 od "'

VB. load dump script
0!:0 <jpath '“addons/general/jod/jodlabs/labdump.ijs’

S oot
[111 word(s) put in ->[toyl
S S oot
S +ooot
[1135 word(s) put in ->|toyl
S +ooot

21

[34]:

g RS
1136 word explanation(s) put in ->|toyl|

g ES—
S R ——
112 word document(s) put in ->|toyl

S S

oo oo S—

|1|group <bstats> put in -> |toyl|
s o+
|1|group <sunmoon> put in ->|toy|
s +-o——+
NB. end-of-JOD-dump-file regenerate cross references with: O globs&> }. revo "'

Dump scripts do not store word references. They must be generated.

NB. update word references - show first 5 messages
5 {. 0 globs&> }. revo''

e o
|1|<antimode> references put in -> ltoyllIlIIII1[]]]
e o
|1|<arctan> references put in -> [toy l ILTTTITTTI]
e o
|1|<calmoons> references put in -> Iltoyl[IIIIII1I1]
e o
|1]<cos> references put in -> [toy I ITLITITITT]
e R

|1|<datecheck> references put in ->ltoyl|[I[II[I[]]]
g g g g Fo oo

1.0.23 Global references
JOD has facilities for carrying out static name analysis on] words and tests.

The (globs) and (uses) verbs analyze and stored name references.

22

[35]:

[36]:

VB. analyze names
get 'dstat'

NB. classify name use in base locale word
11 globs 'dstat'

| [1Global|+-------- oo oot +o—m - Hoto et oo +| |
[l | |antimode |kurtosis|mean|median|mode2|qllq3|skewness|stddev] ||
| |+-------- oo - Fom et Fom ot Fom o +] |
|+--—--- g +|
| ILocal |+---+---+-+-+ I
I | Imax Imin|t|v] I

I
I
I
I
I
[11 |+--—t--—t-+-+ I
| |+------ gy +|
[1 (x)=: | I
| |+-=----- g +|
[1 (x)=. | I
[[T —— g +]
| [lfor. | I
| |+-=----- g +|
S +

You can update global word references.

NB. 0 is the word code - stores global references
0 globs 'dstat'

o foo—t

|1|<dstat> references put in ->|toyl
oo o +ooot

(uses) retrieves stored references.

23

[37]:

[38]:

[39]:

VB. global references for (dstat)

uses 'dstat'
g +
[1]+----- g ++ |
| |]dstat|+-------- Fomm - Fomm b Fomo o B S S S e +| 1]
[11 | lantimode |kurtosis|mean|median|mode2lql|q3|skewness|stddev] |||
| |1 |+-----——- Fomm - Fomm b Fomo o B AP S S e +| 11
| |+----- g ++ |
e +

(uses) becomes very “useful” when all words have stored references.

NB. insure toy is the put dictionary
od ;:'toy labdev lab' [3 od "'

S R +ooot
|1|opened (rw/rw/rw) ->|toyllabdev]|lab]|
S R oot

(uses) can return many reference lists at once. The same path search mechanism is used for retrieving references.

NB. global references of words beginning with 'm'
NB. uses }. dnl 'm'

NB. global references of words ending with 's'
uses ;. 0 3 dnl's'
g +
[1]|+----=---———— g gy g ++ |

| |lcalmoons | +--mmm - Homm + |1

[11 | |fromjulian|moons| []]

|11 [rm——

[PR gy ++ |

| Ilcos I 11

| |+ - g ++|

24

[S
| |[dumpntstamps |

[S
| | dumpwords |

|- - g gy g
| lextscopes |

[S gy g
| [floats

[PRy g
| | fuserows I

J PRy
| |getallts I

J e
| lhalfbits |

[o
|| jscriptdefs |

[e
[[Ikurtosis [+--mtama - +

[l | |dev|ssdevl|

[l [+---4--mm- +

[S
| Imakegs |

[S
| Imoons [+---+

[l | Isinl

[l |+---+

|- - g gy g
| Inamecats |

[S e e
| |lopagnames I

[e
[|lputallts I

| |rationals | []]

I

[[S ++ |
| ||skewness [+-——+-———- + 1]
[11 | |dev|ssdevl 1]
[11 [+-——t-——- + 1]
| |+----=o-o—- g gy g ++ |
| |lsymbols | [
| |+----=o—-——- gy g ++ |
| |lwrdglobals | 11
| |+----=o-co—- PRy g ++ |
| |lwriteijs I 11
| |+----=---———- PRy ++ |
| |lyeardates [+--------- R + 11
[1] | |datecheck|yeardates| |||
[11 [+--—o - e et + 1]
| |+-==-ceeo = o ++ |
e o +

1.0.24 The uses union
Option 31 of (uses) returns the uses-union of a word. The uses-union is basically a unique list of all the words on the call tree of a word.

[40]: ¥B. uses union of two words
31 uses ;:'calmoons sunrisesetO’

S +
[1]|+----=---——- o ++ |
| Ilcalmoons |+---------- +o-—-- -t Y
[11 | |[fromjulian|moons|sin] 11
|11 [FER— TR — M
| |+ - e ++ |
| |lsunrisesetO|+--------—- tommm - Lt P =+
[| | INORISESET |arctan|cos|sinl|tabit|tan]| |||
|11 O T T ———
I [g ++ |

26

1.0.25 Generating load scripts
JOD can generate] load scripts from dictionary groups. The generated scripts are written to the put dictionary’s script subdirectory.

[41]: NB. generate load script
sbx mls 'sunmoon' NB. sun/moon rise set

e e

|1|load script saved ->|c:/users/john.baker/j903-user/joddicts/toy/script ...
e SR R .

(mls) appends generated scripts to the current user’s startup.ijs file so they can be loaded independently of JOD.

Note: mls scripts are added to PUBLIC_j_ or Public_j_ for the current user.

[42]: | WB. load generated script
load 'sunmoon'

calmoons 2019 W¥B. full (1) and new (0) moons in 2019

02019 1 5
1 2019 1 20
0 2019 2 4
1 2019 2 19
0 2019 3 6
1 2019 3 20
0 2019 4 4
1 2019 4 18
0 2019 5 4
1 2019 b5 18
0 2019 6 2
1 2019 6 16
02019 7 2
1 2019 7 16
0 2019 7 31

27

[43]:

[44] :

2019
2019
2019
2019
2019
2019
2019
2019
2019
2019

Or O r OFrr Ok O K

1.0.26 Generating scripts on demand

© O 0

10
10
11
11
12
12

15
29
13
28
13
27
12
26
11
25

JOD can also generate and load scripts without creating load scripts.

VB. load basic statistics group

lg 'bstats'

gy +

|1|bstats group loaded]|
oo e +

(getrx) loads all the words called by a given word.

IB. load into arbitrary locales
VB. 'statloc' getrz 'dstat'
NB. '99' getrz 'dstat'

NB. load all words meeded to run (dstat)
getrx 'dstat'

o +

[1]1(14) words loaded into -> basel
PP +

28

1.0.27 Backing up and restoring dictionaries

JOD is database for] words, scripts and other precious program texts. Most database systems have means for backing up and restoring
databases and JOD does as well. The (packd) verb backups up a database.

[45]: NB. save a backup of the current put dictionary
packd 'toy'

Ty Fem et

|1|dictionary packed ->|toyl|0l
e S oot

(packd) copies the current dictionary files to the backup subdirectory and prefixes all the files with a unique ever increasing backup
number.

[46]: N¥B. list put dictionary backup files
BDIR=: {:{. DPATH__ST__JODobj VB. put directory

dir BAK__BDIR, '*.ijf' VB. backup files
Ojgroups.ijf 22400 14-Dec-21 09:50:51
Ojmacros.ijf 76672 14-Dec-21 09:50:50
Ojsuites.ijf 6272 14-Dec-21 09:50:50
Ojtests.ijf 6016 14-Dec-21 09:50:50
Ojuses.ijf 21632 14-Dec-21 09:50:51
Ojwords.ijf 204608 14-Dec-21 09:50:51

(restd) restores the last backup by selecting backup files with the highest prefix.

[47]: NB. restore last backup
restd 'toy'

S oot
|1|dictionary restored ->|toyl|O0]|
S tomotot

In addition to restoring entire backups JOD supports fetching individual objects from particular backups.

29

[48]: NB. open (toy) and create mew backup
od 'toy' [3 od "'
smoutput packd 'toy'

VB. display available backup numbers

smoutput bnl '.

VB. all words in last backup

sbx bnl ''

Fobo oo Foootot

|1|dictionary packed ->|toyl|2l|

oo m o S

+oto—t-—+

[1].2].0]

+oto—t-—4

e S oo o oo Fommmmoo oo Fommmmo o oo oo + ..
| 1 |DDEFESCS | DUMPMSGO | DUMPMSG1 | DUMPMSG2 | DUMPMSG3 | DUMPMSG4 | DUMPTAG | ERRO150 |

e S Fommmmoo oo Fommmmoo oo oo Fommmoo - Fommmm o + oL

Objects fetched from backups are not defined in locales for the simple reason that many versions of the same object may be retrieved.
Backup text and binaries are recovered by editing the fetched data and selecting what you need.

[49]: WNB. fetch all words from last backup
'rc ncv'=. bget }. bnl '

NB. edit first five objects - opens JQT or JHS editor
NB. requires browser/file permissions and pop ups enabled
NB. ed 5 {. ncv

(packd) creates binary backups. You can also backup dictionaries as dump scripts. Dump scripts are single J scripts that can be used to

backup, copy and merge dictionaries.

[50]: ¥B. dump all the words on the path as a single dump script.
sbx toydump=: make ''

30

e e gy O

[1lobject(s) on path dumped ->|c:/users/john.baker/j903-user/joddicts/toy ...
S o e

When we load (toydump) into a new dictionary observe how the path is changed. The dictionaries have been merged.

[561]: ¥B. mew dictionary
newd 'playpen' [3 od "'

NB. open
od 'playpen'

NB. load (toydump)
0!':0 < ;{: toydump

NB. dictionary information
did™ 0

S Hommmooo +

1143 word(s) put in ->|playpen]|
S Hommmoeo +
oo Hommmmoo +

1150 word(s) put in ->|playpen|

e S Hommmmom +
S Hommmoeo +

1133 word(s) put in ->|playpen]|
S S +
S Hommmmoo +
1138 word explanation(s) put in ->|playpen|
o oo Hommmoeo +
O Hommmmom +
[1]1 word document(s) put in ->|playpen|

Fmm o Hommmmoo +

oo Hommmooo +
[112 word document(s) put in ->|playpen|

31

ey Fommmmme +
g Fomemeee +

[1]1 test(s) put in ->|playpenl|

S A +

Sy Fommmmoe +

|16 macro(s) put in ->|playpen]|

Sy N +

s tommmmee +

|1|group <bstats> put in -> |playpen|

Sy Fommmmee +

|1|group <loctest> put in -> [playpen|

Sy Fommmmee +

|1|group <strings> put in -> |[playpen|

Sy S +

|1|group <sunmoon> put in -> |[playpen|

e S +

|1|group <testgroup> put in ->|playpen|

e N +

s S +

|1|suite <testsuite> put in ->|playpen|

Sy Fommmmee +

NB. end-of-JOD-dump-file regenerate cross references with: O globs&> }. revo "'
e +

[1]+------- S Fomo o Fome - Fome - oo oo +|

[| | --|Words|Tests|Groups*|Suites*|Macros|Path* | |

| |+-===---- E T . [Fomo - E S Fome - +|

| |lplaypenlrw|126 |1 |5 1 |6 | /playpen]| |

| [+------- S e oo oo . oo +|
e +

1.0.28 Final words

You now have some idea of what JOD is all about. To learn more read JOD’s documentation and run the other JOD labs. If you have
any problems, questions or complaints please email me at bakerjd99@gmail.com

32

https://github.com/jsoftware/general_joddocument/blob/master/pdfdoc/jod.pdf

[52]:

John Baker
bakerjd99Q@gmail.com
December 2021

IB. close any open dictionaries
3 od "'

SR PR SRR +

|1lclosed ->|playpenl|

SR R SRR +

33

	JOD Introduction Lab
	What is JOD?
	Start JOD
	Remove old lab dictionaries
	Remove any prior lab dictionaries
	This step creates the (lab) and (labdev) dictionaries
	Opening and closing dictionaries
	Some return code basics
	Online JOD documentation
	Dictionary paths
	Some object orientation
	The put dictionary concept
	Creating new dictionaries
	Getting and putting words
	Documentation 101
	More putting and getting
	Searching for words
	What are these funny argument numbers?
	Groups and suites
	You can list the contents of groups or suites with (grp)
	Making groups and suites
	Macros
	Loading dictionary dump scripts
	Global references
	The uses union
	Generating load scripts
	Generating scripts on demand
	Backing up and restoring dictionaries
	Final words

