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ABSTRACT

Background Risk prediction models play an important role in clinical decision making. When
developing risk prediction models, practitioners often impute missing values to the mean. We evalu-
ated the impact of applying other strategies to impute missing values on the prognostic accuracy of
downstream risk prediction models, i.e., models fitted to the imputed data. A secondary objective
was to compare the accuracy of imputation methods based on artificially induced missing values. To
complete these objectives, we used data from the Interagency Registry for Mechanically Assisted
Circulatory Support (INTERMACS).
Methods and Results We applied twelve imputation strategies in combination with two different
modeling strategies for mortality and transplant risk prediction following surgery to receive mechani-
cal circulatory support. Model performance was evaluated using Monte-Carlo cross validation and
measured based on outcomes 6-months following surgery using the scaled Brier score, concordance
index, and calibration error. We used Bayesian hierarchical models to compare model performance.
Multiple imputation with random forests emerged as a robust strategy to impute missing values,
increasing model concordance by 0.003 (25th, 75th percentile: 0.0008, 0.052) compared with im-
putation to the mean for mortality risk prediction using a downstream proportional hazards model.
The posterior probability that single and multiple imputation using random forests would improve
concordance versus mean imputation was 0.464 and >0.999, respectively.
Conclusion Selecting an optimal strategy to impute missing values such as random forests and
applying multiple imputation can improve the prognostic accuracy of downstream risk prediction
models.

∗Source code available at https://github.com/bcjaeger/INTERMACS-missing-data
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1 Introduction

Heart disease is a leading cause of death in the United States. Heart failure, a primary component of heart disease, affects1

over 6 million Americans, and for ~10% of these patients medical management is no longer effective [1, 2]. Mechanical2

circulatory support (MCS) is a surgical intervention in which a mechanical device is implanted in parallel to the heart to3

improve circulation [3]. Typically, MCS is used while a patient waits for a heart transplant (bridge-to-transplant) or in4

some cases as an alternative to transplant (destination therapy) [4]. Over 250,000 patients could benefit from MCS [5].5

However, less than 4,000 new patients receive a long-term MCS device each year, with widely heterogeneous outcomes6

[6]. The 2-year survival probability on MCS ranges from 61% for destination therapy to 78% for bridge-to-transplant7

[3]. Reliable predictions of patient-specific risk to experience key outcomes such as mortality or transplant after8

receiving MCS can help improve patient selection, inform the design of next generation pumps, and improve patient9

care strategies.10

The Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) was launched to improve11

MCS patient outcomes through the collection of patient characteristics, medical events, and long terms outcomes12

at a nationwide level. Currently, INTERMACS comprises over 20,000 patients who have received a MCS device.13

As the largest registry for data on patients receiving MCS devices, INTERMACS has been leveraged to develop14

numerous risk prediction models for mortality and other types of adverse events that may occur after receiving a device15

[7, 8, 9, 10, 11, 12]. An important step for developing risk prediction models is dealing with missing data, which is16

common in a “real world” database that is not designed for the rigor of data completeness found in a clinical trial.17

While some missing values are related to data entry error, others may relate to instability of a patient’s circulatory18

status at the time of implant. For instance, hemodynamic laboratory values are missing for patients in whom invasive19

catheterizations were not performed. Patients without invasive catheterizations may be too ill (unstable) to tolerate20

the procedure. Instead, such patients may, after determination of basic hemodynamics, proceed directly to device21

placement.22

The primary aim of this article is to quantify how much the prognostic value of a risk prediction model developed23

from the INTERMACS registry depends on the strategy that was applied to impute missing data prior to developing24

the model. A secondary aim is to measure imputation accuracy of each strategy by introducing varying levels of25

artificial missing data (i.e., data amputation) and then imputing it. Because imputation to the mean has been a standard26

method for multiple annual summaries of the INTERMACS data, we measure the potential improvement in prognostic27

value of a risk prediction model when other strategies are applied to impute missing data instead of imputation to the28

mean. The over-arching aim is to clarify which imputation strategies are most likely to improve risk prediction (and by29

extension, quality of care) for patients who receive MCS devices. This investigation can directly inform future analyses30

of INTERMACS data and provide evidence quantifying the benefit of imputing missing data with sound methodology.1
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2 Methods2

2.1 INTERMACS Registry3

INTERMACS is a North American observational registry for patients receiving MCS devices that began as a partnership4

between the National Heart, Lung, and Blood Institute, US Food and Drug Administration, the Centers for Medicaid5

and Medicare Services, industry, and individual hospitals with the mission of improving MCS outcomes. In 2018,6

INTERMACS became an official Society of Thoracic Surgeons database.7

The current analysis was conducted using publicly available data provided by the National Heart, Lung, and Blood8

Institute (see https://biolincc.nhlbi.nih.gov/studies/intermacs/). We included a contemporary cohort of9

14,738 patients who received continuous flow LVAD from 2012-2017. This is a secondary analysis of de-identified data10

obtained from the National Heart Lung and Blood Institute. Primary data collection is approved through University of11

Alabama Institutional Review Board and at individual sites.12

2.2 Outcomes and Predictors13

Patient follow-up begins after implantation of a durable, long term MCS device and continues while a device is in14

place. Registry endpoints include death on a device, heart transplantation, or cessation of support (for recovery and15

non-recovery reasons). Mortality and transplant after MCS were the primary outcomes for the current study. As there16

were only 310 cessation of support events, we did not analyze this outcome. For mortality and transplant risk prediction17

models, we applied event-specific analysis to account for competing risks. For example, in risk prediction models for18

mortality, patients were censored at time of last contact, transplant, or cessation of support, whichever occurred first.19

INTERMACS collects pre-implant data on patient characteristics, medical status, and laboratory values. INTERMACS20

also collects follow-up data at regularly scheduled visits and at occurrence of adverse events such as re-hospitalization.21

For the current analysis, all pre-implant variables were considered as potential predictors.22

2.3 Statistical Inference and Learning with Missing data23

Statistical Inference To conduct statistical inference in the context of missing data setting, analysts often create24

multiple imputed datasets, replicate an analysis in each of them, and then pool their results to obtain valid test statistics25

for hypothesis testing [13]. Imputation strategies that create a single imputed dataset (e.g., imputation to the mean)26

have been shown to increase type I errors (i.e., rejecting a true null hypothesis) for inferential statistics by artificially27

reducing the variance of observed data and ignoring the uncertainty attributed to missing values [14]. To ensure valid28

inference, imputation models should leverage outcome variables to predict missing predictors [15]. When very few29

data are missing, analysts may apply listwise deletion, i.e., removing any observation with at least one missing value.30

However, listwise deletion can easily lead to biased inference [16].1

3
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Statistical Learning In the presence of missing data, the goal of supervised statistical learning is to develop a2

prediction function for an outcome variable that accurately generalizes to testing data, which may or may not contain3

missing values [17]. Because testing data may contain missing values, listwise deletion is not a feasible strategy for4

statistical learning tasks. In contrast to statistical inference, strategies that create a single imputed dataset are often5

used for statistical learning [18]. Previous work has emphasized the importance of imputation strategies with greater6

accuracy, suggesting that more accurate imputation strategies lead to better performance of downstream models (i.e.,7

models fitted to the imputed data) [19]. Others have shown that imputation to the mean, model-based imputation, and8

multiple imputation can provide Bayes-optimal prediction models provided certain assumptions are true, but these9

assumptions are difficult to validate in applied settings [20].10

Using outcomes during imputation The outcome variable should be used to impute predictor values for statistical11

inference, but using outcome variables for this purpose in supervised learning can have unintended consequences in12

model implementation. For instance, suppose we seek to predict an outcome Y for a patient in the clinical setting. If13

the patient is missing information for a predictor X and our model’s strategy to impute missing values of X leverages14

the observed value of Y , how should we impute X? If we do not already know Y , then we cannot impute X and hence15

cannot generate a valid prediction. On the other hand, if we already know Y , then we do not need to predict it. Due to16

these practical considerations and because INTERMACS is often leveraged to create prediction models for clinical17

practice [21], we did not leverage outcome variables to impute missing values of predictors in the current analysis.18

2.4 Missing Data Strategies19

Single and multiple imputation Several of the imputation methods we considered allowed for creation of single or20

multiple imputed datasets. For downstream models fitted to multiple sets of imputed data, we applied the modeling21

technique to each imputed training set, separately, and then used a pooling technique to generate a single set of22

predictions based on multiple imputed testing data. Specifically, we created 10 imputed training and testing sets, then23

applied a modeling procedure to each imputed training set and computed model predictions on the corresponding24

imputed testing set, which led to 10 sets of predictions. To aggregate these predictions, we computed the median for25

each patient. Informal experiments where the mean was used instead of the median to aggregate predictions showed26

little or no difference in the model’s prediction accuracy.27

Imputation to the mean Imputing data to the mean involves three steps. First, numeric and nominal variables28

are identified. Second, for each numeric variable, the mean is computed and used to impute missing values in the29

corresponding variable. Third, for each nominal variable, the mode is computed (because one cannot compute a mean30

for categorical variables) and used to impute missing values in the corresponding variable. The computed means and31

modes are then stored for future imputation of testing data. Because imputation to the mean is frequently used in32

practice, we use it as a reference for comparison of all other strategies to impute missing values.1

4
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Bayesian Regression Imputation with Bayesian regression draws imputed values from the posterior distribution2

of model parameters, accounting for uncertainty in both model error and estimation [13]. Multiple imputation with3

chained equations (MICE), a well known technique for generating multiply imputed data [22, 14, 23]. In each iteration4

of MICE, each specified variable in the dataset is imputed using other variables in the dataset. These iterations are run5

until convergence criteria have been met.6

Predictive Mean Matching (PMM) PMM computes predicted values from a pre-specified model that treats one7

incomplete column in the data, X , as a dependent variable. For each missing value in X , PMM identifies a set of8

candidate donors based on distance in predicted values of X [24]. One donor is randomly drawn from the candidates,9

and the observed value of the donor is taken to replace the missing value. When missing values were imputed using10

PMM, we applied MICE to form multiple imputed datasets. For consistency with other approaches, we also generated a11

single imputed dataset using PMM by randomly selecting one of the multiple datasets imputed.12

K-Nearest-Neighbors (KNN) KNN imputation identifies k ‘similar’ observations (i.e., neighbors) for each observa-13

tion with a missing value in a given variable [25]. A donor value for the current missing value is generated by sampling14

or aggregating the values from the k nearest neighbors. In the current analysis, we identified 10 nearest neighbors using15

Gower’s distance [26]. When imputing a single dataset using KNN, we aggregated values from 10 nearest neighbors16

using the median for numeric variables and the mode for categorical variables. When imputing multiple datasets using17

KNN, we aggregated values from 2, 6, 11, 16, and 20 neighbors, separately, to create 5 imputed datasets.18

Hot Deck Similar to KNN, hot deck imputation finds k similar observations for each observation with a missing19

value in a given variable [27]. However, hot deck imputation uses a less computationally intensive approach, either20

identifying neighbors at random or using a subset of variables to find similar observations. When imputing a single21

dataset using hot deck imputation, we used a selection of 5 variables simultaneously to identify nearest neighbors.22

When imputing multiple datasets using hot deck imputation, we used a separate numeric variable for each dataset.23

Random forests Random forests grow an ensemble of de-correlated decision trees, where each tree is grown using a24

bootstrapped replicate of the original training data [28, 29, 30, 31, 32, 33]. A particularly helpful feature of random25

forests is their ability to estimate testing error by aggregating each decision tree’s prediction error on data outside of26

their bootstrapped sample (i.e., out-of-bag error). In the current analysis, we conduct MICE using one random forest to27

impute each variable, separately. For each imputed dataset, we allowed random forests to be re-fitted until out-of-bag28

error stabilized or a maximum number of iterations was completed. When imputing a single dataset, we used 25029

trees per forest and a maximum of 10 iterations. When imputing multiple datasets, we used 50 trees per forest and30

applied PMM using the random forest’s predicted values to impute missing data by sampling one value from a pool of31

10 potential donors.1
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Missingness incorporated as an attribute (MIA) MIA is a technique that uses missing status as a predictor rather2

than explicitly imputing missing values [34, 35]. MIA adds another category to nominal variables: “Missing.” For3

numeric variables, MIA creates two columns: one where missing values are imputed with positive infinity and the other4

with negative infinity. Since PH models are not compatible with infinite values, we only use MIA in boosting models.5

When a decision tree uses a finite cut-point to split a given numeric variable, it will assess the cut-point using both the6

positive and negative infinite imputed columns, and utilize whichever column provides the best split of the current data.7

This procedure translates to sending all missing values to the left or to the right when forming two new nodes of the8

decision tree, using whichever direction results in a better split.9

Assumptions Each missing data strategy poses different assumptions regarding the data and the mechanisms that10

lead to missing values in the data. Imputation using Bayesian regression makes the same distributional assumptions as11

the Bayesian models that are applied. The miceRanger algorithm does not make any formal distributional assumptions,12

as random forests are non-parametric and can thus handle skewed and multi-modal data as well as categorical data that13

are ordinal or non-ordinal. Hot deck and KNN imputation also do not make distributional assumptions, but implicitly14

assume that a missing value for a given observation can be approximated by aggregating observed values from the15

k most similar observations. PMM makes a similar implicit assumption, but is slightly more robust to skewed or16

multi-modal data because imputed values are sampled directly from observed ones. MIA operates based on an implicit17

assumption that missingness itself is informative. It is difficult to validate these assumptions in applied settings and also18

likely that downstream models will perform poorly if an imputation technique’s assumptions are invalid.19

2.5 Evaluating Imputation Accuracy20

Imputation accuracy was computed for each numerical and nominal variable, separately. The observed values of data21

that were amputed were used to assess imputation accuracy. As a consequence, we only measured imputation accuracy22

15% or 30% of additional missing values were amputed. In the context of this article, the term ‘amputation of data’23

means artificially making observed values missing. Numeric variable imputation accuracy was measured using a24

re-scaled mean-squared error:25

1− MSE(current imputation method)
MSE(imputation to the mean)

.

This score is greater than 0 if MSE(current imputation method) is smaller than MSE(imputation to the mean),26

equal to 0 if the two MSEs are equal, and less than 0 if MSE(current imputation method) is greater than27

MSE(imputation to the mean). Nominal variable imputation accuracy was measured using a re-scaled classification28

accuracy:29

1− Classification error(current imputation method)
Classification error(imputation to the mean)

.

This score is greater than 0 if the classification error of the current imputation method is less than that of imputation to30

the mean, equal to 0 if the two classification errors are equal, and less than 0 of the classification error of the current31

imputation method is worse than imputation to the mean. These numeric and nominal scores are analogous to the more1
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well known R2 and Kappa statistics, respectively, but are modified slightly in the current analysis so that imputation to2

the mean will always have a score of 0. This modification makes it easier to compare the accuracy of each imputation3

strategy directly with that of imputation to the mean.4

2.6 Risk Prediction Models5

We applied two modeling strategies after imputing missing values:6

• Cox proportional hazards (PH) model with forward stepwise variable selection7

• Gradient boosted decision trees (hereafter referred to as ‘boosting’)8

A thorough description of stepwise variable selection and boosting can be found in Sections 6.1.2 and 8.2.2, respectively,9

of Introduction to Statistical Learning [36]. Sir David Cox’s PH model is one of the most frequently applied methods10

for the analysis of right-censored time-to-event outcomes [37]. According to the PH assumption, the effect of a unit11

increase in a predictor is multiplicative with respect to a baseline hazard function. Boosting grows a sequence of12

decision trees, each using information from the previous trees in an attempt to correct their errors [38, 39].13

2.7 Evaluation of Predictions14

The Brier score The prognostic value of each risk prediction model was primarily assessed using the Brier score,15

which depends on both the discrimination and calibration of predicted risk values [40, 41]. Let Ỹi(t) represent the16

observed status of individual i at time t > 0 in a testing set of M observations. Suppose Ỹi(t) = 1 if there is an17

observed event at or before t and Ỹi(t) = 0 otherwise. The Brier score is computed with18

B̂S(t) =
1

M

M∑
i=1

Ŵi(t)
{
Ỹi(t)− Ŝ(t | xi)

}2

, (1)

where, for the ith observation, Ŝ(t | xi) is the estimated probability of survival at time t according to a given risk19

prediction model, xi is the set of input values for predictor variables in the model, and Ŵi(t) is the inverse proportional20

censoring weight at time t [42]. Thus, the Brier score is the mean squared difference between observed event status21

and expected event status according to a RPE at time t. Throughout the current analysis, we set t = 6 months after22

receiving MCS to focus on short term risk prediction. Models have been developed to simultaneously predict short term23

and long term mortality risk after receiving MCS, but these are beyond the scope of the current study [43].24

The scaled Brier score The Brier score is dependent on the rate of observed events, which can make it a difficult25

metric to interpret. It is often more informative to scale the Brier score based on the Brier score of a naive model. More26

specifically, for a given risk prediction model, the scaled Brier score is computed as1

Scaled B̂S(t) of model = 1− B̂S(t) of model

B̂S(t) of naive model
.

7
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As the Brier score for risk prediction is analogous to mean-squared error for prediction of a continuous outcome, the2

scaled Brier score is analogous to the R2 statistic. Similar to the R2 statistic, a scaled B̂S(t) of 1.00 and 0.00 indicate a3

perfect and worthless model, respectively. In our analyses, a Kaplan-Meier estimate based on the training data (i.e., a4

risk prediction model that did not use any predictor variables) provided the naive prediction. In the current analysis, we5

multiply scaled Brier score values by 100 for ease of interpretation.6

Discrimination and calibration The discrimination of a risk prediction model measures the probability that the7

model will successfully identify which of two observations is at higher risk for the event of interest. We estimated8

discrimination using a time-dependent concordance (C-) index that accounted for covariate-dependent censoring. A9

C-index of 0.50 and 1.00 correspond to worthless and perfect discrimination, respectively. Similar to the scaled Brier10

score, we multiply C-index values by 100 for ease of interpretation. Calibration slope plots measure a risk prediction11

model’s absolute accuracy. We estimated calibration error by averaging the squared distance between expected and12

observed event rates according to a calibration plot. Full description of these evaluation metrics are available [44, 45].13

2.8 Internal Validation via Monte-Carlo Cross-Validation (MCCV)14

To assess the prognostic value of each missing data strategy, we internally validated a total of 23 modeling algorithm15

based on combinations of imputation strategies and modeling strategies described in Sections 2.4 and 2.6. For16

convenience, we use the term ‘modeling algorithm’ to denote the combination of a missing data strategy and a modeling17

strategy (e.g., imputation using mean/mode values followed by fitting the PH model with stepwise variable selection)18

[46]. We conducted internal validation using 200 replicates of Monte-Carlo cross validation, a resampling technique for19

internal validation.20

Steps taken in each replicate In each replicate of Monte-Carlo cross validation, 50% of the available data were used21

for model training and testing. All predictor variables with < 50% missing values were considered for imputation and22

subsequent model development. Among these variables, artificial missingness (0%, 15%, or 30% additional missing23

values) was induced based on patient age, with younger and older patients more likely to have missing data compared24

to patients who were between 40 and 65 years of age. Prior to imputation, 50 predictor variables were selected using a25

boosting model that quantified variable importance as the fractional contribution of each predictor to the model based26

on the total gain attributed to using the predictor while growing decision trees. Imputation was conducted in the training27

and testing sets, separately, for each imputation strategy. Although some imputation strategies (e.g., KNN and random28

forests) can impute data in the testing set using models fitted to the training set, others (e.g., Bayesian regression, PMM,29

and hot deck) cannot. Therefore, to ensure fair comparisons in our experiment, each imputation procedure imputed data30

in the training set using models fitted to the training set and then imputed data in the testing set using models fitted to31

the testing set. After imputation, Cox PH and boosting models were applied to each imputed dataset, separately. Last,32

model predictions for death and transplant were computed at 6 months following MCS surgery.1

8
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Bayesian analysis of model performance To determine whether any of the imputation methods described above had2

improved upon imputation to the mean, we applied Bayesian hierarchical models to analyze differences in scaled Brier3

score [47]. This strategy provides a flexible framework to conduct hypothesis testing and also accounts for correlation4

occurring within each replicate of Monte-Carlo cross validation. Specifically, within each replicate of Monte-Carlo5

cross validation, the performance of different modeling algorithms are correlated because they are trained and tested6

using the same data.7

2.9 Statistical analysis8

Participant characteristics were tabulated for the overall population and stratified by event status. Continuous and9

categorical variables were summarized as mean (standard deviation) and percent, respectively. The number and10

proportion of missing values were also tabulated for the overall population and stratified by event status. Missing11

data patterns were visualized for the overall population using an UpSet plot [48]. All of the proceeding analyses were12

conducted using resampling results from Monte-Carlo cross validation. Imputation accuracy was aggregated for all13

numeric and nominal variables to create two overall scores for each imputed dataset. For imputation methods that14

created multiple datasets, scores were aggregated over each dataset to provide a single summary score. The distribution15

(i.e., 25th, 50th, and 75th percentile) of the scaled Brier score was estimated for each modeling algorithm.16

We split our results from Monte-carlo cross validation into four datasets based on outcome (mortality or transplant)17

and modeling procedure (Cox PH or boosting). For each dataset, we fit one hierarchical Bayesian model where the18

dependent variable was scaled Brier score and independent variables included the imputation strategy applied and the19

amount of artificially missing data (0%, 15%, or 30%) induced before imputation. With each model, we estimated the20

difference in scaled Brier score of downstream models when random forests, Bayesian regression, PMM, hot deck,21

MIA, or KNN imputation were applied to impute missing values instead of imputation to the mean.22

2.10 Computational Details23

SAS software (version 9.4) and Python (version 3.8.2) were used to create analytic data for the current study [49, 50].24

These analyses were completed using The American Heart Association Precision Medicine Platform (https://25

precision.heart.org/). Base R (version 4.0.3) was used in combination with a number of open-source R packages26

(e.g., drake, tidyverse, naniar, table.glue, mice, miceRanger, and others) to conduct statistical analyses27

and create the current manuscript [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. Our R code is available on GitHub28

(see https://github.com/bcjaeger/INTERMACS-missing-data) [62]. We used Cheaha, a high performance29

computing cluster at University of Alabama at Birmingham, to perform the 200 Monte-Carlo cross validation runs [63].1

9
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3 Results2

Patient Characteristics During the first 6 months after receiving MCS, 1,897 (13%) patients died and 1,067 (7.2%)3

had a transplant. In total, 981 (6.7%) patients had a follow-up time < 6 months and were considered right-censored in4

the current analysis. The mean (standard deviation) age of patients was 57 (13) years, 66% of patients identified as5

white and 79% were male (Table 1).6

Missing data Many predictor variables exhibited similar proportions of missing values in different outcome groups7

(Table 2). However, the number (percent) of missing values for surgery time was an exception, with 6,125 (41.6%) in8

the overall population, 795 (41.9%) among patients who died, and 110 (11.2%) among patients who were censored.9

This pattern is likely attributable to the later introduction of surgery time into the INTERMACS registry compared to10

other variables. The collection of surgery time in the INTERMACS registry began on May 30, 2014. Additionally,11

missing values for surgery time were frequently accompanied by missing values for CV pressure (Figure 1).12

Imputation accuracy Single imputation strategies were more accurate than their counterparts using multiple imputa-13

tion in 8 out of 10 comparisons of nominal scores and 10 out of 10 comparisons of numeric scores (Table 3). When an14

additional 15% of data were missing, single imputation KNN obtained the highest nominal accuracy (score: +0.02, 95%15

CI -0.05, 0.15) and single imputation with random forests obtained the highest numeric accuracy (score: +0.05, 95% CI16

0.03, 0.08). When an additional 30% of data were missing, imputation to the mean obtained the highest numeric and17

nominal scores.18

3.1 Scaled Brier score19

Mortality risk prediction When no additional data were amputed and imputation to the mean was applied before20

fitting risk prediction models, the median (25th, 75th percentile) scaled Brier score was 6.09 (5.71, 6.54) for Cox PH and21

7.27 (6.83, 7.77) for boosting models (Table 4; top panel). Multiple imputation strategies universally obtained higher22

scaled Brier scores versus their single imputation counterparts. Multiple imputation using random forests provided the23

highest scaled Brier score compared to other strategies, leading to a median (25th, 75th percentile) increase in the scaled24

Brier score of 0.34 (0.12, 0.54) for Cox PH and 0.34 (0.14, 0.58) for boosting models. These performance increments25

improved when an aditional 15% and 30% of data were amputed (Table 4; middle and bottom panel).26

Transplant risk prediction When no additional data were amputed and imputation to the mean was applied before27

fitting risk prediction models, the median (25th, 75th percentile) scaled Brier score was 9.35 (8.80, 9.71) for Cox PH and28

9.00 (8.55, 9.41) for boosting models (Table 5; top panel). For Cox PH models, imputation to the mean provided the29

lowest scaled Brier score, and random forest imputation led to a median (25th, 75th percentile) increase of 0.13 (0.03,30

0.29) versus imputation to the mean. For boosting models, surprisingly, imputation to the mean provided a higher scaled31

Brier score than all imputation methods except for multiple imputation using Bayesian regression. When an additional1

10
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15% and 30% of data were amputed, the performance increments corresponding to the use of multiple imputation2

increased for both Cox PH and boosting models (Table 5; middle and bottom panel).3

3.2 Discrimination and calibration4

Mortality risk prediction Regardless of how much additional data were amputed, boosting models obtained higher5

median C-indices than PH models for prediction of 6-month mortality risk (Table 6). In addition, all models that6

used multiple imputation consistently obtained higher median C-indices compared to their counterparts using single7

imputation. When 0 and 15% additional data were amputed, median calibration error was lower for PH models8

compared to boosting models, but boosting models obtained lower median calibration error when 30% additional data9

were amputed (Table 7). Almost all imputation strategies provided lower median calibration error compared with10

imputation to the mean.11

Transplant risk prediction For all amounts of additional data amputed, PH models obtained higher median C-indices12

than boosting models for prediction of 6-month transplant risk (Table 8). Similar to mortality risk prediction, multiple13

imputation strategies generally provided higher C-indices than their counterparts using single imputation strategy. For14

boosting models, MIA provided higher C-indices compared to all other single imputation strategies and had similar or15

superior performance compared to several multiple imputation strategies. Differences in calibration error were minor16

when no additional missing data were amputed (Table 9). When an additional 30% of data were amputed, boosting17

models using MIA obtained lower calibration error than any other strategy.18

3.3 Bayesian analysis of model performance19

Adjusting for the amount of additional missing data amputed and the outcome variable, the posterior probability that an20

imputation strategy would improve the scaled Brier score of a downstream model relative to imputation to the mean was21

maximized by using multiple imputation with random forests (probability of improvement: >0.999; Figure 2). Similarly,22

multiple imputation using random forests was estimated to have the highest posterior probability of improving the23

C-index in comparison to using imputation to the mean (probability of improvement: >0.999; Figure 3). However, the24

estimated posterior probability of a reduction in calibration was >0.999 when using either single or multiple imputation25

with random forests compared with imputation to the mean (Figure 4). Although imputation using random forest was26

estimated to be the best overall option, there was moderate to strong evidence that MIA and each multiple imputation27

strategy we applied would improve prognostic accuracy of downstream models compared with imputation to the mean.28

4 Discussion29

In this article, we leveraged INTERMACS registry data to evaluate how the use of different imputation strategies prior30

to fitting a risk prediction model would impact the external prognostic accuracy of the model. External prognostic31

accuracy was measured at 6 months after receiving MCS, and the primary measure of accuracy was the scaled Brier1

11
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score. We evaluated the performance of 12 imputation strategies in a broad range of settings by varying (1) the amount2

of additional missing data amputed prior to performing imputation, (2) the type of risk prediction model applied after3

imputation, and (3) the outcome variable for the risk prediction model. Our resampling experiment indicated that4

conducting multiple imputation has a high likelihood of increasing the downstream scaled Brier score and C-index of5

risk prediction models compared with imputation to the mean. Additionally, multiple imputation with random forests6

emerged as the imputation strategy that maximized the probability of developing a more prognostic model compared7

with imputation to the mean.8

In previous studies involving the INTERMACS data registry, imputation to the mean has been applied prior to developing9

a mortality risk prediction model [7, 8, 9, 10, 11, 12]. An interesting recent study indicates that imputation to the mean10

can provide an asymptotically consistent prediction model, given the prediction model is flexible and non-linear [20].11

However, theoretical results for finite samples have not yet been established. Our results provide relevant data for the12

finite sample case, suggesting that using imputation strategies considered in the current study instead of imputation to13

the mean can improve the prognostic accuracy of downstream models, particularly if multiple imputation is applied.14

Imputation to the mean should be avoided in future analyses of the INTERMACS registry and analyses where inflexible15

models are applied.16

Previous research has also established evidence in favor of applying multiple imputation to improve the prognostic17

value of risk prediction models. For example, Hassan and Atiya demonstrated superior downstream prediction using18

an ensemble multiple imputation method on synthetic data with continuous outcomes [64]. Similarly, Nanni et. al19

demonstrated superior performance in downstream prediction when missing values were imputed using their proposed20

ensemble multiple imputation method [65]. Notably, the authors artificially induced missing values in these studies and21

the largest real dataset that was evaluated contained less than 700 observations. An article by Jerez et. al evaluated22

missing data strategies based on the downstream task of fitting a neural network and predicting early breast cancer23

relapse [19]. The authors found that KNN imputation led to risk prediction models with the highest discrimination and24

lowest calibration error. Results from the current study are consistent with these previous findings but also extend their25

results by providing evidence from a larger source of data (i.e., INTERMACS) and dealing with ‘real-world’ missing26

values.27

Others have previously evaluated imputation techniques based on the accuracy with which these techniques impute28

missing values in the training data [66, 67, 68]. While it is intuitive to hypothesize that more accurate imputation29

will provide more prognostic downstream models, our results do not support this supposition. For example, when an30

additional 30% of missing data were amputed, none of the missing data strategies we implemented obtained higher31

accuracy than imputation to the mean. However, using any of the multiple imputation strategies we considered instead32

of imputation to the mean increased prognostic accuracy of downstream models when an additional 30% of missing data33

were amputed. This result is likely explained by the bias variance tradeoff. In particular, single imputation techniques34

may lead to prediction models with lower bias but higher variance than multiple imputation techniques.1

12
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Strengths and limitations The current analysis has a number of strengths. We leveraged the INTERMACS data2

registry, comprising one of the largest cohorts of patients who received MCS. We applied a well known resampling3

method to internally validate modeling algorithms for risk prediction. Last, we made our analysis R code available in4

a public repository (https://github.com/bcjaeger/INTERMACS-missing-data). Last, the approach presented5

in this paper provides a general framework that can be applied in other studies where missing data are imputed prior6

to fitting a risk prediction model. The current analysis should also be interpreted in the context of known limitations.7

We considered a small subset of existing strategies to impute missing data, and other strategies may have provided8

stronger improvements compared with imputation to the mean. The models we studied obtained low values of scaled9

Brier score, indicating low prediction accuracy. It is unclear how results may vary for models with higher prediction10

accuracy. Also, it was not feasible to use only the training data to impute missing values in the testing data due to a lack11

of available software. Although the miceRanger package allows imputation of new data using existing models, few12

software packages for imputation allow users to implement multiple imputation with this protocol. Future analyses13

should introduce more flexible software and hands-on tutorials so that future investigators can optimize imputation of14

missing data.15

Conclusion Selecting an optimal strategy to impute missing values such as random forests can impact the prognostic16

accuracy of downstream risk prediction models. In the current analysis, conducting multiple imputation using random17

forests emerged as an optimal strategy to impute missing values in the INTERMACS data. This investigation can18

directly inform future analyses of INTERMACS data and provide evidence quantifying the benefit of imputing missing19

data with sound methodology.20

Sources of Funding This work is supported by the American Heart Association, grant# 18AIML34280052. De-21

identified data provided from the INTERMACS contract with from the National Heart, Lung, and Blood Institute;22

National Institutes of Health; and Department of Health and Human Services, under contract# HHSN268201100025C.1
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Table 1: Participant characteristics overall and stratified by event status at 6 months following surgery to receive
mechanical circulatory support. The majority of patients were male and nearly all mechanical circulatory support
devices were left-ventricular assistance devices.

Characteristic Overall Dead Transplant Cessation of support Alive on device Censored

No. of patients 14,738 1,897 1,067 55 10,738 981
Age, years 57 (13) 62 (12) 54 (12) 52 (13) 57 (13) 57 (13)
Sex

Female 21 23 23 31 21 22
Male 79 77 77 69 79 78

Race
White 66 71 68 64 66 63
Black 25 20 20 27 26 26
Other 9.2 8.4 12 9.1 8.8 11

Body mass index 29 (7) 29 (7) 27 (6) 29 (8) 29 (7) 28 (7)

Device strategy
Other 0.6 0.7 0.3 5.5 0.5 1.3
Bridge to transplant 52 42 90 51 51 51
Destination therapy 47 58 9.5 44 49 48

LVEDD 6.83 (1.10) 6.56 (1.12) 6.86 (1.13) 6.33 (1.03) 6.88 (1.08) 6.78 (1.12)

Urinary albumin, g/dL 3.41 (0.64) 3.26 (0.63) 3.51 (0.61) 3.43 (0.63) 3.43 (0.64) 3.40 (0.62)
Urinary creatinine, mg/dL 1.39 (0.68) 1.54 (0.80) 1.36 (0.70) 1.17 (0.61) 1.37 (0.66) 1.36 (0.57)
CV pressure 10.8 (6.2) 12.2 (6.7) 10.6 (5.7) 9.9 (6.3) 10.7 (6.2) 10.3 (5.7)
Periphal edema 35 44 30 38 35 30
BUN, mg/dL 29 (18) 34 (20) 28 (19) 27 (21) 28 (17) 29 (19)

Bilirubin levels, mg/dL 1.37 (1.84) 1.80 (3.10) 1.42 (2.05) 1.47 (3.32) 1.29 (1.53) 1.27 (1.17)
Device type

Bi-ventricular assistance device 3.5 10 5.9 1.8 2.0 3.6
Left-ventricular assistance device 97 90 94 98 98 96

Surgery time, minutes 292 (113) 337 (136) 272 (100) 291 (92) 286 (107) 289 (116)

CPB time, minutes 95 (49) 113 (63) 92 (51) 94 (40) 92 (45) 94 (46)

Note:
Table values are mean (standard deviation) or %

14
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Table 2: Number (percent) of missing values for a selection of predictor variables in the overall population and in
subgroups based on event status. Many predictor variables exhibited similar proportions of missing values in different
outcome groups, but surgery time was an exception. This pattern is likely due to the fact that surgery time was added to
the INTERMACS data after 2012

Overall Dead Alive on device Transplant Cessation of support Censored

CV pressure 7,415 (50.3%) 920 (48.5%) 5,507 (51.3%) 539 (50.5%) 29 (52.7%) 420 (42.8%)
Surgery time, minutes 6,125 (41.6%) 795 (41.9%) 4,727 (44.0%) 470 (44.0%) 23 (41.8%) 110 (11.2%)
Periphal edema 5,093 (34.6%) 716 (37.7%) 3,935 (36.6%) 368 (34.5%) 15 (27.3%) 59 (6.01%)
LVEDD 3,155 (21.4%) 458 (24.1%) 2,274 (21.2%) 235 (22.0%) 12 (21.8%) 176 (17.9%)
Urinary albumin, g/dL 1,014 (6.88%) 121 (6.38%) 745 (6.94%) 89 (8.34%) 4 (7.27%) 55 (5.61%)
CPB time, minutes 1,010 (6.85%) 149 (7.85%) 678 (6.31%) 77 (7.22%) 6 (10.9%) 100 (10.2%)
Bilirubin levels, mg/dL 850 (5.77%) 113 (5.96%) 605 (5.63%) 82 (7.69%) 4 (7.27%) 46 (4.69%)
Body mass index 77 (0.52%) 11 (0.58%) 55 (0.51%) 6 (0.56%) 1 (1.82%) 4 (0.41%)
BUN, mg/dL 50 (0.34%) 4 (0.21%) 41 (0.38%) 1 (0.09%) 0 (0.00%) 4 (0.41%)
Sex 24 (0.16%) 4 (0.21%) 19 (0.18%) 1 (0.09%) 0 (0.00%) 0 (0.00%)
Urinary creatinine, mg/dL 20 (0.14%) 3 (0.16%) 15 (0.14%) 2 (0.19%) 0 (0.00%) 0 (0.00%)
Age, years 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Race 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Device strategy 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Device type 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
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Table 3: Accuracy of strategies to impute artificial missing data. Table values are the median change in accuracy (25th,
75th percentile) relative to the accuracy of imputation to the mean. In general, multiple imputation strategies had lower
accuracy than single imputation strategies, and few imputation strategies were more accurate than imputation to the
mean.

Nominal variables Numeric variables

Single imputation Multiple imputation Single imputation Multiple imputation

+15% additional missing data

Imputation to the mean 0 (reference) — 0 (reference) —
Hot deck -0.24 (-0.34, -0.16) -0.25 (-0.37, -0.18) -0.35 (-0.53, -0.29) -0.42 (-0.54, -0.36)
K-nearest-neighbors +0.02 (-0.05, 0.15) -0.01 (-0.09, 0.11) +0.01 (-0.01, 0.03) -0.02 (-0.05, 0.00)
Predictive mean matching -0.15 (-0.34, 0.00) -0.15 (-0.35, 0.00) -0.25 (-0.40, -0.20) -0.26 (-0.35, -0.21)
Random forest -0.15 (-0.26, -0.03) -0.15 (-0.26, -0.03) +0.05 (0.03, 0.08) +0.02 (-0.01, 0.04)
Bayesian regression -0.14 (-0.26, 0.01) -0.14 (-0.27, 0.01) -0.30 (-0.41, -0.23) -0.30 (-0.41, -0.23)

+30% additional missing data

Imputation to the mean 0 (reference) — 0 (reference) —
Hot deck -0.25 (-0.34, -0.18) -0.26 (-0.36, -0.18) -0.34 (-0.46, -0.30) -0.40 (-0.53, -0.36)
K-nearest-neighbors -0.04 (-0.09, 0.03) -0.07 (-0.13, 0.00) -0.02 (-0.03, -0.01) -0.05 (-0.07, -0.04)
Predictive mean matching -0.18 (-0.38, -0.04) -0.18 (-0.37, -0.04) -0.29 (-0.46, -0.24) -0.29 (-0.40, -0.25)
Random forest -0.18 (-0.28, -0.07) -0.18 (-0.28, -0.08) -0.01 (-0.03, 0.01) -0.03 (-0.06, -0.01)
Bayesian regression -0.17 (-0.29, -0.04) -0.17 (-0.29, -0.05) -0.31 (-0.43, -0.27) -0.31 (-0.43, -0.27)
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Table 4: Median (25th, 75th percentile) change in scaled Brier score when different imputation strategies were applied
to training and testing sets instead of imputation to the mean prior to developing a risk prediction model for mortality.
Table values show the scaled Brier score for imputation to the mean. For other imputation strategies, table values show
the change in scaled Brier score relative to the scaled Brier score when imputation to the mean was applied. All table
values are multiplied by 100 for ease of interpretability. Multiple imputation with random forests leads to the highest
scaled Brier score for both models and when 0%, 15%, or 30% of additional data in the training and testing sets were
set to missing.

Proportional hazards Gradient boosted decision trees

Imputation method Single Imputation Multiple Imputation Single Imputation Multiple Imputation

No additional missing data

Imputation to the mean 6.09 (reference) – 7.27 (reference) –
Missingness as an attribute – – +0.09 (-0.16, 0.31) –
Hot deck -0.25 (-0.47, 0.01) +0.05 (-0.15, 0.24) -0.24 (-0.46, 0.03) +0.25 (0.08, 0.45)
K-nearest-neighbors +0.09 (-0.06, 0.23) +0.18 (0.04, 0.34) -0.06 (-0.27, 0.18) +0.28 (0.06, 0.46)
Predictive mean matching -0.30 (-0.53, -0.03) +0.15 (-0.01, 0.37) -0.22 (-0.43, 0.14) +0.34 (0.13, 0.54)
Random forest +0.05 (-0.24, 0.33) +0.34 (0.12, 0.54) -0.08 (-0.32, 0.21) +0.34 (0.14, 0.58)
Bayesian regression -0.35 (-0.61, -0.10) +0.07 (-0.10, 0.29) -0.25 (-0.52, 0.05) +0.29 (0.08, 0.52)

+15% additional missing data

Imputation to the mean 5.56 (reference) – 6.72 (reference) –
Missingness as an attribute – – +0.52 (0.21, 0.77) –
Hot deck +0.10 (-0.22, 0.46) +0.49 (0.21, 0.78) +0.02 (-0.28, 0.33) +0.58 (0.29, 0.92)
K-nearest-neighbors +0.36 (0.10, 0.65) +0.53 (0.25, 0.79) +0.04 (-0.23, 0.36) +0.42 (0.16, 0.68)
Predictive mean matching +0.03 (-0.32, 0.41) +0.54 (0.20, 0.90) +0.21 (-0.25, 0.64) +0.66 (0.32, 1.12)
Random forest +0.39 (-0.05, 0.75) +0.76 (0.37, 1.12) +0.35 (0.01, 0.76) +0.73 (0.41, 1.06)
Bayesian regression +0.05 (-0.44, 0.44) +0.49 (0.10, 0.85) +0.19 (-0.21, 0.59) +0.58 (0.29, 1.06)

+30% additional missing data

Imputation to the mean 4.79 (reference) – 6.29 (reference) –
Missingness as an attribute – – +0.40 (0.11, 0.75) –
Hot deck +0.47 (0.03, 0.99) +0.73 (0.22, 1.38) +0.10 (-0.24, 0.44) +0.51 (0.05, 0.99)
K-nearest-neighbors +0.57 (0.23, 0.97) +0.77 (0.47, 1.18) -0.09 (-0.44, 0.23) +0.36 (0.09, 0.67)
Predictive mean matching +0.25 (-0.36, 0.82) +0.71 (0.16, 1.36) +0.09 (-0.33, 0.64) +0.58 (0.06, 1.05)
Random forest +0.62 (0.08, 1.22) +1.04 (0.39, 1.83) +0.39 (-0.19, 0.77) +0.69 (0.27, 1.12)
Bayesian regression +0.22 (-0.40, 0.82) +0.68 (0.10, 1.28) +0.10 (-0.44, 0.62) +0.43 (-0.03, 0.93)
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Table 5: Median (25th, 75th percentile) change in scaled Brier score when different imputation strategies were applied
to training and testing sets instead of imputation to the mean prior to developing a risk prediction model for transplant.
Table values show the scaled Brier score for imputation to the mean. For other imputation strategies, table values show
the change in scaled Brier score relative to the scaled Brier score when imputation to the mean was applied. All table
values are multiplied by 100 for ease of interpretability. While there was very little difference in scaled Brier score
values when 0% of additional data were set to missing in the training and testing sets, missingness incorporated as an
attribute, predictive mean matching, random forests, and Bayesian regression provided models with higher scaled Brier
scores when 15% or 30% of additional missing data were amputed.

Proportional hazards Gradient boosted decision trees

Imputation method Single Imputation Multiple Imputation Single Imputation Multiple Imputation

No additional missing data

Imputation to the mean 9.35 (reference) – 9.00 (reference) –
Missingness as an attribute – – -0.07 (-0.28, 0.13) –
Hot deck +0.01 (-0.12, 0.15) +0.06 (-0.04, 0.23) -0.24 (-0.43, 0.04) -0.01 (-0.20, 0.17)
K-nearest-neighbors +0.06 (-0.04, 0.17) +0.08 (0.00, 0.19) -0.27 (-0.50, -0.05) -0.05 (-0.20, 0.10)
Predictive mean matching +0.04 (-0.12, 0.19) +0.14 (0.02, 0.29) -0.34 (-0.60, -0.10) -0.06 (-0.23, 0.15)
Random forest +0.03 (-0.10, 0.19) +0.13 (0.03, 0.29) -0.32 (-0.50, -0.07) -0.05 (-0.21, 0.14)
Bayesian regression +0.03 (-0.13, 0.16) +0.10 (0.00, 0.26) -0.32 (-0.58, -0.05) +0.02 (-0.13, 0.25)

+15% additional missing data

Imputation to the mean 8.76 (reference) – 8.01 (reference) –
Missingness as an attribute – – +0.50 (0.27, 0.78) –
Hot deck +0.25 (-0.04, 0.55) +0.42 (0.20, 0.78) -0.10 (-0.34, 0.23) +0.21 (-0.02, 0.52)
K-nearest-neighbors +0.46 (0.20, 0.73) +0.54 (0.28, 0.79) -0.10 (-0.41, 0.20) +0.12 (-0.12, 0.38)
Predictive mean matching +0.45 (0.10, 0.76) +0.65 (0.34, 0.94) -0.03 (-0.34, 0.21) +0.25 (0.02, 0.62)
Random forest +0.44 (0.12, 0.76) +0.60 (0.32, 0.95) -0.07 (-0.35, 0.26) +0.16 (-0.09, 0.47)
Bayesian regression +0.53 (0.21, 0.79) +0.74 (0.37, 0.94) -0.07 (-0.39, 0.24) +0.24 (-0.09, 0.56)

+30% additional missing data

Imputation to the mean 7.96 (reference) – 7.09 (reference) –
Missingness as an attribute – – +0.83 (0.55, 1.10) –
Hot deck +0.45 (-0.02, 0.90) +0.60 (0.15, 1.11) -0.01 (-0.34, 0.41) +0.19 (-0.17, 0.65)
K-nearest-neighbors +0.42 (0.00, 0.79) +0.61 (0.18, 0.90) -0.21 (-0.54, 0.19) +0.09 (-0.22, 0.46)
Predictive mean matching +0.70 (0.21, 1.21) +0.90 (0.46, 1.46) +0.09 (-0.32, 0.54) +0.34 (-0.04, 0.85)
Random forest +0.70 (0.14, 1.27) +0.93 (0.49, 1.45) -0.13 (-0.46, 0.43) +0.25 (-0.12, 0.66)
Bayesian regression +0.77 (0.32, 1.40) +1.00 (0.44, 1.53) 0.00 (-0.45, 0.52) +0.24 (-0.17, 0.80)
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Table 6: Median (25th, 75th percentile) change in concordance index when different imputation strategies were applied
to training and testing sets instead of imputation to the mean prior to developing a risk prediction model for mortality.
Table values show the concordance index for imputation to the mean. For other imputation strategies, table values show
the change in concordance index relative to the concordance index when imputation to the mean was applied. All table
values are multiplied by 100 for ease of interpretability. Multiple imputation with random forests led to the highest
concordance index for boosting models when 0%, 15%, or 30% of additional data in the training and testing sets were
set to missing. For proportional hazards models, multiple imputation with nearest neighbors or random forests was the
most effective strategy.

Proportional hazards Gradient boosted decision trees

Imputation method Single Imputation Multiple Imputation Single Imputation Multiple Imputation

No additional missing data

Imputation to the mean 69.3 (reference) – 70.7 (reference) –
Missingness as an attribute – – 0.00 (-0.20, 0.19) –
Hot deck -0.20 (-0.44, 0.05) +0.04 (-0.13, 0.27) -0.19 (-0.36, 0.00) +0.13 (-0.04, 0.28)
K-nearest-neighbors +0.03 (-0.10, 0.23) +0.14 (-0.02, 0.36) -0.10 (-0.30, 0.13) +0.14 (-0.03, 0.30)
Predictive mean matching -0.34 (-0.56, -0.03) +0.11 (-0.05, 0.37) -0.21 (-0.44, 0.05) +0.21 (0.06, 0.39)
Random forest +0.04 (-0.24, 0.29) +0.30 (0.08, 0.52) -0.02 (-0.26, 0.18) +0.24 (0.07, 0.41)
Bayesian regression -0.39 (-0.69, -0.10) +0.09 (-0.16, 0.28) -0.21 (-0.44, -0.02) +0.22 (0.06, 0.41)

+15% additional missing data

Imputation to the mean 69.2 (reference) – 70.5 (reference) –
Missingness as an attribute – – +0.10 (-0.11, 0.31) –
Hot deck -0.18 (-0.52, 0.19) +0.25 (-0.07, 0.58) -0.23 (-0.50, 0.03) +0.12 (-0.07, 0.32)
K-nearest-neighbors +0.16 (-0.17, 0.42) +0.30 (0.05, 0.56) -0.16 (-0.33, 0.10) +0.10 (-0.07, 0.31)
Predictive mean matching -0.42 (-0.83, 0.02) +0.24 (-0.07, 0.53) -0.26 (-0.54, 0.00) +0.26 (0.06, 0.43)
Random forest -0.04 (-0.39, 0.26) +0.41 (0.05, 0.64) -0.08 (-0.29, 0.19) +0.27 (0.04, 0.43)
Bayesian regression -0.50 (-0.95, -0.06) +0.20 (-0.11, 0.47) -0.29 (-0.48, -0.03) +0.23 (0.07, 0.43)

+30% additional missing data

Imputation to the mean 68.9 (reference) – 70.2 (reference) –
Missingness as an attribute – – +0.12 (-0.08, 0.31) –
Hot deck -0.15 (-0.52, 0.30) +0.12 (-0.23, 0.51) -0.22 (-0.47, 0.02) +0.10 (-0.17, 0.32)
K-nearest-neighbors +0.17 (-0.11, 0.49) +0.33 (0.09, 0.65) -0.08 (-0.27, 0.16) +0.19 (-0.01, 0.38)
Predictive mean matching -0.75 (-1.15, -0.34) +0.06 (-0.29, 0.52) -0.36 (-0.67, -0.04) +0.27 (0.04, 0.48)
Random forest -0.29 (-0.80, 0.23) +0.26 (-0.10, 0.64) -0.16 (-0.47, 0.11) +0.29 (0.07, 0.52)
Bayesian regression -0.75 (-1.28, -0.22) +0.12 (-0.29, 0.48) -0.36 (-0.70, -0.07) +0.19 (-0.01, 0.44)
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Table 7: Median (25th, 75th percentile) change in calibration error when different imputation strategies were applied to
training and testing sets instead of imputation to the mean prior to developing a risk prediction model for mortality.
Table values show the calibration error for imputation to the mean. For other imputation strategies, table values show
the change in calibration error relative to the calibration error when imputation to the mean was applied. All table
values are multiplied by 100 for ease of interpretability. As more data in the training and testing sets were set to missing,
single and multiple imputation with random forests emerged as the strategies with the lowest calibration error.

Proportional hazards Gradient boosted decision trees

Imputation method Single Imputation Multiple Imputation Single Imputation Multiple Imputation

No additional missing data

Imputation to the mean 2.41 (reference) – 3.29 (reference) –
Missingness as an attribute – – -0.09 (-1.07, 0.65) –
Hot deck -0.04 (-0.68, 0.58) -0.45 (-1.25, 0.25) -0.13 (-1.12, 0.65) -0.90 (-1.98, 0.01)
K-nearest-neighbors +0.04 (-0.59, 0.65) -0.29 (-0.80, 0.39) -0.30 (-1.14, 0.61) -0.75 (-1.59, 0.14)
Predictive mean matching -0.18 (-0.69, 0.47) -0.69 (-1.36, -0.03) -0.11 (-1.27, 0.89) -1.02 (-2.08, -0.12)
Random forest -0.07 (-0.58, 0.65) -0.46 (-1.10, 0.17) -0.56 (-1.38, 0.46) -1.10 (-2.08, -0.14)
Bayesian regression -0.08 (-0.75, 0.53) -0.57 (-1.43, 0.02) -0.26 (-1.08, 0.57) -0.85 (-1.91, 0.12)

+15% additional missing data

Imputation to the mean 5.75 (reference) – 6.28 (reference) –
Missingness as an attribute – – -2.83 (-4.81, -0.83) –
Hot deck -2.16 (-4.31, -1.08) -3.92 (-6.23, -1.72) -1.66 (-3.82, -0.34) -3.44 (-5.97, -1.48)
K-nearest-neighbors -2.01 (-3.51, -0.66) -2.48 (-4.08, -1.14) -0.61 (-2.28, 0.84) -2.04 (-3.32, -0.63)
Predictive mean matching -3.83 (-6.40, -1.87) -3.76 (-6.66, -1.04) -3.52 (-6.43, -1.67) -3.50 (-7.09, -1.00)
Random forest -3.80 (-5.75, -2.07) -4.35 (-6.60, -1.53) -3.74 (-6.34, -1.34) -3.92 (-6.29, -1.50)
Bayesian regression -3.76 (-6.45, -1.81) -3.80 (-6.61, -1.04) -3.79 (-6.80, -1.39) -3.27 (-6.40, -0.46)

+30% additional missing data

Imputation to the mean 9.48 (reference) – 7.02 (reference) –
Missingness as an attribute – – -1.61 (-5.29, 0.68) –
Hot deck -4.95 (-9.18, -2.49) -6.69 (-12.8, -1.56) -2.48 (-5.46, -0.31) -2.48 (-7.18, 0.58)
K-nearest-neighbors -3.47 (-6.42, -1.53) -4.49 (-7.49, -2.39) +0.73 (-1.56, 3.27) -1.47 (-3.59, 0.59)
Predictive mean matching -7.33 (-13.0, -2.61) -6.09 (-12.3, -0.22) -2.58 (-7.90, 0.10) -1.30 (-6.86, 2.29)
Random forest -7.81 (-13.1, -3.63) -7.39 (-13.4, -2.37) -3.53 (-7.87, -0.29) -2.58 (-7.27, 0.44)
Bayesian regression -7.27 (-13.2, -2.44) -5.91 (-12.8, -0.47) -3.00 (-7.60, 0.97) -0.54 (-6.60, 3.08)
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Table 8: Median (25th, 75th percentile) change in concordance index when different imputation strategies were applied
to training and testing sets instead of imputation to the mean prior to developing a risk prediction model for transplant.
Table values show the concordance index for imputation to the mean. For other imputation strategies, table values show
the change in concordance index relative to the concordance index when imputation to the mean was applied. All table
values are multiplied by 100 for ease of interpretability. While there was very little difference in concordance index
when 0% of additional data were set to missing in the training and testing sets, missingness incorporated as an attribute,
predictive mean matching, random forests, and Bayesian regression provided models with higher concordance indices
when 15% or 30% of additional missing data were amputed.

Proportional hazards Gradient boosted decision trees

Imputation method Single Imputation Multiple Imputation Single Imputation Multiple Imputation

No additional missing data

Imputation to the mean 79.4 (reference) – 79.2 (reference) –
Missingness as an attribute – – -0.03 (-0.22, 0.14) –
Hot deck +0.01 (-0.12, 0.17) +0.07 (-0.05, 0.23) -0.24 (-0.40, -0.02) -0.04 (-0.20, 0.15)
K-nearest-neighbors +0.08 (-0.02, 0.16) +0.08 (0.01, 0.17) -0.21 (-0.40, -0.04) -0.04 (-0.18, 0.10)
Predictive mean matching +0.03 (-0.11, 0.16) +0.13 (0.01, 0.24) -0.34 (-0.57, -0.12) -0.06 (-0.19, 0.16)
Random forest +0.03 (-0.09, 0.17) +0.15 (0.06, 0.24) -0.26 (-0.46, -0.08) -0.02 (-0.16, 0.14)
Bayesian regression +0.01 (-0.15, 0.16) +0.10 (0.01, 0.22) -0.32 (-0.54, -0.10) +0.02 (-0.13, 0.22)

+15% additional missing data

Imputation to the mean 78.9 (reference) – 78.4 (reference) –
Missingness as an attribute – – +0.47 (0.26, 0.71) –
Hot deck +0.24 (0.04, 0.51) +0.47 (0.26, 0.76) -0.13 (-0.40, 0.22) +0.29 (0.07, 0.58)
K-nearest-neighbors +0.36 (0.21, 0.54) +0.46 (0.29, 0.62) -0.13 (-0.39, 0.17) +0.17 (-0.06, 0.39)
Predictive mean matching +0.32 (0.11, 0.58) +0.56 (0.37, 0.82) -0.12 (-0.38, 0.25) +0.32 (0.14, 0.61)
Random forest +0.32 (0.13, 0.64) +0.59 (0.36, 0.82) -0.11 (-0.40, 0.24) +0.22 (-0.03, 0.51)
Bayesian regression +0.39 (0.17, 0.63) +0.60 (0.40, 0.83) -0.15 (-0.46, 0.27) +0.27 (-0.01, 0.64)

+30% additional missing data

Imputation to the mean 78.4 (reference) – 77.4 (reference) –
Missingness as an attribute – – +0.91 (0.52, 1.24) –
Hot deck +0.34 (-0.03, 0.72) +0.74 (0.48, 1.11) -0.19 (-0.53, 0.34) +0.55 (0.19, 0.86)
K-nearest-neighbors +0.28 (-0.02, 0.47) +0.43 (0.21, 0.66) -0.32 (-0.78, -0.04) -0.01 (-0.33, 0.31)
Predictive mean matching +0.62 (0.29, 0.98) +1.02 (0.74, 1.34) +0.03 (-0.31, 0.44) +0.65 (0.29, 0.95)
Random forest +0.59 (0.22, 1.00) +1.04 (0.76, 1.30) -0.21 (-0.58, 0.15) +0.36 (0.01, 0.68)
Bayesian regression +0.81 (0.41, 1.08) +1.10 (0.80, 1.39) -0.04 (-0.54, 0.37) +0.47 (0.10, 0.91)
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Table 9: Median (25th, 75th percentile) change in calibration error when different imputation strategies were applied to
training and testing sets instead of imputation to the mean prior to developing a risk prediction model for transplant.
Table values show the calibration error for imputation to the mean. For other imputation strategies, table values show
the change in calibration error relative to the calibration error when imputation to the mean was applied. All table
values are multiplied by 100 for ease of interpretability. As more data in the training and testing sets were set to missing,
single and multiple imputation with nearest neighbors emerged as the optimal strategy for proportional hazards models
while missingness incorporated as an attributed emerged an the optimal strategy for boosting models.

Proportional hazards Gradient boosted decision trees

Imputation method Single Imputation Multiple Imputation Single Imputation Multiple Imputation

No additional missing data

Imputation to the mean 1.36 (reference) – 1.79 (reference) –
Missingness as an attribute – – +0.01 (-0.53, 0.54) –
Hot deck -0.01 (-0.37, 0.29) 0.00 (-0.39, 0.26) +0.11 (-0.56, 0.68) -0.07 (-0.67, 0.67)
K-nearest-neighbors +0.00 (-0.25, 0.24) -0.02 (-0.25, 0.21) +0.09 (-0.40, 0.61) -0.03 (-0.52, 0.67)
Predictive mean matching -0.04 (-0.34, 0.32) -0.08 (-0.41, 0.26) +0.09 (-0.49, 0.63) -0.04 (-0.63, 0.70)
Random forest -0.06 (-0.39, 0.29) -0.06 (-0.35, 0.29) -0.02 (-0.49, 0.63) +0.02 (-0.54, 0.56)
Bayesian regression -0.01 (-0.40, 0.27) -0.13 (-0.38, 0.18) +0.12 (-0.46, 0.78) +0.24 (-0.46, 1.04)

+15% additional missing data

Imputation to the mean 2.48 (reference) – 2.51 (reference) –
Missingness as an attribute – – -0.50 (-1.38, 0.16) –
Hot deck -0.76 (-1.95, 0.21) -0.51 (-2.14, 0.89) -0.01 (-1.00, 0.66) +0.69 (-0.47, 1.97)
K-nearest-neighbors -0.82 (-2.01, 0.21) -0.78 (-1.96, 0.26) +0.20 (-0.59, 1.01) +0.23 (-0.73, 1.02)
Predictive mean matching -1.01 (-2.15, 0.27) -0.46 (-2.16, 0.94) +0.15 (-0.91, 1.02) +0.72 (-0.81, 1.87)
Random forest -0.80 (-2.32, 0.51) -0.59 (-2.03, 0.81) -0.10 (-1.15, 0.66) +0.42 (-0.93, 1.34)
Bayesian regression -0.94 (-2.32, 0.58) -0.64 (-2.04, 0.89) +0.19 (-0.76, 1.16) +0.99 (-0.50, 2.27)

+30% additional missing data

Imputation to the mean 4.98 (reference) – 3.99 (reference) –
Missingness as an attribute – – -1.52 (-2.62, -0.35) –
Hot deck -2.17 (-4.65, 0.10) -0.49 (-3.74, 2.34) -0.53 (-2.79, 1.05) +1.89 (-0.93, 4.76)
K-nearest-neighbors -1.88 (-3.34, -0.22) -1.88 (-3.70, -0.14) -0.41 (-1.72, 0.68) -0.54 (-2.26, 0.88)
Predictive mean matching -1.30 (-4.52, 1.28) +0.04 (-3.48, 2.70) -0.05 (-2.54, 2.53) +1.36 (-1.26, 4.01)
Random forest -1.80 (-4.34, 0.79) -0.58 (-3.95, 2.18) -0.55 (-2.64, 1.53) +0.33 (-2.27, 2.77)
Bayesian regression -1.34 (-4.22, 1.59) -0.23 (-3.15, 2.61) -0.16 (-2.47, 1.94) +0.89 (-1.89, 3.67)
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Figure 1: An upset plot showing three variables from the INTERMACS registry and all combinations of missing
patterns. The bottom left plot shows the number of missing values for each variable, separately. The top right plot
shows the number of missing values for each combination of the three variables. For example, there were 2,618 rows in
the overall INTERMACS data where both CV pressure and surgery time were missing.
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Figure 2: Posterior distribution of differences in scaled Brier score values (multiplied by 100) relative to imputation to
the mean when different imputation strategies are applied before fitting a risk prediction model. Results are aggregated
over scenarios where the outcome is mortality and transplant and the amount of additional missing data is 0%, 15%, or
30%. Posterior probability that the difference in scaled Brier score exceeds 0, indicating an improvement in overall
model accuracy, is printed to the right of each distribution. Each multiple imputation strategy and single imputation
with missingness incorporated as an attribute had over 90% posterior predicted probability of increasing the scaled
Brier score versus using imputation to the mean.
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Figure 3: Posterior distribution of differences in concordance index values (multiplied by 100) relative to imputation to
the mean when different imputation strategies are applied before fitting a risk prediction model. Results are aggregated
over scenarios where the outcome is mortality and transplant and the amount of additional missing data is 0%, 15%, or
30%. Posterior probability that the difference in concordance index exceeds 0, indicating an improvement in model
discrimination, is printed to the right of each distribution. Multiple imputation with predictive mean matching, random
forests, and Bayesian regression each had over 90% posterior predicted probability of increasing the concordance index
versus using imputation to the mean.
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Figure 4: Posterior distribution of differences in calibration error values (multiplied by 100) relative to imputation to
the mean when different imputation strategies are applied before fitting a risk prediction model. Results are aggregated
over scenarios where the outcome is mortality and transplant and the amount of additional missing data is 0%, 15%, or
30%. Posterior probability that the difference in calibration error is less than 0, indicating an improvement in model
calibration, is printed to the right of each distribution. Every imputation strategy evaluated had over 90% posterior
predicted probability of improving model calibration versus using imputation to the mean.
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