
Cmpe 260 Prolog Project

Due Date: March 6, 2017 23:59 PM

1 Introduction

In this project, you are going to implement a scheduler for the final exams. As you all can guess, it is hard
to manually assign times & locations for the final exams with the limited amount of time and classrooms;
especially when there are so many students with so many conflicts. With your help, we may never have to
deal with those conflicts again.

2 Knowledge Base

You will be given a knowledge base, which you will read (consult) from a file. Different knowledge bases can
be consulted to test your approach.

2.1 student(StudentID, [CourseIDs]).

Each student takes at least 1 class and can take up to 7 classes. Student count is kept very small here
to make examples easier to understand. There will be many students in the actual knowledge base.

student(1415926, ['ec102', 'cmpe160', 'math102', 'math202']).
student(5358979, ['ec102', 'cmpe240', 'cmpe230', 'math202', 'phys201',

'ee212', 'math102']).
student(3238462, ['phys201', 'ec102', 'math102', 'math202']).
student(6433832, ['ec102', 'cmpe160', 'phys201']).
student(7950288, ['math102']).

2.2 available_slots([Slots]).

There are 3 slots in each day and 3 days have been given to keep examples easy, normally there are exams
6 days a week.

available_slots(['m-1', 'm-2', 'm-3', 'w-1', 'w-2', 'w-3', 'f-1', 'f-2', 'f-3']).

1

2.3 room_capacity(RoomID, RoomCapacity).

The KB contains the available rooms and their capacities. Again, the actual KB will have more rooms. You
can gather the list of the available rooms using room_capacity clauses. Room count and capacities given
here are very small to keep examples clear.

room_capacity('nh101', 1).
room_capacity('nh105', 3).
room_capacity('ef106', 5).

3 Queries

For the project, you have to implement the following predicates.

3.1 clear_knowledge_base.

This predicate should clear all assertions from a KB (so that we can load a new one), and display some
message to summarize what has been deleted.

3.2 all_students(−StudentList).

This predicate should produce the list of all students in a given knowledge base.

Example for KB above:

?- all_students(StudentList).
StudentList = [1415926, 5358979, 3238462, 6433832, 7950288].

3.3 all_courses(−CourseList).

This predicate should list all unique courses in given knowledge base.

Example for KB above:

?- all_courses(CourseList).
CourseList = ['ec102', 'cmpe160', 'math102', 'math202', 'cmpe240', 'cmpe230', 'phys201',

'ee212'].↪→

3.4 student_count(+CourseID, −StudentCount).

This predicate should give student count of given course with CourseID.

Example for KB above:

?- student_count('math102', StudentCount).
StudentCount = 4.

2

3.5 common_students(+CourseID1, +CourseID2, −StudentCount).

This predicate should give the count of students who take both of the courses given with CourseID1 and
CourseID2.

Example for KB above:

?- common_courses('cmpe160', 'math102', StudentCount).
StudentCount = 1.

3.6 final_plan(−FinalPlan).

This predicate should calculate final exam time and locations without any conflict and report them as a list
of lists that are in the following format: [CourseID, RoomID, Slot]. Predicate should continue to generate
valid plans when ‘;’ is pressed until all possible plans are found.

Example for KB above:

?- final_plan(FinalPlan).
FinalPlan = [['ec102', 'ef106', 'm-1'], ['cmpe160', 'nh105', 'w-2'], ['math102', 'ef106',

'f-2'], ['math202', 'nh105', 'w-1'], ['cmpe240', 'nh101', 'm-3'], ['cmpe230',
'nh101', 'f-3'], ['phys201', 'nh105', 'f-1'], ['ee212', 'nh101', 'w-2']].

↪→

↪→

3.7 errors_for_plan(+FinalPlan, −ErrorCount).

This predicate should find errors in given FinalPlan and report their ErrorCount. When we test this
predicate, we will not give any course name that do not exist in the KB. But given plan may not contain all
courses in KB. So basically you do not have to check for “New” or “Missing” courses but you only should
look for errors in given plan.

What is Error:

• For any two exams in same slot, error goes up by one for every student who takes both of them.
• For any exam that has been assigned to a classroom with smaller capacity than total number of attendee

of corresponding course, error goes up by the amount: NumberOfAttendee - RoomCapacity
• You are not calculating error by student so intersection of different errors is not important to you. Ex:

Assume that there is a conflict between ‘ec102’ and ‘cmpe160’ and there also is a student taking them
both, and at the same time ‘ec102’ has 4 attendees in total, but has been assigned to ‘nh105’. In this
setup you should increase error count by one for each error, i.e. by 2 and not just 1. You cannot
say “then student can go to exam ‘cmpe160’ and there will only be one error”.

Examples for KB above:

?- conflict_for_plan([['ec102', 'ef106', 'm-1'], ['cmpe160', 'nh105', 'w-2'], ['math102',
'ef106', 'f-2'], ['math202', 'nh105', 'w-1'], ['cmpe240', 'nh101', 'm-3'], ['cmpe230',
'nh101', 'f-3'], ['phys201', 'nh105', 'f-1'], ['ee212', 'nh101', 'w-2']], ErrorCount).

↪→

↪→

ErrorCount = 0.

3

%% See 'cmpe160' and 'math102': there is a student who takes them both
?- conflict_for_plan([['ec102', 'ef106', 'm-1'], ['cmpe160', 'nh105', 'w-2'], ['math102',

'ef106', 'w-2'], ['math202', 'nh105', 'w-1'], ['cmpe240', 'nh101', 'm-3'], ['cmpe230',
'nh101', 'f-3'], ['phys201', 'nh105', 'f-1'], ['ee212', 'nh101', 'f-2']], ErrorCount).

↪→

↪→

ErrorCount = 1.

%% Previous conflict + 'ec102' has assigned to a small room. ErrorCount += (4 - 1)
?- conflict_for_plan([['ec102', 'nh101', 'm-1'], ['cmpe160', 'nh105', 'w-2'], ['math102',

'ef106', 'w-2'], ['math202', 'nh105', 'w-1'], ['cmpe240', 'nh101', 'm-3'], ['cmpe230',
'nh101', 'f-3'], ['phys201', 'nh105', 'f-1'], ['ee212', 'nh101', 'f-2']], ErrorCount).

↪→

↪→

ErrorCount = 4.

4 Documentation and Clarity

As documenting the code is essential for developing in the long term and as Prolog programs can be written
in clever ways that cannot be easy to grasp at a first glance, you should document every predicate in your
project and you will be graded for documentation of your code. A good code contains roughly the same
amount of explanation in comments as code lines.

Besides documentation, it is also important to write code that is readable, so avoid small, clever, hard-to-
comprehend hacks and unnecessary complexity in your code. You are also graded for code clarity. When
you cannot find a clear way to handle something, explain how your code works in documentation, as it is
important for us to grade your project.

5 Submission

You have to submit a single .pl file through Moodle with the file name STUDENTID.pl where you replace
STUDENTID with your student id.

6 Some Tips on The Project

• Try to formalize the problem, specially the predicates that need to find a set, then try to convert the
logic formula to Prolog.

• You can use findall/3, bagof/3 or setof/3. Be careful when using bagof/3 and setof/3, and
remember to set which free variables to ignore.

• You can take a look at book, slides and 99 Prolog Problems.
• Try to build complex predicates over the simpler ones, the project is designed to encourage that.
• If a predicate becomes too complex; either divide it into some auxiliary predicates and implement them

first, or take another approach.
• Use debugging, approach your program systematically.

4

http://www.learnprolognow.org
http://www.learnprolognow.org/lpnpage.php?pageid=teaching
https://sites.google.com/site/prologsite/prolog-problems

	Introduction
	Knowledge Base
	student(StudentID, [CourseIDs]).
	available_slots([Slots]).
	room_capacity(RoomID, RoomCapacity).

	Queries
	clear_knowledge_base.
	all_students(−StudentList).
	all_courses(−CourseList).
	student_count(+CourseID, −StudentCount).
	common_students(+CourseID1, +CourseID2, −StudentCount).
	final_plan(−FinalPlan).
	errors_for_plan(+FinalPlan, −ErrorCount).

	Documentation and Clarity
	Submission
	Some Tips on The Project

