
Universite Paris Dauphine

Big Data

Single-source shortest path -
Djikstra Algorithm

Students

Elie Abi Hanna Daher

Bilal El Chami

Badr Erraji

Professor

Mr Dario Colazzo

January 30, 2018



Contents

1 Project goal 2

2 Dijkstra Algorithm 2

3 Implementation 3

3.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1.2 Prepare . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Reducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Job Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Code description 8

4.1 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Results 9

5.1 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Scalability experiments 10

6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A Hadoop - Mapper python code 13

B Hadoop - Reducer python code 14

C Spark code 15

D Prepare python code 17

E Add distance to graph - python code 18

1



1 Project goal

The goal of the project is to �nd the shortest paths from a source node to all
other nodes in the graph using the Dijkstra's algorithm. The algorithm should
be implemented in both Python-Hadoop and Spark.

Alongside the implementation, a scalability experiments is needed to check
the performance of the algorithm implemented.

You can �nd source code, data samples, documentation, etc in our repository
: github.com/bilal-elchami/bigdata .

2 Dijkstra Algorithm

The Dijkstra's algorithm �nds the shortest path from source to all other nodes.
The djikstra algorithm is very similar to the BFS algorithm, the only di�erence
is that the distance between neighbors isn't 1, distance can di�er from a neigh-
bor to another.

One of the most common and well-studied problems in graph theory is the
single-source shortest path problem or Dijkstra's algorithm, where the task is to
�nd shortest paths from a source node to all other nodes in the graph (or alter-
natively, edges can be associated with costs or weights, in which case the task
is to compute lowest-cost or lowest-weight paths).This algorithm is very similar
to the Breadth-�rst search algorithm, the only di�erence is that the distance
between neighbors isn't equal to 1 but it can di�er from a neighbor to another.

However, this algorithm assumes sequential processing. So, the challenge
was to solve this problem in parallel, and more speci�cally, with a MapReduce
job. This section will be discussed later in the Mapper/Reducer sections of this
document.

2

 https://github.com/bilal-elchami/bigdata


3 Implementation

3.1 Input

3.1.1 Data

The map task should receive the following information

• node

• distance

• neighbors data that contains the list of neighbors with their respective
distance to the node

• path

So let's take the following example with 1 being the start node :

Figure 1: Example of a graph

For the �rst iteration, the path will be empty. So input data will look like this :

• 1 0 2,10:3,5:

• 2 999 3,2:4,1:

• 3 999 2,3:4,9:5,2:

• 4 999 5,4:

• 5 999 1,7:4,6:

So as you can see, the start node has a distance of 0, and all other nodes
have a distance of 999 which represent an in�nite number. The neighbor list
contains each neighbor node with their respective distance, the neighbors and
the distance are separated by a "," and neighbors are separated by ":".

3



3.1.2 Prepare

Technically, the format we set for the data is very hard to implement to a large
graph. Usually the graph is represented by the distance between nodes. So for
the graph provided in the previous page, the input data will look like this

• 1 2 10

• 1 3 5

• 2 3 2

• 2 4 1

• 3 2 3

• 3 4 9

• 3 5 2

• 4 5 4

• 5 1 7

• 5 4 6

We created a job MapReduce - called prepare that will format the usual format
of a graph to the format we are asking for.

The prepare algorithm will take in consideration the nodes that dont connect
to another node but is a neighbor for another node.

4



3.2 Mapper

A map task receive (K,V)

• Key : node

• Value : distance, neighbors data, path

In the �rst iteration, the path will be empty.
The map task will :

1. emit the node with his information (distance, neighbors data and path)

2. ∀ neighbor ∈ neighbors, it will emit

• Key : neighbor

• Value : (node distance + distance of node to the neighbor , node
path + neighbor).

The pseudo code of the mapper is as follow :

Algorithm 1 Mapper

1: procedure Map (node, (distance, neighbors, path))
2: Emit (node, (distance, neighbors, path))
3: for all neighbor ∈ neighbors do

4: dist← distance+ neighbor.distance
5: p← path+ neighbor.id
6: Emit (neighbor.id, (dist, p))

5



3.3 Reducer

The reducer will gather the possible distance for each node. it selects the mini-
mum distance and gives its associated path .

The reducer task will iterate through the nodes generated from the mapper
task and for each node it will :

1. identify if the node contain the data structure or just a distance

2. identify the minimum distance of the node

3. Emit the minimum distance and the graph structure with the path

The pseudo code of the reducer is as follow :

Algorithm 2 Reducer

1: procedure Reducer (node, [(distance, neighbors, path), (distance,
path),...])

2: dmin ←∞
3: nodePath← ∅
4: graph← ∅
5:

6: for v ∈ values
7:

8: if isNode(v) then
9: dmin ← v.distance

10: nodePath← v.path
11: graph← v.neighbors
12: else

13: if v.distancedmin < dmin then

14: dmin ← v.distance
15: nodePath← v.path

16: Emit (node, (dmin, graph, nodePath))

6



3.4 Job Chaining

Since Dijkstra algorithm is iterative and we were using Python streaming in
for the project, we needed to execute several MapReduce steps with overall job
scenarios, which means the last reduce output will be used as input for the next
map job.

Map1 → Reduce1 → Map2 → Reduce2 → Map3...

the simplest way to achieve it was by creating a shell script, that automates
what we were doing manually.

The script launches the Hadoop Streaming job, merges the output parts into
one �le and then moves it into the data directory so it can be used as input for
the next job.

It's not the optimal solution but it can do the job in an �acceptable� amount
of time.

In spark, we didn't face any problem with the iteration, since we can do it
with a simple while or for loop.

The Job Chain script is available on another github repository :
https : //github.com/bilal − elchami/hadoop_streaming_job_chaining.

7

https://github.com/bilal-elchami/hadoop_streaming_job_chaining


4 Code description

Source code can be found in the appendices or in the github repository.

4.1 Hadoop

The MapReduce python code was a straight forward implementation of the
pseudo code elaborated above. We didn't �nd any di�culties implementing the
algorithm.

4.2 Spark

The conception of the script has been adapted according to the Hadoop stream-
ing job.
The loop breaking condition is identi�ed with the help of an accumulator that
breaks the loop when the distances at every node no longer change at the next
frontier.

Figure 2: Incrementation of the accumulator in min distance function

The accumulator was used as a �ag representing if the distance of a node
was changed in the �minDistance(nodeValue1, nodeValue2)� function as you can
see in the above code

8



Figure 3: Breaking condition to terminate the algorithm

5 Results

You can check the execution commands in the README �le in the repository.

5.1 Hadoop

When we pass the above graph as input to the Hadoop streaming MapReduce,
the output �le will contain the following data

1 0 2, 10 : 3, 5 : 1
2 8 3, 2 : 4, 1 : 1→ 3→ 2
3 5 2, 3 : 4, 9 : 5, 2 : 1→ 3
4 9 5, 4 : 1→ 3→ 2→ 4
5 7 1, 7 : 4, 6 : 1→ 3→ 5

And each element in each line represents:

• the current's node id

• the calculated distance from the �Start Node� to the �Current Node�

• the neighbors of the �Current Node� with its distance

• the shortest path found from the �Start Node� to the �Current Node�

9



5.2 Spark

The following output represents the spark calculation results. It is the same as
the Hadoop output but without the unnecessary neighbors data.

Figure 4: Example of a graph

6 Scalability experiments

6.1 Data

We used the Facebook data, that consists of friend lists from Facebook. Face-
book data has been anonymized by replacing the id of the facebook of each user
with a new value.
The graph contains 4039 nodes and 88234 edges.

The facebook data was downloaded from the Stanford's website :
https://snap.stanford.edu/data/egonets-Facebook.html.

We created a Map job that adds a random distance (between 1 and 10) for
each intersection. The created job is a python script, and can be found under
the following folder python/add-distance-graph.py in the repository.

After adding random distances, another map job was executed with the aim
to format the data and make it compatible with our MapReduce input (check
section 3.1.2).

6.2 Environment

We did the experiment on the Dauphine Cluster by using 10 cores for Spark,
and 10 reducers for Hadoop Python Streaming.

6.3 Hadoop

The facebook data were executed 100 times on Hadoop Streaming with the help
of the Job Chain Script. Each iteration took about 7.281 seconds. The time is
acceptable for the following data, but will evantually increase for bigger graphs.

10

https://snap.stanford.edu/data/egonets-Facebook.html


6.4 Spark

In Spark, the iteration took much more longer than Hadoop. We faced some
scalability issues with bigger graph structures. Those issues can be spotted in
the formatting data section which was implemented from a more readable struc-
ture. We identi�ed the code that was causing the latency in the execution :

Figure 5: Critical code that can be optimized

Unfortunately, it's not the most optimized way to implement the Dijkstra's
algorithm.

11



References

[1] Cloud Computing Lecture 4 - Graph Algorithms with MapReduce. Jimmy
Lin, The iSchool, University of Maryland, February 6, 2008.

[2] Hadoop code from github. https://github.com/Troll-
Mcloving/SistemasDistribuidosAvroHadoop

[3] Djikstra Algorithm - wikipedia page

12

https://github.com/Troll-Mcloving/SistemasDistribuidosAvroHadoop
https://github.com/Troll-Mcloving/SistemasDistribuidosAvroHadoop


A Hadoop - Mapper python code

13



B Hadoop - Reducer python code

14



C Spark code

15



16



D Prepare python code

17



E Add distance to graph - python code

18


	Project goal
	Dijkstra Algorithm
	Implementation
	Input
	Data
	Prepare

	Mapper
	Reducer
	Job Chaining

	Code description
	Hadoop
	Spark

	Results
	Hadoop
	Spark

	Scalability experiments
	Data
	Environment
	Hadoop
	Spark

	Hadoop - Mapper python code
	Hadoop - Reducer python code
	Spark code
	Prepare python code
	Add distance to graph - python code

