BOB CARPENTER, ADAM HABER, AND CHARLES

MARGOSSIAN

AUTOMATIC DIFFEREN-
TIATION HANDBOOK

Preface

The goal of this book is to introduce the basic algorithms for auto-
matic differentiation along with an encyclopedic collection of auto-
matic differentiation rules for popular mathematical and statistical
functions.

Overview of this book

Automatic differentiation is a general technique for converting a
function computing values to one that also computes derivatives.
Derivative computations add only a constant overhead to each oper-
ation used to compute the function value, so that the differentiable
function has the same order of complexity as the original function.

After describing the standard forms of automatic differentiation,
this book supplies an encyclopedic collection of tangent and adjoint
rules for forward-mode and backward-mode automatic differentia-
tion, covering most widely used scalar, vector, matrix, and probability
functions.

The appendix contains working example code for forward-mode,
reverse-mode, and mixed-mode automatic differentiation.

Why derivatives?

Applications of derivatives, which measure the change in one quan-
tity relative to a change in another quantity, are ubiquitous in applied
mathematics. Although derivatives can be computed mechanistically
by hand in many cases, the process is painstaking and error prone.

The present text is motivated by the fact that most state-of-the-art
statistical inference algorithms are based on first- or higher-order
derivatives. Examples include

¢ maximum likelihood and maximum a posteriori estimation with
quasi-Newton or gradient descent methods (first-order deriva-
tives),

4 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

® Bayesian posterior sampling with Hamiltonian Monte Carlo sam-
pling (first-order derivatives of log density functions for Euclidean
geometry; third-order for Riemannian),

¢ standard error or posterior covariance estimation with Laplace ap-
proximations (second-order derivatives of log density functions),

* maximum marginal likelihood or maximum marginal a posteriori
estimation with Monte Carlo expectation maximization (first-order
derivatives of expectations computed via Monte Carlo samples)

¢ variational inference with stochastic gradient descent based on
nested expectations (first-order derivatives of expectations com-
puted via Monte Carlo samples).

Automatic differentiation is also useful for computing the sensi-
tivity of one quantity to another, expressed as a derivative. Examples
in statistical inference include first- and second-order derivatives to
characterize

¢ data sensitivity—the sensitivity of a maximum likelihood or
Bayesian parameter estimate to one or more data points,

* hyperparameter sensitivity—the sensitivity of a maximum likeli-
hood or Bayesian parameter estimate to one or more model hyper-
parameters, and

* parameter sensitivity—the sensitivity of a posterior log density or
a log likelihood to the model parameters for a given data set.

Sensitivities are also of interest in many numerical analysis appli-
cations including

¢ sensitivity of the solution to a system of algebraic or differential
equations to initial conditions or parameters.

Why automatic differentiation?

Deriving derivatives analytically by hand is not only painstaking

and error prone under the best of circumstances, it is difficult to do
efficiently for iterative functions involved in matrix factorization or
differential equation solving. As its name implies, automatic dif-
ferentiation automatically lifts a function computing a value to one
computing the value and its derivatives. Perhaps more surprisingly,
this can be done in full generality with both efficiency and high arith-
metic precision.

Overview of automatic differentiation techniques

Forward-mode automatic differentiation employs the tangent method
of propagating the chain rule forward from independent (input)

AUTOMATIC DIFFERENTIATION HANDBOOK

variables. Forward mode computes derivatives of all outputs of a
function f : R — RM with respect to its input. Forward mode can
also be used to efficiently compute directional derivatives, or more
generally, gradient-vector products.

Reverse-mode automatic differentiation employs the adjoint
method of propagating the chain rule backward from a dependent
(output) variable. Reverse-mode computes the gradient of a function,
that is the derivatives of the output a function f : RN — R with
respect to each input.

Either forward-mode or reverse-mode automatic differentiation
may be used to compute Jacobians, that is the M x N matrix of all
first-order derivatives of a function f : RN — RM. Jacobians require
N passes of forward-mode or M passes of reverse-mode automatic
differentiation.

Nesting reverse-mode automatic differentiation within forward
mode provides efficient calculation of Hessians, that is the matrix of
all second-order derivatives of a function f : RN — R. Hessians
require N passes of reverse mode nested in forward mode. Just as
forward-mode automatic differentiation may be used to efficiently
calculate gradient-vector products, reverse mode nested in forward
mode can be used to compute Hessian-vector products efficiently.

Derivatives

Smooth functions

A smooth function is one that is continuously differentiable over its
domain. Unless explicitly stated, all functions under consideration
are differentiable as many times as necessary.

Derivatives

Consider a smooth, univariate function f : R — R. Its derivative
function, f' : R — R, maps a scalar x € R to the derivative of f(x)
with respect to x, and is defined as a limit
d flx+e)— fx)
/ .
x) = —f(x) = lim ——————,
f(x) dx () €—0 €

where the numerator is the change in y = f(x) and the denominator
is the change in x.

Rewriting the expression for the derivative,

lim L6 = (f() +e-f'(x)) _

e—0 € -

Thus, ase€ — 0,

flx+e)~ f(x)+e f(x).

Partial derivatives

For a function f : RN — R, the partial derivative with respect to x, at

x € RN is
d

e f(0) = /().

where g : R — R is the univariate function defined by
gu) = f(x1,..., Xp—1, U, Xp41,.. ., XN)-

That is, we differentiate f(x) with respect to x,, holding all other
values x1,...,%;_1,Xz41,-.., XN constant.

8 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Chain rule

Automatic differentiation is driven by the chain rule, which states
that

I f0) = 2 f(w) o=)

Including the differentiated function in the numerator makes the
relationship clearer,

of () _ of(u) ou

ox ou ox

Gradients

Consider a smooth vector function f : RN — R. Its gradient function,
Vf: RN — RN, maps a vector x € RN to the vector of partial
derivatives of f(x),

Vi) =[5 - g f)].

The notation indicates that the result is a 1 x N row vector.
The notation V' f indicates the function which transposes the
results of Vf to produce column vectors, i.e.,

VTf(x) = (Vf(x)' =

Gradient-vector products

Given a smooth function f : RN — R, the derivative of f along a
vector v at a point x € RN is defined by

Vof(x) :limf(x—i-ev)—f(x).

e—0 €

This definition is equivalent to defining the derivative along a vector
as a standard gradient times the vector,

—_— . ’Z)n‘
axy,

N N
Vof(x) = Vf(x)-v= Zlfn(x) o= Y of (x)

n=1

The vector multiplication is conformal because V f(x) is a row vector
by definition, whereas v is a standard column vector.

AUTOMATIC DIFFERENTIATION HANDBOOK ¢

Directional derivatives

A unit vector u € RY, i.e., one where where u - u = ZnNzl u% =1,
picks out a point on a sphere and hence a direction. The derivative of
f along a unit vector u at the point x is called a directional derivative,
as it provides the change in f in the direction picked out by u.

Jacobians

Consider a smooth multivariate function f : RN — RM. Its Jacobian
function, J; : RN — (RN x RM), maps a vector x € RN to the M x N
matrix of partial derivatives of each element of f(x) with respect to
each x,;,
d

I(x) = - ().
Row m of the Jacobian matrix is a gradient for a single output, and
the entries make up all of the partial derivatives of f,

Vfi(x) awhilx) o G A)
Jr(x) = : = : : :
V fm(x) s fm(x) - g fum(x)

7

1

where f,;(x) is defined by selecting the m-th element of f(x), * Notations [i] and v; will be used

interchangeably for the i-th element of

_ vector v, and similarly for m(i, j|] and
fm (x) f <x) [m] ’ m;; for the elements of matrices.

Elementwise, the entries of the Jacobian are

170) = o o)

Hessians

Consider a smooth multivariate function f : RN — R of a single
output. The Hessian function H; maps an element x € RN to its
matrix of second derivatives, and is defined by applying the gradient
operator twice (with a transposition in between),

2 f(x) Vil f(x) o () S f(x)
Hf(x) = VV'f(x) =V : = : = : : :
2 f@] Ve @] 58 w5)

Elementwise, the entries in the Hessian evaluated at x are

02 0 9

axax,] X = 55 -f(%).

Hf(x)[m, n] = = x. 9%,

10 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

The Hessian matrix is symmetric, with

Hg(x)[m,n] = Hg(x)[n, m].
The diagonals are the second partial derivatives,

0 0

92
Hy(x)[n,n] = 9%, 9, (x) = @f(x).

Hessian-vector products

Suppose f : RN — R is a smooth function. The product of the
Hessian of f at a point x € RN and an arbitrary vector v € R can be
calculated as the gradient of a vector-gradient product,

Hf(x) 0 = (VVTf(x)) 0=V (Vf(x)v)'

This can be verified elementwise,

(Hp)-o)[m] = He(x)m] o
= LIy Hy(x)[m, n] - ofn]
= Lo (VVTf()) [mn] -0
= 1axm8xnf(x) Un
= Lol a2 % (f(x)-on)
= agm nlaxn(f<) Un)
= = V(Vf(x)-0)" [m].

Because Hessians are symmetric, v can be multiplied on the left or

=

right
-
T ‘Hy(x) = (Hf(x) ~v) .
References

An excellent reference for both matrix algebra and multivariate dif-
ferential calculus is (Magnus and Neudecker 2019).

Finite Differences

Derivatives may be computed numerically using finite differences.
There are many ways that derivatives can be computed using finite
differences, and this chapter does not attempt a complete survey of
the field.

Derivatives with one difference

The simplest for of finite differences directly follows the definition of
derivatives. Suppose f : R — R is a smooth unary function. Then by
definition,

£ = L p) = i LI =S5 E)

€—0 €
By fixing an € > 0, an approximation to the derivative may be calcu-
lated using finite differences as

flx+e) = fx)

€

flx) =
Multiplying both sides by ¢,
e f'(x) = f(x+e) - fx),
and then adding f(x) to both sides yields
flx+e)~ f(x) +e f(x)

This shows that finite differences are only going to be accurate to the
extent that f can be well approximated by a linear function in the
neighborhood of x.

Partial derivatives

For multivariate functions f : RN — R, partial derivatives -2~ f(x)
n

are also calculated following their definition by binding x1, ... x,_1, X511, ...

and applying finite differences to the resulting unary function f(u) =
fxq, ..., X-1,U,Xp41, ..., xN). This method is applicable no matter
what method is used for finite differences of unary functions.

XN

12 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Arithmetic precision

It would seem that better and better approximations would be avail-
able as € — 0, but that is unfortunately not the case with fixed-
precision, floating-point arithmetic. Instead, making € smaller than
machine precision (about 10~ in IEEE double-precision arithmetic)
leads to rounding of 1 + € to 1 and all precision is lost. More gener-
ally, if € is of order 1, then no precision is lost in 1 +- €. Butif e << 1,
arbitrary amounts of precision can be lost in calculating 1 +€.. A
fixed e = 107" loses n digits of precision in calculating 1 + €.

A typical choice of € for performing finite differences using double-
precision floating-point arithmetic (type double in C++) is 1078, in an
attempt to avoid catastrophic rounding in the arithmetic while also
keeping € small enough that the finite-difference approximation is ac-
curate. With double-precision arithmetic, this reduces precision from
10~ to roughly 107, or roughly the equivalent of single-preicsion
arithmetic (type float in C++).

Efficiency of finite differences

Evaluating a derivative by simple finite differences requires two

function evaluations. Evaluating an N-dimensional gradient by finite
differences requires N + 1 function evaluations, because f(x) may be
reused for each x, with respect to which derivatives are being taken.

Forward Mode

The forward-mode automatic differentiation algorithm, also known
as the tangent method, is a means for efficiently computing deriva-
tives of smooth functions f : R — RM with a single input and
multiple outputs.

Suppose x € R and that v = f(u). We write a dot over an expres-
sion to indicate a derivative with respect to a distinguished variable
X,

o
Toox

The term 1 is called the tangent of u with respect to x; the x is im-

1

plicit in the notation, but assumed to be the same x in expressions
with multiple dotted expressions.

For example, if v = —u, then by the chain rule,
v—iv—i—u———u——u
-~ ox Ox ox

Similarly, if we have v = exp(u), then

,_ 0 J .
V=5 0= gexp(u) = exp(u) - 3= exp(u) - .
Derivative propagatin in forward mode works the same way for
multivariate functions. For example, if y = u - v is a product, the

usual derivative rule for products applies,
'—ium— iu v+ u- iv =u-v+u-o
Y= 0T \ox ox) '

Dual numbers

Forward-mode automatic differentiation can be formalized using
dual numbers consisting of the value of an expression and its deriva-
tive, (u,1). Smooth functions may then be extended to operate on
dual numbers. For example, negation is defined for dual numbers by

—(u,u) = (—u, —u).

14 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

For sums,
(u, 1) + (v,0) = (u+0,1u+0),

and for differences
(u, 1) — (v,9) = (u—v,11 —),

For products,

(u,) - (v,0) = (u-v,11-v+u-0)
and for quotients,
(u, 1)/ {v,0) = (u/v,1/v —u/v*- o).

For exponentiation,

exp ((u, 1)) = (exp(u), exp(u) - i),

and for the logarithm,
. 1
log(u,11) = (logu, o 1).

These all translate directly into rules of tangent propagation.

Gradient-vector products

The product of the gradient of a function at a given point and an
arbitrary vector can be computed efficiently using forward-mode
automatic differentiation. Suppose f : RN — R is a smooth function
and x € RY is a point in its domain. To compute the derivative of

f at x along an arbitrary vector v € RY, it suffices to compute the
gradient-vector product V,f(x) = Vf(x) - v. This can be done with
forward-mode automatic differentiation by initializing the tangents of
the input variable x with the vector being multiplied,

X =0.

Then dual arithmetic is used as usual to compute the result, and the
final dual number’s tangent is the gradient-vector product.
For example, suppose

f(x):xl’x2+x2,

X = [12.9 127.1]T,

and
0= {0.3 —1.2]T.

AUTOMATIC DIFFERENTIATION HANDBOOK

The gradient-vector product V,f(x) = Vf(x) - v is derived as

(12.9,0.3) - (127.1, —1.2) + (127.1, —1.2)

(12.9-127.1,0.3-127.1 +12.9 - —1.2) + (127.1,—1.2)
= (129-127.1+127.1, 03-127.1+129- —12 4 —1.2)
= (1767,21).

Checking the gradient-vector product analytically,

VF(x) = [xz % +1} — [127.1 12.9+1},

so that
VF(x) o= [127.1 13.9} : [0.3 —1.2}T —21.

Directional derivatives

A directional derivative measures the change in a multivariate func-
tion in a given direction. A direction can be specified as a point on
a sphere, which corresponds to a unit vector v, i.e., a vector of unit
length, where Y- | v2 = 1. Given a smooth function f : RN — TR, its
derivative in the direction of unit vector v € RN at a point x € RN is
Vf(x)-v. Thatis, a directional derivative is a gradient-vector product
where the vector is a unit vector.

Partial derivatives can be defined as vector-gradient products,

0

ox;,

f(x) =Vf(x) - un,
by taking u; to be the unit vector pointing along the n-th axis,

S BRSO ST

n—1 zeros N—n zeros

15

Reverse Mode

The reverse-mode automatic differentiation algorithm, also known as
the adjoint method, is a means for efficiently computing derivatives
of smooth functions f : RN — R from multiple inputs to a single
output (i.e., gradients).

Adjoints

Suppose y € R is the final dependent output variable and v is a
subexpression used in the calculation of y. The adjoint of v is the
derivative of y with respect to v, and is written with a bar,

2
=~ Y

Suppose that v = f(u). The chain rule tells us that

ﬁ:al_al.al_al.af(”)_al.f’(u).alzg.f/(u)_

ou OJv du OJv du v ou

Because a sub-expression may be involved in more than one expres-

sion, the adjoint rules are expressed as increments,
u += 7 f(u).
For example, if v = exp(u), with exp’ (1) = exp(u), the rule is
u += 7-exp(u).
For logarithms, with v = logu, with log/ (1) = 1, the adjoint rule is

—_ _ 1
u +=179-—.
U

When there is more than one argument, adjoints propagate inde-
pendently from the result by multiplying the result’s adjoint times
the partial with respect to the argument. For example, if w = u - v,
then because %u v =vand %u -v = u, the adjoint rules are

U += w-v

and

Q|
4
Il
gl
=

18 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Adjoint propagation and continuations

Adjoint rules increment the adjoints of operands based on the adjoint
of the result, and as such, must be executed after the adjoint of the
result has been computed. This leads to adjoints being propagated

in the reverse order of function computation, hence the name of the
method.?

Computationally, as each operation executes, the code to handle
adjoint propagation is pushed onto a stack. After the final value is
computed for which derivatives are required, the adjoints are exe-
cuted by popping adjoint code off the stack and executing it. The
adjoint code amounts to a continuation, that is code that is stored
with some of its context to be executed later. As usual, continuations
can be implemented via closures and the closures stored on a stack to
be executed in last-in/first-out order.

For example, consider a simple compound expression y = log(u -
v). To compute the value of y, First, u - v is executed, then the loga-
rithm of the product is computed. This can be expressed with inter-
mediate variables as a function of independent variables # and v as
follows, where the numbers in parentheses indicate the order of steps

performed.
execution forward || reverse execution
order | values adjoints order 1
(1) a=u-v |4 +=a-v (6)
U +=a-u (5)
(2) b=loga||a += b-1 (4)
b=1 (3)

First, the values are computed in a forward pass (steps 1 and 2).
Then the adjoint of the final result is set to one (step 3) and all other
adjoints are initialized to zero. Then the adjoints are propagated in
a reverse pass (steps 4, 5, and 6). These steps are executed with con-
crete values. For example, taking # = 1.2 and v = 3.9, the execution
order is as follows, with values rounded to two decimal places,

step | variable op value | symbolic | numeric

u 1.2 u 1.20

v = 39 v 3.90
(1) a = u-v u-v 4.68
(2) b = loga | logv-u ~ 1.60
(3) b 1 1.00
(4) a 4= b-1 L ~ 0.21
(5) 7 += a-u 1 ~ 0.26
(6) U 4= a-v 1 ~ 0.83

> Any topological sort of the expressions
where results are greater than operands
will suffice.

AUTOMATIC DIFFERENTIATION HANDBOOK

Before the algorithm begins, the independent variables u and v are
assumed to be set to their values. Then steps (1) and (2) calculate the
values of subexpressions, first of # = 1 - v and then of b = logu - v,
the final result. To start the reverse pass in step (3), the final result b
has its adjoint b set to 1. The reverse pass then increments the adjoint
of each operand involved in the following expression. The final ad-
joints 7 and T are the elements of the gradient of f(u,v) = logu - v,

evaluated at [1.2 3.9},

Vf(12,39) = [&logu-v Zlogu-v| ~ [0.83 026].

The results of automatic differentiation can be verified with analyt-
ical derivatives,

and

19

Nested Forward Mode

Forward-mode automatic differentiation is defined with respect to an
arbitrary scalar type. With a real scalar type, forward mode computes
derivatives. By taking the scalar inside forward mode to itself be an
automatic differentiation variable, higher-order derivatives may be
calculated, even though only first-order derivatives need be defined.

Forward nested in forward

Consider a dual number (u, 1), where u is a scalar variable and # =
g—? for some distinguished independent variable x. Suppose that
instead of a simple scalar, u = (v,) is itself a forward-mode autodiff
variable defining derivatives with respect to w, so that ¥ = %. A
different diacritic is used above the nested variable to distinguish
it from the outer diacritic dual number. A nested forward-mode
autodiff variable is thus of the form ((v,7), (v,7)), where
6= al 0= al b= 8270
ow ox oxow
The tangent values of nested forward-mode autodiff variables are
initialized following the derivatives. For the input variable w, the
initial nested autodiff variable is

((w,@), (0,d)) = ((w, &), (%, L))

= {{(w,1), (0,0)).
Input variable x corresponds to an autodiff variable
- . 2
((r0), (10) = (8 (% &)
= {(x0), (1,0)).

Any other input variable u such that u # x and u # y will be initial-

ized with nested autodiff variable

(i), () = ((u, 2, (2, 2uy)

= <<x,0>, <O’O>>'

22 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Recall the definition of exponentiation and multiplication for
forward-mode autodiff variables,

exp({u, 1)) = (exp(u), exp(u) -),
and
(u, 1) - {(z,2) =(u-z,u-z+u-z).
Plugging (v,d) in for u in the forward-mode rule for exponentiation,
exp(((v,9), (0,9))) = (exp({0,9)), exp((v,7)) - (v, 9))
= ((exp(0), exp(v) - 9), (exp(v), exp(v)-3)- (2, 7))
= ({exp(v), exp(v) -), (exp(v) -9, exp(v)-3-0+exp(v) - 7))
The value is correct,
exp(v) = exp(v).
The first nested derivative is also correct,

dexp(v)
ow

dv ,
=exp(v) - 30 exp(v) - 9,
as is the other nested derivative,

dexp(v) v _
= exp(v) - Fy exp(v) - 9.

The second derivative also checks out,

dexp(v)
Jw

9 exp(v)
dxow

|
v Yo

= 5 (exp(v) . %)

= L(exp(v))- £ +exp(v) - L2
= exp(v)- g—z . % +exp(v) - %g—g

= exp(v) -0 -9+exp(v)-
Working through a complete example, suppose
f(a,b,c) =a-exp(b-c).
To evaluate %gb £(2.1,1.5,—-0.3), the dual numbers will be of the form

N s ou, ,0u d%u
(), (1)) = (o, 2, (28, 20y

a

Thus the variables are initialized with appropriate derivatives,

0 = ({21,1), (0,0
b = ({15,0), (1,0))
¢ = ((—03,0), (0,0)).

AUTOMATIC DIFFERENTIATION HANDBOOK

Then evaluation is carried out from most nested outward, with

boc = ((—045,0, (—03,0))
exp(b-c) = ((0.64,0), (—0.19,0))
a-exp(b-c) = ((13,0.64), (—0.40,-0.19))

Reading the results out of the nested dual number, the value is 1.3,
the derivative with respect to a is 0.64, and the derivative with re-
spect to b is -0.4, and the second derivative with respect to a2 and b is
-0.19. The analytic second derivative is

aaaab” ~exp(b-c) =c-exp(b-c).
Pluggingina = 2.1,b = 1.5,c = —0.3 yields —0.19, matching the
results obtained through automatic differentiation.

The simplicity of the nested method derives from never having to
define anything other than first derivatives. Computing second-order
derivatives of the exponential only required the rules for first-order
derivatives of exponentiation and first-order derivatives of products.

Hessians with forward mode

The Hessian matrix of all second derivatives for a function f : RN —
R may be computed by running forward-mode autodiff (§) + N
times, once for each unique pair m, n and one for second derivatives
with respect to a single variable. Assuming evaluation of f(x) for

x € RN is O(g(N)), forward-mode autodiff can be used to compute
Hessians in O(N? - ¢(N)) time and O(N?) space.

Third-order derivatives and beyond

The same logic applies for further nesting of forward mode within
forward mode within forward mode. The result will have eight
nested values (four for the value and four for the tangent). From
most to least nested, these values represent third-order derivatives
ﬁ;ax, the three pairs of second-order derivatives, the three first-
order derivatives, and the value. Third derivatives are simple to
compute this way, but provide quite the bookkeepoing obstacle to
manual computation, as should be clear from the explicit evaluation
of second-order derivatives for the exponential function using nested
forward mode.

The nesting may be iterated to compute fourth-order derivatives,
etc.

23

24 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Reverse nested in forward

A more efficient way to compute Hessians is to nest reverse-mode
autodiff in forward-mode autodiff. Thus rather than scalars in (u, 1),
the u are taken to be reverse-mode autodiff variables. The forward
pass records the subexpressions used in the evaluation of f((u, 1))
as before. The reverse pass is then run from the final result 1, to
compute the adjoint . This is possible because all the calculations
used to produce # are scalar operations.

Suppose f : RN — R. Let i = a% forsome n € I:N. If y = f(x),

then y = %yn, and reverse-mode autodiff started from y will compute

g=vd W ey oy [@m | #w),

0
8xn dxy, dxy 0xp 9x19xy, JxNOXy,

Computing Hessians with reverse nested in forward

Applying the adjoint method to a forward-mode derivative results
in a row of the Hessian matrix. Thus to compute a Hessian using
reverse mode nested in forward-mode autodiff requires N function
evaluations, one for each row V%m f(x) of the Hessian. Assuming
each function evaluation is O(g(n)) leads to Hessian complexity
of O(N - g(N)) time and O(N?) space. For example, if the time to
compute f(x) for x € RN is linear, i.e., O(N), then the Hessian
VV T f(x) can be computed in O(N?).

Higher-order nesting of reverse in forward mode

Applying the adjoint method to forward mode nested in forward
mode leads to third derivatives. Suppose f : RN — Rand x €

. 2 .
RY. Nested forward mode computes § = W f(x). Applying the
adjoint method to this result produces third derivatives,

aZ

= Vaxmaxn

— 23 3°
f(x) - [axlaxmax,,f(x) U axNaxmax,,f(x)} .
Computing all third-order derivatives of f at x requires O(N?)
evaluations of f(x), each using reverse mode nested in forward mode
further nested in forward mode. Thus if evaluating f is O(g(N))
then evaluating all third order derivatives requires O(g(N) - N?)
time.

Matrix Derivatives

If C = f(A, B) where A, B, and C are matrices (or vectors or scalars),

the chain rule remains the same,

_ f(4,B) 9f(A,B)
dC = 9A dA + 9B dB.

The total differential notation dC may be understood by plugging in
a scalar x with respect which to differentiate,

dC _af(4,B) dA 3f(AB) dB

dx 9A dx oB dx’
In the general case, if C = f(A;,..., AN), then

N 9f(Ar,..., AN)
dC = n; A dAn.
If Cis an K x L matrix and A is a M x N matrix, then the Jacobian
g—g has dimensions (K x L) x (M x N). These results may be con-
strued as involving standard vectors and Jacobians by collapsing all
matrices to vectors. Or they may be read directly by raising the type
of operations and multiplying the (K x L) x (M x N) Jacobian by the

M x N matrix differential.3

Forward mode

The definitions of values and tangents remain the same when moving
to vector or matrix functions. As with scalars, the tangent of a matrix
(or vector) U is defined relative to a scalar variable x as

. ou
u= S
This derivative is defined elementwise, with
aul-,]-
LIZ-,]- = 9

Forward mode automatic differentiation for matrices follows the

chain rule,
dC _dC 0A 0oC 0B

9 9A 9x 9B ax’

3 In the automatic differentiation lit-
erature in computer science, this is
sometimes called a “tensor” product,
where “tensor” just means array of
arbitrary dimensionality and should not
be confused with the tensor calculus
used in physics.

26 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

which, using tangent notaton, yields

. odC . dC .
C—a—A~A+£-B.

In general, if C = f(A1,..., AN), then
. Nooac .
S e
©= Loa, A

As with forward-mode autodiff for scalars, this matrix derivative
rule is straightforward to work out and to implement.

The tangent rules for matrix operations carry over neatly from the
scalar case. For example, C = A + B is the sum of two matrices, the
corresponding tangent rule is

C=A+B.

Here and throughout, matrices used in arithmetic operations will be
assumed to conform to the required shape and size constraints in the
expressions in which they are used. For A + B to be well formed, A
and B must both be M x N matrices (i.e., they must have the same
number of rows and columns).

Similarly, if C = A - B is the product of two matrices, the tangent
rule is the same as that for scalars,

C=A-B+A-B.

Simple tangent rules exist for many linear algebra operations, such
as inverse. If C = A~1, then the tangent rule is

C=-C-A-C

Results such as these are derived through algebraic manipulation and
differentiation (see 4 for general rules). For inverse, because

C-A=A1.A=1L

Differentiating both sides yields

0)

Replacing with dot notation yields
C-A+C-A=0.
Rearranging the terms produces

C-A=—-C-A.

AUTOMATIC DIFFERENTIATION HANDBOOK

Multiplying both sides of the equation on the right by A~! gives
C-A-At=-C-A AL
This reduces to the final simplified form
C=-C-A-C

after dropping the factor A - A~! = I and replacing A~! with its
value C.

Reverse mode

Using the same adjoint notation as for scalars, if U isan M x N
matrix involved in the computation of a final result y, then

u= 30
with entries defined elementwise by
= 0y . Oy
Uij = 551l = 3L,

The definition applies to vectors if N = 1 and row vectors if M = 1.
The adjoint method can be applied to matrix or vector functions
in the same way as to scalar functions. Suppose there is a final scalar
result variable y and along the way to computing vy, the matrix (or
vector) A is used exactly once, appearing only in the subexpression

B=f(...,A,...). By the chain rule>

E)y_(é)B)T_ay

)
95 %Y _yTiay. %Y
0A \0A oB If(4)

OB’

where the Jacobian function J is generalized to matrices by®

of (U
Jr(U) = 7J;<U)
Rewriting using adjoint notation,
A=1}(4)-B,

or in transposed form,

A" =B Jp(A).
The adjoint of an operand is the product of the Jacobian of the func-
tion and adjoint of the result.

An expression A may be used as an operand in multiple expres-
sions involved in the computation of y. As with scalars, the adjoints
need to be propagated from each result, leading to the fundamental
matrix autodiff rule for a subexpression B = f(..., A,...) involved in
the computation of y,

A +=];(A)-B.

27

5 The terms in this equality can be read
as vector derivatives by flattening the
matrices. If Aisan M x N magrix

and B is a K x L matrix, then % is

. JdB . .
a vector of size M - N, —- is matrix

0A

of size (K-L) x (M- N), and g% isa
vector if size K - L. After transposition,
the right-hand side is a product of an
(M- N) x (K- L) matrix and a vector
of size K - L, yielding a vector of size
Moy feomdinthy Iedtchandstisls
by generalizing definitions to matrices
or by flattening.

28 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Trace algebra

The Jacobian of a function with an N x M matrix operand and K x L
matrix result has N - M - K - L elements, one for each derivative of an
output with respect to an input. This makes it prohibitively expen-
sive in terms of both memory and computation to store and multiply
Jacobians explicitly. Instead, algebra is used to reduce adjoint compu-
tations to manageable sizes.

Suppose the M x N matrix C is used in the computation of y. By
the chain rule,

dy = L\t ot - dCm
= Zy:l an\le Cinn» dCnn
= LT CT,m - dConn
= ©,C,,-dC,
= T(C' -do),
where the notation Uy, indicates the m-th row of U, U. ;,; the m-

th column of U, and Tr(U) the trace of an N x N square matrix U
defined by

N
Tr(U) =) Upp.
n=1

Clarifying that differentiation is with respect to a distinguished scalar
variable x on both sides of the above equation yields

dy d =1 dC
Suppose that C = f(A, B) is a matrix function. As noted at the
beginning of this chapter, the chain rule yields

_ 9f(A/B) 9f (A, B)
dC = = dA + == dB.

Using the result of the previous section and substituting the right-
hand side above for dC,
dy = Tx(C'-do)
= T (C'- (YGPaa+ LGP dB))
= T(C'-YPaa+ T’ U dB)
= T (C'-UGBda) 41 (T LGP aB) .

Recall the transposed form of the adjoint rule,

T_gr.oc

A 0A’

AUTOMATIC DIFFERENTIATION HANDBOOK 29

and similarly for B Plugging that into the final line of the previous
derivation yields the final form of the trace rule for matrix functions
C=f(AB),

Tr(C' -dC) =Tr(A' -dA)+Te(B' -dB).
This can be generalized to functions of one or more arguments in the
obvious way.
Examples

For example, if C = A + B, then

oC oC

A~ B

and hence the adjoint rules are
A +=C

and
B += C.

In the more interesting case of multiplication, with C = A - B,

aC
aa ="
and aC
—=A
oB ’
leading to adjoint rules
A += C-B'
and
B += A'.C
References

The section on trace algebra fills in the steps of the derivation pre-
sented in (Giles 2008b, 2008a).

Arithmetic Functions

Addition
c=a+b
Derivatives
0)
%C_l %c—l
Tangent
c=a+b
Adjoints
a+=¢ b+=cC
Subtraction
c=a-—"»
Derivatives
0 0
%C—l %C——l
Tangent
c=a-—"»
Adjoints
a+=c b+=-¢C
Multiplication

32 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Derivatives
d d
Fri b 3¢ =1

Tangent

¢=a-b+b-a
Adjoints

a+=c-b b+=c-a
Division
Lt
b
Derivatives
da b ob b2

Tangent

;4 ba

b b2
Adjoints
_ c = c-a
Exponential
c=exp(a)

Derivatives

]

325~ exp(a)
Tangent

¢=a-exp(a)
Adjoints

Exponential (base 2)

Derivatives

Tangent

Adjoints

Logarithm (base e)

Derivatives

Tangent

Adjoints

Logarithm (base 2)

Derivatives

Tangent

—c = log(a) - 2°

Q|

+

I
1 al

¢ = logy(a)

AUTOMATIC DIFFERENTIATION HANDBOOK 33

34 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Adjoints

d4=—C

~ a-log(2)
Logarithm (base 10)
¢ = logyy(a)

Derivatives

I 1

da a-log(10)
Tangent

B a
a -log(10)

Adjoints

T4=—

~ a-log(10)
Power
cC = ﬂb
Derivatives
9 o1 9 b
aac—b a abc—log(a) a

Tangent

¢=a-b-a"1+b-log(a)-a® = (d~Z—|—b-log(a)) -

Adjoints

Square

Derivatives

Tangent

Adjoints

Square root

Derivatives

Tangent

Adjoints

Inverse

Derivatives

Tangent

d
$c:2a
c=a-2a
a4+ =~c-2a
c=+a
o.__ 1
da 2/a
o
= NG
Gr= - C
= NG

1

c=—

a
9.1
oa a2

L3

AUTOMATIC DIFFERENTIATION HANDBOOK 35

36 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Adjoints

Cos

Derivatives

Tangent

Adjoints

Sin

Derivatives

Tangent

Adjoints

Tan

Derivatives

_ T
a+= — 617
¢ = cos(a)
d .
555" sin(a)
¢ = —a-sin(a)
a4+ = —¢-sin(a)
¢ = sin(a)
3= cos(a)

¢=a-cos(a)

¢ = tan(a)

Tangent

Adjoints

Arccos

Derivatives

Tangent

Adjoints

Arcsin

Derivatives

Tangent

Adjoints

a.
|

~ cos?(a)

c

a+=——
- cos?(a)

¢ = arccos(a)

0 1
56_7\/1—%
4
V1—a?
it= <
V1—a?

¢ = arcsin(a)

0 1
" V1—a?
6= a

V1-—a?
_ c
a+=

AUTOMATIC DIFFERENTIATION HANDBOOK 37

38 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Arctan
¢ = arctan(a)
Derivatives
d 1
—C =
da 1+a?
Tangent
L a
1442
Adjoints
R
 1+a?
Cosh
¢ = cosh(a)
Derivatives
aa—ac = sinh(a)
Tangent
¢ = i - sinh(a)
Adjoints
a4 = ¢-sinh(a)
Sinh
¢ = sinh(a)
Derivatives
d
— = h
5, = cos (a)
Tangent

¢ =a-cosh(a)

AUTOMATIC DIFFERENTIATION HANDBOOK 39

Adjoints
a + = -cosh(a)
Tanh
¢ = tanh(a)
Derivatives
o, 1
da cosh?(a)
Tangent
) a
¢= 5
cosh”(a)
Adjoints
at=—5—
cosh?(a)
Arccosh
¢ = arccosh(a)
Derivatives
o0, 1
da o a2 —1
Tangent
. a
Cc =
az —1
Adjoints
a4=—
a2 —1
Arcsinh

¢ = arcsinh(a)

40 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Derivatives
da V1+ a2
Tangent
f_ @
V14 a?
Adjoints
a4 = ———
1+ 42
Arctanh
¢ = arctanh(a)
Derivatives
.1
da 1—a2
Tangent
L a
C1—a2
Adjoints
_ c
1+ =

Matrix Arithmetic Functions

Addition

Derivatives

Tangent

Adjoints

Subtraction

Derivatives

Tangent

Adjoints

Multiplication

C=A+B

0 0

5Zc_l zﬁc_l
C=A+B

C=A-B

) P)

5C=1 =C=-1
C=A-B

42 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

Derivatives
0 0
ﬂC =B ﬁC =A
Tangent
C=A-B+A-B
Adjoints
A +=C-B" B+=A"-C
Negation
C=-A
Derivatives
0
—~ C=-1
aAC
Tangent
C=-A
Adjoint

Hidden Markov Models

A hidden Markov model (HMM) defines a density function for a
sequence of observations y1,...,yN, Where

¢ the observations are conditionally independent draws from a
mixture distribution with K components, and

¢ the unobserved mixture components z,...,zy € 1 : K form a
Markov process.

The Markov process for the mixture coponents is governed by
* an initial probability simplex ¢ € RX,
e stochastic matrix ® € RK*K and
with
N
p(z19,0) =) [1 Oepn-r)zpn)-
n=2

The sequence of observations y is conditionally independent given z,

N
plylz) =TTrl |z =)
n=1
The N x K emission matrix is defined by taking

Ak =py [20 = k).
The complete data density for HMMs is

N N
p(y,z | $,0, A) = 4’2[1] ’ H ®z[nfl],z[n] ’ H An,z[n]'
n=2 n=1
The density is defined by marginalizing out the unobserved latent
states z,

Py 90,0 =), pyz]90A).
z€(L:K)N
The goal is to compute the derivatives of this function for a fixed
observation sequence y with respect to the parameters ¢, ©, and A.
The direct summation is intractable because there are KN possi-
ble values for the sequence z. The forward algorithm uses dynamic

44 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

programming to compute the marginal likelihood in O(K? - N). The
forward algorithm is neatly derived from the matrix expression for
the density,

p(y | ¢,0,A) =¢' -diag(Aq)-©-diag(A)---© - diag(Ay) - 1

T
where 1 = [1 S 1} is a vector of ones of size K, and
Apgp 0O 0
0 Ay 0
diag(Ay) = .
0 0 - Aux

The forward algorithm is traditionally defined in terms of the for-
ward vectors,

= {(pT -diag(A1) - O- diag(An)}T,

which are column vectors formed from the prefixes of the likelihood
function. A final multiplication by 1 yields a means to compute the
likelihood function. This forward algorithm may be automtically
differentiated and the resulting derivative calculation also takes
O(K? - N). But the constant factor and memory usage is high, so it
is more efficient to work out derivatives analytically.

The backward algorithm defines the backward row vectors,

Bn = [@ -diag(An) --- ©O-diag(An) - 1] .

The recursive form of the backward algorithm begins with By, then
defines B,_1 in terms of By.

The derivative of the HMM density can be rendered as a sum
of terms involving forward and backward variables by repeatedly
applying the chain rule to peel pairs of terms off of the product,
resulting in a sum

) J . . .
PV 19,0,7) 5.9 - diag(A1) - @ diag(Ag) -+ @ - diag(An) - 1

_ (Eicgb—r . diag(/\l)) -O- diag(Az) O diag(AN) -1
+ ng -diag(Aq) - (E)ax® -diag(Az) - ©- diag(AN)>
3 y 9
= (o™ () i+ Rl (50+ ding(an) -

involving the forward terms &, backward terms 8, and the derivatives
of the parameters ¢, ©, A.

AUTOMATIC DIFFERENTIATION HANDBOOK

To simplify the notation, let
L=py]¢0,N).

The derivative with respect to the initial distribution ¢ is

azzpﬁ = diag(Al) . ﬁl'
The derivative with respect to the initial emission density A is

0
87\1[' = diag(¢) - p1-

The derivative with respect to the emission density A, for n > 11is

d
aAnﬁza§_1.®.ﬁn.

The deriative with respect to the stochastic transition matrix @ is

d oo
@C = ngz a,_q-diag(Ay) - Bn.

References

The matrix form of the likelihood and forward-backward algorithm,
as well as the matrix derivatives are based on the presentaiton in
(Qin, Auerbach, and Sachs 2000).

45

Ordinary Differential Equations

A differential equation solver takes a system function defining the
differential equation, a starting state, a starting time and a set of
requested solution times. The solutions to the differential equation
given the starting state are then calculated and returned. To be useful
for automatic differentiation, the sensitivies of the solution to their
input must be calculated.

Algebraic Equations

Algebraic equations take the form f(x) = 0. It's possible to calculate
sensitivies of these solutions and hence automatically differentiate
through solvers.

Complex Numbers

A complex number is described in terms of a real component x and
imaginary component w as z = x + w - i, where i = v/—1. There

is nothing special about autodiffing complex functions in that they
can be considered as just functions on pairs (x, w). Both adjoints &, @
and tangents X and @w may be computed. What is not computed is
complex derivatives, that is differentiating with respect to the entire
complex number z.

Definite Integrals

It is possible to autodiff through definite integrals of the form

y= /abf(x,(?)dx.

to calcuate derivatives with respect to 6.

Changes of Variables

When working with an inference or optimization algorithm, it is
convenient to have functions defined on all of RY. Yet most models
are more naturally formulated in terms of constrained parameters
like probabilities (values in [0, 1]), correlations (values in [—1, 1]),
variances (in [0, c0)). Even more complex constraints are imposed on
covariance matrices (positive definite matrices) or simplexes (non-
negative sequence of values summing to one).

In all of these cases, it is possible to transform the constrained
variable to the unconstrained scale. When transforming back from
the constrained scale to the unconstrained scale, a Jacobian adjust-
ment is necessary to account for the change of variables. And to
make the resulting function differentiable, this Jacobian must be dif-
ferentiable.

This chapter collects autodiff results for the inverses of several
popular constraining transforms.

Generalized Linear Models

Generalized linear models are a form of regression where a linear
function of predictors is transformed to an appropriate domain and
then an appropriate sampling distribution is used. For example, lo-
gistic regression involves a logistic link function that transforms val-
ues in (0,1) to R combined with a Bernoulli sampling distribution.
Traditional linear regression uses the identity function as a transform
and a normal sampling distribution.

Linear predictors and regression coefficients

In all of the generalized linear models, there will be N observed
outcomes y = y1,...,yn, the range of which will vary among the
generalized linear models.

In all of the models, there will be an N x K data matrix x, where
each row vector x,, 1.x € RX consists of predictors for outcome y;,.

In all of the models, there will be parameters for an intercept « €
R and regression coefficients 3 € RX. The linear predictor for a
generalized linear model for item vy, is

K
ttxn B=a=) X Pr
k=1

Each generalized linear model will then transform this linear predic-
tor and provide a corresponding sampling distribution, which may
include additional parameters.

Logistic regression

Logistic regression involves binary data y, € {0,1}, a logit link
function (hence the name), and a Bernoulli sampling distribution.

The logit function logit : (0,1) — (—o0, c0) maps a probability to
its log odds, that is, the logarithm of the odds it represents,

P
1—p

logit(p) = log

58 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

The inverse of the logit link function, logit™! : (—co,c0) — (0,1),
maps real numbers back to probabilities by

- 1
loglt l(ﬂ) - m

The inverse logit function is a particular form of S-shaped, or sig-

moid function.” 7 Other popular sigmoid functions

in statistical applications include the

hyperbolic tangent function tanh : R —

0 e (0/ 1) by (—1,1) and the inverse standard normal

9 ifu—=1 cumulative distribution function,
d1:R - (0,1).

The Bernoulli sampling distribution is defined for u € {0,1} and

bernoulli(u | 0) =
1—-6 ifu=0.

The logistic regression probability mass function is defined for
y € {0,1}N, x e RN*K x € R, and B € RX by

N
p(y | x,a,8) = [] bernoulli(y, | logit ' (a + x4 - B)).

n=1

To avoid underflow to zero, it is necessary to work on the log
scale, where

N
logp(y | x, &, B)log p(y | x,&,B) =) logbernoulli(y, | logit™ Y (a +x, - B)).
n=1
For logistic regression (and other generalized linear models), the
inverse link function applied to the linear predictor produces the
expected value,

Yn = logit_l(oc +xy-B)

The derivatives work out very neatly for logistic regression. The
inverse logit function has a derivative that can be expressed neatly in
terms of the value,

%mgirl(u) — logit™ (1) - (1 — logit " (1))
Thus if y = logit™ ' (1), then Ly =y (1—y).
The next step is pushing this through the Bernoulli pmf, which is

3 1 ifu=1
—Dbernoulli(u | 0) =
a6 ~1 ifu=0.

Taking the derivative of the logarithm can then be worked out as

% ifu=1

d . _
ﬁlogbernoulh(u | 6) = {

—15 ifu=0.

AUTOMATIC DIFFERENTIATION HANDBOOK 59

Continuing to the full logistic regression log density,

N
% logp(y | x,a,B) = Z ai log bernoulli(y, | logit ™ (a« + x, - B))
N
= Y7
n=1

Derivatives with respect to the regression coefficients are just as

simple,
ﬁlogpy\xzxﬁ an- —¥n),

or coefficient-wise,

a,s logp(y | x,a B) = ank In)-

Monte Carlo Methods

Monte Carlo methods are used to compute high-dimensional in-
tegrals corresponding to expectations. For example, if Y € Risa
real-valued random variable and f : R — R is a real-valued function,
then the expectation of the function applied to the random variable Y
is

BIF()) = [) pr(v)dy,

where py(y) is the density function for Y.

Introduction to Monte Carlo Methods

Suppose it possible to generate a sequence of random draws

y(l),. ..,y(’”),. o~ py(y)

distributed according to py(y). With these random draws, the expec-
tation may be reformulated as as the limit of the average value of the
function applied to the draws,

1 M
E[f(y)] = lim - Zlf(}/(m))-

M—o00

Given finite computation time, an approximate result can be com-
puted for some fixed M as

1 M
Bl)]~ 5 L ™)

This is known as a Monte Carlo method, after the casino of that
name in Monaco. If the samples are independent or drawn from a
geometrically ergodic Markov chain, the approximation will converge

according to the central limit theorem at a rate of O(4/ %)
Sensitivities of expectations

Suppose that p(y | 6) is the distribution of a random variable Y € R
and there is some random quantity of interest f(Y) whose expecta-

62 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

tion for some fixed parameter values 6,

Y)| 6] = /f “pyje(y | 0)dy,

is of interest.
The derivative of this expectation with respect to the parameters 0,

VE[f(Y) | 6],

quantifies the rate of change in the expectaiton of f(Y) as 6 changes.

The change-of-variables approach

In simple cases, the expectation can be expressed as E[f(Y,0)] with
gradients computed as

VOE[F(Y,0)] = Vo [£(1,0)- p(y)dy
= [(Vaf(1,0)- p(v)dy

1 M
~ o L Va0 wherey™ ~ p(a).
m=1

This is particularly useful when it is possible to express Y using
a change of variables parameterized by 6 from a simpler random
variable Z. More specifically, suppose Y = ¢(Z,0) for a smooth
function of 6 and that it is easy to draw

Z(m pz(z).

Given the easy to simulate variable Z and smooth function Y =
8(Z,9),
E[f(Y)] = E[f(g(Z,6))]-

Gradients follow from the chain rule,

VeE[F($(Z,0)] = Vo [£(5(z0))-p(6)dz
= [(Vos(g(z0)) - p(6)dz
= /f (2,0)) - (Vo g(2,0)) - p(6) dz

Q

M
2 g(z™,0)) - Vog(z™,0) where z(") ~ pz(2)

m=1

Example: expecations of functions of multivariate normal variates

For example, suppose Y ~ normal(y,X) and the target expectation
is E[f(Y) | u,Z]. A change of variables approach to calculating the

AUTOMATIC DIFFERENTIATION HANDBOOK 63

expectation draws a standard normal variate Z ~ normal(0,I), where
I is the identity matrix, then transforms it to Y = ¢(Z, i, %), where g
is the smooth function

g(z,u,X) = p+ cholesky(X) - z

The Cholesky decomposition is defined so that cholesky(X) = Ly is
the unique lower triangular matrix satisfying

Y=Ly Ly.

Now if z ~ normal(0,I) and y = g(z,,2) = u+ Ly - z, then
z ~ normal(y, X).

The gradient of the target expectation can be defined by change of
variables,

VizEF(Y) [E] = Vs [f() - normal(y| p,%)dy.
= Vr / F(g(z 1,%)) - normal(z | 0,1) dz

= Vy,z/f(g(z, #,%)) -normal(z | 0,1) dz

I
—

(Vux f(g(z,1,%))) -normal(z | 0,1) dz

~ M Z_: qu /}4/ X))
LS5 o) (m)
~ oo L f@EM) Vs g(Z™ px),
m=1

where z(") ~ normal(0,1). Because g is defined to be smooth and
automatically differentiable, as long as the function f(y) can be auto-
matically differentiated, so can E[f(Y) | u,X] = E[g(Z, u, Z)].

The score function approach

The score function for the variable Y, which depends on parameters ©,
is

score(0) = Vlog pyje(y | 0).
By the chain rule,

1
Vio) =—+—-V 0).
gPY|@(y | 0) Py‘@(]/ 10) PY\@(y | 6)

Rearranging terms expresses the gradient of the density in terms of
the score function and density,

Vpyie(y | 0) =p(y | 6) - Viogp(x | 0).

64 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

The following derivation provides the basis for using Monte Carlo
methods to calculate gradients.

Vo E[F(Y) 6] = Vo [f) prioly | €)dy
= [&) (Vopvoly 19)) dy
= [&)+ (Volog prio(v19) - prio(y | ©)dy

— E[f(Y)- Volog pyio(Y | 6) 6]

1 M
— lim L. Y0
i g Ly Velog priey | 9)

Q

1 M
3 L v Velog pyie(y | 6),
m=1

where (") ~ pyje(y | 0). Because Y is random and E [f(Y) | 0]

is a conditional expectation, the gradient is taken with respect to 6.
The first line follows from the the definition of expectations. The
second step uses the dominated convergence theorem to distribute
the gradient into the integral (past the constant f(y)). The third step
uses the score function derivation of the gradient of the density. The
fourth step is again the definition of an expectation, where again 6 is
fixed. The penultimate step involves the fundamental rule of Monte
Carlo integration, assuming (") ~ Pyje(y | 0). The final step is the
approximation resulting from using only finitely many draws.

Example: Monte Carlo expectation maximization (MC EM)

Given observed data y, unobserved (latent or missing) data z, param-
eters 6, and total data likelihood function p(y,z | 6), the maximum
marginal likelihood estimate is (where it exists),

argmax, p(y | 6).

The missing data z is marginalized out of the total data likelihood to
produce the likelihood of the observed data,

p(y|6) = /p(y,z | 6) dz.

The expectation maximization algorithm works iteratively by select-
ing an initial #(!) and then setting

g(nt+l) — arg max, Q(G,G(")),

where the function Q is defined by

Q(©,6") = [10p(@ |) - plz |67, y) dz.

AUTOMATIC DIFFERENTIATION HANDBOOK

In order to find §("*1) it is helpful to have gradients of the objective
function Q(6,0(") being optimized,

VeQ(8,6M) = Ve/ZIOgP(GIz,y)~P(Z|9(”),y)dZ

= /Z(Ve logp(0|zy)) p(z| 0™, y)dz

M

1
Y v (m)
M plogp(6 [z, y),

Q

where z(") ~ p(z | 61, y).

Example: automatic differentiation variational inference (ADVI)

In a Bayesian model, the focus is on the posterior distribution p(6 |
), where y is observed data and 6 are the model parameters. Varia-
tional inference seeks to find a parametric distribution p(6 | ¢) with
parameters ¢ that approximates the posterior p(0 | y). The goodness
of fit is measured by the Kullback-Leibler (KL) divergence from the ap-
proximating distribution to the true posterior. The goal is to find the
parameters ¢ that minimize this divergence,

¢ = arg min, KL[p(8 [¢) || p(8 | v)] -
KL-divergence is defined by

B p© |)
KL[p(@¢) || p(®|y)] = /@’](9 [9)-Tog) 9O

Differentiating yields

Vo KL[p(@ | 9) | (@ 1)) =V [p(e] g)-1og Lig P as

For automatic differentiation variational inference (ADVI), the approx-
imating distribution is assumed to be multivariate normal with mean
and covariance parameters ¢ = (j, %),

p(0 | ¢) = normal(| u, X).

Using the normal change of variables approach described above with
z ~normal(0,1) and 6 = g(z, 1, X) = p + cholesky(X) - z, the gradient

65

66 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

may be calculated by Monte Carlo methods as

normal(6 | 4, X)

Ve KL[p(8 | ¢) || p(8|v)] p(61y)

do

Vs /@normal(@ | 1, %) -log

p(g(z,w2) | y)

p(g(z,wX) | y)

1%

1 M normal(g(z™, 1, X) | y, %)
— lo
ML Vel T e) 1)

where the z(") ~ normal(0,1). Because the function g was con-
structed to be smooth, the derivative of the expectation can be cal-
culated using automatic differentiation as long as the log posterior
density function log p(6 | y) can be automatically differentiated.
This brute-force derivation ignores the fact that E[log normal(© |
Y) | u, 2] is the entropy of a normally distributed random variable
©® ~ normal(y, L), the gradient of which is available in closed form.

References

(Mohamed et al. 2019) is a thorough reference to using Monte Carlo
gradients in statistical and machine-learning algorithms. (Wei and
Tanner 1990) provides a concise overview of gradients in the Monte
Carlo EM algorithm. (Kucukelbir et al. 2017) introduces automatic
differentiation variational inference.

/@normal(z 10,1) -V, xlog normal(g(z, 1, Z) | 4, X) d

Vy,Z/ normal(z | 0,1) - log normal(g(z, i, 2) | 4, X) &
e)

z

(APPENDIX) Appendices

Reference C++ Implementations

Forward-mode automatic differentiation in C++

Forward-mode automatic differentiation can be implemented directly
in C++ following the pattern established in the standard library for
complex numbers. A forward-mode autodiff variable is represented
by a dual number holding two scalar values, a constructor where the
second value defaults to zero, and getters for the value and tangent.

namespace autodiff {
template <typename T>
class dual {
T val_;
T tan_;
public:
dual(const T& val = 0, const T& tan = 0)
: val_(val), tan_(tan) { }
const T& val() const { return val_; }
const T& tan() const { return tan_; }
+
}

The type of value is templated to supported nested forward mode.
The default copy constructor dual(const dual<T>&), destructor
~dual(), and assignment operator operator=(const dual<T>&) are
sufficient.

Dual numbers are constructed from either a value and a tangent,
or just a value with default zero tangent, or with neither and default
zero values and tangent.

using autodiff::dual;
dual<double> a(2.2, -3.1);
dual<double> b(5);
dual<double> c;

The first has a value of 2.2 and a tangent of -3.1, whereas the sec-
ond has a value of 5 and a tangent of o (the default) and the last a

70 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSTIAN

value and tangent of o.

The constructor is not declared implicit and thus will support the
assignment of primitives, giving them default o tangent values. The
assignments

dual<double> c 5;

and
dual<double> d = dual<double>(5);

both invoke the default copy assignment operator operator=(const
dual<double>&); the former promotes 5 to dual<double>(5) using
the non-explicit unary constructor.

Functions and operators are coded following the dual arith-
metic. All autodiff functionality will be declared in the namespace
autodiff, though the namespace qualification will not be shown.
For example, exponentiation is defined following the dual arithmetic
rule.

#include <cmath>

template <typename T>

inline dual<T> exp(const dual<T>& x) {
using std::exp;
Ty = exp(x.val());
return dual(y, x.tan() * y);

So is the logarithm function.

template <typename T>

inline dual<T> log(const dual<T>& x) {
using std::log;
Ty = log(x.val());
return dual(y, x.tan() /vy);

The standard library cmath is required for definitions of exp and
log for primitive values. The function definitions begin with using
statements, e.g., using std::exp. This allows the exp defined in the
standard library cmath to be used for primitives and the exp defined
for type T to be found by argument-dependent lookup for autodiff
value types T.

Binary operations can be implemented following the dual number
definitions.

template <typename T>

AUTOMATIC DIFFERENTIATION HANDBOOK

inline dual<T> operator*(const dual<T>& x1, const dual<T>& x2) {
return dual(xl.val() * x2.val(),
x1l.tan() *x x2.val() + x1l.val() * x2.tan());

This suffices for the case where both arguments are autodiff vari-
ables,

dual<double> x1 = -1.3;
dual<double> x2 = 2.1;
dual<double> u = x1 * x2;

There is no need to explicitly bring in autodiff::operator+ be-
cause it is included implicitly by argument-dependent lookup.

The following statements which mix autodiff variables and prim-
itives will not match the templated operatorx because the primitive
argment types do not match the template.

dual<double> u 1.2;
dual<double> v = u *x 3.2;

dual<double> w = 2 * u;

The multiplication operator (operatorx) can be further overloaded
in order to support these mixed types.

#include <type_traits>
template <typename T, typename U,
typename = std::enable_if_t<std::is_arithmetic_v<U>>>
inline dual<T> operatorx(const dual<T>& x1, const U& c2) {
return dual(xl.val() *x c2, x1l.tan() % c2);

template <typename T, typename U,
typename = std::enable_if_t<std::is_arithmetic_v<U>>>
inline dual<T> operatork(const U& cl, const dual<T>& x2) {
return dual(cl = x2.val(), cl x x2.tan());

The third template argument invlves a C++ idiom that requires the

template parameter U to be a primitive.3

8 Arithmetic types include only the
U being preventing a match of the template function unless U is
a primitive; the functions enable_if_t and is_arithmetic_v are long int as of C++17.

declared in the standard library header <type_traits>.

Reverse-mode automatic differentiation in C++

Like forward mode, reverse-mode automatic differentiation can be
implemented through operator overloading in C++. As with forward

71

built-in primitive types float, double,
long double, bool, char, short, int, or

72 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSTIAN

mode, argument-dependent lookup means that templated code will
just work with autodiff variables as long as all primitive functions
invoked are defined for autodiff types.

A template using statement will reduce the boilerplate in requiring
arithmetic arguments.

#include <type_traits>

template <typename T>
using enable_if_arithmetic_t
= std::enable_if_t<std::is_arithmetic_v<T>>;

The core code for reverse-mode autodiff defines a class adj used to
store values and an index that will be unique for each subexpression.

#include <cstddef>
std::size_t next_ = 0;

class adj {
double val_;
std::size_t idx_;
public:
template <typename T, typename = enable_if_arithmetic_t<T>>
adj(T val = 0, int idx = next_++)
: val_(val), idx_(idx) { }
double value() const { return val_; }
double index() const { return idx_; }

}

The global counter next_ is used to assign unique identifiers in
sequence to each autodiff variable as it is constructed, so it must be
initialized to zero before any autodiff calculations. The autodiff va-
iable class adj holds a double precision value and a unique index.
The constructor is responsible for generating indexes and storing
values. The default copy constructor, assignment operator, and de-
structor suffice here.

Usage is similar to that of forward-mode autodiff variables.

using autodiff:adj;
autodiff::next_ = 0; // initialize stack before starting
adj x(3.7); // construct from value

The constructor call for x allocates a unique index and increments
the global index counter. Assignment of arithmetic values works by
promotion using the implicit constructor, so that

AUTOMATIC DIFFERENTIATION HANDBOOK

adj y = 2.9; // assignment works by promoting
is equivalent to
adj y = adj(2.9);

In order to carry out reverse-mode automatic differentiation, each
expression must create and store a continuation used to propagate
adjoints from the result to the operands in the reverse sweep. In
the reference implementation, these continuations are pushed ont a
global stack as they are created.

#include <vector>
#include <functional>

std::vector<std::function<void(std::vector<double>&)>> stack_;

The reverse sweep is implemented by the chain() function, which
takes the variable y from which derivatives should be propagated.

std::vector<double> chain(const adj& y) {
std::vector<double> adjoints(y.idx() + 1, 0);
adjoints[y.idx()] 1;
for (auto chain_f = stack_.crbegin();

chain_f !'= stack_.crend();
++chain_f)
(*chain_f) (adjoints);
return adjoints;

First, the vector adjoints of adjoint values is allocated at size
y.idx_ + 1 so thatit’s large enough to the adjoints of every expres-
sion involved in the calculation of y; this is guaranteed to be enough
because every expression involved in the calculation of y has an in-
dex lower than y’s. The initial values are set to zero in the constructor
for adjoints. To begin the reverse sweep, the adjoint for y, namely
adjoints[y.idx_] is set to one. Then the stack of continuations is
traversed from y down to the independent variables, executing each
continuation on the stack applied to the adjoint vector. Finally, it
returns the adjoints that are calculated so that derivatives may be
retrieved.

A simple operation like addition is overloaded as follows.

inline adj operator+(const adj& x1, const adj& x2) {
adj y(xl.val() + x2.val());
auto f = [=](std::vector<double>& adj) {
adj[x1l.idx()] += adjly.idx()]1;

73

74 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

adj[x2.idx()] += adjly.idx()]1;
b
stack_.emplace_back(f);
return y;

First, the result y is constructed with value equal to adding the
values of the arguments, x1.val_ and x2.val_. Then a continua-
tion f for the chain rule is defined as an anoymous function using
a lambda. The notation [=] indicates that the lambda captures the
values of variables for later execution by copying. Here, the variables
captured are x1, x2, and y. The continuation is declared to take a mu-
table reference to a vector of double-precision floating point values as
an argument—these hold the adjoints of all the subexpressions as de-
clared in the chain() function. The body of the continuation follows
the reverse-mode adjoint rule for addition, namely adding the adjoint
of the result y to the adjoint of each of the operands, x1 and x2. After
the continuation is defined, it is pushed back onto the global stack.
Finally, the value y is returned.

While the above code will work by promoting arithmetic values to
the adjoint class, it is more efficient to define further overloads that
are more specific and avoid the redundant work on the stack.

template <typename T, typename = enable_if_arithmetic_t<T>>
inline adj operator+(const adj& x1, T x2) {
adj y(xl.val() + x2);
stack_.emplace_back([=](std::vector<double>& adj) {
adj[x1.idx()] += adjly.idx()]1;
3

return y;

template <typename T, typename = enable_if_arithmetic_t<T>>
inline adj operator+(T x1, const adj& x2) {
adj y(x1 + x2.val());
stack_.emplace_back([=](std::vector<double>& adj) {
adj[x2.idx()] += adjly.idx()];
3

return y;

Rather than defining a temporary for the continuation, it is pushed
directly onto the stack. The value is computed using the value from
the adjoint variables and the primitives directly, and the only propa-
gation is to the adjoint operand.

AUTOMATIC DIFFERENTIATION HANDBOOK

Multiplication is defined similarly, with the captured operand’s
values and indexes both being used.

inline adj operatorx(const adj& x1, const adj& x2) {
adj y(xl.val() * x2.val());
stack_.emplace_back([=](std::vector<double>& adj) {
adj[x1l.idx()] += x2.val() * adjly.idx()];
adj[x2.idx()] += x1l.val() * adjly.idx()]1;
3

return y;

template <typename T, typename = enable_if_arithmetic_t<T>>
inline adj operatorx(const adj& x1, T x2) {
adj y(xl.val() * x2);
stack_.emplace_back([=](std::vector<double>& adj) {
adj[x1.idx()] += x2 * adjly.idx()];
3

return y;

template <typename T, typename = enable_if_arithmetic_t<T>>
inline adj operatorx(T x1, const adj& x2) {
adj y(x1 x x2.val());
stack_.emplace_back([=](std::vector<double>& adj) {
adj[x2.1idx()] += x1 * adjly.idx()]1;
});

return y;

Non-linear functions like exponentiation also follow their defini-
tions. We need the <cmath> library for a definition of the exponential
function.

#include <cmath>
namespace autodiff {
inline adj exp(const adj& x) {
adj y(std::exp(x.val()));
auto f = [=](std::vector<double>& adj) {
adj[x.idx()] += y.val() * adjly.idx()]1;
b
stack_.emplace_back(f);
return y;

75

76 BOB CARPENTER, ADAM HABER, AND CHARLES MARGOSSIAN

The constructor defines the value of y to be the value of x expo-
nentiated. The adjoint is incremented using the captured value of y,
namely exp(x.val_), which is the derivative of y with respect to x.

The following code computes V £(10.3, —1.1), where f(x1,x2) =
x1-exp(xy-2) +7.

#include <iostream>

int main() {
using autodiff::adj;
next_idx = 0;
stack_.clear();
adj x1 = 10.3;
adj x2 = -1.1;
adj y = x1 * exp(x2 *x 2) + 7;
std::vector<double> adjoints = chain(y);
double dy_dx1 adjoints(x1.idx_);
double dy_dx2 = adjoints(x2.idx_);

std::cout << "grad f = [" << dy_dx1l << ", " << dy_dx2 << "]" << std::endl;

return 0;

First, the index counter and stack are reset. Then the inddependent
variables x1 and x2 are initialized. The resulting dependent variable
y is computed as a single expression and is also of autodiff variable
type. The definitions of operatorx, operator+, and exp() are found
through argument-dependent lookup. Next, the reverse sweep is
carried out starting from the result y using the chain() function. The
resulting adjoints for x1 and x2 are found by indexing the vector of
adjoints returned by chain(). These are then printed and the default
success code (zero) is returned.

References

The reverse-mode autodiff implementation is based on (Carpenter
2018). Matrices are implemented with the Eigen C++ library (Guen-
nebaud, Jacob, and others 2020). A thorough and precise introduction
to modern C++ template programming is (Vandevoorde, Josuttis, and
Gregor 2017).

Carpenter, Bob. 2018. “A New Continuation-Based Autodiff by
Refactoring.” Stan developer forums. https://discourse.mc-stan.
org/t/5037.

Giles, Mike B. 2008a. “An Extended Collection of Matrix Deriva-
tive Results for Forward and Reverse Mode Automatic Differentia-
tion.” Report 08/01. Oxford University.

https://discourse.mc-stan.org/t/5037
https://discourse.mc-stan.org/t/5037

AUTOMATIC DIFFERENTIATION HANDBOOK

. 2008b. “Collected Matrix Derivative Results for Forward

and Reverse Mode Algorithmic Differentiation.” In Advances in Au-
tomatic Differentiation, 64:35-44. Lecture Notes in Computational
Science and Engineering. Springer.

Guennebaud, Gaél, Benoit Jacob, and others. 2020. “Eigen Version
3.” Web site. http://eigen.tuxfamily.org.

Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gel-
man, and David M Blei. 2017. “Automatic Differentiation Variational
Inference.” The Journal of Machine Learning Research 18 (1): 430-74.

Magnus, Jan R, and Heinz Neudecker. 2019. Matrix Differential
Calculus with Applications in Statistics and Econometrics. Third Edition.
John Wiley & Sons.

Mohamed, Shakir, Mihaela Rosca, Michael Figurnov, and Andriy
Mnih. 2019. “Monte Carlo Gradient Estimation in Machine Learn-
ing.” arXiv, no. 1906.10652.

Qin, Feng, Anthony Auerbach, and Frederick Sachs. 2000. “A
Direct Optimization Approach to Hidden Markov Modeling for
Single Channel Kinetics.” Biophysical Journal 79 (4): 1915—27.

Vandevoorde, David, Nicolai M Josuttis, and Douglas Gregor.
2017. “C++ Templates: The Complete Guide.” Addison-Wesley.

Wei, Greg CG, and Martin A Tanner. 1990. “A Monte Carlo Imple-
mentation of the EM Algorithm and the Poor Man’s Data Augmen-
tation Algorithms.” Journal of the American Statistical Association 85

(411): 699—704.

77

http://eigen.tuxfamily.org

	Preface
	Overview of this book
	Why derivatives?
	Why automatic differentiation?
	Overview of automatic differentiation techniques

	Derivatives
	Smooth functions
	Derivatives
	Partial derivatives
	Chain rule
	Gradients
	Gradient-vector products
	Directional derivatives
	Jacobians
	Hessians
	Hessian-vector products
	References

	Finite Differences
	Derivatives with one difference
	Partial derivatives
	Arithmetic precision
	Efficiency of finite differences

	Forward Mode
	Dual numbers
	Gradient-vector products
	Directional derivatives

	Reverse Mode
	Adjoints
	Adjoint propagation and continuations

	Nested Forward Mode
	Forward nested in forward
	Hessians with forward mode
	Third-order derivatives and beyond
	Reverse nested in forward
	Computing Hessians with reverse nested in forward
	Higher-order nesting of reverse in forward mode

	Matrix Derivatives
	Forward mode
	Reverse mode
	Trace algebra
	Examples
	References

	Arithmetic Functions
	Addition
	Subtraction
	Multiplication
	Division
	Exponential
	Exponential (base 2)
	Logarithm (base e)
	Logarithm (base 2)
	Logarithm (base 10)
	Power
	Square
	Square root
	Inverse
	Cos
	Sin
	Tan
	Arccos
	Arcsin
	Arctan
	Cosh
	Sinh
	Tanh
	Arccosh
	Arcsinh
	Arctanh

	Matrix Arithmetic Functions
	Addition
	Subtraction
	Multiplication
	Negation

	Hidden Markov Models
	References

	Ordinary Differential Equations
	Algebraic Equations
	Complex Numbers
	Definite Integrals
	Changes of Variables
	Generalized Linear Models
	Linear predictors and regression coefficients
	Logistic regression

	Monte Carlo Methods
	Introduction to Monte Carlo Methods
	Sensitivities of expectations
	The change-of-variables approach
	Example: expecations of functions of multivariate normal variates
	The score function approach
	Example: Monte Carlo expectation maximization (MC EM)
	Example: automatic differentiation variational inference (ADVI)
	References

	(APPENDIX) Appendices
	Reference C++ Implementations
	Forward-mode automatic differentiation in C++
	Reverse-mode automatic differentiation in C++
	References

