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Abstract

Risk budgets are frequently used to allocate the risk of a portfolio by
decomposing the total portfolio risk into the risk contribution of each compo-
nent position. Many approaches to portfolio allocation use ex post methods
for constructing risk budgets and take the variance as a risk measure. In
this paper, however, we use ex ante methods to evaluate the component con-
tribution to Conditional Value at Risk (CVaR) and to allocate risk. The
proposed minimum CVaR concentration portfolio draws a balance between
the investor’s return objectives and the diversification of risk across the port-
folio. For a portfolio invested in bonds, commodities, equities, and real estate,
we find that over the period January 1984 - June 2010, the minimum CVaR
concentration portfolio offers an attractive compromise between the good risk-
adjusted return properties of the minimum CVaR portfolio and the positive
return potential and low portfolio turnover of an equally weighted portfolio.
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1 Introduction

Risk budgets are frequently used to allocate the risk of a portfolio by decomposing

the total portfolio risk into the risk contribution of each component position. While

various volatility-weighted portfolio allocation methods have existed for many years,

the ex ante use of risk budgets in portfolio allocation is more recent.

Qian’s (2005) risk parity portfolio allocates the portfolio variance equally across

the portfolio components. Maillard et al. (2010) show that the volatility of this

portfolio is located between those of the minimum variance and the equally weighted

portfolio. Zhu et al. (2010) study optimal mean-variance portfolio selection under

a direct constraint on the contributions to portfolio variance. Compared to the

equally weighted portfolio, the most diversified portfolio of Choueifaty and Coignard

(2008) and the global minimum variance portfolio, Lee (2011) finds that the risk-

contribution approach is “potentially more applicable because of its heuristic nature,

economic intuition, and the financial interpretation that ties its concept to economic

losses.”

However, to our knowledge, the literature on risk contribution portfolios lacks a de-

tailed study on using downside risk budgets rather than portfolio variance budgets

as an ex ante portfolio allocation tool. Given the non-normality of many financial

return series, the practice of assigning equal weights to positive and negative re-

turns when computing risk contributions is likely to be suboptimal with respect to

the allocation of risk through ex ante downside risk budgets. We fill this gap by

explaining in detail the implementation of portfolio strategies that use downside risk

contributions rather than variance contributions as an objective or constraint.

Our focus is on portfolio conditional value-at-risk (CVaR), since unlike value-at-

risk, CVaR has all the properties a risk measure should have to be coherent and

is a convex function of the portfolio weights (Artzner et al., 1999; Pflug, 2000).

Moreover, CVaR provides less incentive to load on to tail risk above the VaR level.

By integrating the CVaR budget into their optimal portfolio policy, investors can

directly optimize downside risk diversification.

For many practical applications, the risk parity constraint that requires all assets to
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contribute equally to portfolio risk is too restrictive. As an alternative, we propose

to minimize the largest CVaR risk contribution in the portfolio. Unconstrained

this portfolio criterion still generates portfolios that are similar to the risk parity

portfolio, but it has the advantage that it can be more easily combined with many

other investor objectives and constraints (such as return targets or drawdown and

cardinality constraints).

The outline of the paper is as follows. First, we review in Section 2 the definition and

estimation of CVaR portfolio budgets. In Section 3 we then describe several port-

folio allocation strategies that use the portfolio component CVaR risk budget as an

objective or constraint in the portfolio optimization problem. The paper concludes

with a thorough performance study of using the CVaR allocation methodology to

find the optimal mix of bonds, commodities, equities, and real estate. Portfolios

are rebalanced quarterly taking into account the salient features of financial return

data, such as time-varying volatility and correlation, skewness and heavy tails. We

find that over the period 1984-2010, the minimum CVaR concentration portfolio

offers an attractive compromise between the good risk-adjusted return properties

of the minimum CVaR portfolio and the positive return potential and low portfolio

turnover of an equally weighted portfolio.

2 Portfolio CVaR budgets

2.1 Definition

The first step in the construction of a risk budget is to define how portfolio risk and

its risk contributions should be measured. A näıve approach is to set the risk con-

tribution equal to the stand-alone risk of each portfolio component. This approach

is overly simplistic and neglects important diversification or multiplication effects of

the component units being exposed differently to the underlying risk factors. Using

game theory, Denault (2001) has shown that the only satisfactory risk allocation

principle is to measure the risk contribution as the weight of the position in the

portfolio times the partial derivative of the portfolio risk Rw with respect to that
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weight:

C(i)Rw = w(i)
∂Rw

∂w(i)

. (1)

The standard deviation, value-at-risk and CVaR of a portfolio are all linear in posi-

tion size. By Euler’s theorem we have that for such risk measures the total portfolio

risk equals the sum of the risk contributions in (1).

Previous work by Chow and Kritzman (2001), Litterman (1996), Maillard et al.

(2010), Peterson and Boudt (2008), and Scherer (2007) study the use of portfolio

standard deviation and value-at-risk (VaR) budgets. In his book “Risk budgeting”,

Pearson (2002, p.7) notes that “value-at-risk has some well known limitations, and

it may be that some other risk measure eventually supplants value-at-risk in the risk

budgeting process”. Unlike value-at-risk, conditional value-at-risk (CVaR) has all

the properties a risk measure should have to be coherent and is a convex function of

the portfolio weights (Artzner et al., 1999; Pflug, 2000). Moreover, CVaR provides

less incentive to load on to tail risk above the VaR level. We develop a risk budgeting

framework for portfolio Conditional Value at Risk (CVaR). Portfolio CVaR can be

expressed in monetary value or percentage returns. Our goal is to apply the CVaR

budget in an investment strategy based on quantitative analysis of the assets returns.

We therefore choose to define CVaR in percentage returns.

Denote by rwt the return at time t on the portfolio with weight vector w. To simplify

notation, we omit the time index t whenever no confusion is possible and assume

that the density function of rw is continuous. At a preset probability level denoted

α, which is typically set between 1 and 5 percent, the portfolio VaR is the negative

value of the α-quantile of the portfolio returns. The portfolio CVaR is the negative

value of the expected portfolio return when that return is less than its α-quantile:

CVaRw(α) = −E[rw|rw ≤ −VaRw(α)], (2)

with E the expectation operator. The CVaR contribution is the weight of the posi-

tion in the portfolio times the partial derivative of the portfolio CVaR with respect
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to that weight:

C(i)CVaRw(α) = w(i)
∂CVaRw(α)

∂w(i)
, (3)

where w(i) is the portfolio weight of position i and there are N assets in the invest-

ment universe (i = 1, . . . , N). For ease of interpretation, the CVaR contributions are

standardized by the total CVaR. This yields the percentage CVaR contributions:

%C(i)CVaRw(α) =
C(i)CVaRw(α)

CVaRw(α)
. (4)

The CVaR contributions are directly linked to the downside risk concentration of the

portfolio. Scaillet (2002) shows that the contributions to CVaR correspond to the

conditional expectation of the return of the portfolio component when the portfolio

loss is larger than its VaR loss:

C(i)CVaRw(α) = −E[w(i)r(i)|rw ≤ −VaRw(α)]. (5)

An interesting summary statistic of the portfolio’s CVaR allocation is what we call

the portfolio CVaR Concentration, defined as the largest Component CVaR of all

positions:

Cw(α) = max
i

C(i)CVaRw(α). (6)

As we will show later, minimizing the portfolio CVaR concentration leads to port-

folios with a relatively low CVaR and a balanced CVaR allocation.

2.2 Estimation

The actual risk contributions can be estimated in two ways. A first approach is to

estimate the risk contributions by replacing the expectation in (5) with the sample

counterpart evaluated at historical or simulated data. In a portfolio optimization

setting the risk contributions needs to be evaluated for a large number of possible

weights and therefore fast and explicit estimators are needed. A more elegant ap-

proach for optimization problems is therefore to derive the analytical formulae of

the risk contributions. If the returns at time t are conditionally normally distributed
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with mean µt and covariance matrix Σ then CVaR at time t is given by:

CVaRw(α) = −w′µt +
√

w′Σtw
φ(zα)

α
, (7)

with zα the α-quantile of the standard normal distribution and φ the standard

normal density function. The contribution to CVaR is then:

C(i)CVaRw(α) = w(i)

[

−µ(i)t +
(Σtw)(i)√
w′Σtw

φ(zα)

α

]

. (8)

Financial returns are usually non-normally distributed. In the empirical application,

we use the modified CVaR (contribution) estimator proposed by Boudt et al. (2008).

Based on Cornish-Fisher expansions, the modified CVaR estimate is an explicit

function of the comoments of the underlying asset returns. It has been shown to

deliver accurate estimates of CVaR (contributions) for portfolios with non-normal

returns. To save space, we refer the reader to Boudt et al. (2008) for the exact

definition of this estimator. Throughout the paper we set the loss probability α to

5%.

3 CVaR budgets in portfolio optimization

Previously, risk budgets based on portfolio standard deviation and value-at-risk have

been used either as an ex post or ex ante tool for tuning the portfolio allocation.

In the ex post approach, the portfolio is first optimized without taking the risk

allocation into account. Next the risk budget of the optimal portfolio is estimated

and risk budget violations are adjusted on a marginal basis. The rationale for this

is that the risk contributions in (1) can be interpreted as the marginal risk impact

of the corresponding position. Because of transaction costs, traders and portfolio

managers often update their portfolios incrementally, which makes the marginal

interpretation of risk contribution useful in practice (Litterman, 1996; Stoyanov

et al., 2009). When the risk contribution of a position is zero, Litterman (1996)

calls this the ”best hedge” position for that portfolio component. The positions
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with the largest risk contributions are called “hot spots”. If a risk contribution is

negative, a small increase in the corresponding portfolio weight leads to a decrease

in the portfolio risk. Keel and Ardia (2011) show however that reallocation of the

portfolio based on these risk contributions is limited in two ways. First of all, as a

sensitivity measure, they are only precise for infinitesimal changes, but for realistic

reallocations, these approximations can be poor. Second, they assume changing a

single position keeping fixed all other positions. In the presence of a full investment

constraint, this is unrealistic.

While various volatility-weighted portfolio allocation methods have existed for many

years, the ex ante use of risk budgets in portfolio allocation is more recent. Qian’s

(2005) “Risk Parity Portfolio” allocates portfolio variance equally across the port-

folio components. Maillard et al. (2010) call this the “Equally-Weighted Risk Con-

tribution Portfolio” or, simply, the Equal-Risk Contribution (ERC) portfolio. They

derive the theoretical properties of the ERC portfolio and show that its volatil-

ity is located between those of the minimum variance and equal-weight portfolio.

Zhu et al. (2010) study optimal mean-variance portfolio selection under a direct

constraint on the contributions to portfolio variance.

Our first contribution to this recent literature is to use (percentage) CVaR contri-

butions rather than variance contributions as an objective or constraint in portfolio

optimization. By integrating the CVaR budget into their optimal portfolio policy,

investors can directly optimize downside risk diversification. The rationale for this

is the result in (5) that the CVaR contributions correspond to the conditional expec-

tation of the return of the portfolio component when the portfolio loss is larger than

its VaR loss. From (3) and (5) it follows also that the percentage CVaR contribution

can be rewritten as the ratio between the expected return on the position at the

time the portfolio experiences a beyond VaR loss and the expected value of these

beyond VaR portfolio losses:

%C(i)CVaRw(α) =
E[w(i)r(i)|rw ≤ −VaRw(α)]

E[rw|rw ≤ −VaRw(α)]
. (9)

In almost all practical cases, the denominator in (9 ) is negative such that a high
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positive percentage CVaR contribution indicates that the position has a large loss

when the portfolio also has a large loss. The higher the percentage CVaR, the more

the portfolio downside risk is concentrated on that asset and vice versa.

Our second contribution is that we propose two strategies for using the CVaR bud-

gets in portfolio optimization in order to balance the maximum return, minimum

downside risk, and maximum downside risk diversification objectives of an investor.

The first strategy is the Minimum CVaR Concentration portfolio (MCC), which uses

the downside risk diversification criterion as an objective rather than a constraint.

More formally, the MCC portfolio allocation is given by:

wMCC = argminw∈WCw(α), (10)

with the portfolio’s CVaR concentration Cw(α) as defined in (6). W is the set of

feasible portfolio weights. Unless otherwise mentioned, W is only restricted by a

full investment constraint.

The second strategy consists of imposing bound constraints on the percentage CVaR

contributions. This may be viewed as a direct substitute for a risk diversification

approach based on position limits. It has the ERC constraint as a special case:

%C(1)CVaRw(α) = . . . = %C(N)CVaRw(α) = 1/N. (11)

Note that that for a portfolio that has the ERC property, the relative weights are

inversely proportional to the marginal impact of the position on the portfolio CVaR:

w(i)

w(j)
=

∂CVaRw(α)/∂w(j)

∂CVaRw(α)/∂w(i)
. (12)

It follows that the ERC allocation strategy yields portfolios that give higher weights

to assets with a small marginal risk impact and down-weights the investments with

a high marginal risk (the so-called “hot spots” in Litterman 1996).

The next paragraphs study the properties of these two approaches in more detail.

In the empirical section, we will compare these CVaR budget based portfolio alloca-

tion rules with the more standard Minimum CVaR (MC) and Equal-Weight (EW)
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portfolios:

wmin CVaR = argminw∈WCVaRw(α) and wEW = (1/N, . . . , 1/N)′. (13)

3.1 Properties of the MCC portfolio

For the derivation of the properties of the minimum CVaR concentration portfolio,

it is useful to rewrite the portfolio CVaR concentration as the portfolio CVaR times

the largest percentage CVaR contribution:

Cw(α) = CVaRw(α)max{%C(1)CVaRw(α), . . . ,%C(N)CVaRw(α)}. (14)

The first factor in (14) is minimized by the minimum CVaR portfolio. The sec-

ond factor attains its lowest value when the portfolio has the ERC property, since

max{%C(1)CVaRw(α), . . . ,%C(N)CVaRw(α)} ≥ 1/N. By minimizing the product of

these two factors, the MCC portfolio strikes a balance between the objectives of

portfolio risk diversification and total risk minimization. Compared with the un-

constrained minimum CVaR portfolio, we have that the CVaR of the MCC portfolio

is higher, but the risk is less concentrated. In fact, we show in Appendix that the

percentage CVaR of the fully invested minimum CVaR portfolio coincides with the

component’s portfolio weight:

%C(i)CVaRwmin CVaR(α) = wmin CVaR

(i) . (15)

It is well known that the minimum CVaR portfolio generally suffers from the draw-

back of portfolio concentration. By (15) this carries directly over to the CVaR

allocation.

In many cases, the CVaR concentration is not a convex function of the portfolio

weights and Cw(α) may also not be differentiable. For this reason, we recommend

to use a derivative-free global optimizer to find the MCC portfolio. We used the

differential evolution algorithm developed by Price et al. (2005). Ardia et al. (2011)

provide an example of how to implement the MCC portfolio.
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The MCC objective can easily be combined with a return target. This serves the

general purpose of maximizing return subject to some level of risk, while also mini-

mizing risk concentration at that risk level. We define the mean-CVaR concentration

efficient frontier as the collection of all portfolios that achieve the lowest degree of

CVaR concentration for a return objective. For a given return target r, the mean-

CVaR concentration efficient portfolio solves:

min
w∈W

Cw(α) s.t. w′µ ≥ r. (16)

The minimum CVaR portfolio under the ERC constraint in (12) is an alternative to

the MCC portfolio for attaining a balance between the objectives of portfolio risk

diversification and total risk minimization. On our data examples, the two portfolios

were always very similar.

The advantage of the MCC portfolio over the ERC constrained minimum CVaR

portfolio is that it is computationally simpler and also will yield a solution if the

ERC constraint is not feasible or conflicts with other constraints. Since most real-

world portfolios are constructed with an explicit or implicit return objective and

other constraints, being able to combine with other objectives and constraints is

an important consideration for asset managers that is often incompatible with the

published literature on utilizing risk metrics in portfolio construction. Note also that

the properties of the MCC portfolio generalize to any minimum Risk Concentration

portfolio, as long as the portfolio risk measure is a one-homogeneous function of the

portfolio weights.

3.2 Portfolio allocation under CVaR allocation constraints

The risk allocation can also be controlled by imposing explicit constraints on the

percentage CVaR allocations. This process operates in much the same way that

portfolio managers impose weight constraints on portfolios.

Such percentage CVaR contribution constraints reduce the feasible space in a way

that depends on the return characteristics. Stoyanov et al. (2009) study in detail the
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Figure 1: Percentage CVaR contribution of asset 1 in function of its portfolio weight
for a two-asset portfolio with asset returns that have a bivariate normal distribution
with means µ1 and µ2, correlation ρ and standard deviations σ1 and σ2, respectively.
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effect of the component return characteristics on the total portfolio CVaR. To build

further intuition via a stylized example we plot in Figure 1 the percentage CVaR

contributions for a two-asset portfolio with asset returns that have a bivariate normal

distribution with means µ1 and µ2, standard deviations σ1 and σ2 and a correlation

ρ. Of course, the percentage CVaR contribution is zero and one if the weight is zero

and one, respectively. In between these values, the percentage CVaR displays an

S-shape.

The dotted lines in Figure 1 illustrate the effect on the feasible space for portfolio

weight 1 of imposing an upper 60% bound on the percentage CVaR contributions of

the two assets. This implies that the percentage CVaR contribution of asset 1 has

to be between 40% and 60%. In the top left and bottom right plot, the two assets
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are identical. In this case, the feasible space is centered around the equal-weight

portfolio. For ρ = 0 (bottom right figure), the percentage CVaR contribution of

asset 1 as a function of its weight is more curved than for ρ = 0.5 (top left figure).

In the other figures, asset 1 is more attractive than asset 2 since it has either a lower

volatility or a higher expected return. We see that this leads to a shift of the feasible

space to the right, with allowed portfolio weights around 60%. The set of possible

weights satisfying the box constraints on the percentage CVaR contributions changes

in an intuitively appealing way when differences in return and volatility are allowed.

For general portfolios with non-normal returns, there is no explicit representation

of the percentage CVaR constraint as weight constraint available for investment. A

general purpose portfolio solver that can handle such percentage CVaR contribution

constraints is available in the R package PortfolioAnalytics of Boudt et al. (2011).

4 Empirical results

In this section we apply the CVaR decomposition methodology to optimize portfolios

that allocate across asset classes. The analysis is based on the January 1976 -

June 2010 monthly total USD returns of broad bond, commodity, equity and real

estate asset class indices, namely the Merrill Lynch Domestic Master index, the S&P

Goldman Sachs commodity index, the S&P 500 index and the National Association

of Real Estate Investment Trusts Index (NAREIT). The data are obtained from

Datastream. We will start with a static two asset bond-equity portfolio, and expand

to a larger portfolio for studying the effects of rebalancing under various constraints

and objectives. We impose in all portfolio allocations the full investment constraint

and exclude short sales.

Because of the non-normality in the data, we use the modified CVaR estimator

of Boudt et al. (2008). Its implementation requires an estimate of the first four

moments of the portfolio returns. For the insample analysis in Subsections 4.1

and 4.2, all moments are estimated by their historical sample counterpart on the

winsorized data using the method of Boudt et al. (2008). Over the January 1976
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- June 2010 period, the annualized average monthly return (standard deviation)

of the bond and US equity is 7.56% (5.36%) and 10.69% (14.51%), respectively.

The 95% CVaR of the bond and US equity index is 2.31% and 9.34%, respectively.

The GSCI index has a relatively low annualized monthly return (6.22%) and high

risk (annualized standard deviation of 11.84% and monthly 95% CVaR of 11.84%).

With an annualized return of 11.28%, annualized standard deviation of 14.57% and

monthly CVaR of 10.61%, the NAREIT index offers the highest return and a similar

standard deviation as the S&P 500 index, but its downside risk is slightly higher.

4.1 Static bond-equity portfolio

The simple bond-equity portfolio application in Table 1 illustrates the impact of

the portfolio policy on the risk allocation. Portfolio managers frequently rely on

the heuristic approach of applying position limits to ensure diversification. Such

a simple approach may ignore the individual risks of the portfolio assets and their

risk dependence. A first example is the equal-weight portfolio, which is popular

in practice because it does not require any information on the risk and return and

supposedly provides a diversified portfolio. A second popular position constrained

bond-equity portfolio is the 60/40 portfolio, investing 60% in bonds and 40% in

equity. The first two lines in Table 1 show the estimated risk allocation of these

portfolios. We see that position limits clearly fail to produce portfolios with an ex

ante risk diversification: respectively 97% and 86% of the portfolio CVaR is caused

by the equity investment in the equal-weight and 60/40 portfolios.

Table 1: Weight and CVaR allocation of bond-equity portfolios, together with the
in-sample annualized mean and monthly 95% CVaR over the period January 1976-
June 2010.

Weight allocation CVaR allocation Ann. mean Ann. StdDev 95% CVaR
Bond Equity Bond Equity

Equal-weight 50% 50% 4.11% 95.89% 9.13% 8.13% 4.57%
60/40 weight 60% 40% 14.79% 85.21% 8.81% 7.55% 3.79%
Min CVaR concentration 77.51% 22.49% 50% 50% 8.27% 5.68% 2.79%
60/40 CVaR allocation 81.94% 18.06% 60% 40% 8.13% 5.47% 2.60%
Min CVaR 96.18% 3.82% 96.18% 3.82% 7.68% 5.27% 2.28%
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Note also in Table 1 that the equal-weight and 60/40 portfolios have a relatively

high level of total portfolio CVaR. Rockafellar and Uryasev (2000), among others,

recommend the minimum CVaR portfolio to investors wanting to avoid extreme

losses. For our sample, the minimum CVaR portfolio has a monthly 95% CVaR of

2.28%, which is less than half the CVaR of the equal-weight portfolio. However,

the portfolio risk is still heavily concentrated in one asset: the bond allocation is

responsible for 96% of portfolio CVaR in the minimum CVaR portfolio.

This paper proposes the Minimum CVaR Concentration (MCC) portfolio for in-

vestors interested in having both a high ex ante downside risk diversification and a

low total portfolio CVaR. We see in Exhibit 2 that for this sample the MCC port-

folio has the highest CVaR diversification possible: it is an equal risk contribution

portfolio with a 22% part in equity. It has only a slightly higher CVaR than the

minimum CVaR portfolio, but also a higher average return.

Finally, we also consider substituting the 60/40 weight allocation with a 60/40 risk

allocation. 82% of this percentage risk constrained portfolio is invested in bonds.

Like for the MCC portfolio, the price for risk diversification is a slight increase

in the portfolio CVaR compared to the minimum CVaR portfolio, but this is also

compensated by a higher average return.

4.2 Mean-CVaR concentration efficient frontier

In comparison with the ERC portfolio of Qian (2005), the MCC portfolio has the

advantage that it may be easily combined with many other investor objectives and

constraints. Adding a return target to the minimum CVaR concentration objective,

we plot in Figures 2 and 3 the mean-CVaR concentration efficient portfolios for

the investment universe consisting of the US bond, S&P 500, NAREIT and GSCI

asset class indices. These portfolios are compared with the mean-StdDev and mean-

CVaR efficient portfolios. The upper panel of Figure 3 plots the mean-risk frontiers,

while the lower panel shows the annualized mean return of the portfolios against the

largest percentage CVaR contribution. A joint reading of these plots is needed to

understand the trade-off between the maximum return, minimum risk, and minimum
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risk concentration objectives.

The optimal weights for the mean-CVaR concentration portfolios as a function of

the return target are reported in the lower left plot of Figure 2. Without return

constraint, the MCC portfolio invests 47.34% in the bond index, 20.70 % in the

S&P 500 index, 18.44% in the NAREIT index and 13.52% in the GSCI index.

The lower right plot of Figure 2 shows that the CVaR allocation the unconstrained

MCC portfolio is very close to the one of an equal risk contribution portfolio. The

upper plots of Figure 2 show the weight and CVaR allocation of the classical mean-

StdDev and mean-CVaR efficient portfolios. There are several striking differences.

First, the mean-StdDev portfolio is slightly more diversified than the mean-CVaR

portfolio: 97% of the unconstrained min CVaR portfolio is invested in the bond

index, against 84% for the minimum StdDev portfolio. Second, since the CVaR

of the GSCI is significantly higher than the CVaR of the other asset class indices,

its percentage risk contribution is triple its portfolio weight. Third, the annualized

return of the minimum StdDev and CVaR portfolio is 7.7% and 7.5%, respectively,

while for the MCC portfolio it is 8.7%. The risk-return trade-off is visualized in

Figure 3. We see that the equal-weight portfolio has the highest average return and

risk of all unconstrained portfolios, followed by the MCC portfolio. The risk-return

characteristics of the min StdDev and min CVaR portfolios are similar.

Figure 2 shows that imposing a return constraint on the minimum StdDev and CVaR

portfolios leads to a higher allocation to the S&P 500 and the NAREIT index, and a

reduction in the bond and GSCI investment. Of course this leads to portfolios with

a higher return and risk, but interestingly as long as the return target is below 9%

it reduces the risk concentration of the portfolio as can be seen from the lower figure

in Figure 3. From that point onwards, the NAREIT index becomes the largest risk

contributor and higher returns are traded off with both a higher total portfolio risk

and risk concentration.

The mean-CVaR concentration efficient portfolio is very different from the mean-

CVaR and mean-StdDev efficient portfolios. On this data set, the mean-CVaR con-

centration efficient frontier has three distinct segments. Unconstrained, the mean-

CVaR concentration efficient frontier is an equal risk contribution portfolio with an
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annualized return of 8.7%%. For a target return between 8.7% and 9.01%, the port-

folio CVaR concentration increases from 0.96% to 1.19%, but the portfolio CVaR

decreases from 3.87% to 3.59%. This is due to a reallocation from the more risky

commodity investment into bonds, equity and real estate, as can be seen in Figure

2. At the end of this segment, the portfolio is only 1% invested in commodities.

Bonds dominate the portfolio budget allocation with a 58% share. On the second

segment, the bond allocation shrinks to zero, while the shares of the S&P 500 and

the NAREIT index rise from 22% to 52% and from 20% to 48%, respectively. On

this angle portfolio, the S&P 500 and NAREIT index contribute each for 50% to

the portfolio CVaR, which is now 7.0% compensated by a target return of 11%.

The portfolios on the final segment of the frontier replace gradually the S&P 500

investment with the NAREIT. Since this asset offers the highest return, it is also the

endpoint of the long-only constrained mean-CVaR concentration efficient frontier.
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Figure 2: Weight and CVaR allocation of mean-StdDev, mean-CVaR and mean-
CVaR concentration efficient portfolios for various levels of annualized portfolio re-
turns.
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Figure 3: Annualized mean return versus the annualized portfolio standard devi-
ation, the monthly portfolio 95% CVaR and the largest percentage CVaR contri-
bution for the mean-StdDev, mean-CVaR and mean-CVaR concentration efficient
portfolios.
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4.3 Dynamic investment strategies

Under a static risk budget allocation approach, the portfolio manager has determined

a desired asset allocation and does not intend to stray far from it. However, it is well

known that the risk and dependence of most financial assets are time-varying, which

means that the optimal risk budget allocation portfolios also change over time.

Let us therefore consider a dynamic portfolio invested in bonds, equity, real estate

and commodities. The portfolio is rebalanced quarterly to satisfy either an equal-

weight, minimum CVaR or minimum CVaR concentration (MCC) objective. The

CVaR budgets are computed by the Cornish-Fisher method in Boudt et al. (2008),

requiring an estimate of the first four (co)moments of the multivariate return dis-

tribution. Estimation of these moments is conditional on the information available

at the time of rebalancing.

Using the monthly return series from inception, time-varying conditional covariance

estimates are obtained using the DCC-GARCH(1,1) model of Engle (2002). Un-

der this approach, the parameters of the individual GARCH(1,1) volatilities and

conditional correlations are estimated separately, using a two-stage quasi-maximum

likelihood estimation procedure with variance and correlation targeting. The con-

ditional covariances are then computed as products of individual volatilities and

conditional correlations. One of the nice features of the DCC-GARCH(1,1) model

is that the dynamic conditional correlation structure manages to ensure that the

model estimation is feasible and the covariance matrix is always positive definite,

even in large dimensions. We then compute the devolatized innovations as the cen-

tered returns, standardized by their conditional covariance matrix estimate. The

coskewness and cokurtosis matrices of these innovations are then estimated by the

higher order equicorrelation estimator of Martellini and Ziemann (2010), imple-

mented on a winsorized version of these innovations. The winsorization ensures the

outlier-robustness of the estimates and is described in Boudt et al. (2008).

Since we required a minimum sample size of eight years and the data span is January

1976 - June 2010, the optimized weights are available for the quarters 1984Q1 -

2010Q3. We discuss first the results for the equal-weight, minimum CVaR and
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MCC portfolios. We then analyze the sensitivity of the minimum CVaR and MCC

portfolios to the inclusion of a weight or risk allocation constraint and the choice of

risk measure.

4.3.1 Results unconstrained portfolios

The left and right panels of Figure 4 plot the weight and CVaR allocations of the

equal-weight, minimum CVaR, and MCC portfolios. We find that for almost all

periods the minimum CVaR portfolio is highly invested in the bond index, while the

MCC portfolio is more balanced across all asset classes. As predicted by theory, the

risk allocation of the minimum CVaR portfolio coincides with its weight allocation.

The risk allocation of the MCC portfolio is almost identical to the equal risk con-

tribution state. The CVaR of the equal-weight portfolio is dominated by the S&P

500, GSCI and NAREIT indices, while the risk contribution of the bond is almost

zero for many quarters. The reason for the bad performance of weight constraints in

ensuring ex ante risk diversification is the non-linear dependence of portfolio CVaR

contributions on the weights. Reaching the portfolio manager’s goal of ensuring risk

diversification is therefore more efficiently achieved via direct constraints on the risk

budget contributions rather than on the weights.

The upper panel in Figure 5 plots the ex ante portfolio risk estimates. As expected,

the CVaR of the MCC portfolio is for all quarters in between the CVaR of the

minimum CVaR portfolio and the CVaR of the equal-weight portfolio.

The solid grey and black lines in the lower panel of Figure 5 plot the ratio of

the monthly cumulative out-of-sample returns of the minimum CVaR and MCC

portfolios versus the cumulative returns of the equal-weight portfolio over the period

January 1984-June 2010. The value of the chart is less important than the slope of

the line. If the slope is positive, the strategy in the numerator is outperforming the

equal-weight strategy, and vice versa. The vertical grey bars denote bear markets

defined by Ellis (2005) as periods with a decline in the S&P 500 index of 12 per

cent or more. The left side of the bar corresponds to the market peaks and the

right side to the stock market trough. We see in Figure 5 that the minimum CVaR
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Figure 4: Stacked bar weight and CVaR contribution plots for the quarterly rebal-
anced equal-weight, minimum CVaR and minimum CVaR concentration portfolios.
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portfolio, having a large allocation to the bond, outperforms the equal-weight and

MCC portfolios at times of serious stock market downturn. The performance of the

MCC portfolio seems to be a middle ground between the performance of the equal-

weight and minimum CVaR portfolios. It offers an attractive compromise between

the good performance of the minimum CVaR portfolio in adverse markets and the

upward potential of the equal-weight portfolio. A final observation is that periods

where one strategy is outperforming the other are relatively long and indicate the

possibility of applying market timing strategies on top of these allocations.

Table 2 reports the annualized out-of-sample average return on the portfolios. When

computed over the whole period, the minimum CVaR and MCC portfolios performed

within 15 bps of one another. This is a small margin, given the long period of time
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Figure 5: Monthly CVaR of the quarterly rebalanced equal-weight, minimum CVaR
and minimum CVaR concentration portfolios (upper panel) and relative perfor-
mance of the quarterly rebalanced minimum CVaR and minimum CVaR concentra-
tion portfolios versus the equal-weight portfolio (lower panel). The shaded regions
indicate a bear market regime.
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presented. The risk statistics computed from the out-of-sample returns confirm

the ex ante risk estimates from Figure 5. The value of the annualized standard

deviation and monthly historical CVaR of the MCC portfolio is in between those

of the minimum CVaR portfolio and the equal-weight portfolio. In the credit crisis

the equal-weight portfolio suffered a drawdown of 52%, which is significantly higher

than the 34% drawdown of the MCC portfolio.

Splitting the sample into bull/bear periods, we see a much bigger variation in rela-

tive performance. The (annualized) return for the minimum CVaR portfolio trailed
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Table 2: Summary statistics of monthly out-of-sample returns on equal weight, min-
imum portfolio CVaR (concentration) investment strategies over the period January
1984 - June 2010.

Objective Equal Min Min Min Min
Weight CVaR CVaR Conc CVaR CVaR Conc

Constraint 40% Pos 40% CVaR ERC 40% Pos
Limit Alloc Limit Limit

Full period (in %)
Ann. Mean 7.11 7.55 7.40 7.40 7.44 7.40 7.33
Ann. StdDev 10.06 4.72 7.42 8.52 6.61 7.42 8.42
Skewness -3.14 -0.49 -2.35 -2.36 -1.92 -2.35 -2.69
Exc. Kurtosis 23.42 3.62 15.11 14.59 11.12 15.10 18.37
Monthly Hist CVaR 7.55 2.62 5.14 6.17 4.51 5.14 6.08
Gini portfolio weights 0.00 0.68 0.25 0.23 0.47 0.25 0.17
Monthly Hist CVaR % Conc 0.63 0.96 0.62 0.71 0.76 0.62 0.61
Portfolio turnover 5.01 10.31 9.04 11.30 12.45 9.04 8.07
Normal/Bull stock market (in %)
Ann. Mean 12.64 8.02 11.33 12.19 10.42 11.33 11.96
Ann. StdDev 7.06 4.40 5.71 6.40 5.28 5.71 6.20
Skewness -0.30 0.12 -0.13 -0.26 -0.08 -0.13 -0.23
Exc. kurtosis 0.84 1.57 0.39 1.10 1.18 0.39 0.74
Monthly Hist CVaR 3.51 2.07 2.65 3.06 2.42 2.65 3.00
Bear stock market (in %)
Ann. Mean -21.83 5.10 -13.18 -17.64 -8.14 -13.19 -16.93
Ann. StdDev 17.10 6.14 11.52 13.37 10.18 11.53 13.60
Skewness -2.59 -1.46 -2.56 -2.30 -2.18 -2.56 -2.54
Exc. kurtosis 9.65 4.33 8.40 7.18 5.93 8.40 8.82
Monthly Hist CVaR 15.44 4.31 11.06 12.63 9.57 11.06 12.80
Drawdowns higher than 10%
Credit crisis1 0.52 0.10 0.34 0.41 0.27 0.34 0.42
Asian-Russian crisis2 0.15 0.11 0.10 0.11
Black Monday3 0.11 0.11 0.11 0.11 0.11

1 May 2008-Feb 2008 for the min CVaR portfolio, Nov 2007-Feb 2009 for the min CVaR portfolio with position or

risk allocation limit, otherwise June 2008-Feb 2009. 2 Oct 1997-Aug 1998 for the equal weight portfolio, otherwise

April-August 1998. 3 Aug-Nov 1987 for the equal weight portfolio, otherwise Aug-Oct 1987.

the MCC portfolio by more than 300 bps during equity bull markets, yet outper-

formed during bear markets by more than 1800 bps. The minimum CVaR and MCC

portfolio have thus each their appeal depending on the market environment. This

might lead to risk timing the portfolio allocation, whereby the investor selects his

risk appetite based on broad market conditions. In a secular bull market, he might

choose the MCC portfolio because of its relative outperformance in exchange for the

risk of slightly larger losses. In a secular bear market, the minimum CVaR portfolio

might be more appealing because of its conservatism.
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Recall from (14) that the MCC portfolio is designed to have both a low downside

risk and high downside risk diversification. To verify that the MCC has effectively

this property out of sample we report in Table 2 the average Gini coefficient of the

portfolio weights and the historical CVaR percentage concentration. The Gini coef-

ficient takes values between 0 (equal-weight portfolio) and 1 (portfolio concentrated

on one asset).1 We see that the minimum CVaR portfolio is heavily concentrated

on a few assets, compared to the MCC portfolio. The MCC portfolio thus strikes

an attractive balance between a high risk adjusted return performance and a well

diversified portfolio. The historical CVaR percentage concentration computed as the

average proportion between the largest component loss contribution and the total

loss for all losses that exceed the 5% quantile loss computed using the returns from

inception. We see that the equal-weight portfolio has the lowest CVaR percentage

concentration, but the highest CVaR. In contrast, the minimum CVaR portfolio

has the lowest CVaR, but the highest CVaR percentage concentration. The MCC

portfolio combines both a low CVaR concentration and low total portfolio CVaR.

Finally, we consider the portfolio turnover of the strategies, defined by DeMiguel

et al. (2009) as the average sum of the absolute value of the trades across the N

available assets:

Turnover =
1

T∗ − 1

T∗−1
∑

t=1

N
∑

i=1

|w(i)t+1 − w(i)t+|, (17)

where w(i)t+1 is the weight of asset i at the start of rebalancing period t + 1, w(i)t+

is the weight of that asset before rebalancing at t + 1 and T∗ is the total number

of rebalancing periods. This turnover quantity can be interpreted as the average

percentage of wealth traded in each period. The portfolio turnover is the lowest

for the equal-weight portfolio (5.01%). The MCC portfolio has a significantly lower

turnover (9.04%) than the minimum CVaR portfolio (10.31%).

In conclusion, over the period January 1984 - June 2010, the minimum CVaR portfo-

1The Gini index is a measure of dispersion using the Lorenz curve. Let z be a random variable

on [0, 1] with distribution function F . The Gini index is calculated as 1 − 2
∫

1

0
L(z)dz, where

L(z) =
∫

z

0
udF (u)/

∫

1

0
udF (u).

25



lio has the lowest out-of-sample risk but a high risk concentration and turnover. The

equal-weight strategy has the lowest turnover and risk concentration, but highest

total risk. The proposed MCC portfolio is on all these dimensions the second best.

It achieves an attractive compromise between low overall risk, good upside return,

high diversification, and low turnover. When we condition on the market regime, we

find that in bear markets, as expected, the minimum CVaR portfolio outperforms all

strategies, but has a lower return in normal/bull markets than the equal-weight and

MCC portfolios. Compared to the equal-weight diversification strategy, the MCC

portfolio has a comparable return but lower risk in a normal/bull stock market, and

its performance is less affected when the market regime switches to a more negative

outlook. For this reason, we recommend a minimum CVaR allocation strategy in a

bear market regime and the MCC strategy in a normal/bull market regime.

4.3.2 Sensitivity to weight and CVaR allocation constraints

The MCC portfolio optimizes directly the risk diversification of the portfolio. Previ-

ous research of Maillard et al. (2010), Qian (2005) and Zhu et al. (2010) has focussed

however on using risk budgets as a constraint in the portfolio allocation, or impose

diversification through weight constraints. We investigate in Table 3 and Figures

6-7 the sensitivity of the portfolios to an equal risk contribution constraint, upper

40% position limit or an upper 40% CVaR allocation limit. The choice of 40% is

arbitrary, but it is consistent with the 40% allocation to equity in the stylized 60/40

bond-equity portfolio.

The upper two plots in Figure 6 present the weight allocations of the constrained

minimum CVaR portfolios. We see that the 40% upper bound on the portfolio

weights and risk allocations is stringent for almost all periods. Under these con-

straints, the component CVaR contribution of the minimum CVaR portfolio no

longer coincides with the weight allocation. The investment in the bond typically

contributes less to CVaR risk than its portfolio weight. Its contribution is for some

months even negative under the position limit. The bottom plots in Figure 6 show

the weight and risk allocation of the MCC portfolio under a 40% upper bound on

the portfolio weights. We see that in spite of the weight constraint, the risk of the
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Figure 6: Stacked bar weight and CVaR contribution plots for the constrained min-
imum CVaR and minimum CVaR concentration portfolios invested in the Merrill
Lynch US bond, S&P500, NAREIT and S&P GSCI indices. The portfolios are
rebalanced quarterly.
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MCC portfolio is still more equally spread out than for the minimum CVaR portfolio

where for some periods the S&P 500 investment causes more than half of portfolio

risk.

From the weight and CVaR allocation plots, it is clear that adding position or

risk allocation limits pushes the minimum CVaR and MCC portfolio towards an

allocation that is closer to the equal-weight portfolio. Consequently, the return,

risk, and turnover properties of these constrained portfolios are closer to the equal-

weight portfolio, as can be seen in Table 3 and Figure 7. Compared to the 40%

CVaR allocation limit, the maximum 40% weight constraint leads to portfolios with

a substantially higher predicted risk (see the upper plot in Figure 6) and realized
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Figure 7: Monthly CVaR of the quarterly rebalanced constrained minimum CVaR
and minimum CVaR concentration portfolios (upper panel) and relative performance
of the quarterly rebalanced constrained minimum CVaR and minimum CVaR con-
centration portfolios versus the equal-weight portfolio (lower panel). The shaded
regions indicate a bear market regime.
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risk (see the StdDev and historical CVaR numbers in Table 3). In all aspects, the

unconstrained MCC portfolio and ERC constrained minimum CVaR portfolios are

very similar.

4.3.3 Sensitivity to the choice of risk measure

In Maillard et al. (2010), Qian (2005) and Zhu et al. (2010), the portfolio standard

deviation is used as the risk measure in the risk allocation portfolio. We analyze

the sensitivity of our results to the use of downside risk measures in Table 3, where
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Table 3: Summary statistics of monthly out-of-sample returns on minimum portfolio
standard deviation (concentration) investment strategies over the period January
1984 - June 2010.

Objective Min Min Min Min
StdDev StdDev Conc StdDev StdDev Conc

Constraint 40% Pos 40% StdDev ERC 40% Pos
Limit Alloc Limit Limit

Full period (in %)
Ann. Mean 7.48 7.30 6.96 7.21 7.30 7.17
Ann. StdDev 4.62 7.02 8.18 6.13 7.02 8.22
Skewness -0.42 -2.48 -2.50 -1.73 -2.48 -2.89
Exc. Kurtosis 1.86 17.20 16.99 10.55 17.19 21.36
Monthly Hist CVaR 2.37 4.82 5.80 3.85 4.82 5.93
Gini portfolio weights 0.62 0.28 0.28 0.46 0.28 0.18
Monthly Hist CVaR % Conc 0.90 0.64 0.65 0.76 0.64 0.61
Portfolio turnover 11.79 8.63 14.90 12.97 8.64 7.61
Normal/Bull stock market (in %)
Ann. Mean 7.99 10.66 10.57 9.10 10.67 11.35
Ann. StdDev 4.39 5.45 6.41 5.27 5.46 6.08
Skewness -0.05 -0.20 -0.39 -0.27 -0.20 -0.27
Exc. kurtosis 0.34 0.22 0.98 0.07 0.22 0.66
Monthly Hist CVaR 2.02 2.52 3.17 2.61 2.52 2.93
Bear stock market (in %)
Ann. Mean 4.83 -10.32 -11.94 -2.71 -10.33 -14.71
Ann. StdDev 5.63 11.07 13.01 8.96 11.07 13.56
Skewness -1.16 -2.70 -2.63 -2.52 -2.70 -2.71
Exc. kurtosis 3.46 10.11 9.78 9.78 10.10 10.40
Monthly Hist CVaR 3.51 9.97 12.08 7.64 9.97 12.53
Drawdowns higher than 10%
Credit crisis1 0.33 0.41 0.25 0.33 0.42
Asian-Russian crisis2 0.11 0.17 0.14 0.11 0.12

1 June 2008-Feb 2009. 2 Nov 1997-Aug 1998 for the minimum StdDev concentration and ERC constrained portfolios.

Otherwise Nov 1997-Feb 1998.

we report the performance statistics for the same investment styles, but using the

portfolio standard deviation as the risk measure. Overall, it seems that for this

investment universe, changing the risk measure only has a marginal impact on the

out of sample performance, compared to the choice of investment style. In fact,

when testing for the equality of the Sharpe ratios between the minimum CVaR

(concentration) and minimum StdDev (concentration) portfolios using the test of

Jobson and Korkie (1981) and Memmel (2003), we do not find a significant difference

in performance at a 90% confidence level. Similarly as for the CVaR risk measure, we

find that minimum StdDev concentration portfolio constitutes an attractive middle-

ground between the upward potential of the equal-weight portfolio in normal/bull
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markets and the low risk of the minimum StdDev portfolio.

5 Conclusion

An extensive empirical application of ex ante downside risk budget methods to dy-

namic allocation across bonds, commodities, domestic and international equity illus-

trated the out of sample effectiveness of downside risk budgets in generating portfo-

lios that have low portfolio risk and risk concentration, high diversification, and low

portfolio turnover. A first strategy is to impose bound constraints on the percent-

age CVaR contributions. This provides a direct substitute and improvement to the

commonly practiced risk diversification approach based on position limits. A second

strategy consists of minimizing the largest component CVaR contribution, which di-

rectly addresses risk diversification, even in portfolios with non-normally distributed

assets. The properties of these approaches as described in this paper compare fa-

vorably relative to the equal-weight portfolio. Unconstrained, the minimum CVaR

concentration portfolio is typically similar to the equal-risk-contribution portfolio

of Qian (2005). Furthermore, it may be easily combined with many other investor

objectives and constraints (such as return targets or drawdown and cardinality con-

straints). Investors can thus optimally balance their maximum return, minimum

downside risk, and maximum downside risk diversification objectives through an ex

ante use of CVaR budgets in portfolio optimization. Based on our empirical study,

we recommend to optimize the asset allocation according to a minimum CVaR ob-

jective in a bear market regime and to minimize the portfolio’s CVaR concentration

in a normal/bull market regime.
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6 Appendix

CVaR budget of the fully invested minimum CVaR portfolio.

The Langrangian associated to the fully invested minimum CVaR portfolio is

CVaRw(α) + λ(w′ι− 1), (18)

with ι the N×1 vector with each element equal to 1. From the first order conditions,

it follows that
∂CVaRw(α)

∂w

∣

∣

∣

∣

w=wmin CVaR

= −λι. (19)

Hence the partial derivatives should all be equal, and because C(i)CVaRw(α) =

w(i)
∂CVaRw(α)

∂w(i)
, there exists a unique constant k such that

wmin CVaR

(i) = kC(i)CVaRwmin CVaR(α), (20)

for all i = 1, . . . , N . Because of the full investment constraint, the weights need to

sum up to unity. Hence:

k
N
∑

i=1

∂CVaRwmin CVaR(α)

∂w(i)

= 1, (21)

which is satisfied for k = 1/CVaRwmin CVaR(α). Replacing k with 1/CVaRwmin CVaR(α)

in (20) yields that the weight and percentage CVaR allocation coincide for the

minimum CVaR portfolio.
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