A Functional Computer Algebra
with Some Examples in Kotlin

Breandan Considine
McGill University
bre@ndan.co

ABSTRACT

We present a type-safe numerical tower starting with a generically
typed algebra of groups, rings and fields, and show how to extend
it to various domains, with examples in the Kotlin programming
language. This hierarchy allows us to perform generic transfor-
mations on mathematical symbol trees. Some applications include
linear algebra, automatic differentation and probabilistic program-
ming.
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1 INTRODUCTION

The expression problem [6] occurs when we want to implement
some generic operator on multiple objects. They share the same
interface, but have different implementations. Can we avoid writ-
ing it twice? Various solutions have been proposed [3, 4, 7].
Consider the following simplified example: ...
Can we avoid reimplementing it in multiple contexts?

2 CONTEXT-ORIENTED PROGRAMMING
TODO: Alex

3 FUNCTIONAL PROGRAMMING
TODO: Iaroslav?

4 SYMBOLIC DIFFERENTIATION
TODO: Breandan
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5 COMPUTATIONAL GEOMETRY
TODO: Alex

6 PROBABILISTIC PROGRAMMING
TODO: Breandan

7 SIMPLIFICATION
TODO: Breandan
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A APPENDIX
A.1 Part One

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

A.2 Part Two

Etiam commodo feugiat nisl pulvinar pellentesque.

B ONLINE RESOURCES

https://github.com/mipt-npm/kmath
https://github.com/breandan/kotlingrad
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