A Functional Computer Algebra
with Some Examples in Kotlin

Breandan Considine
McGill University
bre@ndan.co

ABSTRACT

We present a type-safe numerical tower starting with a generically
typed algebra of groups, rings and fields, and show how to extend
it to various domains, with examples in the Kotlin programming
language. This hierarchy allows us to perform generic transfor-
mations on mathematical symbol trees. Some applications include
linear algebra, automatic differentation and probabilistic program-
ming.

CCS CONCEPTS

» Mathematics of computing — Mathematical software.

KEYWORDS

computer algebra, symbolic mathematics

ACM Reference Format:

Breandan Considine, Iaroslav Postovalov, and Alexander Nozik. 2020. A
Functional Computer Algebra with Some Examples in Kotlin. In Proceed-

ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 1 page.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The expression problem [6] occurs when we want to implement
some generic operator on multiple objects. They share the same
interface, but have different implementations. Can we avoid writ-
ing it twice? Various solutions have been proposed [3, 4, 7].
Consider the following simplified example: ...
Can we avoid reimplementing it in multiple contexts?

2 CONTEXT-ORIENTED PROGRAMMING
TODO: Alex

3 FUNCTIONAL PROGRAMMING
TODO: Iaroslav?

4 SYMBOLIC DIFFERENTIATION
TODO: Breandan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Iaroslav Postovalov
JetBrains Research
postovalovya@gmail.com

Alexander Nozik
MIPT, JetBrains Research
altavir@gmail.com

5 COMPUTATIONAL GEOMETRY
TODO: Alex

6 PROBABILISTIC PROGRAMMING
TODO: Breandan

7 SIMPLIFICATION
TODO: Breandan

REFERENCES

[1] Virginia Niculescu. 2003. A design proposal for an object oriented algebraic li-
brary. Studia Universitatis Babes-Bolyai, Informatica 48, 1 (2003), 89-100.

[2] Virginia Niculescu. 2011. ON USING GENERICS FOR IMPLEMENTING ALGE-
BRAIC STRUCTURES. Studia Universitatis Babes-Bolyai, Informatica 56, 4 (2011).
https://www.cs.ubbcluj.ro/~studia-i/contents/2011-4/02-Niculescu.pdf

[3] Bruno C d S Oliveira and William R Cook. 2012. Extensibility for the masses. In
European Conference on Object-Oriented Programming. Springer, 2-27.

[4] Bruno C d S Oliveira, Tijs Van Der Storm, Alex Loh, and William R Cook. 2013.
Feature-oriented programming with object algebras. In European Conference on
Object-Oriented Programming. Springer, 27-51.

[5] Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and Matthias Felleisen.
2012. Typing the numeric tower. In International Symposium on Practical Aspects
of Declarative Languages. Springer, 289-303.

[6] Philip Wadler et al. 1998. The expression problem. Posted on the Java Genericity
mailing list (1998).

[7] Yanlin Wang and Bruno C d S Oliveira. 2016. The expression problem, trivially!.
In Proceedings of the 15th International Conference on Modularity. 37-41.

A APPENDIX
A.1 Part One

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

A.2 Part Two

Etiam commodo feugiat nisl pulvinar pellentesque.

B ONLINE RESOURCES

https://github.com/mipt-npm/kmath
https://github.com/breandan/kotlingrad

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.cs.ubbcluj.ro/~studia-i/contents/2011-4/02-Niculescu.pdf
https://github.com/mipt-npm/kmath
https://github.com/breandan/kotlingrad

	Abstract
	1 Introduction
	2 Context-Oriented Programming
	3 Functional Programming
	4 Symbolic Differentiation
	5 Computational Geometry
	6 Probabilistic Programming
	7 Simplification
	References
	A Appendix
	A.1 Part One
	A.2 Part Two

	B Online Resources

