KotlinV

A Shape Safe eDSL for Differentiable Functional Programming

Breandan Considine

McGill University

breandan.considine@mcgill.ca

October 24, 2019

Breandan Considine (McGill) KotlinV October 24, 2019 1/22

© A Short Lesson on Computing Derivatives

9 Introduction and motivation

© Usage

@ Future exploration

Breandan Considine (McGill) KotlinV October 24, 2019 2/22

Differentiation

If we have a function, P(x) : R — R, recall the derivative is defined as:

f(x+h)—f(x) Ay dP

/ T 2y ar
P = jim, h T Ax dx)
For P(x1,...,xn) : R" — R, the gradient is a vector of derivatives:
oP opP oP dP
P=|—,...,=—| where —— = — 2
v |:8X17 7aX,,:| where aX,' dX,' ()

For P(x) : R” — R™, the Jacobian is a vector of gradients:

Jp = [VP1,...,VPy] or equivalently, Jj; = 37 (3)
J

Breandan Considine (McGill) KotlinV October 24, 2019 3/22

Automatic differentiation

Suppose we have a scalar function Py : R — R such that:
p1(x) = x ifk=1
(Pk o Pkfl)(X) if k>1
From the chain rule of calculus, we know that:

dP _ dpi dpis

“r H dpl+1
dpr dpk—1dpi—2 dpl 1 dpi

For a vector function Py(x) : R” — R™, the chain rule still applies:

Ty = ,ﬁljp’ = \(((kajpkl) . ..J,,z)jpl) - (ka (Toes - (J,,szl))>

~
“Reverse accumulation” “Forward accumulation”

If P, were a program, what would the type signature of po;<x be?

Pi : Tout(Pi—1) = Tin(Pi+1)

Breandan Considine (McGill) KotlinV October 24, 2019 4/22

Parameter learning and gradient descent

For parametric models, let us rewrite Py(x) as:

p - _ p1(01)(x) if k=1
i ®) {(pk(ak) o Pro1(®Opk-))(x) ifk>1

Where ® = {01, ...,0} are free parameters and x € R” is a single input.
Given Y = {y() = P(xM), ... y(® = P(x(2))} from an oracle, in order to
approximate P(x), repeat the following procedure until ® converges:

1 z N
©+0--Ve Zoﬁ(pk(x(’)),y(’))
If P, were a program, what would the type signature of pi<j<x be?

Pi : Tour(Pi-1) x T(0:) = Tin(Pi+1(0i+1))

Breandan Considine (McGill) KotlinV October 24, 2019

What is differentiable programming?

Probabilistic
Programming

' MCMC !
'Variational', N
o Neural | ! Inference ! Graphical .
eura \ y ayes
Networks | “.(vaes)’/ Models
E%O - Q,‘@ @
O 6

Breandan Considine (McGill) KotlinV October 24, 2019 6/22

Differentiable

———————

.......

Shape checking and inference

Scalar functions implicitly represent shape as arity f(-,-) : R? = R

To check array programs, we need a type-level encoding of shape

But parametric polymorphism will suffice for many tensor functions

°
°
@ Arbitrary ops (e.g. convolution, vectorization) require dependent types
°
°

For most algebraic operations, we just need to check for equality. . .

Math Derivative Code Type Signature
a(b) T=Tb a(b) (a:R™” - R7,b: R* 5 R7) = (R* = R™)
a+bhb
a+b Ta+ Tp a.plus(b) (a:R” - R™,b: R - R™) — (R? — R™)
plus(a, b)
a*b
ab Jab+ Jpa a.times(b) (a:RT = R™" b : R = R"™XP) — (R? — R™*¥P)
times(a, b)
b bitb o a.pow(b) T . A ?
a a®(a’L +b'Ina) pow(a, b) (@a:R™ - R,b:R* - R) —» (R* - R)

Breandan Considine (McGill)

KotlinV

October 24, 2019

7/22

Numerical tower

@ Abstract algebra can be useful when generalizing to new structures

@ Helps us to easily translate between mathematics and source code
o Fields are a useful concept when computing over real numbers
o A field is a set IF with two operations + and x, with the properties:
o Associativity: Va,b,c € F,a+ (b+c¢)=(a+b)+c
Commutivity: Va,beF,a+ b=b+aandaxb=bxa
Distributivity: Va, b,c € F,ax (bx c)=(ax b) X c
Identity: Va€ F,30,1€ Fst. a+0=aandax1=a
+ inverse: Va € F,3(—a) s.t. a+ (—a)=0
o x inverse: VaZ 0€TF,I(a) st. axal=1

o Extensible to other number systems (e.g. complex, dual numbers)

@ What is a program, but a series of arithmetic operations?

Breandan Considine (McGill) KotlinV October 24, 2019 8/22

Why Kotlin?

Goal: To implement automatic differentiation in Kotlin

Kotlin is a language with strong static typing and null safety
Supports first-class functions, higher order functions and lambdas
Has support for algebraic data types through sealed classes
Extension functions, operator overloading & other syntax sugar
Offers features for embedding domain specific languages (DSLs)
Access to all libraries and frameworks in the JVM ecosystem
Multi-platform and cross-platform (JVM, Android, iOS, JS, native)

Breandan Considine (McGill) KotlinV October 24, 2019 9/22

KotlinV Priorities

@ Type system

Strong type system based on algebraic principles

o Leverage the compiler for static analysis

e No implicit broadcasting or shape coercion

o Parameterized numerical types and arbitary-precision

@ Design principles
e Functional programming and lazy numerical evaluation
o Eager algebraic simplification of expression trees
o Operator overloading and tapeless reverse mode AD

@ Usage desiderata

o Generalized AD with functional array programming
e Automatic differentiation with infix and Polish notation
o Partials and higher order derivatives and gradients

@ Testing and validation

o Numerical gradient checking and property-based testing
e Performance benchmarks and thorough regression testing

Breandan Considine (McGill) KotlinV October 24, 2019 10/22

Feature Comparison Matrix

Framework Language SD AD FP TS SS DP MP
KotlinV Kotlin v v v S B B
DiffSharp F# X v v v X v X
TensorFlow.FSharp F# X v v v v vV X
Nexus Scala X v v v vV v X
Lantern Scala X v v v X v X
Grenade Haskell X v v v v X X
JAutoDiff Java v o /X v X X X
Halide C++ X v x v X v X
StalinV Scheme X v x x X X X
Myia Python o/ /X X /A
Autograd Python X v x x X X X
JAX Python X v v X X v &b

SD: Symbolic Differentiation, AD: Automatic Differentiation, FP: Functional Program,
TS: Type-Safe, SS: Shape Safe, DP: Differentiable Programming, MP: Multiplatform

Breandan Considine (McGill) KotlinV October 24, 2019 11/22

https://github.com/breandan/kotlingrad
http://diffsharp.github.io/DiffSharp/
https://github.com/fsprojects/fsharp-ai-tools
https://tongfei.me/nexus/
https://feiwang3311.github.io/Lantern/
https://github.com/HuwCampbell/grenade
http://uniker9.github.io/JAutoDiff/
https://halide-lang.org
https://github.com/Functional-AutoDiff/STALINGRAD
https://github.com/mila-iqia/myia
https://github.com/HIPS/autograd/
https://github.com/google/jax

val z = sin(10 * (x * x + pow(y, 2))) / 10

10

X>>< X sin
X

'
y>pow> -
2

10

Figure: Implicit DFG constructed by the above expression, z.

Breandan Considine (McGill) KotlinV October 24, 2019 12 /22

Usage: Plotting higher derivatives of nested functions

// Use double-precision floating point numerics
with(DoublePrecision) {

val x = Var()

val y = sin(sin(sin(x)))/x + x*sin(x) + cos(x) + x

// Perform lazy symbolic differentiation
val dy_dx = d(y) / d(x)

val d2y_dx = d(dy_dx) / d(x)

val d3y_dx = d(d2y_dx2) / d(x)
val d4y_dx = d(d3y_dx3) / d(x)
val d5y_dx = d(d4y_dx4) / d(x)

plot(-9..9, dy_dx, dy2_dx, d3y_dx, d4y_dx, d5y_dx)

Breandan Considine (McGill) KotlinV October 24, 2019 13 /22

sinsin sin x dy d2y d3y d4}/ d5y

y:X +XS|nX+COSX+X,a,W,W,W,w

-1

Derivatives of y=sin(sin(sin(x)))-x™* + sin(x)-x + cos(x) + x

20

15

10

-y

/
| ;]
5 dy/dx
X W N
>0 1 é '\ — d¥y/dx}
-5 | (/ \) = d*y/dx*

d’y/dx®

-101

-157

-201

Breandan Considine (McGill) KotlinV October 24, 2019 14 /22

Usage: 3D plotting with mixed higher order partials

with(DoublePrecision) {
val x = Var()
val y Var ()

val z sin(l0 * (x * x + pow(y, 2))) / 10
val dz_dx = d(z) / d(x)

val d2f_dxdy = d(dz_dx) / d(y)

val d3z_d2xdy = d(d(dz_dx) / d(y)) / d(x)

plot3d(-1, 1, d3z_d2xdy)

Breandan Considine (McGill) KotlinV October 24, 2019 15 /22

z = sin(10(x2 + y?))/10, <)2X()y

_

500,000

"0 o000

[—-500.000

-1.000

1.00 000

Breandan Considine (McGill) KotlinV October 24, 2019 16 /22

Currying and Partial Application

with(DoublePrecision) {
val q0 = X + Y x Z +Y + 0.0
val p® = gq(X to 1.0, Y to 2.0, Z to 3.0)
val pl = gq(X to 1.0, Y to 1.0)(Z to 1.0)
val p3 = q(Z to 1.0)(X to 1.0, Y to 1.0)
val p4 = q(Z to 1.0)(X to 1.0)(Y to 1.0)
val p5 = q(Z to 1.0)(X to 1.0) // Fn<Y>
val g1 = X + Z + 0.0
val p6 = ql(Y to 1.0) // Error

BB R R e

Breandan Considine (McGill) KotlinV October 24, 2019 17 /22

Vector Shape Safety

with(DoublePrecision) { // Inferred type:
val a = Vec(1.0, 2.0) // Vec<Double, 2>
val b = Vec(1.0, 2.0, 3.0) // Vec<Double, 3>
val c = b + b // Vec<Double, 3>
val d = a + b // Compile error
val e = b dot b // Vec<Double, 1>
val f = b dot a // Compile error

h

Breandan Considine (McGill) KotlinV October 24, 2019 18 /22

Matrix Shape Safety

// Inferred type: Mat<Double, "1, "4 >
val a = Mat(1.0, 2.0, 3.0, 4.0)

// Inferred type: Mat<Double, 4", "1 >
val b = Mat(1.0)(2.0)(3.0)(4.0)

val c axb

// Does not compile, inner dimension mismatch
// a * a
// b *x b

Breandan Considine (McGill) KotlinV October 24, 2019 19 /22

Further directions to explore

@ Theory Directions
o Generalization of types to higher order functions, vector spaces

Dependent types via code generation to type-check convolution
General programming operators and data structures
Imperative define-by-run array programming syntax
Program induction and synthesis, cf.

o The Derivative of a Regular Type is its Type of One-Hole Contexts

o The Differential Lambda Calculus (2003)

o Asynchronous gradient descent (cf. HogWild, YellowFin, et al.)

@ Implementation Details
o Closer integration with Kotlin/Java standard library
o Encode additional structure, i.e. function arity into type system
e Vectorized optimizations for matrices with certain properties
o Configurable forward and backward AD modes based on dimension
e Automatic expression refactoring for numerical stability
e Primitive type specialization, i.e. FloatVector <: Vector<T>?

Breandan Considine (McGill) KotlinV October 24, 2019 20/22

https://discuss.kotlinlang.org/t/primitive-type-specialization/11022

| earn more at:

http://kg.ndan.co

Breandan Considine (McGill) otlinV October 24, 2019 21/22

http://kg.ndan.co

Special thanks

Liam Paull
Michalis Famelis

Symposium [.A. Montréal

hd . Ie .,/‘.7;\. °
Université rpn &>Mila

de Montréal ¢’

Breandan Considine (McGill) October 24, 2019 22/22

	A Short Lesson on Computing Derivatives
	Introduction and motivation
	Usage
	Future exploration

