
Kotlin∇
A Shape Safe eDSL for Differentiable Functional Programming

Breandan Considine

McGill University

breandan.considine@mcgill.ca

October 24, 2019

Breandan Considine (McGill) Kotlin∇ October 24, 2019 1 / 22



Overview

1 A Short Lesson on Computing Derivatives

2 Introduction and motivation

3 Usage

4 Future exploration

Breandan Considine (McGill) Kotlin∇ October 24, 2019 2 / 22



Differentiation

If we have a function, P(x) : R→ R, recall the derivative is defined as:

P ′(x) = lim
h→0

f (x + h)− f (x)

h
=

∆y

∆x
=

dP

dx
(1)

For P(x1, . . . , xn) : Rn → R, the gradient is a vector of derivatives:

∇P =

[
∂P

∂x1
, . . . ,

∂P

∂xn

]
where

∂P

∂xi
=

dP

dxi
(2)

For P(x) : Rn → Rm, the Jacobian is a vector of gradients:

JP = [∇P1, . . . ,∇Pn] or equivalently, Jij =
∂Pi

∂xj
(3)

Breandan Considine (McGill) Kotlin∇ October 24, 2019 3 / 22



Automatic differentiation

Suppose we have a scalar function Pk : R→ R such that:

Pk(x) =

{
p1(x) = x if k = 1
(pk ◦ Pk−1)(x) if k > 1

From the chain rule of calculus, we know that:

dP

dp1
=

dpk
dpk−1

dpk−1

dpk−2
. . .

dp2

dp1
=

k−1∏
i=1

dpi+1

dpi

For a vector function Pk(x) : Rn → Rm, the chain rule still applies:

JPk =
k∏

i=1

Jpi =

((
(JpkJpk−1) . . .Jp2

)
Jp1

)
︸ ︷︷ ︸

“Reverse accumulation”

=

(
Jpk
(
Jpk−1 . . . (Jp2Jp1)

))
︸ ︷︷ ︸

“Forward accumulation”

If Pk were a program, what would the type signature of p0<i<k be?

pi : Tout(pi−1)→ Tin(pi+1)

Breandan Considine (McGill) Kotlin∇ October 24, 2019 4 / 22



Parameter learning and gradient descent

For parametric models, let us rewrite Pk(x) as:

P̂k(x;Θ) =

{
p1(θ1)(x) if k = 1(
pk(θk) ◦ P̂k−1(Θ[1,k−1])

)(
x
)

if k > 1

Where Θ = {θ1, . . . ,θk} are free parameters and x ∈ Rn is a single input.
Given Y = {y(1) = P(x(1)), . . . , y(z) = P(x(z))} from an oracle, in order to
approximate P(x), repeat the following procedure until Θ converges:

Θ← Θ− 1
z
∇Θ

z∑
i=0

L
(
P̂k(x(i)), y(i)

)
If P̂k were a program, what would the type signature of p1<i<k be?

pi : Tout(pi−1)× T (θi )→ Tin
(
pi+1(θi+1)

)
Breandan Considine (McGill) Kotlin∇ October 24, 2019 5 / 22



What is differentiable programming?

Breandan Considine (McGill) Kotlin∇ October 24, 2019 6 / 22



Shape checking and inference

Scalar functions implicitly represent shape as arity f (·, ·) : R2 → R
To check array programs, we need a type-level encoding of shape
Arbitrary ops (e.g. convolution, vectorization) require dependent types
But parametric polymorphism will suffice for many tensor functions
For most algebraic operations, we just need to check for equality. . .

Math Derivative Code Type Signature
a(b) JaJb a(b) (a : Rτ → Rπ ,b : Rλ → Rτ )→ (Rλ → Rπ)

a+ b Ja + Jb
a + b

a.plus(b)
plus(a, b)

(a : Rτ → Rπ ,b : Rλ → Rπ)→ (R? → Rπ)

ab Jab + Jba
a * b

a.times(b)
times(a, b)

(a : Rτ → Rm×n,b : Rλ → Rn×p)→ (R? → Rm×p)

ab ab(a′ b
a
+ b′ ln a)

a.pow(b)
pow(a, b) (a : Rτ → R,b : Rλ → R)→ (R? → R)

Breandan Considine (McGill) Kotlin∇ October 24, 2019 7 / 22



Numerical tower

Abstract algebra can be useful when generalizing to new structures
Helps us to easily translate between mathematics and source code
Fields are a useful concept when computing over real numbers

A field is a set F with two operations + and ×, with the properties:
Associativity: ∀a, b, c ∈ F, a+ (b + c) = (a+ b) + c
Commutivity: ∀a, b ∈ F, a+ b = b + a and a× b = b × a
Distributivity: ∀a, b, c ∈ F, a× (b × c) = (a× b)× c
Identity: ∀a ∈ F,∃0, 1 ∈ F s.t. a+ 0 = a and a× 1 = a
+ inverse: ∀a ∈ F, ∃(−a) s.t. a+ (−a) = 0
× inverse: ∀a 6= 0 ∈ F, ∃(a−1) s.t. a× a−1 = 1

Extensible to other number systems (e.g. complex, dual numbers)
What is a program, but a series of arithmetic operations?

Breandan Considine (McGill) Kotlin∇ October 24, 2019 8 / 22



Why Kotlin?

Goal: To implement automatic differentiation in Kotlin
Kotlin is a language with strong static typing and null safety
Supports first-class functions, higher order functions and lambdas
Has support for algebraic data types through sealed classes
Extension functions, operator overloading & other syntax sugar
Offers features for embedding domain specific languages (DSLs)
Access to all libraries and frameworks in the JVM ecosystem
Multi-platform and cross-platform (JVM, Android, iOS, JS, native)

Breandan Considine (McGill) Kotlin∇ October 24, 2019 9 / 22



Kotlin∇ Priorities

Type system
Strong type system based on algebraic principles
Leverage the compiler for static analysis
No implicit broadcasting or shape coercion
Parameterized numerical types and arbitary-precision

Design principles
Functional programming and lazy numerical evaluation
Eager algebraic simplification of expression trees
Operator overloading and tapeless reverse mode AD

Usage desiderata
Generalized AD with functional array programming
Automatic differentiation with infix and Polish notation
Partials and higher order derivatives and gradients

Testing and validation
Numerical gradient checking and property-based testing
Performance benchmarks and thorough regression testing

Breandan Considine (McGill) Kotlin∇ October 24, 2019 10 / 22



Feature Comparison Matrix

Framework Language SD AD FP TS SS DP MP
Kotlin∇ Kotlin 3 3 3 3 3 - -

DiffSharp F# 7 3 3 3 7 3 7

TensorFlow.FSharp F# 7 3 3 3 3 3 7

Nexus Scala 7 3 3 3 3 3 7

Lantern Scala 7 3 3 3 7 3 7

Grenade Haskell 7 3 3 3 3 7 7

JAutoDiff Java 3 3 7 3 7 7 7

Halide C++ 7 3 7 3 7 3 7

Stalin∇ Scheme 7 3 7 7 7 7 7

Myia Python 3 3 3 7 7 3 -

Autograd Python 7 3 7 7 7 7 7

JAX Python 7 3 3 7 7 3 -

SD: Symbolic Differentiation, AD: Automatic Differentiation, FP: Functional Program,
TS: Type-Safe, SS: Shape Safe, DP: Differentiable Programming, MP: Multiplatform

Breandan Considine (McGill) Kotlin∇ October 24, 2019 11 / 22

https://github.com/breandan/kotlingrad
http://diffsharp.github.io/DiffSharp/
https://github.com/fsprojects/fsharp-ai-tools
https://tongfei.me/nexus/
https://feiwang3311.github.io/Lantern/
https://github.com/HuwCampbell/grenade
http://uniker9.github.io/JAutoDiff/
https://halide-lang.org
https://github.com/Functional-AutoDiff/STALINGRAD
https://github.com/mila-iqia/myia
https://github.com/HIPS/autograd/
https://github.com/google/jax


Usage

val z = sin(10 * (x * x + pow(y, 2))) / 10

÷

10

sin×
+

pow
2

y

×
x
x

10

Figure: Implicit DFG constructed by the above expression, z.

Breandan Considine (McGill) Kotlin∇ October 24, 2019 12 / 22



Usage: Plotting higher derivatives of nested functions

// Use double-precision floating point numerics
with(DoublePrecision) {

val x = Var()
val y = sin(sin(sin(x)))/x + x*sin(x) + cos(x) + x

// Perform lazy symbolic differentiation
val dy_dx = d(y) / d(x)
val d2y_dx = d(dy_dx) / d(x)
val d3y_dx = d(d2y_dx2) / d(x)
val d4y_dx = d(d3y_dx3) / d(x)
val d5y_dx = d(d4y_dx4) / d(x)

plot(-9..9, dy_dx, dy2_dx, d3y_dx, d4y_dx, d5y_dx)
}

Breandan Considine (McGill) Kotlin∇ October 24, 2019 13 / 22



y = sin sin sin x
x + x sin x + cos x + x , dy

dx ,
d2y
dx2 , d3y

dx3 , d4y
dx4 , d5y

dx5

Breandan Considine (McGill) Kotlin∇ October 24, 2019 14 / 22



Usage: 3D plotting with mixed higher order partials

with(DoublePrecision) {
val x = Var()
val y = Var()

val z = sin(10 * (x * x + pow(y, 2))) / 10
val dz_dx = d(z) / d(x)
val d2f_dxdy = d(dz_dx) / d(y)
val d3z_d2xdy = d(d(dz_dx) / d(y)) / d(x)

plot3d(-1, 1, d3z_d2xdy)
}

Breandan Considine (McGill) Kotlin∇ October 24, 2019 15 / 22



z = sin(10(x2 + y 2))/10, ∂3z
∂2x∂y

Breandan Considine (McGill) Kotlin∇ October 24, 2019 16 / 22



Currying and Partial Application

with(DoublePrecision) {
val q0 = X + Y * Z + Y + 0.0
val p0 = q(X to 1.0, Y to 2.0, Z to 3.0)
val p1 = q(X to 1.0, Y to 1.0)(Z to 1.0)
val p3 = q(Z to 1.0)(X to 1.0, Y to 1.0)
val p4 = q(Z to 1.0)(X to 1.0)(Y to 1.0)
val p5 = q(Z to 1.0)(X to 1.0) // Fn<Y>
val q1 = X + Z + 0.0
val p6 = q1(Y to 1.0) // Error

}

Breandan Considine (McGill) Kotlin∇ October 24, 2019 17 / 22



Vector Shape Safety

with(DoublePrecision) { // Inferred type:
val a = Vec(1.0, 2.0) // Vec<Double, 2>
val b = Vec(1.0, 2.0, 3.0) // Vec<Double, 3>
val c = b + b // Vec<Double, 3>
val d = a + b // Compile error
val e = b dot b // Vec<Double, 1>
val f = b dot a // Compile error

}

Breandan Considine (McGill) Kotlin∇ October 24, 2019 18 / 22



Matrix Shape Safety

// Inferred type: Mat<Double, `1`, `4`>
val a = Mat(1.0, 2.0, 3.0, 4.0)
// Inferred type: Mat<Double, `4`, `1`>
val b = Mat(1.0)(2.0)(3.0)(4.0)
val c = a * b

// Does not compile, inner dimension mismatch
// a * a
// b * b

Breandan Considine (McGill) Kotlin∇ October 24, 2019 19 / 22



Further directions to explore

Theory Directions
Generalization of types to higher order functions, vector spaces
Dependent types via code generation to type-check convolution
General programming operators and data structures
Imperative define-by-run array programming syntax
Program induction and synthesis, cf.

The Derivative of a Regular Type is its Type of One-Hole Contexts
The Differential Lambda Calculus (2003)

Asynchronous gradient descent (cf. HogWild, YellowFin, et al.)
Implementation Details

Closer integration with Kotlin/Java standard library
Encode additional structure, i.e. function arity into type system
Vectorized optimizations for matrices with certain properties
Configurable forward and backward AD modes based on dimension
Automatic expression refactoring for numerical stability
Primitive type specialization, i.e. FloatVector <: Vector<T>?

Breandan Considine (McGill) Kotlin∇ October 24, 2019 20 / 22

https://discuss.kotlinlang.org/t/primitive-type-specialization/11022


Learn more at:

http://kg.ndan.co

Breandan Considine (McGill) Kotlin∇ October 24, 2019 21 / 22

http://kg.ndan.co


Special thanks

Liam Paull
Michalis Famelis

Symposium I.A. Montréal

Breandan Considine (McGill) Kotlin∇ October 24, 2019 22 / 22


	A Short Lesson on Computing Derivatives
	Introduction and motivation
	Usage
	Future exploration

