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Simple feedback systems
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Unmodeled dynamics
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Closed loop control
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Where are the boundaries between these components?
How do we safely and effectively test these systems?
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Bias/Variance and Sensitivity /Specificity
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Validity and testing

© Are we really measuring what we want to measure? (Test validity)
@® Many advertisers try to maximize clicks. This is a poor metric.
@ Objectives may change over the production lifetime of a model.
© A poorly chosen objective can have unintended consequences.
@ Is the dataset free from confounds? (Internal validity)
@ People constantly forget (or conveniently overlook) confounds.
@ If the data generator is biased, the model will encode its bias.
©® The method of sampling may have hidden biases.
© Does the model generalize well in practice? (External validity)
@ Maybe the training data has grown stale over time.
® Maybe the model is missing data on some key demographic.
©® Maybe the true population is not the population we bargained for.
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Hypothesis Testing

(Formulate null and alternate hypotheses)

(Determine statistical test and significance Ievel)

(Apply differential treatment)

(Collect a sample, compare mean and variance)

Make a decision

(Cannot reject null hypothesis)
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Hypothesis Testing

Conclusion about null hypothesis
from statistical test

Accept Null Reject Null

Truth about | True Correct Type I error
null Observe difference
hypothesis in when none exists
population | False | Type Il error Correct

Fail to observe
difference when one
exists
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A/B Testing

Project name  Home  About  Consac

Welcome to our website

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Learn more

Click rate: 52 %
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Project name  Heme | &

Welcome to our website

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do elusmod tempor incididunt ut labere et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullameo laboris nisi ut aliquip ex ea commodo consequat.

72 %
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A/B Testing

Incoming user U

Sample A/B from prior dlstrlbutlon

-

Measure engagement (e.g. cllckthrough

(Update priors P(A|U), P(B|U))
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A/B/C Testing

Incoming user U

(Sample A/B/C from prior distribution)

4

Sees version B

(Measure engagement (e.g. cIickthrough))

(Update priors P(A|U), P(B|U), P(C|U))
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Multi-armed bandits

Multi—-armed bandit Music Recommendation
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https://dl.acm.org/doi/pdf/10.1145/2623372#page=8
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Checks a small "unit” of code on a small number of input/outputs.

~

K fun test(subroutine: (Input) -> Output) {

val input = Input() // Construct an input
val expectedOutput = OQutput() // Construct an output
val actualOutput = subroutine(input)

assert(expectedOutput == actualOutput) { // Evaluate

"Expected SexpectedOutput, got SactualOutput"
}
}

Pros: Simple to understand and helps document design assumptions.
Cons: High coverage is cumbersome to write, grows stale over time.
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ration Testing

Checks for terminating exceptions and postconditions on a large program.

e 1

K fun <I, 0> test(program: (I) -> 0, inputs: Set<I>) =
inputs.forEach { input: I ->
try {

val output: 0 = program(input) // Whole program
assert(postcondition(output)) {

"Postcondition failed on Sinput, Soutput"
b

} catch (exception: Exception) {

assert(false) { exception } //
}
+

Pros: Easier to write, checks for high-level exceptions and postconditions.
Cons: Only covers the “happy path”, can often be too coarse grained.
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Generates many random inputs and compare outputs with an oracle.

@Repeat (LARGE_NUMBER)
fun <I, 0> test(program: (I) -> 0, // System under test

oracle : (I) -> 0, // Source of Truth
sample : (Random) -> I) {
val input: I = sample(Random())
assert(program(input) == oracle(input)) {
"Oracle and program disagree on S$input"
}

}

Pros:

Cons: Input space often too large to brute force, “test oracle problem”.
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Lower effort required to write test cases, higher test coverage.
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Fuzzing Dataflow

K @Repeat (LARGE_NUMBER)
fun <I, 0> test(program: (I) -> 0, // System under test
oracle : (I) -> 0, // Source of Truth
sample : (Random) -> I) {
val input: I = sample(Random())
assert(program(input) == oracle(input)) {
"Oracle and program disagree on Sinput"

I

F

Program
(Random)—»(SampleH Input *
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Property Based Testing

Specify a universal output property and implement a sampler and shrinker.

3

K @Repeat (LARGE_NUMBER)
fun <I, 0> test(program : (I) -> O,
property: (0) -> Boolean,
sample : (Random) -> I,
shrinker: (I, (I)->0, (0)->Boolean) -> I) {
val randomInput: I = sample(Random())
assert(property(program(randomInput))) {
"Error detected on: SrandomInput!"
val min = shrinker(randomInput, program, property)
"Minimal counterexample of property: Smin!"

F
I

Pros: No oracle required, can detect and minimize counterexamples.
Cons: Property specification can be brittle and requires domain expertise.
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PBT Dataflow

K @Repeat (LARGE_NUMBER)
fun <I, 0> test(program : (I) -> O,
property: (0) -> Boolean,
sample : (Random) -> I,
shrinker: (I, (I)->0, (0)->Boolean) -> I) {
val randomInput: I = sample(Random())
assert(property(program(randomInput))) {
"Error detected on: SrandomInput!"
val min = shrinker(randomInput, program, property)
"Minimal counterexample of property: Smin!"

}

b

ProgramHProperty?
(Random)—»(Sam ple)—b( Input
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Metamorphic Testing

Specify a relation (e.g. &), transform inputs and compare with labels.

s D

K @Repeat (LARGE_NUMBER)

fun <I, 0> test(program: (I) -> 0,
inputTx: (I) -> I,
metaRel: (0, 0) -> Boolean,

sample : (Set<Pair<I, 0>>) -> Pair<I, 0>,
dataset: Set<Pair<I, 0>>) {
val (trueInput: I, trueOutput: 0) = sample(dataset)
val transformedInput : I = inputTx(input)
val transformedOutput: 0 = program(transformedInput)
assert(metaRel(trueOutput, transformedOutput)) {
"<StrueOutput> not SmetaRel <StransformedOutput>!"
}
}

Pros: No domain expertise required, just a small labeled dataset.

Cons: How to design TX to detect errors efficiently? Open research.
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MMT Dataflow

e w

K @Repeat (LARGE_NUMBER)

fun <I, 0> test(program: (I) -> 0,
inputTx: (I) -> I,
metaRel: (0, 0) -> Boolean,

sample : (Set<Pair<I, 0>>) -> Pair<I, 0>,
dataset: Set<Pair<I, 0>>) {
val (trueInput: I, trueOutput: 0) = sample(dataset)
val transformedInput : I = inputTx(input)
val transformedOutput: 0 = program(transformedInput)
assert(metaRel(trueOutput, transformedOutput)) {
"<StrueOutput> not SmetaRel <StransformedOutput>!"

F
}
(Dataset)—b(Sample %-
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Hypothesis testing vs. Software testing

Statistical Testing
@ We're not sure what the correct

Software Testing

@ We know what the correct
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answer is, want to find out
Tries to minimize empirical risk
by increasing sample size
Often assumes IID randomness
for accurate results
Deliberately injects noise into
sampling process

Results are never exactly the
same twice

Requires non-determinism to
demonstrate reproducibility
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behavior is, need to validate it!

Tries to minimize operational
risk, increase test coverage

Uses randomness as a
substitute for formal
verification

Tries to reduce noise to prevent
false alarms

Requires determinism for
software reproducibility
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Further resources

000000600

Aleatoric and Epistemic Uncertainty in Machine Learning, Eyke
Hiillermeieraand Willem Waegeman (2020)

The Multi-Armed Bandit Problem and Its Solutions, Weng (2017)
Exploration in Interactive Music Recommendation, Wang (2014)
Intro to property-based testing, Alex Chan (2016)

Property based testing, Pierre Felgines (2019)

Coverage Guided, Property Based Testing, Lamproproulos (2019)
Metamorphic testing, Wayne (2019)

Survey of Trends in Oracles for Software Testing, Harman (2014)
American Fuzzy Lop

TensorFuzz: Debugging Neural Networks with Coverage-Guided
Fuzzing, Odena et al. (2019)
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https://arxiv.org/pdf/1910.09457.pdf
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html##thompson-sampling
https://dl.acm.org/doi/pdf/10.1145/2623372
https://alexwlchan.net/2016/06/hypothesis-intro/
https://felginep.github.io/2019-03-20/property-based-testing
https://lemonidas.github.io/pdf/FuzzChick.pdf
https://www.hillelwayne.com/post/metamorphic-testing/
https://mcminn.io/publications/tr3.pdf
https://lcamtuf.coredump.cx/afl/
http://proceedings.mlr.press/v97/odena19a/odena19a.pdf
http://proceedings.mlr.press/v97/odena19a/odena19a.pdf
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