Concepts in Statistical and Software Testing

Breandan Considine (McGill)

COMP 598, Recitation #2

Breandan Considine

McGill University

breandan.considine@mcgill.ca

October 29, 2020

Concepts in Statistical and Software Testing

October 29, 2020

1/

1

Royce's Waterfall Model

Requirements ===,
.ﬁ

Verification LT

.

Maintenance

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 2/1

Software verification and validation

Concept of L. Opgl;‘a;ion
Operations Ve"";lﬁgtlon .

. Validation
Project Requirements System
Definition and Verification
Architecture and Validation

Integration,
Detailed Test, and
Design Verification

Project
Test and
Integration

Implamentation

Time

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020

3/1

Simple feedback systems

Observation

\
|

Outcome

A

Choice

Action

Decision

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 4/1

Unmodeled dynamics

Eternalities

Outcome

Action

(Observation)d—(Perception)

Decision

Experience

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 5/1

Closed loop control

... By T R) R ——

belief plan

observations) planning commands
perception control

... A A A —

sensors |<— external ¢—| actuators
environment

Where are the boundaries between these components?
How do we safely and effectively test these systems?

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 6/1

Bias/Variance and Sensitivity /Specificity

Low Bias

High Bias

Breandan Considine (McGill)

Low Variance
(High Precision)

High Variance
(Low Precision)

Most Accurate

Least Accurate

Concepts in Statistical and Software Testing

October 29, 2020

Validity and testing

© Are we really measuring what we want to measure? (Test validity)
@® Many advertisers try to maximize clicks. This is a poor metric.
@ Objectives may change over the production lifetime of a model.
© A poorly chosen objective can have unintended consequences.
@ Is the dataset free from confounds? (Internal validity)
@ People constantly forget (or conveniently overlook) confounds.
@ If the data generator is biased, the model will encode its bias.
©® The method of sampling may have hidden biases.
© Does the model generalize well in practice? (External validity)
@ Maybe the training data has grown stale over time.
® Maybe the model is missing data on some key demographic.
©® Maybe the true population is not the population we bargained for.

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020

Hypothesis Testing

(Formulate null and alternate hypotheses)

(Determine statistical test and significance Ievel)

(Apply differential treatment)

(Collect a sample, compare mean and variance)

Make a decision

(Cannot reject null hypothesis)

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 9/1

Hypothesis Testing

Conclusion about null hypothesis
from statistical test

Accept Null Reject Null

Truth about | True Correct Type I error
null Observe difference
hypothesis in when none exists
population | False | Type Il error Correct

Fail to observe
difference when one
exists

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 10/1

A/B Testing

Project name Home About Consac

Welcome to our website

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Learn more

Click rate: 52 %

Breandan Considine (McGill)

Concepts in Statistical and Software Testi

o0
/Y

Project name Heme | &

Welcome to our website

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do elusmod tempor incididunt ut labere et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullameo laboris nisi ut aliquip ex ea commodo consequat.

72 %

October 29, 2020

A/B Testing

Incoming user U

Sample A/B from prior dlstrlbutlon

-

Measure engagement (e.g. cllckthrough

(Update priors P(A|U), P(B|U))

Breandan Considine (McGill)

Concepts in Statistical and Software Testing

October 29, 2020

12/1

A/B/C Testing

Incoming user U

(Sample A/B/C from prior distribution)

4

Sees version B

(Measure engagement (e.g. cIickthrough))

(Update priors P(A|U), P(B|U), P(C|U))

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 13/1

Multi-armed bandits

Multi—-armed bandit Music Recommendation
&y
w \ =
0 o]]
=] & 1) (22, -
= S 2 @ 8
- b = = ug
. > e [[}
Interactive = g g =
Process S N (<3 B &
25 s g =
=F = =
8 f 2
< S
time time
Objective maximize the sum of payoffs maximize the sum of ratings

https://dl.acm.org/doi/pdf/10.1145/2623372#page=8

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 14/1

https://dl.acm.org/doi/pdf/10.1145/2623372##page=8

Checks a small "unit” of code on a small number of input/outputs.

~

K fun test(subroutine: (Input) -> Output) {

val input = Input() // Construct an input
val expectedOutput = OQutput() // Construct an output
val actualOutput = subroutine(input)

assert(expectedOutput == actualOutput) { // Evaluate

"Expected SexpectedOutput, got SactualOutput"
}
}

Pros: Simple to understand and helps document design assumptions.
Cons: High coverage is cumbersome to write, grows stale over time.

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 15/1

ration Testing

Checks for terminating exceptions and postconditions on a large program.

e 1

K fun <I, 0> test(program: (I) -> 0, inputs: Set<I>) =
inputs.forEach { input: I ->
try {

val output: 0 = program(input) // Whole program
assert(postcondition(output)) {

"Postcondition failed on Sinput, Soutput"
b

} catch (exception: Exception) {

assert(false) { exception } //
}
+

Pros: Easier to write, checks for high-level exceptions and postconditions.
Cons: Only covers the “happy path”, can often be too coarse grained.

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 16/1

Generates many random inputs and compare outputs with an oracle.

@Repeat (LARGE_NUMBER)
fun <I, 0> test(program: (I) -> 0, // System under test

oracle : (I) -> 0, // Source of Truth
sample : (Random) -> I) {
val input: I = sample(Random())
assert(program(input) == oracle(input)) {
"Oracle and program disagree on S$input"
}

}

Pros:

Cons: Input space often too large to brute force, “test oracle problem”.

Breandan Considine (McGill)

Lower effort required to write test cases, higher test coverage.

Concepts in Statistical and Software Testing October 29, 2020

17/1

Fuzzing Dataflow

K @Repeat (LARGE_NUMBER)
fun <I, 0> test(program: (I) -> 0, // System under test
oracle : (I) -> 0, // Source of Truth
sample : (Random) -> I) {
val input: I = sample(Random())
assert(program(input) == oracle(input)) {
"Oracle and program disagree on Sinput"

I

F

Program
(Random)—»(SampleH Input *

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 18/1

Property Based Testing

Specify a universal output property and implement a sampler and shrinker.

3

K @Repeat (LARGE_NUMBER)
fun <I, 0> test(program : (I) -> O,
property: (0) -> Boolean,
sample : (Random) -> I,
shrinker: (I, (I)->0, (0)->Boolean) -> I) {
val randomInput: I = sample(Random())
assert(property(program(randomInput))) {
"Error detected on: SrandomInput!"
val min = shrinker(randomInput, program, property)
"Minimal counterexample of property: Smin!"

F
I

Pros: No oracle required, can detect and minimize counterexamples.
Cons: Property specification can be brittle and requires domain expertise.

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 19/1

PBT Dataflow

K @Repeat (LARGE_NUMBER)
fun <I, 0> test(program : (I) -> O,
property: (0) -> Boolean,
sample : (Random) -> I,
shrinker: (I, (I)->0, (0)->Boolean) -> I) {
val randomInput: I = sample(Random())
assert(property(program(randomInput))) {
"Error detected on: SrandomInput!"
val min = shrinker(randomInput, program, property)
"Minimal counterexample of property: Smin!"

}

b

ProgramHProperty?
(Random)—»(Sam ple)—b(Input

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 20/1

Metamorphic Testing

Specify a relation (e.g. &), transform inputs and compare with labels.

s D

K @Repeat (LARGE_NUMBER)

fun <I, 0> test(program: (I) -> 0,
inputTx: (I) -> I,
metaRel: (0, 0) -> Boolean,

sample : (Set<Pair<I, 0>>) -> Pair<I, 0>,
dataset: Set<Pair<I, 0>>) {
val (trueInput: I, trueOutput: 0) = sample(dataset)
val transformedInput : I = inputTx(input)
val transformedOutput: 0 = program(transformedInput)
assert(metaRel(trueOutput, transformedOutput)) {
"<StrueOutput> not SmetaRel <StransformedOutput>!"
}
}

Pros: No domain expertise required, just a small labeled dataset.

Cons: How to design TX to detect errors efficiently? Open research.
Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 21/1

MMT Dataflow

e w

K @Repeat (LARGE_NUMBER)

fun <I, 0> test(program: (I) -> 0,
inputTx: (I) -> I,
metaRel: (0, 0) -> Boolean,

sample : (Set<Pair<I, 0>>) -> Pair<I, 0>,
dataset: Set<Pair<I, 0>>) {
val (trueInput: I, trueOutput: 0) = sample(dataset)
val transformedInput : I = inputTx(input)
val transformedOutput: 0 = program(transformedInput)
assert(metaRel(trueOutput, transformedOutput)) {
"<StrueOutput> not SmetaRel <StransformedOutput>!"

F
}
(Dataset)—b(Sample %-

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 22/1

Hypothesis testing vs. Software testing

Statistical Testing
@ We're not sure what the correct

Software Testing

@ We know what the correct

Breandan Considine (McGill)

answer is, want to find out
Tries to minimize empirical risk
by increasing sample size
Often assumes IID randomness
for accurate results
Deliberately injects noise into
sampling process

Results are never exactly the
same twice

Requires non-determinism to
demonstrate reproducibility

Concepts in Statistical and Software Testing

behavior is, need to validate it!

Tries to minimize operational
risk, increase test coverage

Uses randomness as a
substitute for formal
verification

Tries to reduce noise to prevent
false alarms

Requires determinism for
software reproducibility

October 29, 2020 23/1

Further resources

000000600

Aleatoric and Epistemic Uncertainty in Machine Learning, Eyke
Hiillermeieraand Willem Waegeman (2020)

The Multi-Armed Bandit Problem and Its Solutions, Weng (2017)
Exploration in Interactive Music Recommendation, Wang (2014)
Intro to property-based testing, Alex Chan (2016)

Property based testing, Pierre Felgines (2019)

Coverage Guided, Property Based Testing, Lamproproulos (2019)
Metamorphic testing, Wayne (2019)

Survey of Trends in Oracles for Software Testing, Harman (2014)
American Fuzzy Lop

TensorFuzz: Debugging Neural Networks with Coverage-Guided
Fuzzing, Odena et al. (2019)

Breandan Considine (McGill) Concepts in Statistical and Software Testing October 29, 2020 24 /1

https://arxiv.org/pdf/1910.09457.pdf
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html##thompson-sampling
https://dl.acm.org/doi/pdf/10.1145/2623372
https://alexwlchan.net/2016/06/hypothesis-intro/
https://felginep.github.io/2019-03-20/property-based-testing
https://lemonidas.github.io/pdf/FuzzChick.pdf
https://www.hillelwayne.com/post/metamorphic-testing/
https://mcminn.io/publications/tr3.pdf
https://lcamtuf.coredump.cx/afl/
http://proceedings.mlr.press/v97/odena19a/odena19a.pdf
http://proceedings.mlr.press/v97/odena19a/odena19a.pdf

	Traditional Software Engineering
	Software Testing Strategies

