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KOTLIN∇
A SHAPE-SAFE DSL FOR DIFFERENTIABLE FUNCTIONAL PROGRAMMING

Anonymous Authors1

ABSTRACT
Kotlin is a statically-typed programming language with support for embedded domain specific languages, asyn-
chronous programming, and multi-platform compilation. In this work, we present an algebraically-grounded
implementation of forward- and reverse- mode automatic differentiation (AD) with shape-safe tensor operations,
written in pure Kotlin. Our approach differs from existing AD frameworks in that Kotlin∇ is the first shape-safe
AD library fully compatible with the Java type system, requiring no metaprogramming, reflection or compiler inter-
vention to use. A working prototype is available at: https://github.com/anonymous/kotlingrad.

1 INTRODUCTION

Existing AD frameworks for machine learning are imple-
mented in Python, which is not a type-safe language. Some
AD implementations are written in statically-typed lan-
guages, but only type check primitive data types (e.g. in-
tegers or floating point numbers), and are unable to check
the shape of multidimensional arrays in their type system.
Those which do are typically implemented in experimen-
tal programming languages with sophisticated type-level
programming features. In our work, we demonstrate an
automatic differentiation library with shape-checked array
programming in a widely-used programming language.

Prior work has shown it is possible to encode a determinis-
tic context-free grammar as a fluent interface (Gil & Levy,
2016) in Java. This result was strengthened to prove Java’s
type system is Turing Complete (Grigore, 2017), allowing
arbitrary computation to occur in the type system. As a
practical consequence, we can use a similar technique to
perform shape-safe automatic differentiation (AD) in Java,
using type-level programming. A similar technique is fea-
sible in any language with parametric polymorphism, such
as C# or TypeScript. We use Kotlin, whose type system is
strictly less expressive, but fully interoperable with Java.

Differentiable programming has a rich history among dy-
namic languages like Python, Lua and JavaScript, with
early implementations including projects like Theano, Torch,
and TensorFlow. Similar ideas have been implemented in
statically typed, functional languages, such as Haskell’s

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Montréal AI Sympoisum
(MAIS). Do not distribute.

Stalin∇ (Pearlmutter & Siskind, 2008b), DiffSharp in F#
(Baydin et al., 2015) and recently Swift 2018tensorflow.
However, the majority of existing automatic differentiation
(AD) frameworks use a loosely-typed DSL, and few offer
shape-safe tensor operations in a widely-used programming
language.

Existing AD implementations for the JVM include Lantern
(Wang et al., 2018), Nexus (Chen, 2017) and DeepLearn-
ing.scala (Bo, 2018), however these are Scala-based and do
not interoperate with other JVM languages. Kotlin∇ is fully
interoperable with vanilla Java, enabling broader adoption
in neighboring languages. To our knowledge, Kotlin has no
prior AD implementation. However, the language contains a
number of desirable features for implementing a native AD
framework. In addition to type-safety and interoperability,
Kotlin∇ primarily relies on the following language features:

1. Operator overloading and infix functions allow a
concise notation for defining arithmetic operations on
tensor-algebraic structures, i.e. groups, rings and fields.

2. λ-functions and coroutines support backpropogation
with lambdas and shift-reset continuations, following
Pearlmutter & Siskind 2008a and Wang et al. 2018.

3. Extension functions support extending classes with
new fields and methods and can be exposed to external
callers without requiring sub-classing or inheritance.

2 USAGE

Kotlin∇ allows users to implement differentiable functions
by composing operations on algebraic fields to form expres-
sions. Operations on variables with incompatible shape will
fail to compile. Valid expressions are lazily evaluated inside
a type-safe numerical context and numerical evaluation only

https://github.com/anonymous/kotlingrad
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occurs when a function is passed concrete input values.

Figure 1. Kotlin∇ models are data structures, constructed by an
embedded DSL, eagerly optimized, and lazily evaluated at runtime.

import edu.umontreal.kotlingrad.numerics.DoublePrecision

with(DoublePrecision) { // Use double-precision protocol
val x = variable("x") // Declare immutable vars (these
val y = variable("y") // are just symbolic constructs)
val z = sin(10 * (x * x + pow(y, 2))) / 10 // Lazy exp
val dz_dx = d(z) / d(x) // Leibniz derivative notation
val d2z_dxdy = d(dz_dx) / d(y) // Mixed higher partial
val d3z_d2xdy = grad(d2z_dxdy)[x] // Indexing gradient
plot3D(d3z_d2xdy, -1.0, 1.0) // Plot in -1 < x,y,z < 1

}

Figure 2. A basic Kotlin∇ program with two inputs and one output.

Above, we define a function with two variables and take
a series of partial derivatives with respect to each variable.
The function is numerically evaluated on the interval (−1, 1)
in each dimension and rendered in 3-space. We can also
plot higher dimensional manifolds (e.g. the loss surface
of a neural network), projected into four dimensions, and
rendered in three, where one axis is represented by time.

Kotlin∇ treats mathematical functions and programming
functions with the same underlying abstraction. Expressions
are composed recursively to form a data-flow graph (DFG).
An expression is simply a Function, which is only evalu-
ated once invoked with numerical values, e.g. z(0, 0).

Kotlin∇ supports shape-shafe tensor operations by encoding
tensor rank as a parameter of the operand’s type signature.
By enumerating type-level integer literals, we can define
tensor operations just once using the highest literal, and rely
on Liskov substitution to preserve shape safety for subtypes.

It is possible to enforce shape-safe vector construction as
well as checked vector arithmetic up to a fixed L, but the full
implementation is omitted for brevity. A similar pattern can
be applied to matrices and higher rank tensors, where the
type signature encodes the shape of the operand at runtime.

With these basic ingredients, we have almost all the features

z = sin
(
10(x× x+ y2)

)
/10, plot3D

(
∂3z

∂x2∂y

)

Figure 3. Output generated by the program shown in Figure 2.

val z = sin(10 * (x * x + pow(y, 2))) / 10

÷

10

sin×
+

pow
2

y

×
x
x

10

Figure 4. Implicit DFG constructed by the original expression, z.

// Literals have reified values for runtime comparison
sealed class ‘0‘(open val value: Int = 0)
sealed class ‘1‘(override val value: Int = 1): ‘0‘(1)
sealed class ‘2‘(override val value: Int = 2): ‘1‘(2)
sealed class ‘3‘(override val value: Int = 3): ‘2‘(3)
// <L: ‘1‘> will accept 1<=L<=3 via Liskov substitution
class Vec<E, L: ‘1‘>(len: L, cts: List<E> = listOf())
// Define addition for two vectors of type Vec<Int, L>
operator fun <L: ‘1‘, V: Vec<Int, L>> V.plus(v: V) =
Vec<Int, L>(len, cts.zip(v.cts).map { it.l + it.r })

// Type-checked vector addition with shape inference
val Y = Vec(‘2‘, listOf(1, 2)) + Vec(‘2‘, listOf(3, 4))
val X = Vec(‘1‘, listOf(1, 2)) + Vec(‘3‘) // Undefined!

Figure 5. Shape safe tensor addition for rank-1 tensors, ∀L ≤ 3.

necessary to build an expressive shape-safe AD, but unlike
prior implementations using Scala or Haskell, in a language
that is fully interoperable with Java, while also capable of
compiling to JVM bytecode, JavaScript, and native code.

In future work, we plan to implement a broader grammar
of differentiable primitives including matrix convolution, as
well as control flow and recursion. While Kotlin∇ currently
implements matrix arithmetic directly, we plan to wrap a
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native linear algebra library for performance reasons.
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