
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

KOTLIN∇
A SHAPE-SAFE DSL FOR DIFFERENTIABLE FUNCTIONAL PROGRAMMING

Anonymous Authors1

ABSTRACT
Kotlin is a statically-typed programming language with support for embedded domain specific languages, asyn-
chronous programming, and multi-platform compilation. In this work, we present an algebraically-grounded
implementation of forward- and reverse- mode automatic differentiation (AD) with shape-safe tensor operations,
written in pure Kotlin. Our approach differs from existing AD frameworks in that Kotlin∇ is the first shape-safe
AD library fully compatible with the Java type system, requiring no metaprogramming, reflection or compiler inter-
vention to use. A working prototype is available at: https://github.com/anonymous/kotlingrad.

1 INTRODUCTION

Existing AD frameworks for machine learning are imple-
mented in Python, which is not a type-safe language. Some
AD implementations are written in statically-typed lan-
guages, but only type check primitive data types (e.g. in-
tegers or floating point numbers), and are unable to check
the shape of multidimensional arrays in their type system.
Those which do are typically implemented in experimen-
tal programming languages with sophisticated type-level
programming features. In our work, we demonstrate an
automatic differentiation library with shape-checked array
programming in a widely-used programming language.

Prior work has shown it is possible to encode a determinis-
tic context-free grammar as a fluent interface (Gil & Levy,
2016) in Java. This result was strengthened to prove Java’s
type system is Turing Complete (Grigore, 2017), allowing
arbitrary computation to occur in the type system. As a
practical consequence, we can use a similar technique to
perform shape-safe automatic differentiation (AD) in Java,
using type-level programming. A similar technique is fea-
sible in any language with parametric polymorphism, such
as C# or TypeScript. We use Kotlin, whose type system is
strictly less expressive, but fully interoperable with Java.

Differentiable programming has a rich history among dy-
namic languages like Python, Lua and JavaScript, with
early implementations including projects like Theano, Torch,
and TensorFlow. Similar ideas have been implemented in
statically typed, functional languages, such as Haskell’s

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Montréal AI Sympoisum
(MAIS). Do not distribute.

Stalin∇ (Pearlmutter & Siskind, 2008b), DiffSharp in F#
(Baydin et al., 2015) and recently Swift 2018tensorflow.
However, the majority of existing automatic differentiation
(AD) frameworks use a loosely-typed DSL, and few offer
shape-safe tensor operations in a widely-used programming
language.

Existing AD implementations for the JVM include Lantern
(Wang et al., 2018), Nexus (Chen, 2017) and DeepLearn-
ing.scala (Bo, 2018), however these are Scala-based and do
not interoperate with other JVM languages. Kotlin∇ is fully
interoperable with vanilla Java, enabling broader adoption
in neighboring languages. To our knowledge, Kotlin has no
prior AD implementation. However, the language contains a
number of desirable features for implementing a native AD
framework. In addition to type-safety and interoperability,
Kotlin∇ primarily relies on the following language features:

1. Operator overloading and infix functions allow a
concise notation for defining arithmetic operations on
tensor-algebraic structures, i.e. groups, rings and fields.

2. λ-functions and coroutines support backpropogation
with lambdas and shift-reset continuations, following
Pearlmutter & Siskind 2008a and Wang et al. 2018.

3. Extension functions support extending classes with
new fields and methods and can be exposed to external
callers without requiring sub-classing or inheritance.

2 USAGE

Kotlin∇ allows users to implement differentiable functions
by composing operations on algebraic fields to form expres-
sions. Operations on variables with incompatible shape will
fail to compile. Valid expressions are lazily evaluated inside
a type-safe numerical context and numerical evaluation only

https://github.com/anonymous/kotlingrad


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Kotlin∇: An shape-safe DSL for differentiable functional programming

occurs when a function is passed concrete input values.

Figure 1. Kotlin∇ models are data structures, constructed by an
embedded DSL, eagerly optimized, and lazily evaluated at runtime.

import edu.umontreal.kotlingrad.numerics.DoublePrecision

with(DoublePrecision) { // Use double-precision protocol
val x = variable("x") // Declare immutable vars (these
val y = variable("y") // are just symbolic constructs)
val z = sin(10 * (x * x + pow(y, 2))) / 10 // Lazy exp
val dz_dx = d(z) / d(x) // Leibniz derivative notation
val d2z_dxdy = d(dz_dx) / d(y) // Mixed higher partial
val d3z_d2xdy = grad(d2z_dxdy)[x] // Indexing gradient
plot3D(d3z_d2xdy, -1.0, 1.0) // Plot in -1 < x,y,z < 1

}

Figure 2. A basic Kotlin∇ program with two inputs and one output.

Above, we define a function with two variables and take
a series of partial derivatives with respect to each variable.
The function is numerically evaluated on the interval (−1, 1)
in each dimension and rendered in 3-space. We can also
plot higher dimensional manifolds (e.g. the loss surface
of a neural network), projected into four dimensions, and
rendered in three, where one axis is represented by time.

Kotlin∇ treats mathematical functions and programming
functions with the same underlying abstraction. Expressions
are composed recursively to form a data-flow graph (DFG).
An expression is simply a Function, which is only evalu-
ated once invoked with numerical values, e.g. z(0, 0).

Kotlin∇ supports shape-shafe tensor operations by encoding
tensor rank as a parameter of the operand’s type signature.
By enumerating type-level integer literals, we can define
tensor operations just once using the highest literal, and rely
on Liskov substitution to preserve shape safety for subtypes.

It is possible to enforce shape-safe vector construction as
well as checked vector arithmetic up to a fixed L, but the full
implementation is omitted for brevity. A similar pattern can
be applied to matrices and higher rank tensors, where the
type signature encodes the shape of the operand at runtime.

With these basic ingredients, we have almost all the features

z = sin
(
10(x× x+ y2)

)
/10, plot3D

(
∂3z

∂x2∂y

)

Figure 3. Output generated by the program shown in Figure 2.

val z = sin(10 * (x * x + pow(y, 2))) / 10

÷

10

sin×
+

pow
2

y

×
x
x

10

Figure 4. Implicit DFG constructed by the original expression, z.

// Literals have reified values for runtime comparison
sealed class ‘0‘(open val value: Int = 0)
sealed class ‘1‘(override val value: Int = 1): ‘0‘(1)
sealed class ‘2‘(override val value: Int = 2): ‘1‘(2)
sealed class ‘3‘(override val value: Int = 3): ‘2‘(3)
// <L: ‘1‘> will accept 1<=L<=3 via Liskov substitution
class Vec<E, L: ‘1‘>(len: L, cts: List<E> = listOf())
// Define addition for two vectors of type Vec<Int, L>
operator fun <L: ‘1‘, V: Vec<Int, L>> V.plus(v: V) =
Vec<Int, L>(len, cts.zip(v.cts).map { it.l + it.r })

// Type-checked vector addition with shape inference
val Y = Vec(‘2‘, listOf(1, 2)) + Vec(‘2‘, listOf(3, 4))
val X = Vec(‘1‘, listOf(1, 2)) + Vec(‘3‘) // Undefined!

Figure 5. Shape safe tensor addition for rank-1 tensors, ∀L ≤ 3.

necessary to build an expressive shape-safe AD, but unlike
prior implementations using Scala or Haskell, in a language
that is fully interoperable with Java, while also capable of
compiling to JVM bytecode, JavaScript, and native code.

In future work, we plan to implement a broader grammar
of differentiable primitives including matrix convolution, as
well as control flow and recursion. While Kotlin∇ currently
implements matrix arithmetic directly, we plan to wrap a



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Kotlin∇: An shape-safe DSL for differentiable functional programming

native linear algebra library for performance reasons.

REFERENCES

Baydin, A. G., Pearlmutter, B. A., and Siskind, J. M.
DiffSharp: Automatic differentiation library. CoRR,
abs/1511.07727, 2015. URL http://arxiv.org/
abs/1511.07727.

Bo, Y. DeepLearning.scala: A simple library for
creating complex neural networks. 2018. URL
https://github.com/ThoughtWorksInc/
DeepLearning.scala.

Chen, T. Typesafe abstractions for tensor operations
(short paper). pp. 45–50, 2017. doi: 10.1145/3136000.
3136001. URL http://doi.acm.org/10.1145/
3136000.3136001.

Gil, Y. and Levy, T. Formal Language Recognition
with the Java Type Checker. 56:10:1–10:27, 2016.
ISSN 1868-8969. doi: 10.4230/LIPIcs.ECOOP.2016.
10. URL http://drops.dagstuhl.de/opus/
volltexte/2016/6104.

Grigore, R. Java generics are Turing Complete. pp. 73–
85, 2017. doi: 10.1145/3009837.3009871. URL http:
//doi.acm.org/10.1145/3009837.3009871.

Pearlmutter, B. A. and Siskind, J. M. Reverse-mode AD in
a functional framework: Lambda the ultimate backprop-
agator. ACM Transactions on Programming Languages
and Systems (TOPLAS), 30(2):7, 2008a.

Pearlmutter, B. A. and Siskind, J. M. Using pro-
gramming language theory to make automatic dif-
ferentiation sound and efficient. pp. 79–90, 2008b.
ISSN 1439-7358. doi: 10.1007/978-3-540-68942-3_8.
URL http://www.bcl.hamilton.ie/~barak/
papers/sound-efficient-ad2008.pdf.

Wang, F., Wu, X., Essertel, G. M., Decker, J. M., and
Rompf, T. Demystifying differentiable programming:
Shift/reset the penultimate backpropagator. CoRR,
abs/1803.10228, 2018. URL http://arxiv.org/
abs/1803.10228.

http://arxiv.org/abs/1511.07727
http://arxiv.org/abs/1511.07727
https://github.com/ThoughtWorksInc/DeepLearning.scala
https://github.com/ThoughtWorksInc/DeepLearning.scala
http://doi.acm.org/10.1145/3136000.3136001
http://doi.acm.org/10.1145/3136000.3136001
http://drops.dagstuhl.de/opus/volltexte/2016/6104
http://drops.dagstuhl.de/opus/volltexte/2016/6104
http://doi.acm.org/10.1145/3009837.3009871
http://doi.acm.org/10.1145/3009837.3009871
http://www.bcl.hamilton.ie/~barak/papers/sound-efficient-ad2008.pdf
http://www.bcl.hamilton.ie/~barak/papers/sound-efficient-ad2008.pdf
http://arxiv.org/abs/1803.10228
http://arxiv.org/abs/1803.10228

