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ABSTRACT
Kotlin is a statically-typed programming language with support for embedded domain specific languages, asyn-
chronous programming, and multi-platform compilation. In this work, we present an algebraically-grounded
implementation of forward- and reverse- mode automatic differentiation (AD) with shape-safe tensor operations,
written in pure Kotlin. Our approach differs from existing AD frameworks in that KotlinV is the first shape-safe
AD library fully compatible with the Java type system, requiring no metaprogramming, reflection or compiler in-
tervention to use. A working prototype is available at: https://github.com/breandan/kotlingrad.

1 INTRODUCTION

Prior work has shown it is possible to encode a determin-
istic context-free grammar as a fluent interface (?) in Java.
This result was strengthened to prove Java’s type system is
Turing complete (?). As a practical consequence, we can
use the same technique to perform shape-safe automatic
differentiation (AD) in Java, using type-level programming.
A similar technique is feasible in any language with generic
types. We use Kotlin, whose type system is less expressive,
but fully compatible with Java.

Differentiable programming has a rich history among dy-
namic languages like Python, Lua and JavaScript, with
early implementations including projects like Theano, Torch,
and TensorFlow. Similar ideas have been implemented in
statically typed, functional languages, such as Haskell’s
StalinV (?), DiffSharp in F# (?) and recently Swift 2018ten-
sorflow. However, the majority of existing automatic differ-
entiation (AD) frameworks use a loosely-typed DSL, and
few offer shape-safe tensor operations in a widely-used pro-
gramming language.

Existing AD implementations for the JVM include
Lantern (?), Nexus (?) and DeepLearning.scala (?), how-
ever these are Scala-based and do not interoperate with other
JVM languages. KotlinV is fully interoperable with vanilla
Java, enabling broader adoption in neighboring languages.
To our knowledge, Kotlin has no prior AD implementation.
However, the language contains a number of desirable fea-
tures for implementing a native AD framework. In addition
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to type-safety and interoperability, KotlinV primarily relies
on the following language features:

1. Operator overloading and infix functions allow a
concise notation for defining arithmetic operations on
tensor-algebraic structures, i.e. groups, rings and fields.

2. A-functions and coroutines support backpropogation
with lambdas and shift-reset continuations, following ?
and ?.

3. Extension functions support extending classes with
new fields and methods and can be exposed to external
callers without requiring sub-classing or inheritance.

2 USAGE

KotlinV allows users to implement differentiable programs
by composing operations on fields to form algebraic expres-
sions. Expressions are lazily evaluated inside a numerical
context, which may imported on a per-file basis or lexically
scoped for finer-grained control over the runtime behavior.

Figure 1. A basic KotlinV program with two inputs and one output.

Above, we define a function with two variables and take
a series of partial derivatives with respect to each variable.
The function is numerically evaluated on the interval (—1, 1)
in each dimension and rendered in 3-space. We can also
plot higher dimensional manifolds (e.g. the loss surface
of a neural network), projected into four dimensions, and
rendered in three, where one axis is represented by time. To
demonstrate, a display is required for animation purposes.

KotlinV treats mathematical functions and programming
functions with the same underlying abstraction. Expressions
are composed recursively to form a data-flow graph (DFG).
An expression is simply a Funct ion, which is only evalu-
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tensor rank as a parameter of the operand’s type signature.
By enumerating type-level integer literals, we can define
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Figure 2. Output generated by the program shown in Figure 1.
10

X— x +>><
32’>pow -
10

Figure 3. Implicit DFG constructed by the original expression, z.
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tensor operations just once using the highest literal, and rely
on Liskov substitution to preserve shape safety for subtypes.

Figure 4. Shape safe tensor addition for rank-1 tensors, VL < 2.

It is possible to enforce shape-safe vector construction as
well as checked vector arithmetic up to a fixed L, but the full
implementation is omitted for brevity. A similar pattern can
be applied to matrices and higher rank tensors, where the
type signature encodes the shape of the operand at runtime.

With these basic ingredients, we have almost all the features
necessary to build an expressive shape-safe AD, but unlike
prior implementations using Scala or Haskell, in a language
that is fully interoperable with Java, while also capable of
compiling to JVM bytecode, JavaScript, and native code.

In future work, we intend to implement a full grammar
of differentiable primitives including matrix convolution,
control flow and recursion. While KotlinV currently imple-
ments arithmetic manually, we plan to wrap a BLAS such
as cuBLAS or native linear algebra library for performance.
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