
CITS3003 Graphics and Animation
Project Part 1 & 2 Report

Bruce How (22242664)

May 23, 2019

Contents
1 Overview 1

1.1 Project Breakdown . 1
1.2 Issues . 1

2 Part 1 Implementation 1
A Camera Rotatation . 1
B Object Rotatation . 2
C Materials . 2
D Clipping . 3
E Reshape . 3
F Light Reduction . 3
G Per-Fragment Lighting . 3
H Shine . 4
I Additional Light . 4
J Extensions . 5

J.1 Below Surface Lighting . 5
J.2 Object Selection . 5
J.3 Object Duplication . 6
J.4 Object Deletion . 6
J.5 Smarter Menu . 6

3 Part 2 Implementation 7
A Texture Scaling . 7
B 3D Human Modeling with MakeHuman . 7
C Animating the 3D Human in Blender . 7
D Animation . 8

D.1 Coding Animation . 8
D.2 Animation Speed . 9
D.3 Pause/Resume All Animations . 9
D.4 Smarter Animation Menu . 9

4 Experience 10

1 Overview

1.1 Project Breakdown
The submitted code covers all the required project functionalities for both part 1 and 2 includ-
ing some additional code which contributes to the optional part of the project. Contribution
breakdown is not required as I have worked individually.

1.2 Issues
My progress throughout this project was not ”bug-free”. When working on the first part of
the project, I noticed that the scroll wheel did not zoom the camera at all. To debug this,
I added a simple print statement in the mouseClickOrScroll call-back function to see if the
function was called when the scroll wheel was triggered. This was not the case. Fortunately,
camera zooming can still be achieved by clicking and dragging the mouse. GLUT implemen-
tations, such as FreeGLUT, which contains the glutMouseWheelFunc function, is another
alternative solution to this issue, but will be ignored in this project. This issue seems to be
specific to Mac users. Testing my scene builder was extremely hard on the eye due to the
very low default brightness. I have doubled the brightness for each object in the scene to
increase visibility.

I had several rare occurrences with the “Fatal Error: Out of Memory” error message that
would occasionally crash my scene. I was unable to reproduce the error as it appeared very
random. To combat this issue, I added a few conditional checks to ensure that memory is
not used when unavailable (the code below has been added to the addObject() function).

if (nObjects >= maxObjects) return; // Fix to the Fatal Error: Out of Memory?

When working on part 2, I found that the animation speeds are very depended on the
testing environment. Whilst testing on my laptop (having around 800 frames per second),
the animation speeds were a lot faster than on the Mac lab computers (with 60 frames per
second). I have modified the default animation speed to ensure that it runs smoothly on the
Mac lab computers.

2 Part 1 Implementation

A Camera Rotatation
For the camera rotation implementation, the display callback function had to be modified.
This was done using two built in functions, RotateX and RotateY ; and two camera angle
variables, camRotUpAndOverDeg and camRotSidewaysDeg, which were already implemented
in the skeleton code.

mat4 rotate = RotateX(camRotUpAndOverDeg) * RotateY(camRotSidewaysDeg);
view = Translate(0.0, 0.0, -viewDist) * rotate;

1

I came across a weird issues when implementing this part of the project where the camera
would snap-back after the tool was activated. This issue was resolved by modifying a line
of code in the activateTool function, in gnatidread.h. The redundant variable clickPrev, was
also removed. The code modification is shown below.

prevPos = currMouseXYscreen(mouseX, mouseY);

B Object Rotatation
Object translation and scaling have already been implemented in the skeleton code. The
variable angles[3], is used to control the object’s rotation. The same built-in functions used
above have also been used to rotate the object.

mat4 rotate = RotateX(-sceneObj.angles[0]) * RotateY(sceneObj.angles[1]) *
RotateZ(sceneObj.angles[2]);

mat4 model = Translate(sceneObj.loc) * Scale(sceneObj.scale) * rotate;

I had to negate the rotation on the x-axis (-sceneObj.angles[0]) in order to a produce a ro-
tation that is identical to the one in the video.

C Materials
Two call-back functions were created which modify the ambient, diffuse, specular and shine
values respectively.

static void adjustAmbientDiffuse(vec2 am_df) {
sceneObjs[toolObj].ambient += am_df[0];
sceneObjs[toolObj].diffuse += am_df[1];

}

static void adjustSpecularShine(vec2 sp_sh) {
sceneObjs[toolObj].specular += sp_sh[0];
sceneObjs[toolObj].shine += sp_sh[1];

}

These call-back functions are used by a menu object with an id of 20 as shown below.

else if (id == 20) { // Ambient/Diffuse/Specilar/Shine
setToolCallbacks(adjustAmbientDiffuse, mat2(1, 0, 0, 1),

adjustSpecularShine, mat2(1, 0, 0, 1));
}

The menu entry name has also been renamed to remove the ”UNIMPLEMENTED” label.

2

D Clipping
In order to avoid close-up clipping, the value of the built-in variable nearDist in the reshape
call-back function needed to be modified.

GLfloat nearDist = 0.01;

By reducing the value of nearDist to a smaller value of 0.01, the camera is able to move in
much closer to the objects without its triangles being clipped. I have found that reducing
the value of nearDist further had little to no impact.

E Reshape
Additional modifications to the reshape call-back function was also required in order to make
sure that all objects that are visible when the window is a square, are also visible when the
window is stretched or shortened.

if (width < height) {
projection = Frustum(-nearDist, nearDist,

-nearDist*(float)height/(float)width, nearDist*(float)height/(float)width,
nearDist, 100.0);

} else {
projection = Frustum(-nearDist*(float)width/(float)height,

nearDist*(float)width/(float)height, -nearDist, nearDist, nearDist, 100.0);
}

F Light Reduction
The reduction variable is applied to the light calculation so that lighting would vary depending
on the distance to the light source.

// Reduction in light after a particular distance
float lightDropoff = 0.01 + length(Lvec);

color.rgb = globalAmbient + ((ambient + diffuse) / lightDropoff);

G Per-Fragment Lighting
Per-fragment lighting was achieved by moving the lighting calculations from the vertex shader
to the fragment shader, fStart.glsl. As the light directions are calculated for each individual
fragments, light interaction on surfaces are much more smoother.

Several changes were required in order for this to happen including the need for additional
variables in the vertex shader, vStart.glsl, and the fragment shader fStart.glsl. No changes
were required in the cpp file scene-start.cpp.

3

H Shine
The following code was added in the scene-start.cpp file to pass the light brightness to the
fragment shader.

glUniform1f(glGetUniformLocation(shaderProgram, "LightBrightness"),
lightObj1.brightness);

CheckError();

This allows me to modify the specular attribute ensuring that the lighting is independent of
the light’s colour and that the light’s color tend towards white. It should also not affect the
colour of the texture. The below code was added to the fragment shader fStart.glsl.

float Ks = pow(max(dot(N, H), 0.0), Shininess);
vec3 specular = LightBrightness * Ks * SpecularProduct;

color.rgb = globalAmbient + ((ambient + diffuse) / lightDropoff);
color.a = 1.0;

gl_FragColor = color * texture2D(texture, texCoord * 2.0) + vec4(specular /
lightDropoff, 1.0);

I Additional Light
The creation of an additional light is similar of that of the first light. The below code was
added in the scene-start.cpp file.

// Second light
addObject(55); // Sphere for the second light
sceneObjs[2].loc = vec4(-2.0, 1.0, 1.0, 1.0);
sceneObjs[2].scale = 0.2;
sceneObjs[2].texId = 0; // Plain texture
sceneObjs[2].brightness = 0.2; // The light’s brightness is 5 times this (below).

Several new variables were also declared in the fragment shader including LightPosition2,
LightColor2 and LightBrightness2. These variables are initialised in the scene-start.cpp file
accordingly.

// Light Object 2
uniform vec4 LightPosition2;
uniform vec3 LightColor2;
uniform float LightBrightness2;

As the second light is directional, its lighting calculation is only be affected by camera
rotations and not rotation nor translation (code below). The remaining ambient, diffuse and
specular calculations were performed in the same manner as the first light.

4

// Set the view matrix
mat4 rotate = RotateX(camRotUpAndOverDeg) * RotateY(camRotSidewaysDeg);

// Second light
SceneObject lightObj2 = sceneObjs[2];
vec4 lightPosition2 = rotate * lightObj2.loc;

Changes to the light menu were also performed to link the second light object lightObj2.
Light reduction does not apply to directional light sources and is therefore not implemented
for this light, but directly added to the end of gl FragColor.

gl_FragColor = color * texture2D(texture, texCoord * 2.0) + vec4(specular /
lightDropoff + specular2, 1.0);

J Extensions
J.1 Below Surface Lighting

I have implemented code in the fragment shader and the cpp file to ensure that both lights will
have no effect if they are beneath the surface. This is done by checking the y locations of each
light in the fragment shader and omitting particular lighting calculations where necessary. In
order to do this, the location of each light, lightObj.loc, needed to be passed to the fragment
shader.

glUniform4fv(glGetUniformLocation(shaderProgram, "LightObj"), 1, lightObj1.loc);
CheckError();

glUniform4fv(glGetUniformLocation(shaderProgram, "LightObj2"), 1, lightObj2.loc);
CheckError();

J.2 Object Selection

My initial plan was to utilise stencil to allow for easy object selection via the mouse. I ended
up implementing a simpler alternative by adding an additional submenu that allowed objects
to be individually selected.

Each submenu item represents an object in the scene (excluding the ground and light),
and has a menu ID of 100 plus its respective index in the sceneObjs[] array. This ensures
that each ID object is unique. Note that objects with no meshID are excluded (explained in
the Object Deletion section), and the object that is selected is represented in the sub-menu
with an asterisk.

int selectObjMenuId = glutCreateMenu(selectObjectMenu);
for (int i = 3; i < nObjects; i++) { // Exclude ground, lightObj1 and lightObj2

char objectName[128]; // Same size used in gnatidread.h
if (sceneObjs[i].meshId != NULL) {

5

int objectId = 100 + i;
strcpy(objectName, objectMenuEntries[sceneObjs[i].meshId - 1]);
strcat(objectName, " (");
strcat(objectName, textureMenuEntries[sceneObjs[i].texId - 1]);
strcat(objectName, ")");
if (currObject == i) { // Indicate currently selected object

strcat(objectName, " *");
}
glutAddMenuEntry(objectName, objectId);

}
}

The selectObjectMenu function is responsible for converting the 100+ objectID back to its
respective array index value and assigning it to currObject and toolObj.

J.3 Object Duplication

A new menu entry ”Duplicate Object” was created which duplicates the currently selected
object. This is done in the duplicateObject function which simply sets the next element
in the sceneObjs[] array to be equal to the element in the currObj position in the array.
Prior to this, a check is put a place to ensure that the number of objects do not exceed the
maxObjects. The function also sets currObj and toolObj to the index of the newly created
duplicated object, and increments nObjects, the number of objects.

J.4 Object Deletion

The deleteObject function is responsible for deleting objects from the scene. Objects that are
deleted have their meshID values set to NULL, ensuring that they are not displayed in the
object selection sub-menu. The value of currObj is set to -1 to indicate that no objects are
selected.

static void deleteObject(int id) {
sceneObjs[currObject].meshId = NULL;
currObject = -1;
delObjects++;
makeMenu(); // PART J. Update object selection sub-menu

}

J.5 Smarter Menu

Several menu options such as Delete Object and Duplicate Object will only be displayed un-
der appropriate conditions. For example, if no object is selected, then deletion, duplication,
position etc. cannot happen; and if there are no selectable objects, then the Select Object
menu will not be displayed.

6

// PART J.5. Show sub-menu if an object exists (excluding the ground and lights)
if (nObjects - delObjects - 3 > 0) {

glutAddSubMenu("Select Object", selectObjMenuId);
}
if (currObject != -1) { // Part J. Show only when an object is selected

glutAddMenuEntry("Duplicate Object", 51);
glutAddMenuEntry("Delete Object", 52);
glutAddMenuEntry("Position/Scale", 41);
glutAddMenuEntry("Rotation/Texture Scale", 55);
glutAddSubMenu("Material", materialMenuId);
glutAddSubMenu("Texture", texMenuId);

}

Note that the delObjects variable was created to keep count of the number of deleted objects
as deleted objects still contribute to the nObjects variable.

3 Part 2 Implementation

A Texture Scaling
Texture scaling was somewhat already half-implemented in the first part of the project. To
fully implement texture scaling, the texScale variable had to be added to the fragment shader.
This variable will be multiplied on top of the default 2.0 value.

gl_FragColor = (color * texture2D(texture, texCoord * 2.0 * texScale)) +
vec4(specular / lightDropoff + specular2, 1.0);

// PART 2A. Multiply by texScale value

B 3D Human Modeling with MakeHuman
All three human models were generated using the MakeHuman 1.0.2 software and exported
to the mhx (Blender Exchange) format. These include ElderlyMan.mhx, MatureWomen.mhx
and YoungBaby.mhx. Variations in their parameters were used resulting in three very differ-
ent human models.

I was unfortunately unable to import these .mhx files into Blender. After some researching,
I found that the old .mhx format is deprecated and replaced with .mhx2 as of MakeHuman
1.1.x. This is important as the MakeHuman plugin for Blender no longer supports .mhx files,
but supports .mhx2 files.

C Animating the 3D Human in Blender
I followed the provided steps and downloaded three .bvh animation files, an old-man walk ani-
mation, cartwheel animation, and a baby crawl animation; one for each human model. These
.bvh files were then combined together with its respective .mhx2 human model and exported

7

to DirectX. I initially had trouble exporting the files to DirectX as the export option was
not provided by Blender. I was able to overcome this issue by installing the “Import-Export:
DirectX X Format” add-on.

After exporting to DirectX, I was initially unable to get my model animations working and
facing the right way up. The cause of the issue was because the default DirectX export options
did not include the animation aspects of my model. This issue was fixed after re-exporting
my models with the appropriate DirectX export options.

D Animation
D.1 Coding Animation

I initially came across an issue with the default scale of my models. The sample model
model-56.x, which was used to test my animation code, was extremely small compared to the
rest of the objects in the scene. The following code was added to the addObject() function
in the cpp file in order to scale up the additional models and set the model frames.

if (id == 56) {
sceneObjs[nObjects].scale *= 10; // PART 2C. Scale the human models by 10
sceneObjs[nObjects].frames = 300;
sceneObjs[nObjects].hasAnim = true;

}

Additional variables were added to the SceneObject struct that were used to appropriately
display the animations.

// PART 2D. Animation variables
bool hasAnim; // If the obj has animation
int frames; // The number of frames

The below segment of code was added to the display() function and handles the calculation
for the poseTime and the animation itself. This variable is used in the calculateAnimPose()
function that handles the animations.

float poseTime = 0.0;
if (sceneObj.hasAnim)

poseTime = (int) POSE_TIME % sceneObj.frames;

A few constraints were put in place to validate the animation speed. ANIMSPEED is a
global variable that controls the animation speed. It is bounded to have a lower limit of 0.1
to ensure that the animation is not completely frozen, and an upper limit of 10, so that the
max animation speed is at a reasonable.

// Set bounds for the animation Speed
if (ANIM_SPEED > 10) ANIM_SPEED = 10;

8

if (ANIM_SPEED < 0.1) ANIM_SPEED = 0.1;

POSE_TIME += ANIM_SPEED/100;

D.2 Animation Speed

Users are able to control the animation speed by using their mouse. Similar to the previous
parts, this was implemented with the use of the toolCallback functions, and an additional
function adjustAnimSpeed as shown below.

// PART 2D. Adjust animation speed
static void adjustAnimSpeed(vec2 an_sp) {

ANIM_SPEED += an_sp[0];
}

if (id == 62) { // Animation speed
setToolCallbacks(adjustAnimSpeed, mat2(1, 0, 0, 10),

adjustAnimSpeed, mat2(1, 0, 0, 10));
}

D.3 Pause/Resume All Animations

Pausing all animations was achieved simply by setting the ANIM PAUSED variable to true.
Similarly, all animations will be resumed once the this variable is set to false. The idea
behind this is that POST TIME is conditioned to only increment in value if all animations
are not paused. The following piece of code from D.1 was modified as shown below.

if (!ANIM_PAUSED) {
POSE_TIME += ANIM_SPEED/100;

}

D.4 Smarter Animation Menu

A submenu was used to house the set of animation controls to reduce the clustering of menu
items. These controls include Resume Animation, Pause Animation, and Animation Speed.
Much like the extension part for Part 1, these controls are conditioned to display only when
applicable. For example, the Resume Animation will not be displayed if the all the animations
are already playing.

static void animationMenu(int id) {
if (id == 60) { // Animation resume

ANIM_PAUSED = false;
makeMenu();

}

9

if (id == 61) { // Animation pause
ANIM_PAUSED = true;
makeMenu();

}
if (id == 62) { // Animation speed

setToolCallbacks(adjustAnimSpeed, mat2(1, 0, 0, 10),
adjustAnimSpeed, mat2(1, 0, 0, 10));

}
}

// PART 2D. Animation control using a sub-menu
int animationMenuId = glutCreateMenu(animationMenu);
if (ANIM_PAUSED) {

glutAddMenuEntry("Resume Animation", 60);
} else {

glutAddMenuEntry("Pause Animation", 61);
}
glutAddMenuEntry("Animation Speed", 62);

4 Experience
I had initially found this part of the project to be tough due to how overwhelming the entire
start-scene.cpp code was. Despite this, the project acted as a stepping stone for me into the
world of graphics, and has helped consolidate my understanding on lab and lecture contents.
Implementing extensions to this part of the project has raised by my confidence and under-
standing in OpenGL, which will definitely aid me in the final exam.

In general, I found the second part of the project to be much more manageable in terms
of the amount of coding required. This part of the project has introduced me to the basics
of animations and modelling. Modelling in Blender proved to be a difficult task due to my
lack of experience with Blender, but was not difficult to learn. Overall, this part of the pro-
gram is a necessary and valuable lesson which has provided me with the needed experience
in animation that would definitely be useful in the future.

10

