Bullet 2.83 Physics SDK Manual

at
|
n

PHYSICS LIBRARY

Also check out the forums and wiki at bulletphysics.org

© 2015 Erwin Coumans
All Rights Reserved.



http://bulletphysics.org

Table of Contents

BULLET 2.83 PHYSICS SDK MANUAL.....ciitttttttttuniiiiniiiiiiieesssssssssssssmiiiiimtesssssssssssssmmmimttmsmssssssssssssssssssssss 1
1 Introduction.....................
Description of the library
IMI@IN FEATUIES ...ttt e bt e e e b et s e e e s ba e e e aa e e e s b e e e s b e e e e b b e e e bb e e e s be e e s abaeesabaeesanaeesannneesanes 4
(0eTa} = Totd=T o Te INYUT o o Yo o AP P U TOUPPPTPPRN 4
2 Build system, Getting Started ANAd WRGL'S NEW .............oeeecuueeeeeeeeeeeeeeeeeeeeeeeeeee et e e e et e e ettt e e e eaaa e e e et e e eneaseaeenassens 5
Please see separate BulletQuUIckstart.pdf SUILE. ......oo ittt et s et e st e e st e e e sabeessntaeeennee 5
3 Library Overview

Introduction.........
Software Design
LaU={Te I = TeTo AV od oV (ot T o Y=Y 11 TSRO ROTPPTRPPRRRON 7
INTEEIATION OVEIVIEW ettt ettt ettt e e ettt e e s ettt e e e s e ab et e e e e e e anb e e e e e e s aab e e e e e e s s neetee e e e aneseeee s e nasabeeeeeanantneeeeeannsneeaenan 7
Basic Data Types anNd IMath LIDIary .......oooueoiiiiiiiieeee ettt et sttt e s bt e e s bt e e s bt e e e bt e e e sabeeesabeeesabbeeeabeeeanbeesansaeesnnen 9
Memory Management, AliGNMENT, CONTAINEIS. ... ..ii ittt te e ette ettt e s s be e e s bt e e s bt e e sbteeesabeeesabeeesabeeeanbaeesabeesanseesansaeesnnen 9
TiMING and Performance ProfiliNg ... .. o ettt et e e s bt e e st e e e bt e e sabe e e sbteeebbeeessbeeesabaeeabaeeeas 10
DIEDUE DIFAWINE ... eieieiiiee ettt ettt ettt ettt e ettt e e s a bt e e s abte e e bte e e abeeesabeeeaabeeeeasbeeeasbee e nbeeeasbeeesabeeeeaseeeeasbeeeeabeeesasbeeensbeeenabeeesabeeeenbaaeans 11
4 BUIEE COIlISION DELECEION .....vvveeveeiieeieesteeee et te ettt e e tte ettt e e tte e ettt e st e e st e saseasataasastaeassaansaaeastaaassaesssaaassaesaseasnsessasnasans 12
Collision Detection ..............
Collision Shapes......
Convex Primitives ...
(0oTa0Y o Te Y0 a1 IY o F=1 o 1T PSP UPPPR
Convex Hull Shapes
CONCAVE THIANEGIE IMESNES ...ttt ettt ettt e ettt e e s bt e e s bt e e ettt e s abee e abeeeaabeeesabeeeeabeeeesbeeesabeeeeasbeeensbeesanbeeesntaeeanseeas
[Ofe] oAV L D I=Tole] o g T oo 111 4 o] o DN TP P PP UPUPPPPPON
[ LT =d oL A 15T o U RTTPPRRPPPON
YA =Y u ol o T g TR o F=T o 1T UV P TP PRPPPPON
SCAlING OF COllISION SHAPES......eeiiitieiiiie ettt ettt e e st e e s be e e e bt e e s aabee s st e e e sabbeesabbeeaabbeeeaabeeesabbeeenbbeessbeeesabaaenntaeeannne
(0eY [T Lo T TV 1 =112 VPP UP T TOUPPPTRRP
(60e] | T oY T\ = o TP P PP VRUPPRPRNE
Registering custom collision shapes and @lgOTIthmS ......coouiii i e s et e e be e e aae e
5 Collision Filtering (SEIECLIVE COIISIONS) ........cccuveeeeeeeiseeeeeit et eet e st e st e e tee st e e tta ettt e ettt e ssteesssaesstaaassaassseastessaseasans
Filtering COllISIONS USING MASKS ......viiiiiiieitiie ettt ettt e ettt e e bt e s b bt e e s ate e e sa bt e e sbeeesasbeeesbeeesabeeesabeeeensbeeenabeeesasaeeanbaaeans
Filtering Collisions Using a Broadphase Filter Callback ...
Filtering Collisions Using @ CUStomM NEArCallDaCK. .........uiiiiiiiiiiie ettt ettt st e e s bt e e s bt e e e sabe e e saaeeesneaeeeas
Deriving your own class from btCollisSionDiSPatCREr.......c.cuuii ittt e bt e e sbe e e s baeeeas
(Ol e 1o 2T Yo A D)V Lo T £ ok USSR
[La Ao e [ o1 e o OO U RO U PR PROPPP
Static, Dynamic and Kinematic RiGI BOGIES. ....cccuuiiiiiiiiiiiee ettt ettt ettt e st e e s bt e e e bt e e e sabeeesbeeeenbbeeesbeeesabeeesnseaeannee
Center 0f Mass WOrTd TranSfOrM ... e ittt et et e st e e et e s be e s e e et e e s ae e e st e beesaneenreenneenanenane
What's @ IMOTIONSTALE? .....eoeiiiieiiieeee ettt st e et e s e e e s ab e e bt e s ae e sas e e b e e sa et s st e be e sen e e ane e e s e e easeeaneesmeeeaneennneenneeneens 20
[La1 =Yg oTe] =1 Te] o HO PP PTTOPRRPPPON 21
SO NOW GO I USE ONE?...ieeeeeeteetee ettt et s ettt et e s et e bt e s b e e sa bt e bt e s e et ea st e bt e sa s e s s e e beesan e e bt e s e e eaneeneeemeeeareenneeenreeneens 21
IDLCH =R MR o /(o N ol Mo o 1ok ot 1 ot = BRI
Kinematic Bodies .......ccocereeeveeriiernieenienienne
Simulation frames and interpolation frames
T CONSEIAINTS ....vvveeeeeeseieeeteste et et ettt e ettt e et e et e et e et a e st e e st e e st e e easeessseaaaseaaateaeaseaeatsaanssaesteaaasaaaasaasasessnseasnsesessansss
POINt £0 POINT CONSTIAINT ...ceiiiiiiiiiii et e e s b e e e s b e e e s b e e e saba e e s ba e e s sabeesenbnee e
(2 LaT==N o] 1 4 =11 o | TSP UUTOTOPUPUPPPRPPRt
Y LTe 1= 0o o153 1 1 PP PP PSPPSRI
CONE TWIST CONSEIAINT ..eeiiiiiiiiiie et e e e e bt e s a e e s aa e e e s abe e e s b e e e s ba e e e bb e e e sabe e e s aba e e eabaeesaabeessatnesennaees
GENENIC 6 DO CONSEIAINT ...ttt ettt et e bt s e et e bt e s st e e e e e b e e s a e e et e e e seeeae e et e e s aseemneenbeesaneeaneenneenanenane
8 Actions: Vehicles & CRAIACLEr CONTIOIET ..........c.eecuueeeieesiieeie e ete et s e st e ettt e st e s ttsestaa e sttt e sstaeassaassseastessaseasans

©Erwin Coumans Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

LYo d T o ) =T =T TP PP PRTOPROPRPI
Raycast Vehicle.......
Character Controller...
Lo Ye) = ToTe |V 0 Lo [ ][ISR
[[aAq e e [ o1 o] o OO ROU PR PR OPRPP
Construction from @ trHaNGIE MESH ... e i ettt sttt s bt e bt e e e ab e e e s bt e e e bt e e e tbeeesabeeesataeeanneeas 27
(6] T o g ol U] =Y PSP PP PR URUPPRPROE 27
APPIYING FOrCES 10 @ SOt DOTY .. .ueiiiiiieeee ettt sttt e e s a b e e s bt e e s bt e e e bt e e e aabeeesabeeeenbbeessbeesaabeeesasaaesnnee 28
Y] il eJoTe VA oo T o 1 d =11 0| £ F TP PRUPPTRPPPPRINY 28
10 Bullet Example Browser
L2 D=0 o T PP P PO TP TP PPN 30
RV 1T Tol [ D =Y o o T TP P PP PSTOPRRPRRPI 30
2o o Iy A D=1 oo TP U RO PR PROPRTP 30
11 Advanced LOW LeVel TECANICAI DEIMOS ..........ccvecueeeeeceeeciieiieieeeeeteseeste st e et e esaesteeesaesessesasaasssssssssssasssassesssesssesens 31
(0eY | Ty TeT s oY =T = Yol T Y= DT=T s 4T PP TOUPPPR
(6o} 1T oY g T D T=T o oo H PR PPP PR URRUPPRPRNE
(O o] 113 oY WA f= L] 414 Y o PRSP TPPRRPPPON
GjK CONVEX CaSt / SWEEP DEMO ..veeuiiiiitieiiiteeieste st eteste et estesteestesbesssessesseessensaassessesseassansessaessesseeseensaseessesseaseensebeessensesseensansenses
Continuous Convex Collision .....
Raytracer Demo......cccccceeeeennn
Simplex DeMO......coovvveeeiiieeeiieeeeeee
12 Authoring Tools and Serialization
DYNAMICA IMAYA PIUGIN ...ttt ettt ettt ettt e ettt e e s bt e e e bt e e et b e e e abe e e saeeeesabeeesabeeesaseeeeasbeeesabeeesasbeeensbeeeabeeesasaeeansnaanas
121 1=T g e 1= O UR TP PSP
Cinema 4D, LightWave CORE, HOUGINI.....iiiiuiiiiiiiieiiiee ettt ettt ettt e st e e e st e e e s bt e e s ate e e sabeeesabeeeeabeeeensbeeesabeeesntaeeanseeas
Serialization and the Bullet .bullet binary FOrmMat ... ..ottt et st e e s b e e s tae e
(R R0 T= g I <X OSSR
Avoid very small and very large collision shapes....
AVvOid 1arge Mass ratios (IFfEIrENCES) ...cuuiiiiiieeiieeieee ettt ettt e st e et e et e e s e e e beesseessseeseessaeasseeseesseeestaeaseesseeenseessseanseesnenn
Combine multiple static triangle MESHES INTO ONE.....coi ittt e e st e e e bt e e s bt e e sateeesnaeeas
Use the default internal fiXEd timMESTEP . ....uuii ettt e ettt e bt e s bt e e e sabe e e sabeeesbbeeensbeeesabeeesabeeesnsaaeaas
For ragdolls use btCONETWISTCONSIIAINT .....eiiiiiiiiiiie ettt ettt e ettt e et e e e s abe e e sbeeesbbee e sbeeesabeeesabbeesnsbeeesabeeesaseeeansaaenas
Don’t set the COllISION MATZIN 10 ZEIO ...oiiuiiiiiii et e et e et e e s bt e e s bt e e e abe e e sabeeesabbeesnsbeeesabeeesasaeesnsaaeans
Use less then 100 vertices in @ CONVEX MESH ...ttt st s r e s b e e e e r e s mnesareenneesanes
Avoid huge or degenerate triangles in @ triangle MESN.. ..o ittt et e e sbe e e s tae e 36
The profiling feature btQuickProf bypasses the memory alloCator ... 36
Per triangle friction @nd reStitULION VAIUE .........oi ittt e et e e s bt e e st b e e e bt ee e abeeesabaeeensaaeeas
Other MLCP CONSEIAINt SOIVETS ....ecueeeiiieieeriee ettt ettt et b e st e bt e e st e e e e e bt e sa e e e st e sbeesmee et e e saeeemneenbeesaneeareessnenanenane
OV ool o ot d o] IV [o o =] USSR PPPTU PR VRUPPRPRNE
T4 PArQNEIISIN USING OPENICL.....oeoeveeeeeeeeeeeeeeete e et e e ettt e et e et eetaee e etaeeeats e e asseetseeeseeeseeesessstseessseesssenssseatseeeareenn
OpenCL rigid body and collision detection...
15 Further documentation QNd FEfEIENCES .........cueceeeeeceeeiieeieieeeetesee st e st e st e eteeeteeeteeeseesesaseessasseessasssseassesssesssesees
ONIINE FESOUITES. ...eeiutiieieteieesie e ettt e st e e st e st e bt esbeesab e e bt e sh e e s e bt e bt e sa et e s e e s e e es e e e as e e se e ea e e e neeeme e e as e e sheeemeeeaseenseeemneebeenaneeareennnenanenane

©Erwin Coumans Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

1 Introduction

Description of the library

Bullet Physics is a professional open source collision detection, rigid body and soft body dynamics
library written in portable C++. The library is primarily designed for use in games, visual effects and
robotic simulation. The library is free for commercial use under the ZLib license.

Main Features

e Discrete and continuous collision detection including ray and convex sweep test. Collision
shapes include concave and convex meshes and all basic primitives

e Maximal coordinate 6-degree of freedom rigid bodies (btRigidBody) connected by
constraints (btTypedConstraint) as well as generalized coordinate multi-bodies

(btMultiBody) connected by mobilizers using the articulated body algorithm.

e Fast and stable rigid body dynamics constraint solver, vehicle dynamics, character
controller and slider, hinge, generic 6DOF and cone twist constraint for ragdolls

e Soft Body dynamics for cloth, rope and deformable volumes with two-way interaction with
rigid bodies, including constraint support

e Open source C++ code under Zlib license and free for any commercial use on all platforms
including PLAYSTATION 3, XBox 360, Wii, PC, Linux, Mac OSX, Android and iPhone

e Maya Dynamica plugin, Blender integration, native binary .bullet serialization and
examples how to import URDF, Wavefront .obj and Quake .bsp files.

e Many examples showing how to use the SDK. All examples are easy to browse in the
OpenGL 3 example browser. Each example can also be compiled without graphics.

e Quickstart Guide, Doxygen documentation, wiki and forum complement the examples.

Contact and Support

e Public forum for support and feedback is available at http://bulletphysics.org

©Erwin Coumans Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

2 Build system, Getting started and What’s New

Please see separate BulletQuickstart.pdf guide.
From Bullet 2.83 onwards there is a separate quickstart guide. This quickstart guide includes
the changes and new features of the new SDK versions, as well as how to build the Bullet

Physics SDK and the examples.

You can find this quickstart guide in Bullet/docs/BulletQuickstart.pdf.

©Erwin Coumans Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

‘ 3 Library Overview

Introduction

The main task of a physics engine is to perform collision detection, resolve collisions and other
constraints, and provide the updated world transform! for all the objects. This chapter will give a
general overview of the rigid body dynamics pipeline as well as the basic data types and math library

shared by all components.

Software Design

Bullet has been designed to be customizable and modular. The developer can

e use only the collision detection component

e use the rigid body dynamics component without soft body dynamics component

e use only small parts of a the library and extend the library in many ways

e choose to use a single precision or double precision version of the library

e use a custom memory allocator, hook up own performance profiler or debug drawer

The main components are organized as follows:

Soft Body Bullet Extras:
Dynamics Multi Threaded Maya Plugin
hkx2dae
.bsp, .obj,
Rigid Body other tools
Dynamics
Collision
Detection
Linear Math
Memory, Containers

! World transform of the center of mass for rigid bodies, transformed vertices for soft bodies

©Erwin Coumans

Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

Rigid Body Physics Pipeline

Before going into detail, the following diagram shows the most important data structures and
computation stages in the Bullet physics pipeline. This pipeline is executed from left to right, starting
by applying gravity, and ending by position integration, updating the world transform.

Collision Data ‘ ‘ Dynamics Data

ollision Objec Over- ontac ransform onstrain
Shapes AVA=1H lapping Points Velocity contacts
Pairs s joints
Inertia

Apply Predict Compute Detect Compute Solve Integrate

Gravity Transforms AABBs Pairs Contacts constraints Position

Forward Broadphase Narrowphase Forward
Dynamics Collision Detection Collision Dynamics
Detection

The entire physics pipeline computation and its data structures are represented in Bullet by a
dynamics world. When performing ‘stepSimulation’ on the dynamics world, all the above stages
are executed. The default dynamics world implementation is the btDiscreteDynamicsiWorld.

Bullet lets the developer choose several parts of the dynamics world explicitly, such as broadphase
collision detection, narrowphase collision detection (dispatcher) and constraint solver.

Integration overview

If you want to use Bullet in your own 3D application, it is best to follow the steps in the HelloWorld
demo, located in Bullet/examples/HelloWorld. In a nutshell:

e Create a btDiscreteDynamicsWorldor btSoftRigidDynamicsWorld

These classes, derived from btDynamicswWorld, provide a high level interface that manages your
physics objects and constraints. It also implements the update of all objects each frame.

e Create a btRigidBody and add it to the bt DynamicsWorld

To construct a btRigidBody or btCollisionObject, you need to provide:

e Mass, positive for dynamics moving objects and 0 for static objects

©Erwin Coumans Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

e CollisionShape, like a Box, Sphere, Cone, Convex Hull or Triangle Mesh

e Material properties like friction and restitution

Update the simulation each frame:

e stepSimulation

Call the stepSimulation on the dynamics world. The btDiscreteDynamicsWorld automatically
takes into account variable timestep by performing interpolation instead of simulation for small
timesteps. It uses an internal fixed timestep of 60 Hertz. stepSimulation will perform collision
detection and physics simulation. It updates the world transform for active objecs by calling the
btMotionState’s setWorldTransform.

The next chapters will provide more information about collision detection and rigid body dynamics. A
lot of the details are demonstrated in the Bullet/examples. If you can’t find certain functionality,
please visit the physics forum on the Bullet website at http://bulletphysics.org

©Erwin Coumans Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

Basic Data Types and Math Library

The basic data types, memory management and containers are located in Bullet/src/LinearMath.

e btScalar

A btScalaris a posh word for a floating point number. In order to allow to compile the library in
single floating point precision and double precision, we use the btScalar data type throughout the
library. By default, bt Scalaris atypedef to float. It can be double by defining

BT USE_DOUBLE PRECISION either in your build system, or at the top of the file
Bullet/src/LinearMath/btScalar.h.

® btVector3

3D positions and vectors can be represented using btVector3. btVector3 has 3 scalar x,y,z components.
It has, however, a 4th unused w component for alignment and SIMD compatibility reasons. Many
operations can be performed on a btVector3, such as add subtract and taking the length of a vector.

e btQuaternionand btMatrix3x3

3D orientations and rotations can be represented using either btQuaternionor btMatrix3x3.

e btTransform

btTransformis a combination of a position and an orientation. It can be used to transform points
and vectors from one coordinate space into the other. No scaling or shearing is allowed.

Bullet uses a right-handed coordinate system:

(0,0,0)
, \X

Figure 1 Right-handed coordinate system

btTransformUtil, btAabbUtil provide common utility functions for transforms and AABBs.

Memory Management, Alignment, Containers

Often it is important that data is 16-byte aligned, for example when using SIMD or DMA transfers on
Cell SPU. Bullet provides default memory allocators that handle alignment, and developers can
provide their own memory allocator. All memory allocations in Bullet use:

©Erwin Coumans Bullet 2.83 Physics SDK Manual



http://bulletphysics.org

e btAlignedAlloc, which allows to specify size and alignment

e btAlignedFree, free the memory allocated by btAlignedAlloc.

To override the default memory allocator, you can choose between:

e pbtAlignedAllocSetCustomis used when your custom allocator doesn’t support
alignment

e btAlignedAllocSetCustomAligned can be used to set your custom aligned memory
allocator.

To assure that a structure or class will be automatically aligned, you can use this macro:

e ATTRIBUTE ALIGNEDI16 (type) variablename createsa 16-byte aligned variable

Often it is necessary to maintain an array of objects. Originally the Bullet library used a STL std::vector
data structure for arrays, but for portability and compatibility reasons we switched to our own array
class.

e btAlignedObjectArray closely resembles std::vector. It uses the aligned allocator to
guarantee alignment. It has methods to sort the array using quick sort or heap sort.

To enable Microsoft Visual Studio Debugger to visualize btAlignedObjectArray and
btVector3, follow the instructions in Bullet/msvc/autoexp ext.txt

\Watch 1

Name Value
= @ this {m_constraint mi
@ @ _vfptr const btDiscreteDynamicsWorld:: " vftable’
& 4# m_colisionObjects [ 0 {m_i i rld={...} m_linearvelocity={...,...]m_{
# 90 0x00393¢70 {m_invInertiaTensorworld=1{...} m_linearVelocity=[0.00000000,0.4
# o 0x02a24c0 {m_invInertiaTensortWorld={...} m_linearVelacity=[0.00000000,0.4
® @2 0x00397beD {m_invInertiaTensorworld={...} m_inearvelocity=[0.00000000,0.
® 93 002330640 {m_invInertiaTensorWorld={...} m_linearVelacity=[0.00000000,0.1
® @4 0x02530330 {m_invInertiaTensor -} m_linearVelocity={0.00000000,0.
® @ [5] 0x02536580 {m_invInertiaTensorw } m_linearVelocity=[0.00000000,0.{
|| = e@6 |0x02a3970 {m_invInertiaTensori¥ _linearVelocity=[0.00000000,0. |
# @ [btRigidsody] {m_invInertiaTensorWorld={...} m_linearVelocity=[0.00000000,0.00000000,0.4
® @ _viptr 000652510 const btRigidBody:: vftable’
# g m_worldTransform {m_basis={...} m_origin=[-5.0000000, 15.000000,-5.0000000,0.00000000] }
# 4» m_interpolationtorldTransform {m_basis={...} m_origin=[-5.0000000, 15.000000,-5.0000000,0.00000000] }
® 4 m_interpolationlinearVelocity [0.00000000,0.00000000,0,00000000,0.00000000]
® 4 m_interpolationAngularvelocity [0.00000000,0.00000000,0,00000000,0.00000000]
@ 4 m_broadphaseHandie 0x02a36bc0 {m_clientObject=0x02a36370 m_colisionFilterGroup=1m_colision

Figure 2 MSVC Debug Visualization

Timing and Performance Profiling

In order to locate bottlenecks in performance, Bullet uses macros for hierarchical performance
measurement.

e btClock measures time using microsecond accuracy.

e BT PROFILE (section name) marks the start of a profiling section.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-10 -



http://bulletphysics.org

e CProfileManager: :dumpAll () ; dumps a hierarchical performance output in the
console. Call this after stepping the simulation.

e CProfilelteratorisa class that lets you iterate through the profiling tree.

Note that the profiler doesn’t use the memory allocator, so you might want to disable it when
checking for memory leaks, or when creating a final release build of your software.

The profiling feature can be switched off by defining #define BT NO_ PROFILE 1 in
Bullet/src/LinearMath/btQuickProf.h

Debug Drawing

Visual debugging the simulation data structures can be helpful. For example, this allows you to verify
that the physics simulation data matches the graphics data. Also scaling problems, bad constraint
frames and limits show up.

btIDebugDraw is the interface class used for debug drawing. Derive your own class and implement
the virtual "drawLine’ and other methods.

Assign your custom debug drawer to the dynamics world using the setDebugDrawer method.
Then you can choose to draw specific debugging features by setting the mode of the debug drawer:
dynamicsWorld->getDebugDrawer () ->setDebugMode (debugMode) ;
Every frame you can call the debug drawing by calling the
world-> debugDrawWorld() ;~*
Here are some debug modes
e btIDebugDraw: :DBG DrawWireframe
e btIDebugDraw::DBG DrawAabb
e btIDebugDraw::DBG DrawConstraints
e btIDebugDraw::DBG DrawConstraintLimits

By default all objects are visualized for a given debug mode, and when using many objects this can
clutter the display. You can disable debug drawing for specific objects by using

int £ = objects->getCollisionFlags();

ob->setCollisionFlags (f|btCollisionObject::CF_DISABLE VISUALIZE OBJECT) ;

> This feature is supported for both btCollisionWorldand btDiscreteDynamicsWorld

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-11 -



http://bulletphysics.org

‘4 Bullet Collision Detection

Collision Detection

The collision detection provides algorithms and acceleration structures for closest point (distance and
penetration) queries as well as ray and convex sweep tests. The main data structures are:

e btCollisionObject is the object that has a world transform and a collision shape.

e btCollisionShape describes the collision shape of a collision object, such as box, sphere,
convex hull or triangle mesh. A single collision shape can be shared among multiple
collision objects.

® btGhostObject is aspecial btCollisionObject, useful for fast localized collision
queries.

e btCollisionWorldstoresall btCollisionObjects and provides an interface to
perform queries.

The broadphase collision detection provides acceleration structure to quickly reject pairs of objects
based on axis alighed bounding box (AABB) overlap. Several different broadphase acceleration
structures are available:

e btDbvtBroadphase uses a fast dynamic bounding volume hierarchy based on AABB tree
® btAxisSweep3 and bt32BitAxisSweep3 implement incremental 3d sweep and prune

e btSimpleBroadphase is a brute force reference implementation. It is slow but easy to
understand and useful for debugging and testing a more advanced broadphase.

The broadphase adds and removes overlapping pairs from a pair cache. Overlapping pairs are
persistent over time and can cache information such as previous contact constraint forces that can be
used for ‘warmstarting’: using the previous solution to converge faster towards constraint solving.

A collision dispatcher iterates over each pair, searches for a matching collision algorithm based on the
types of objects involved and executes the collision algorithm computing contact points.

e btPersistentManifoldisa contact point cache to store contact points for a given pair of
objects.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-12 -



http://bulletphysics.org

Collision Shapes

Bullet supports a large variety of different collision shapes, and it is possible to add your own. For best
performance and quality it is important to choose the collision shape that suits your purpose. The
following diagram can help making a decision:

Is is a moving object?

YES NO

Can it be approximated by a single Is it a 2D heightfield?
primitive, such as box, sphere, capsule,

cone, cylinder?
Y YES NO
YES/ QO

Are there shared

btHeightfield
TerrainShape

Can it be approximated by a
convex hull of a triangle mesh?

scaled instances?
YES NO btScaledBvhTriangle
MeshShape
Can it be approximated using
btConvexHullShape

multiple primitives, such as
box, sphere etc? btBvhTriangle
MeshShape
YE% \\IO
btCompoundShape btGimpactTriangleMeshShape

btBoxShape,
btSphereShape,

btCapsuleShape,
btCylinderShape,
btConeShape

NO

Convex Primitives

Most primitive shapes are centered around the origin of their local coordinate frame:
btBoxShape : Box defined by the half extents (half length) of its sides
btSphereShape : Sphere defined by its radius

btCapsuleShape: Capsule around the Y axis. Also btCapsuleShapeX/Z
btCylinderShape : Cylinder around the Y axis. Also btCylinderShapeX/Z.

btConeShape : Cone around the Y axis. Also btConeShapeX/Z.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-13-



http://bulletphysics.org

btMultiSphereShape : Convex hull of multiple spheres, that can be used to create a Capsule (by
passing 2 spheres) or other convex shapes.

Compound Shapes

Multiple convex shapes can be combined into a composite or compound shape, using the
btCompoundShape. This is a concave shape made out of convex sub parts, called child shapes. Each
child shape has its own local offset transform, relative to the bt CompoundShape. It is a good idea to
approximate concave shapes using a collection of convex hulls, and store them in a
btCompoundShape. You can adjust the center of mass using a utility method btCompoundShape
r:calculatePrincipalAxisTransform.

Convex Hull Shapes

Bullet supports several ways to represent a convex triangle meshes. The easiest way is to create a
btConvexHullShape and pass in an array of vertices. In some cases the graphics mesh contains too
many vertices to be used directly as bt ConvexHullShape. In that case, try to reduce the number of
vertices.

Concave Triangle Meshes

For static world environment, a very efficient way to represent static triangle meshes is to use a
btBvhTriangleMeshShape. This collision shape builds an internal acceleration structure from a
btTriangleMeshor btStridingMeshInterrface. Instead of building the tree at run-time, it is
also possible to serialize the binary tree to disc. See examples/ConcaveDemo how to save and load
this btOptimizedBvh tree acceleration structure. When you have several instances of the same
triangle mesh, but with different scaling, you can instance a btBvhTriangleMeshShape multiple
times using the btScaledBvhTriangleMeshShape. The btBvhTriangleMeshShape can store
multiple mesh parts. It keeps a triangle index and part index in a 32bit structure, reserving 10 bits for
the part Id and the remaining 22 bits for triangle index. If you need more than 2 million triangles,
either split the the triangle mesh into multiple sub meshes, or change the default in #define

MAX NUM PARTS IN BITS in the file

src\BulletCollision \BroadphaseCollision\btQuantizedBvh.h

Convex Decomposition

Ideally, concave meshes should only be used for static artwork. Otherwise its convex hull should be
used by passing the mesh to btConvexHullShape. If a single convex shape is not detailed enough,
multiple convex parts can be combined into a composite object called bt CompoundShape. Convex
decomposition can be used to decompose the concave mesh into several convex parts. See the
Demos/ConvexDecompositionDemo for an automatic way of doing convex decomposition.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-14 -



http://bulletphysics.org

Height field

Bullet provides support for the special case of a flat 2D concave terrain through the
btHeightfieldTerrainShape. See examples/TerrainDemo for its usage.

btStaticPlaneShape

As the name suggests, the bt StaticPlaneShape can represent an infinite plane or half space. This
shape can only be used for static, non-moving objects. This shape has been introduced mainly for
demo purposes.

Scaling of Collision Shapes

Some collision shapes can have local scaling applied. Use

btCollisionShape: :setScaling(vector3). Non uniform scaling with different scaling values for
each axis, can be used for btBoxShape, btMultiSphereShape, btConvexShape,
btTriangleMeshShape. Uniform scaling, using x value for all axis, can be used for
btSphereShape. Note that a non-uniform scaled sphere can be created by using a
btMultiSphereShape with 1 sphere. As mentioned before, the
btScaledBvhTriangleMeshShape allows to instantiate a btBvhTriangleMeshShape at different
non-uniform scale factors. The btUniformScalingShape allows to instantiate convex shapes at
different scales, reducing the amount of memory.

Collision Margin

Bullet uses a small collision margin for collision shapes, to improve performance and reliability of the
collision detection. It is best not to modify the default collision margin, and if you do use a positive
value: zero margin might introduce problems. By default this collision margin is set to 0.04, which is 4
centimeter if your units are in meters (recommended).

Dependent on which collision shapes, the margin has different meaning. Generally the collision
margin will expand the object. This will create a small gap. To compensate for this, some shapes will
subtract the margin from the actual size. For example, the bt BoxShape subtracts the collision margin
from the half extents. For a bt SphereShape, the entire radius is collision margin so no gap will
occur. Don’t override the collision margin for spheres. For convex hulls, cylinders and cones, the
margin is added to the extents of the object, so a gap will occur, unless you adjust the graphics mesh
or collision size. For convex hull objects, there is a method to remove the gap introduced by the
margin, by shrinking the object. See the examples/Importers/ImportBsp for this advanced use.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-15-



http://bulletphysics.org

Collision Matrix

For each pair of shape types, Bullet will dispatch a certain collision algorithm, by using the dispatcher.
By default, the entire matrix is filled with the following algorithms. Note that Convex represents
convex polyhedron, cylinder, cone and capsule and other GJK compatible primitives. GJK stands for
Gilbert, Johnson and Keerthi, the people behind this convex distance calculation algorithm. It is
combined with EPA for penetration depth calculation. EPA stands for Expanding Polythope
Algorithm by Gino van den Bergen. Bullet has its own free implementation of GJK and EPA.

box sphere convex,cylinder | compound | triangle mesh
cone,capsule

box boxbox spherebox gik compound | concaveconvex
sphere spherebox spheresphere gik compound | concaveconvex
convex, gik gik gjk or SAT compound | concaveconvex
cylinder,
cone,
capsule
compound | compound compound compound compound | compound
triangle concaveconvex | concaveconvex | concaveconvex | compound | gimpact
mesh

Registering custom collision shapes and algorithms

The user can register a custom collision detection algorithm and override any entry in this Collision
Matrix by using the btDispatcher: :registerCollisionAlgorithm. See
examples/UserCollisionAlgorithmfor an example, that registers a SphereSphere collision
algorithm.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-16 -



http://bulletphysics.org

‘ 5 collision Filtering (selective collisions)

Bullet provides three easy ways to ensure that only certain objects collide with each other: masks,
broadphase filter callbacks and nearcallbacks. It is worth noting that mask-based collision selection
happens a lot further up the toolchain than the callback do. In short, if masks are sufficient for your
purposes, use them; they perform better and are a lot simpler to use.

Of course, don't try to shoehorn something into a mask-based selection system that clearly doesn't fit
there just because performance may be a little better.

Filtering collisions using masks

Bullet supports bitwise masks as a way of deciding whether or not things should collide with other
things, or receive collisions.

int myGroup = 1;
int collideMask = 4;

world->addCollisionObject (object, myGroup,collideMask) ;

During broadphase collision detection overlapping pairs are added to a pair cache, only when the
mask matches the group of the other objects (in needsBroadphaseCollision)

bool collides = (proxy0O->m_collisionFilterGroup & proxyl->m collisionFilterMask) != 0;

collides = collides && (proxyl->m collisionFilterGroup & proxy0->m collisionFilterMask);

If you have more types of objects than the 32 bits available to you in the masks, or some collisions are
enabled or disabled based on other factors, then there are several ways to register callbacks to that
implements custom logic and only passes on collisions that are the ones you want:

Filtering Collisions Using a Broadphase Filter Callback

One efficient way is to register a broadphase filter callback. This callback is called at a very early stage
in the collision pipeline, and prevents collision pairs from being generated.

struct YourOwnFilterCallback : public btOverlapFilterCallback
{
// return true when pairs need collision
virtual bool needBroadphaseCollision (btBroadphaseProxy* proxy0,btBroadphaseProxy* proxyl) const
{
bool collides = (proxy0O->m collisionFilterGroup & proxyl->m collisionFilterMask) != 0;

collides = collides && (proxyl->m collisionFilterGroup & proxy0O->m collisionFilterMask);

//add some additional logic here that modified 'collides'
return collides;
}
)i
And then create an object of this class and register this callback using:

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-17 -



http://bulletphysics.org

btOverlapFilterCallback * filterCallback = new YourOwnFilterCallback()
dynamicsWorld->getPairCache () ->setOverlapFilterCallback (filterCallback) ;

Filtering Collisions Using a Custom NearCallback

Another callback can be registered during the narrowphase, when all pairs are generated by the
broadphase. The btCollisionDispatcher: :dispatchAllCollisionPairs calls this
narrowphase nearcallback for each pair that passes the

'btCollisionDispatcher: :needsCollision’ test. You can customize this nearcallback:

void MyNearCallback (btBroadphasePair& collisionPair,
btCollisionDispatcher& dispatcher, btDispatcherInfo& dispatchInfo) |

// Do your collision logic here

// Only dispatch the Bullet collision information if you want the physics to continue
dispatcher.defaultNearCallback (collisionPair, dispatcher, dispatchInfo) ;

mDispatcher->setNearCallback (MyNearCallback) ;

Deriving your own class from btCollisionDispatcher

For even more fine grain control over the collision dispatch, you can derive your own class from
btCollisionDispatcher and override one or more of the following methods:

virtual bool needsCollision (btCollisionObject* body0,btCollisionObject* bodyl) ;
virtual bool needsResponse (btCollisionObject* body0,btCollisionObject* bodyl) ;
virtual void dispatchAllCollisionPairs (btOverlappingPairCache* pairCache,const

btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher) ;

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-18 -



http://bulletphysics.org

‘ 6 Rigid Body Dynamics

Introduction

The rigid body dynamics is implemented on top of the collision detection module. It adds forces,
mass, inertia, velocity and constraints.

e btRigidBody is used to simulate single 6-degree of freedom moving objects. btRigidBody
is derived from btCollisionObject, so it inherits its world transform, friction and restitution
and adds linear and angular velocity.

e btTypedConstraint is the base class for rigid body constraints, including
btHingeConstraint, btPoint2PointConstraint, btConeTwistConstraint,
btSliderConstraint and btGeneric6DOFconstraint.

e btDiscreteDynamicsWorldis UserCollisionAlgorithmbtCollisionWorld, and
is a container for rigid bodies and constraints. It provides the stepSimulation to
proceed.

e btMultiBody is an alternative representation of a rigid body hierarchy using generalized
(or reduced) coordinates, using the articulated body algorithm, as discussed by Roy
Featherstone. The tree hierarchy starts with a fixed or floating base and child bodies, also
called links, are connected by joints: 1-DOF revolute joint (similar to the btHingeConstraint
for btRigidBody), 1-DOF prismatic joint (similar to btSliderConstraint)

Note that btMultiBody is introduced in the Bullet Physics SDK fairly recently, and is still work-in-
progress. In this document, only the maximal coordinates based btRigidBody and btTypedConstraints
is discussed. In a future revision, a chapter about btMultiBody will be added. For now, if you are
interested in btMultiBody, please see the example browser and its source code in
examples/MultiBody and examples/ImportURDF.

Static, Dynamic and Kinematic Rigid Bodies

There are 3 different types of objects in Bullet:
e Dynamic (moving) rigidbodies
® positive mass
® every simulation frame the dynamics will update its world transform
e Static rigidbodies

® zero mass

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-19 -



http://bulletphysics.org

® cannot move but just collide
e Kinematic rigidbodies
® zero mass

® can be animated by the user, but there will be only one-way interaction: dynamic
objects will be pushed away but there is no influence from dynamics objects

All of them need to be added to the dynamics world. The rigid body can be assigned a collision shape.
This shape can be used to calculate the distribution of mass, also called inertia tensor.

Center of mass World Transform

The world transform of a rigid body is in Bullet always equal to its center of mass, and its basis also
defines its local frame for inertia. The local inertia tensor depends on the shape, and the
btCollisionShape class provides a method to calculate the local inertia, given a mass.

This world transform has to be a rigid body transform, which means it should contain no scaling,
shear etc. If you want an object to be scaled, you can scale the collision shape. Other transformation,
such as shear, can be applied (baked) into the vertices of a triangle mesh if necessary.

In case the collision shape is not aligned with the center of mass transform, it can be shifted to match.
For this, you can use a bt CompoundShape, and use the child transform to shift the child collision
shape.

What's a MotionState?

MotionStates are a way for Bullet to do all the hard work for you getting the world transform of
objects being simulated into the rendering part of your program.

In most situations, your game loop would iterate through all the objects you're simulating before each
frame rander. For each object, you would update the position of the render object from the physics
body. Bullet uses something called MotionStates to save you this effort.

There are multiple other benefits of MotionStates:

e Computation involved in moving bodies around is only done for bodies that have moved;
no point updating the position of a render object every frame if it isn't moving.

® You don't just have to do render stuff in them. They could be effective for notifying
network code that a body has moved and needs to be updated across the network.

e Interpolation is usually only meaningful in the context of something visible on-screen.
Bullet manages body interpolation through MotionStates.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-20 -



http://bulletphysics.org

® You can keep track of a shift between graphics object and center of mass transform.

e They're easy

Interpolation

Bullet knows how to interpolate body movement for you. As mentioned, implemention of
interpolation is handled through MotionStates.

If you attempt to ask a body for its position through btCollisionObject: :getWorldTransform
or btRigidBody: :getCenterOfMassTransform, it will return the position at the end of the last
physics tick. That's useful for many things, but for rendering you will want some interpolation. Bullet
interpolates the transform of the body before passing the value to setWorldTransform.

If you want the non-interpolated position of a body [which will be the position as it was calculated at
the end of the last physics tick], use btRigidBody::getWorldTransform() and query the body directly.

So how do | use one?
MotionStates are used in two places in Bullet.

The first is when the body is first created. Bullet grabs the initial position of the body from the
motionstate when the body enters the simulation

Bullet calls getWor1ldTransform with a reference to the variable it wants you to fill with transform
information

Bullet also calls getWor1dTransform on kinematic bodies. Please see the section below

After the first update, during simulation Bullet will call the motion state for a body to move that body
around

Bullet calls setWorldTransform with the transform of the body, for you to update your object
appropriately

To implement one, simply inherit btMotionState and override getWorldTransform and
setWorldTransform.

DefaultMotionState

Although recommended, it is not necessary to derive your own motionstate from btMotionState
interface. Bullet provides a default motionstate that you can use for this. Simply construct it with the
default transform of your body:

btDefaultMotionState* ms =new btDefaultMotionState (),

There is an example for an Ogre3D Motion State in an Appendix.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-21-



http://bulletphysics.org

Kinematic Bodies

If you plan to animate or move static objects, you should flag them as kinematic. Also disable the
sleeping/deactivation for them during the animation. This means Bullet dynamics world will get the
new worldtransform from the btMotionState every simulation frame.

body->setCollisionFlags( body->getCollisionFlags () |
btCollisionObject::CF KINEMATIC OBJECT);
body->setActivationState (DISABLE DEACTIVATION) ;

If you are using kinematic bodies, then getWorldTransform is called every simulation step. This
means that your kinematic body's motionstate should have a mechanism to push the current position
of the kinematic body into the motionstate.

Simulation frames and interpolation frames

By default, Bullet physics simulation runs at an internal fixed framerate of 60 Hertz (0.01666). The
game or application might have a different or even variable framerate. To decouple the application
framerate from the simulation framerate, an automatic interpolation method is built into
stepSimulation: when the application delta time, is smaller then the internal fixed timestep, Bullet will
interpolate the world transform, and send the interpolated worldtransform to the btMotionState,
without performing physics simulation. If the application timestep is larger then 60 hertz, more then 1
simulation step can be performed during each ‘stepSimulation” call. The user can limit the maximum
number of simulation steps by passing a maximum value as second argument.

When rigidbodies are created, they will retrieve the initial worldtransform from the btMotionState,
using btMotionState: :getWorldTransform. When the simulation is running, using
stepSimulation, the new worldtransform is updated for active rigidbodies using the
btMotionState: :setWorldTransform.

Dynamic rigidbodies have a positive mass, and their motion is determined by the simulation. Static
and kinematic rigidbodies have zero mass. Static objects should never be moved by the user.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-22.



http://bulletphysics.org

‘ { Constraints

There are several constraints implemented in Bullet. See examples/ConstraintDemo for an example of
each of them. All constraints including the btRaycastVehicle are derived from btTypedconstraint.
Constraint act between two rigidbodies, where at least one of them needs to be dynamic.

Point to Point Constraint

Point to point constraint limits the translation so that the local pivot points of 2 rigidbodies match in
worldspace. A chain of rigidbodies can be connected using this constraint.

btPoint2PointConstraint (btRigidBody& rbA,const btVector3& pivotInA);
btPoint2PointConstraint (btRigidBodyé& rbA,btRigidBodyé& rbB, const btVector3& pivotInA,const btVector3& pivotInB);

Figure 3 Point to point constraint

Hinge Constraint

Hinge constraint, or revolute joint restricts two additional angular degrees of freedom, so the body
can only rotate around one axis, the hinge axis. This can be useful to represent doors or wheels
rotating around one axis. The user can specify limits and motor for the hinge.

btHingeConstraint (btRigidBody& rbA,const btTransform& rbAFrame, bool useReferenceFrameA = false);

btHingeConstraint (btRigidBodyé& rbA,const btVector3& pivotInA,btVector3& axisInA, bool useReferenceFrameA = false);
btHingeConstraint (btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3é&

pivotInB, btVector3& axisInA,btVector3& axisInB, bool useReferenceFrameA = false);

btHingeConstraint (btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool
useReferenceFrameA = false);

Figure 4 Hinge Constraint

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-23-



http://bulletphysics.org

Slider Constraint

The slider constraint allows the body to rotate around one axis and translate along this axis.

btSliderConstraint (btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransformé& frameInB ,bool
useLinearReferenceFrameA) ;

Figure 5 Slider Constraint

Cone Twist Constraint

To create ragdolls, the conve twist constraint is very useful for limbs like the upper arm. It is a special
point to point constraint that adds cone and twist axis limits. The x-axis serves as twist axis.

btConeTwistConstraint (btRigidBodyé& rbA,const btTransform& rbAFrame) ;

btConeTwistConstraint (btRigidBody& rbA,btRigidBodyé& rbB,const btTransform& rbAFrame, const btTransform& rbBFrame) ;

Generic 6 Dof Constraint

This generic constraint can emulate a variety of standard constraints, by configuring each of the 6
degrees of freedom (dof). The first 3 dof axis are linear axis, which represent translation of rigidbodies,
and the latter 3 dof axis represent the angular motion. Each axis can be either locked, free or limited.
On construction of a new btGenericé6DofSpring2Constraint, all axis are locked. Afterwards the
axis can be reconfigured. Note that several combinations that include free and/or limited angular
degrees of freedom are undefined. See the Bullet/examples/Dof6SpringSetup.cpp.

btGenericé6DofConstraint (btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB
,bool useLinearReferenceFrameA) ;

Following is convention:

btVector3 lowerSliderLimit = btVector3(-10,0,0);
btVector3 hiSliderLimit = btVector3(10,0,0);

btGenericé6DofSpring2Constraint* slider = new btGenericé6DofSpring2Constraint (*débody0, *fixedBodyl, frameInA,framelnB) ;
slider->setLinearLowerLimit (lowerSliderLimit) ;
slider->setLinearUpperLimit (hiSliderLimit) ;

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-24-



http://bulletphysics.org

For each axis:

e Lowerlimit == Upperlimit -> axis is locked.
e Lowerlimit > Upperlimit -> axis is free
« Lowerlimit < Upperlimit -> axis it limited in that range

It is recommended to use the btGenericéDofSpring2Constraint, ithassome
improvements over the original bt Genericé6Dof (Spring) Constraint.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-25-



http://bulletphysics.org

‘ 8 Actions: Vehicles & Character Controller

Action Interface

In certain cases it is useful to process some custom physics game code inside the physics pipeline.
Although it is possible to use a tick callback, when there are several objects to be updated, it can be
more convenient to derive your custom class from btActionInterface. And implement the
btActionInterface: :updateAction (btCollisionWorld* world, btScalar

deltaTime) ; There are built-in examples, btRaycastVehicle and
btKinematicCharacterController, thatare using this btActionInterace.

Raycast Vehicle

For arcade style vehicle simulations, it is recommended to use the simplified Bullet vehicle model as
provided in btRaycastVehicle. Instead of simulation each wheel and chassis as separate rigid bodies,
connected by constraints, it uses a simplified model. This simplified model has many benefits, and is
widely used in commercial driving games.

The entire vehicle is represented as a single rigidbody, the chassis. The collision detection of the
wheels is approximated by ray casts, and the tire friction is a basic anisotropic friction model.

See src/BulletDynamics/Vehicle and examples/ForkLiftDemo for more details, or check
the Bullet forums.

Kester Maddock shared an interesting document about Bullet vehicle simulation here:

http://tinyurl.com/ydfb71lm

Character Controller

A player or NPC character can be constructed using a capsule shape, sphere or other shape. To avoid
rotation, you can set the “angular factor’ to zero, which disables the angular rotation effect during
collisions and other constraints. See btRigidBody: : setAngularFactor. Other options (that are
less recommended) include setting the inverse inertia tensor to zero for the up axis, or using a
angular-only hinge constraint.

There is also an experimental® bt KinematicCharacterController as an example a non-physical
character controller. It uses a bt GhostShape to perform collision queries to create a character that
can climb stairs, slide smoothly along walls etc. See src/BulletDynamics/Character and
Demos/CharacterDemo for its usage.

> btKinematicCharacterController has several outstanding issues.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

- 26 -



http://bulletphysics.org

‘ 9 soft Body Dynamics

Preliminary documentation

Introduction

The soft body dynamics provides rope, cloth simulation and volumetric soft bodies, on top of the
existing rigid body dynamics. There is two-way interaction between soft bodies, rigid bodies and
collision objects.

e btSoftBody is the main soft body object. It is derived from btCollisionObject. Unlike
rigid bodies, soft bodies don’t have a single world transform: each node/ vertex is specified
in world coordinate.

e btSoftRigidDynamicsWorldis the container for soft bodies, rigid bodies and collision
objects.

It is best to learn from examples/SoftBodyDemo how to use soft body simulation.

Here are some basic guidelines in a nutshell:

Construction from a triangle mesh

The btSoftBodyHelpers: :CreateFromTriMesh can automatically create a soft body from a
triangle mesh.

Collision clusters

By default, soft bodies perform collision detection using between vertices (nodes) and triangles (faces).
This requires a dense tessellation, otherwise collisions might be missed. An improved method uses
automatic decomposition into convex deformable clusters. To enable collision clusters, use:

psb->generateClusters (numSubdivisions) ;

//enable cluster collision between soft body and rigid body

psb->m _cfg.collisions += btSoftBody::fCollision::CL RS;
//enable cluster collision between soft body and soft body

psb->m _cfg.collisions += btSoftBody::fCollision::CL _SS;

The Softbody of the ExampleBrowser has a debug option to visualize the convex collision clusters.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-27 -



http://bulletphysics.org

Applying forces to a Soft body
There are methods to apply a force to each vertex (node) or at an individual node:
softbody ->addForce (const btVector3& forceVector);,

softbody ->addForce (const btVector3& forceVector,int node);

Soft body constraints

It is possible to fix one or more vertices (nodes), making it immovable:

softbody->setMass (node,0.f) ;
or to attach one or more vertices of a soft body to a rigid body:

softbody->appendAnchor (int node,btRigidBody* rigidbody, bool
disableCollisionBetweenLinkedBodies=false) ;

It is also possible to attach two soft bodies using constraints, see Bullet/Demos/SoftBody.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-28-



http://bulletphysics.org

‘ 10 Bullet Example Browser

Bullet 2.83 introduces a new example browser based on OpenGL 3+, replacing the previous Glut
demos. There is a command-line option with limited support for OpenGL 2: --opengl?2

The example browser is tested on Windows, Linux and Mac OSX. It has Retina support, so it looks
best on Mac OSX. Here is a screenshot:

8 006 Bullet Physics using OpenGL3+. Release build
File View
= API
Basic Example [left_back_wheel_joil

Constraints
Motorized Hinge
6DofSpring2
Motor Demo

‘ left_front_wheel_joi

= MultiBody
MultiDofCreateFunc
TestjointTorque

Soft Body

Benchmarks

B Importers

Gyroscopic ‘ right_back_wheel_j¢

[ right_front_wheel

[left_gripper_joint q'

Import .bullet
Wavefront Obj
Quake BSP
COLLADA dae
STL
URDF (RigidBody)
Vehicles
Raycast
Experiments
Rendering

| right_gripper_joint ¢

[head_swivel q': 0.01

Example Description

Import a URDF file and create a single
multibody (btMultiBody) with tree
hierarchy of links (mobilizers).

Selected demo: TestjointTorque
Selected demo: Basic Example

Selected demo: URDF (MultiBody)

dist=3.500000, pitch=-136.000000, yaw=28.000000, target=0.470000,0.000000,-0.640000 Status: OK

Each example can also be compiled stand-alone without graphics. See the
examples/BasicDemo/main.cpp how to do this.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-29-



http://bulletphysics.org

BSP Demo

Import a Quake .bsp files and convert the brushes into convex objects. This performs better then using
triangles.

Vehicle Demo

This demo shows the use of the build-in vehicle. The wheels are approximated by ray casts. This
approximation works very well for fast moving vehicles.

Fork Lift Demo

A demo that shows how to use constraints like hinge and slider constraint to build a fork lift vehicle.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-30-



http://bulletphysics.org

‘ 11 Advanced Low Level Technical Demos

Collision Interfacing Demo

This demo shows how to use Bullet collision detection without the dynamics. It uses the
btCollisionWorld class, and fills this will btCollisionObjects. The
performDiscreteCollisionDetection method is called and the demo shows how to gather the
contact points.

Collision Demo

This demo is more low level then previous Collision Interfacing Demo. It directly uses the
btGJKPairDetector to query the closest points between two objects.

User Collision Algorithm

Shows how you can register your own collision detection algorithm that handles the collision
detection for a certain pair of collision types. A simple sphere-sphere case overides the default GJK
detection.

Gjk Convex Cast / Sweep Demo

This demo show how to performs a linear sweep between to collision objects and returns the time of
impact. This can be useful to avoid penetrations in camera and character control.

Continuous Convex Collision

Shows time of impact query using continuous collision detection, between two rotating and
translating objects. It uses Bullet’s implementation of Conservative Advancement.

Raytracer Demo

This shows the use of CCD ray casting on collision shapes. It implements a ray tracer that can
accurately visualize the implicit representation of collision shapes. This includes the collision margin,
convex hulls of implicit objects, minkowski sums and other shapes that are hard to visualize
otherwise.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-31-



http://bulletphysics.org

Simplex Demo

This is a very low level demo testing the inner workings of the GJK sub distance algorithm. This
calculates the distance between a simplex and the origin, which is drawn with a red line. A simplex
contains 1 up to 4 points, the demo shows the 4 point case, a tetrahedron. The Voronoi simplex solver
is used, as described by Christer Ericson in his collision detection book.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-32-



http://bulletphysics.org

12 Authoring Tools and Serialization

Collision shapes, rigid body and constraints can be created in a 3D authoring tool and exported to a
file format that Bullet can read.

Dynamica Maya Plugin

Walt Disney Animation Studios contributed their in-house Maya plugin to author Bullet collision
shapes and rigid bodies as open source. Dynamica can simulation rigid body dynamica within Maya,
and it can export to Bullet .bullet physics files and COLLADA Physics. The latest version has preliminary
support for cloth/soft body.

There is more information in the Bullet wiki page. You can download a precompiled version of the
Dynamica plugin for Windows or Mac OSX from http://bullet.googlecode.com.
The source code repository of Dynamica is under http://dynamica.googlecode.com

Blender

The open source 3D production suite Blender uses Bullet physics for animations and its internal game
engine. See http://blender.org

Blender has an option to export COLLADA Physics files. There is also a project that can directly read
any information from a Blender .blend file, including collision shape, rigid body and constraint
information. See http://gamekit.googlecode.com

Blender 2.57 and later has an option to export to .bullet files directly from the game engine. This can
be done using the exportBulletFile (“name.bullet”) Python command in the
PhysicsConstraints module.

Cinema 4D, Lightwave CORE, Houdini

Cinema 4D 11.5 uses Bullet for the rigid body simulation, and there is a report that Lightwave CORE
also plans to use Bullet.

For Houdini there is a DOP/plugin, see
http://code.google.com/p/bullet-physics-solver/

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-33-



http://bulletphysics.org

Serialization and the Bullet .bullet binary format

Bullet 2.76 onwards has the capability to save the dynamics world to a binary dump. Saving the
objects and shapes into a buffer is built-in, so no additional libraries are necessary. Here is an example
how to save the dynamics world to a binary .bullet file:

btDefaultSerializer*serializer = new btDefaultSerializer();
dynamicsWorld->serialize (serializer);

FILE* file = fopen("testFile.bullet","wb");

fwrite (serializer->getBufferPointer (), serializer->getCurrentBufferSize(),1, file);

fclose (file);

You can press the F3 key in most of the Bullet examples to save a “testFile.bullet’. You can read .bullet
files using the btBulletWorldImporter as implemented in the
Bullet/examples/Importers/ImportBullet.

Futher information about .bullet serialization is at the Bullet wiki at

http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet binary serialization

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-34 -



http://bulletphysics.org

‘ 13 General Tips

Avoid very small and very large collision shapes

The minimum object size for moving objects is about 0.2 units, 20 centimeters for Earth gravity. If
smaller objects or bigger gravity are manipulated, reduce the internal simulation frequency
accordingly, using the third argument of btDiscreteDynamicsWorld: :stepSimulation. By
default it is 60Hz. For instance, simulating a dice throw (1cm-wide box with a gravity of 9.8m/s2)
requires a frequency of at least 300Hz (1./300.). It is recommended to keep the maximum size of
moving objects smaller then about 5 units/meters.

Avoid large mass ratios (differences)

Simulation becomes unstable when a heavy object is resting on a very light object. It is best to keep the
mass around 1. This means accurate interaction between a tank and a very light object is not realistic.

Combine multiple static triangle meshes into one

Many small btBvhTriangleMeshShape pollute the broadphase. Better combine them.

Use the default internal fixed timestep
Bullet works best with a fixed internal timestep of at least 60 hertz (1/60 second).

For safety and stability, Bullet will automatically subdivide the variable timestep into fixed internal
simulation substeps, up to a maximum number of substeps specified as second argument to
stepSimulation. When the timestep is smaller then the internal substep, Bullet will interpolate the
motion.

This safety mechanism can be disabled by passing 0 as maximum number of substeps (second
argument to stepSimulation): the internal timestep and substeps are disabled, and the actual
timestep is simulated. It is not recommended to disable this safety mechanism.

For ragdolls use btConeTwistConstraint

It is better to build a ragdoll out of btHingeConstraint and/or btConeTwistLimit for knees,
elbows and arms.

Don’t set the collision margin to zero

Collision detection system needs some margin for performance and stability. If the gap is noticeable,
please compensate the graphics representation.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-35-



http://bulletphysics.org

Use less then 100 vertices in a convex mesh

It is best to keep the number of vertices in a bt ConvexHullShape limited. It is better for
performance, and too many vertices might cause instability. Use the bt ShapeHul1 utility to simplify
convex hulls.

Avoid huge or degenerate triangles in a triangle mesh

Keep the size of triangles reasonable, say below 10 units/meters. Also degenerate triangles with large
size ratios between each sides or close to zero area can better be avoided.

The profiling feature btQuickProf bypasses the memory allocator

If necessary, disable the profiler when checking for memory leaks, or when creating the final version
of your software release. The profiling feature can be switched off by defining #define
BT NO PROFILE 1linBullet/src/LinearMath/btQuickProf.h

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-36 -



http://bulletphysics.org

Advanced Topics

Per triangle friction and restitution value

By default, there is only one friction value for one rigidbody. You can achieve per shape or per
triangle friction for more detail. See the Demos/ConcaveDemo how to set the friction per triangle.
Basically, add CF_CUSTOM_MATERIAL_CALLBACK to the collision flags or the rigidbody, and
register a global material callback function. To identify the triangle in the mesh, both triangleID and
partld of the mesh is passed to the material callback. This matches the triangleld/partld of the striding
mesh interface.

An easier way is to use the btMultimaterial TriangleMeshShape. See the
Demos/MultiMaterialDemo for usage.

Other MLCP Constraint Solvers

Bullet uses its bt SequentialImpulseConstraintSolver by default. You can use a different
constraint solver, by passing it into the constructor of your btDynamicsWorld. Those alternative
MLCP constraint solvers are in Bullet/src/BulletDynamics/ MLCPSolvers. See the source code of
examples/vehicles/VehicleDemo how to use a different constraint solver.

Custom Friction Model

If you want to have a different friction model for certain types of objects, you can register a friction
function in the constraint solver for certain body types. This feature is not compatible with the cache
friendly constraint solver setting.

See #define USER DEFINED FRICTION MODEL in Demos/CcdPhysicsDemo.cpp.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-37-



http://bulletphysics.org

14 Parallelism using OpenCL

OpenCL rigid body and collision detection.

We implement from scratch a rigid body and collision detection pipeline that runs 100% using
OpenCL kernels. It works best on high-end discrete desktop GPUs such as AMD 7970 or newer or
NVIDIA GTX 680 or newer.

A simple OpenCL example is disabled by default in the example browser. If you have the right GPU
hardware and up-to-date OpenCL driver/compiler you can use the following command-line option:

--enable_experimental_opencl

Note that there are many reasons why the OpenCL kernels fail, and you will need to become familiar
with OpenCL to deal with those issues.

Please see the separate pdf document with more background about the OpenCL collision detection
and rigid body pipeline in the Bullet/docs folder. There is also a book chapter about the OpenCL rigid
body pipeline as part of ‘Multithreading in Visual Effects” by CRC Press. This book is also available
from Amazon.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-38-



http://bulletphysics.org

15 Further documentation and references

Online resources

Visit the Bullet Physics website at http://bulletphysics.org for a discussion forum, a wiki with
frequently asked questions and tips and download of the most recent version. The Wikipedia page

lists some games and films using Bullet at
http://en.wikipedia.org/wiki/Bullet (software)

Authoring Tools

e Dynamica Maya plugin and Bullet COLLADA Physics support at
http://dynamica.googlecode.com

e Blender 3D modeler includes Bullet and COLLADA physics support:
http://www.blender.org

e COLLADA physics standard: http://www.khronos.org/collada

Books

¢ Realtime Collision Detection, Christer Ericson
http:/ /www.realtimecollisiondetection.net/
Bullet uses the discussed voronoi simplex solver for GJK

e Collision Detection in Interactive 3D Environments, Gino van den Bergen
http:/ /www.dtecta.com also website for Solid collision detection library
Discusses GJK and other algorithms, very useful to understand Bullet

e Physics Based Animation, Kenny Erleben
http:/ /www.diku.dk/~kenny/
Very useful to understand Bullet Dynamics and constraints

e Multithreading in Visual Effects
Discussed the OpenCL rigid body work for Bullet Physics.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

-39-



http://bulletphysics.org

Contributions and people

The Bullet Physics library is under active development in collaboration with many professional game
developers, movie studios, as well as academia, students and enthusiasts.

Main author and project lead is Erwin Coumans, who started the project at Sony Computer
Entertainment America US R&D then at Advanced Micro Devices and now at Google.

Some people that contributed source code to Bullet:

Roman Ponomarev, SCEA, constraints, CUDA and OpenCL research

John McCutchan, SCEA, ray cast, character control, several improvements

Nathanael Presson, Havok: initial author of Bullet soft body dynamics and EPA

Gino van den Bergen, Dtecta: LinearMath classes, various collision detection ideas
Christer Ericson, SCEA: voronoi simplex solver

Phil Knight, Disney Avalanche Studios: multiplatform compatibility, BVH serialization
Ole Kniemeyer, Maxon: various general patches, btConvexHullComputer

Simon Hobbs, SCEE: 3d axis sweep and prune and parts of btPolyhedralContactClipping
Pierre Terdiman, NVIDIA: various work related to separating axis test, sweep and prune
Dirk Gregorius, Factor 5 : discussion and assistance with constraints

Erin Catto, Blizzard: accumulated impulse in sequential impulse

Francisco Leon : GIMPACT Concave Concave collision

Eric Sunshine: jam + msvcgen buildsystem (replaced by cmake since Bullet 2.76)

Steve Baker: GPU physics and general implementation improvements

Jay Lee, TrionWorld: double precision support

KleMiX, aka Vsevolod Klementjev, managed version, C# port to XNA

Marten Svanfeldt, Starbreeze: parallel constraint solver and other improvements and optimizations
Marcus Hennix, Starbreeze: btConeTwistConstaint etc.

Arthur Shek, Nicola Candussi, Lawrence Chai, Disney Animation: Dynamica Maya Plugin

Many more people have contributed to Bullet, thanks to everyone on the Bullet forums.

©Erwin Coumans Bullet 2.83 Physics SDK Manual

- 40 -



