
Shared Memory in 
Wasmtime

Andrew Brown, Alex Crichton

May 2022



Motivation

• The threads proposal has three main parts:
• Atomic instructions (e.g., i32.atomic.rmw.add)

• wait/notify instructions

• Shared linear memory

• This is enough for implementing threads with Web Workers in the browser

• Wasmtime is missing the shared memory part and implementations for 
wait/notify—shared memory is needed first

• Current discussions about “WASI threads” rely on shared memory

• Future plans about “pure Wasm threads” rely not only on shared memory, 
but also on shared tables, globals, functions

https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md


Two Sides to Shared Memory

• Created externally • Created internally

let wat = r#“
(module (memory (export "memory") 1 5 shared))

"#;
let mut config = Config::new();
config.wasm_threads(true);
let engine = Engine::new(&config)?;
let module = Module::new(&engine, wat)?;
let mut store = Store::new(&engine, ());
let instance = Instance::new(&mut store, &module, &[])?;
let shared_memory = instance

.get_memory(&mut store, "memory")

.unwrap()

.into_shared_memory()?;

The allocated memory must be share-able both internally and externally

let wat = r#"
(module (import "env" "memory" (memory 1 5 shared)))

"#;
let mut config = Config::new();
config.wasm_threads(true);
let engine = Engine::new(&config)?;
let module = Module::new(&engine, wat)?;
let mut store = Store::new(&engine, ());
let shared_memory = SharedMemory::new(&engine,

MemoryType::shared(1, 5))?;
let memory = Memory::from_shared_memory(&mut store,

&shared_memory)?;
let instance = Instance::new(&mut store, &module,

&[memory.into()])?;



The Problem

• Internally, both the Wasmtime runtime and Cranelift codegen depend 
on a specific representation of memory metadata
• shared memory’s base will never change (allocated to maximum)

• but the current_length must be shared between all uses of the shared 
memory 

• current_length must be atomically incremented

struct VMContext {
…
memories: [struct VMMemoryDefinition {

base: *mut u8,
current_length: usize,

}]
}

New design needed: we 
can’t have a separate 
VMMemoryDefinition
for each shared memory 
use



Solution #1

• Use a union to sometimes insert the owned structure (non-shared 
memory) and other times insert a pointer to the structure (shared 
memory)—many code changes

• The shared VMMemoryDefinition would be owned in the runtime 
SharedMemory structure

struct VMContext {
…
memories: [union VMMemoryUnion {

shared: *mut VMMemoryDefinition,
owned: VMMemoryDefinition,

}]
}

struct SharedMemory (Arc<struct Inner {
mem: RwLock<Box<dyn …>>,
ty: …,
def: VMMemoryDefinition,

}>)



Solution #2

• Create a new table for owned VMMemoryDefinitions; convert the 
existing table to *mut VMMemoryDefinition—many code changes

• As before, the shared VMMemoryDefinition would be owned in the 
runtime SharedMemory structure

struct VMContext {
…
memories: [*mut VMMemoryDefinition],
owned_memories: [VMMemoryDefinition]

}

struct SharedMemory (Arc<struct Inner {
mem: RwLock<Box<dyn …>>,
ty: …,
def: VMMemoryDefinition,

}>)



Solution #3

• Move memory definitions out of the instance (VMContext) entirely



Other considerations

• VMMemoryImport as a *mut VMMemoryDefinition—is this even 
possible?

• Switch memory.size to a host call to use SharedMemory’s locks



Questions


