angr Documentation

README

angr is a multi-architecture binary analysis toolkit, with the capability to perform dynamic symbolic execution
(like Mayhem, KLEE, etc.) and various static analyses on binaries. If you'd like to learn how to use it, you're
in the right place!

We've tried to make using angr as pain-free as possible - our goal is to create a user-friendly binary analysis
suite, allowing a user to simply start up iPython and easily perform intensive binary analyses with a couple
of commands. That being said, binary analysis is complex, which makes angr complex. This documentation
is an attempt to help out with that, providing narrative explanation and exploration of angr and its design.

Several challenges must be overcome to programmatically analyze a binary. They are, roughly:

e Loading a binary into the analysis program.
e Translating a binary into an intermediate representation (IR).

e Performing the actual analysis. This could be:

e A partial or full-program static analysis (i.e., dependency analysis, program slicing).

e A symbolic exploration of the program's state space (i.e., "Can we execute it until we find an
overflow?").

e Some combination of the above (i.e., "Let's execute only program slices that lead to a memory write,
to find an overflow.")

angr has components that meet all of these challenges. This book will explain how each one works, and
how they can all be used to accomplish your evil goals.

Get Started

Installation instructions can be found here.
To dive right into angr's capabilities, start with the top level methods and read forward from there.

A searchable HTML version of this documentation is hosted at docs.angr.io, and an HTML API reference
can be found at angr.io/api-doc.

If you enjoy playing CTFs and would like to learn angr in a similar fashion, angr_ctf will be a fun way for you
to get familiar with much of the symbolic execution capability of angr. The angr_ctf repo is maintained by
@jakespringer.

Citing angr

https://docs.angr.io/
https://angr.io/api-doc/
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer

If you use angr in an academic work, please cite the papers for which it was developed:

1 @Earticle{shoshitaishvili20l6state,

title={SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis},
author={Shoshitaishvili, Yan and Wang, Ruoyu and Salls, Christopher and Stephens, Nick ai
booktitle={IEEE Symposium on Security and Privacy},

year={2016}

2

3

4

5
6}
7

8 Earticle{stephens2016driller,

9 title={Driller: Augmenting Fuzzing Through Selective Symbolic Execution},

10 author={Stephens, Nick and Grosen, John and Salls, Christopher and Dutcher, Audrey and W
11 booktitle={NDSS},

12 year={2016}

13 }

14

15 @Earticle{shoshitaishvili20l5firmalice,

16 title={Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binar
17 author={Shoshitaishvili, Yan and Wang, Ruoyu and Hauser, Christophe and Kruegel, Christo
18 booktitle={NDSS},

19 year={2015}

20 }

Support

To get help with angr, you can ask via:

¢ the slack channel: angr.slack.com, for which you can get an account here.
e opening an issue on the appropriate github repository

e the mailing list: angr@lists.cs.ucsb.edu

Going further:

You can read this paper, explaining some of the internals, algorithms, and used techniques to get a better
understanding on what's going on under the hood.

Introductory Errata

Installing

https://angr.slack.com/
https://angr.io/invite/
https://www.cs.ucsb.edu/~vigna/publications/2016_SP_angrSoK.pdf

Installing angr

angr is a python library, so it must be installed into your python environment before it can be used. It is built
for Python 3: Python 2 supportis not feasible due to the looming EOL and the small size of our team.

We highly recommend using a python virtual environment to install and use angr. Several of angr's
dependencies (z3, pyvex) require libraries of native code that are forked from their originals, and if you
already have libz3 or libVEX installed, you definitely don't want to overwrite the official shared objects with
ours. In general, don't expect support for problems arising from installing angr outside of a virtualenv.

Dependencies

All of the python dependencies should be handled by pip and/or the setup.py scripts. You will, however,
need to build some C to get from here to the end, so you'll need a good build environment as well as the
python development headers. At some point in the dependency install process, you'll install the python
library cffi, but (on linux, at least) it won't run unless you install your operating system's libffi package.

On Ubuntu, you will want: sudo apt-get install python3-dev libffi-dev build-
essential virtualenvwrapper .Ifyou are trying out angr Management, you will also need the
PySide 2 requirements.

Most Operating systems, all *nix systems

mkvirtualenv --python=$(which python3) angr && pip install angr should usually
be sufficient to install angr in most cases, since angr is published on the Python Package Index.

Fish (shell) users can either use virtualfish or the virtualenv package: vf new angr && vf activate
angr && pip install angr

Failing that, you can install angr by installing the following repositories, in order, from
https://github.com/angr:

e archinfo

® pyvex

claripy
e cle

e angr

Mac OS X
pip install angr should work, butthere are some caveats.

angr requires the un-icorn library, which (as of this writing) pip must build from source on macOS, even
though binary distributions (“wheels") exist on other platforms. Building unicorn from source requires
Python 2, so will fail inside a virtualenv where python gets you Python 3. If you encounter errors with pip
install angr ,you may need to firstinstall unicorn separately, pointing it to your Python 2:

https://virtualenvwrapper.readthedocs.org/en/latest/
https://wiki.qt.io/Qt_for_Python/GettingStarted
https://github.com/adambrenecki/virtualfish
https://pypi.python.org/pypi/virtualenv
https://github.com/angr
https://github.com/angr/archinfo
https://github.com/angr/pyvex
https://github.com/angr/claripy
https://github.com/angr/cle
https://github.com/angr/angr

1 UNICORN_QEMU_FLAGS="--python=/path/to/python2" pip install unicorn # Python 2 is probably

Thenretry pip install angr.

If this still doesn't work and you run into a broken build script with Clang, try using GCC.

1 brew install gcc
2 CC=/usr/local/bin/gcc-8 UNICORN_QEMU_FLAGS="--python=/path/to/python2" pip install unicorn
3 pip install angr

After installing angr, you will need to fix some shared library paths for the angr native libraries. Activate your
virtual env and execute the following lines. A script is provided in the angr-dev repo.

PYVEX="python3 -c 'import pyvex; print(pyvex.__path__[0])""
UNICORN="python3 -c 'import unicorn; print(unicorn.__path__[0])""
ANGR="python3 -c 'import angr; print(angr.__path__[0])"'"

install_name_tool -change libunicorn.l.dylib "$UNICORN"/lib/Llibunicorn.dylib "$ANGR"/lib/a
install_name_tool -change libpyvex.dylib "SPYVEX"/lib/libpyvex.dylib "SANGR"/lib/angr_nati

Windows

As usual, a virtualenv is very strongly recommended. You can use either the virtualenv-win or virtualenv
packages for this.

angr can be installed from pip on Windows, same as above: pip install angr . You should not be
required to build any C code with this setup, since wheels (binary distributions) should be automatically
pulled down for angr and its dependencies.

Nix/NixOS

angr is available via the Nix package manager and on NixOS, using the Nix User Repository.

First, make NUR available to your user:

1 cat << __EOF__ > ~/.config/nixpkgs/config.nix

2 {

3 packageOverrides = pkgs: {

4 nur = import (builtins.fetchTarball "https://github.com/nix-community/NUR/archive/mast
5 inherit pkgs;

6 }s

7}

8}

9 __EOF_

Then, to obtain a nix-shell with the angr Python package:

https://github.com/angr/angr-dev/blob/master/fix_macOS.sh
https://pypi.org/project/virtualenvwrapper-win/
https://pypi.python.org/pypi/virtualenv
https://nixos.org/nix/
https://nixos.org/nixos/
https://github.com/nix-community/NUR

1 nix-shell -p 'python3.withPackages(ps: with ps; [nur.repos.angr.python3Packages.angr])'

More information on angr/nixpkgs.

Development install

There is a special repository angr-dev with scripts to make life easier for angr developers. You can set up
angr in development mode by running:

1 git clone https://github.com/angr/angr-dev
2 cd angr-dev

3 ./setup.sh -i -e angr

This creates a virtualenv (-e angr), checks for any dependencies you might need (-1), clones all of the
repositories and installs them in editable mode. setup.sh can even create a PyPy virtualenv for you
(replace -e with -p), resulting in significantly faster performance and lower memory usage.

You can branch/edit/recompile the various modules in-place, and it will automatically reflect in your virtual
environment.

Development install on windows

The angr-dev repository has a setup.bat script that creates the same setup as above, though it's not as
magical as setup.sh. Since we'll be building C code, you must be in the visual studio developer command
prompt. Make sure that if you're using a 64-bit python interpreter, you're also using the 64-bit build tools
(VsDevCmd.bat -arch=x64)

pip install virtualenv

git clone https://github.com/angr/angr-dev

cd angr-dev

virtualenv -p "C:\Path\To\python3\python.exe" env
env\Scripts\activate

O U~ WN

setup.bat

You may also substitute the use of virtualenv above withthe virtualenvwrapper-win package
for a more streamlined experience.

Docker install
For convenience, we ship a Docker image that is 99% guaranteed to work. You can install via docker by

doing:

1 # dinstall docker
2 curl -sSL https://get.docker.com/ | sudo sh
3

https://github.com/angr/nixpkgs

pull the docker image
sudo docker pull angr/angr

run it

o ~N O Ul

sudo docker run -it angr/angr

Synchronization of files in and out of docker is left as an exercise to the user (hint: check out docker run
-V).
Modifying the angr container

You might find yourself needing to install additional packages via apt. The vanilla version of the container
does not have the sudo package installed, which means the default user in the container cannot escalate
privilege to install additional packages.

To over come this hurdle, use the following docker command to grant yourself root access:

1 # assuming the docker container is running
2 # with the name "angr" and the dinstance is
3 # running in the background.

4 docker exec -ti -u root angr bash

Troubleshooting

libgomp.so.1: version GOMP_4.0 not found, or other z3 issues
This specific error represents an incompatibility between the pre-compiled version of libz3.so and the

installed version of libgomp . A Z3 recompile is required. You can do this by executing:

1 pip install -I --no-binary z3-solver z3-solver

No such file or directory: 'pyvex_c'
Are you running Ubuntu 12.047 If so, please stop using a 6 year old operating system! Upgrading is free!

You can also try upgrading pip (python -m pip 1install -U pip), which might solve the issue.

AttributeError: 'FFI' object has no attribute 'unpack’

You have an outdated version of the cffi Python module. angr now requires at least version 1.7 of cffi. Try
pip install --upgrade cffi.Ifthe problem persists, make sure your operating system hasn't pre-
installed an old version of cffi, which pip may refuse to uninstall. If you're using a Python virtual environment
with the pypy interpreter, ensure you have a recent version of pypy, as it includes a version of cffi which pip
will not upgrade.

angr has no attribute Project, or similar

If you can import angr but it doesn't seem to be the actual angr module... did you accidentally name your
script angr.py ? You can't do that. Python does not work that way.

AttributeError: 'module’ object has no attribute 'KS_ARCH_X86'

You have the keystone package installed, which conflicts with the keystone-engine package (an
optional dependency of angr). Please uninstall keystone . If you would like to install keystone-
engine, please doitwith pip install --no-binary keystone-engine keystone-engine,
as the current pip distribution is broken.

No such file or directory: 'libunicorn.dylib’

(alternate error message: Cannot use 'python', Python 2.4 or later is required.
Note that Python 3 or later is not yet supported.)

You need to define the UNICORN_QEMU_FLAGS environment variable for pip . See the section above on
installing for macOS.

pthread check failed: Make sure to have the pthread libs and headers installed.

(macOS) Try using GCC instead of Clang; see the section above on installing for macOS.

How to Contribute

Reporting Bugs
If you've found something that angr isn't able to solve and appears to be a bug, please let us know!

1. Create a fork off of angr/binaries and angr/angr

2. Give us a pull request with angr/binaries, with the binaries in question

3. Give us a pull request for angr/angr, with testcases that trigger the binaries in
angr/tests/broken_x.py, angr/tests/broken_y.py,etc

Please try to follow the testcase format that we have (so the code is in a test_blah function), that way we can
very easily merge that and make the scripts run.
An example is:

1 def test_some_broken_feature():

2 p = angr.Project("some_binary")

3 result = p.analyses.SomethingThatDoesNotWork()

4 assert result == "what it should *actually* be if it worked"
5

6

if __name__ == '__main__"':

7 +rect+ camn hirallAan FAaatiiral)

This will greatly help us recreate your bug and fix it faster.

The ideal situation is that, when the bug is fixed, your testcases passes (i.e., the assert at the end does not
raise an AssertionError).

Then, we can just fix the bug and rename broken_x.py to test_x.py and the testcase will runin our
internal Cl at every push, ensuring that we do not break this feature again.

Developing angr

These are some guidelines so that we can keep the codebase in good shape!

Coding style

We try to get as close as the PEP8 code convention as is reasonable without being dumb. If you use Vim,
the python-mode plugin does all you need. You can also manually configure vim to adopt this behavior.

Most importantly, please consider the following when writing code as part of angr:

* Try to use attribute access (see the @property decorator) instead of getters and setters wherever you
can. This isn't Java, and attributes enable tab completion in iPython. That being said, be reasonable:
attributes should be fast. A rule of thumb is that if something could require a constraint solve, it should
not be an attribute.

e Useour .pylintrc fromthe angr-dev repo. It's fairly permissive, but our Cl server will fail your builds
if pylint complains under those settings.

e DO NOT, under ANY circumstances, raise Exception or assert False .Use the right
exception type. If there isn't a correct exception type, subclass the core exception of the module that
you're working in (i.e., AngrError inangr, SimError in SImuVEX, etc) and raise that. We catch,
and properly handle, the right types of errors in the right places, but AssertionError and

Exception are not handled anywhere and force-terminate analyses.

e Avoid tabs; use space indentation instead. Even though it's wrong, the de facto standard is 4 spaces. It
is a good idea to adopt this from the beginning, as merging code that mixes both tab and space
indentation is awful.

e Avoid super long lines. It's okay to have longer lines, but keep in mind that long lines are harder to read
and should be avoided. Let's try to stick to 120 characters.

e Avoid extremely long functions, it is often better to break them up into smaller functions.

* Always use _ instead of __ for private members (so that we can access them when debugging). You
might not think that anyone has a need to call a given function, but trust us, you're wrong.

Documentation

Document your code. Every class definition and public function definition should have some description of:

e \What it does.

http://legacy.python.org/dev/peps/pep-0008/
https://github.com/klen/python-mode
https://wiki.python.org/moin/Vim
https://github.com/angr/angr-dev/blob/master/pylintrc

® What are the type and the meaning of the parameters.
e Whatitreturns.

Class docstrings will be enforced by our linter. Do not under any circumstances write a docstring which
doesn't provide more information than the name of the class. What you should try to write is a description of
the environment that the class should be used in. If the class should not be instantiated by end-users, write a
description of where it will be generated and how instances can be acquired. If the class should be
instanciated by end-users, explain what kind of object it represents at its core, what behavior is expected of
its parameters, and how to safely manage objects of its type.

We use Sphinx to generate the APl documentation. Sphinx supports docstrings written in ReStructured Text
with special keywords to document function and class parameters, return values, return types, members, etc.

Here is an example of function documentation. Ideally the parameter descriptions should be aligned
vertically to make the docstrings as readable as possible.

1 def prune(self, filter_func=None, from_stash=None, to_stash=None):

5 i

3 Prune unsatisfiable paths from a stash.

4

5 :param filter_func: Only prune paths that match this filter.

6 :param from_stash: Prune paths from this stash. (default: 'active')

7 :param to_stash: Put pruned paths 1in this stash. (default: 'pruned')
8 :returns: The resulting PathGroup.

9 irtype: PathGroup

lo noan

This format has the advantage that the function parameters are clearly identified in the generated
documentation. However, it can make the documentation repetitive, in some cases a textual description can
be more readable. Pick the format you feel is more appropriate for the functions or classes you are
documenting.

def read_bytes(self, addr, n):

N =

w

Read 'n° bytes at address “addr’ +in memory and return an array of bytes.

4 noan

Unit tests

If you're pushing a new feature and it is not accompanied by a test case it will be broken in very short order.
Please write test cases for your stuff.

We have an internal Cl server to run tests to check functionality and regression on each commit. In order to
have our server run your tests, write your tests in a format acceptable to nosetests in a file matching
test_x.py inthe tests folder of the appropriate repository. A test file can contain any number of
functions of the form def test_x(): orclasses ofthe form class Testx

(unittest.TestCase) : . Each of them will be run as a test, and if they raise any exceptions or
assertions, the test fails. Do not use the nose.tools.assert_x* functions, as we are presently trying to

http://www.sphinx-doc.org/en/stable/
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html#auto-document-your-python-code
http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists
https://nose.readthedocs.org/en/latest/

migrate to nose2 .Use assert statements with descriptive messages orthe unittest.TestCase
assert methods.

Look at the existing tests for examples. Many of them use an alternate format where the test_x* functionis
actually a generator that yields tuples of functions to call and their arguments, for easy parametrization of
tests.

Finally, do not add docstrings to your test functions.

What to Contribute

angr is a huge project, and it's hard to keep up. Here, we list some big TODO items that we would love
community contributions for in the hope that it can direct community involvement. They (will) have a wide
range of complexity, and there should be something for all skill levels!

We tag issues on our github repositories that would be good for community involvement as "Help wanted".
To see the exhaustive list of these, use this github search!

Documentation

There are many parts of angr that suffer from little or no documentation. We desperately need community
help in this area.

API

We are always behind on documentation. We've created several tracking issues on github to understand
what's still missing:

angr
claripy

cle

A

pyvex

GitBook
This book is missing some core areas. Specifically, the following could be improved:

1. Finish some of the TODOs floating around the book.

2. Organize the Examples page in some way that makes sense. Right now, most of the examples are very
redundant. It might be cool to have a simple table of most of them so that the page is not so
overwhelming.

angr course

https://github.com/search?utf8=%E2%9C%93&q=user%3Aangr+label%3A%22help+wanted%22+state%3Aopen&type=Issues&ref=advsearch&l=&l=
https://github.com/angr/angr/issues/145
https://github.com/angr/claripy/issues/17
https://github.com/angr/cle/issues/29
https://github.com/angr/pyvex/issues/34

Developing a "course" of sorts to get people started with angr would be really beneficial. Steps have already
been made in this direction here, but more expansion would be beneficial.

Ideally, the course would have a hands-on component, of increasing difficulty, that would require people to
use more and more of angr's capabilities.

Research re-implementation

Unfortunately, not everyone bases their research on angr ;-). Until that's remedied, we'll need to periodically
implement related work, on top of angr, to make it reusable within the scope of the framework. This section
lists some of this related work that's ripe for reimplementation in angr.

Redundant State Detection for Dynamic Symbolic Execution

Bugrara, et al. describe a method to identify and trim redundant states, increasing the speed of symbolic
execution by up to 50 times and coverage by 4%. This would be great to have in angr, as an
ExplorationTechnique. The paper is here: http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-
bugrara.pdf

In-Vivo Multi-Path Analysis of Software Systems

Rather than developing symbolic summaries for every system call, we can use a technique proposed by
S2E for concretizing necessary data and dispatching them to the OS itself. This would make angr applicable
to a much larger set of binaries than it can currently analyze.

While this would be most useful for system calls, once it is implemented, it could be trivially applied to any
location of code (i.e., library functions). By carefully choosing which library functions are handled like this,
we can greatly increase angr's scalability.

Development

We have several projects in mind that primarily require development effort.

angr-management

The angr GUI, angr-management needs a /ot of work. Here is a non-exhaustive list of what is currently
missing in angr-management:

¢ A navigator toolbar showing content in a program’s memory space, just like IDA Pro’s navigator toolbar.
e A text-based disassembly view of the program.

e Better view showing details in program states during path exploration, including modifiable register
view, memory view, file descriptor view, etc.

e A GUI for cross referencing.

https://github.com/angr/angr-doc/pull/74
http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-bugrara.pdf
http://dslab.epfl.ch/pubs/s2e.pdf
https://github.com/angr/angr-management

Exposing angr's capabilities in a usable way, graphically, would be really useful!

IDA Plugins

Much of angr's functionality could be exposed via IDA. For example, angr's data dependence graph could
be exposed in IDA through annotations, or obfuscated values can be resolved using symbolic execution.
Additional architectures

More architecture support would make angr all the more useful. Supporting a new architecture with angr
would involve:

1. Adding the architecture information to archinfo

n

Adding an IR translation. This may be either an extension to PyVEX, producing IRSBs, or another IR
entirely.

If your IR is not VEX, add a SimEngine to support it.
Adding a calling convention (angr.SimCC) to support SimProcedures (including system calls)

Adding or modifying an angr.SimOS to support initialization activities.

o g &~ Ww

Creating a CLE backend to load binaries, or extending the CLE ELF backend to know about the new
architecture if the binary format is ELF.

ideas for new architectures:

e PIC, AVR, other embedded architectures

e SPARC (there is some preliminary libVEX support for SPARC here)
ideas for new IRs:

e LLVM IR (with this, we can extend angr from just a Binary Analysis Framework to a Program Analysis
Framework and expand its capabilities in other ways!)

e SOOT (there is no reason that angr can't analyze Java code, although doing so would require some
extensions to our memory model)

Environment support

We use the concept of "function summaries"” in angr to model the environment of operating systems (i.e., the
effects of their system calls) and library functions. Extending this would be greatly helpful in increasing
angr's utility. These function summaries can be found here.

A specific subset of this is system calls. Even more than library function SimProcedures (without which angr
can always execute the actual function), we have very few workarounds for missing system calls. Every
implemented system call extends the set of binaries that angr can handle.

https://github.com/angr/archinfo
https://bitbucket.org/iraisr/valgrind-solaris
https://github.com/angr/angr/tree/master/angr/procedures

Desian Problems
There are some outstanding design challenges regarding the integration of additional functionalities into
angr.

Type annotation and type information usage

angr has fledgling support for types, in the sense that it can parse them out of header files. However, those
types are not well exposed to do anything useful with. Improving this support would make it possible to, for
example, annotate certain memory regions with certain type information and interact with them intelligently.
Consider, for example, interacting with a linked list like this: print
state.mem[state.regs.rax].llist.next.next.value.

(editor's note: you can actually already do this)

Research Challenges

Historically, angr has progressed in the course of research into novel areas of program analysis. Here, we
list several self-contained research projects that can be tackled.

Semantic function identification/diffing

Current function diffing techniques (TODO: some examples) have drawbacks. For the CGC, we created a
semantic-based binary identification engine (https://github.com/angr/identifier) that can identify functions
based on testcases. There are two areas of improvement, each of which is its own research project:

1. Currently, the testcases used by this component are human-generated. However, symbolic execution
can be used to automatically generate testcases that can be used to recognize instances of a given
function in other binaries.

2. By creating testcases that achieve a "high-enough” code coverage of a given function, we can detect
changes in functionality by applying the set of testcases to another implementation of the same function
and analyzing changes in code coverage. This can then be used as a sematic function diff.

Applying AFL's path selection criteria to symbolic execution

AFL does an excellent job in identifying "unique" paths during fuzzing by tracking the control flow transitions
taken by every path. This same metric can be applied to symbolic exploration, and would probably do a
depressingly good job, considering how simple itis.

Overarching Research Directions

There are areas of program analysis that are not well explored. We list general directions of research here,
but readers should keep in mind that these directions likely describe potential undertakings of entire PhD
dissertations.

https://github.com/angr/identifier

Process interactions

Almost all work in the field of binary analysis deals with single binaries, but this is often unrealistic in the real
world. For example, the type of input that can be passed to a CGI program depend on pre-processing by a
web server. Currently, there is no way to support the analysis of multiple concurrent processes in angr, and
many open questions in the field (i.e., how to model concurrent actions).

Intra-process concurrency

Similar to the modeling of interactions between processes, little work has been done in understanding the
interaction of concurrent threads in the same process. Currently, angr has no way to reason about this, and it
is unclear from the theoretical perspective how to approach this.

A subset of this problem is the analysis of signal handlers (or hardware interrupts). Each signal handler can
be modeled as a thread that can be executed at any time that a signal can be triggered. Understanding
when itis meaningful to analyze these handlers is an open problem. One system that does reason about the
effect of interrupts is FIE.

Path explosion

Many approaches (such as Veritesting) attempt to mitigate the path explosion problem in symbolic
execution. However, despite these efforts, path explosion is still the main problem preventing symbolic
execution from being mainstream.

angr provides an excellent base to implement new techniques to control path explosion. Most approaches
can be easily implemented as Exploration Techniques and quickly evaluated (for example, on the CGC
dataset).

Frequently Asked Questions

This is a collection of commonly-asked "how do | do X?" questions and other general questions about angr,
for those too lazy to read this whole document.

If your question is of the form "how do | fix X issue", see also the Troubleshooting section of the install
instructions.

Why is it named angr?

The core of angr's analysis is on VEX IR, and when something is vexing, it makes you angry.

How should "angr" be stylized?

http://pages.cs.wisc.edu/~davidson/fie/
https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinos%20et%20al._2014_Enhancing%20Symbolic%20Execution%20with%20Veritesting.pdf
http://angr.io/api-doc/angr.html#angr.exploration_techniques.ExplorationTechnique
https://github.com/CyberGrandChallenge/samples

All lowercase, even at the beginning of sentences. It's an anti-proper noun.

How can | get diagnostic information about what angr is doing?

angr uses the standard logging module for logging, with every package and submodule creating a new
logger.

The simplest way to get debug output is the following:

1 import logging
2 logging.getlLogger ('angr').setLevel('DEBUG')

You may wantto use INFO orwhatever else instead. By default, angr will enable logging atthe WARNING
level.

Each angr module has its own logger string, usually all the python modules above itin the hierarchy, plus
itself, joined with dots. For example, angr.analyses.cfg .Because of the way the python logging
module works, you can set the verbosity for all submodules in a module by setting a verbosity level for the
parent module. For example, logging.getlLogger ('angr.analyses').setlLevel('INFO") will
make the CFG, as well as all other analyses, log at the INFO level.

Why is angr so slow?

It's complicated!

How do I find bugs using angr?

It's complicated! The easiest way to do this is to define a "bug condition”, for example, "the instruction
pointer has become a symbolic variable", and run symbolic exploration until you find a state matching that
condition, then dump the input as a testcase. However, you will quickly run into the state explosion problem.
How you address this is up to you. Your solution may be as simple as adding an avoid condition or as
complicated as implementing CMU's MAYHEM system as an Exploration Technique.

Why did you choose VEX instead of another IR (such as LLVM,
REIL, BAP, etc)?

We had two design goals in angr that influenced this choice:

1. angr needed to be able to analyze binaries from multiple architectures. This mandated the use of an IR

https://github.com/angr/angr-doc/blob/master/docs/otiegnqwvk.md

to preserve our sanity, and required the IR to support many architectures.
2. We wanted to implement a binary analysis engine, not a binary lifter. Many projects start and end with

the implementation of a lifter, which is a time consuming process. We needed to take something that
existed and already supported the lifting of multiple architectures.

Searching around the internet, the major choices were:

e LLVM s an obvious first candidate, but lifting binary code to LLVM cleanly is a pain. The two solutions
are either lifting to LLVM through QEMU, which is hackish (and the only implementation of it seems very
tightly integrated into S2E), or McSema, which only supported x86 at the time but has since gone
through a rewrite and gotten support for x86-64 and aarch64.

e TCGis QEMU's IR, but extracting it seems very daunting as well and documentation is very scarce.

e REIL seems promising, but there is no standard reference implementation that supports all the
architectures that we wanted. It seems like a nice academic work, but to use it, we would have to
implement our own lifters, which we wanted to avoid.

e BAP was another possibility. When we started work on angr, BAP only supported lifting x86 code, and
up-to-date versions of BAP were only available to academic collaborators of the BAP authors. These
were two deal-breakers. BAP has since become open, but it still only supports x86_64, x86, and ARM.

e VEX was the only choice that offered an open library and support for many architectures. As a bonus, it
is very well documented and designed specifically for program analysis, making it very easy to use in
angr.

While angr uses VEX now, there's no fundamental reason that multiple IRs cannot be used. There are two
parts of angr, outside of the angr.engines.vex package, that are VEX-specific:

¢ the jump labels (i.e.,the Ijk_Ret forreturns, Ijk_Call for calls, and so forth) are VEX enums.

e VEX treats registers as a memory space, and so does angr. While we provide accesses to
state.regs.rax and friends, on the backend, this does state.registers.load(8, 8),
where the first 8 is a VEX-defined offset for rax to the register file.

To support multiple IRs, we'll either want to abstract these things or translate their labels to VEX analogues.

Why are some ARM addresses off-by-one?

In order to encode THUMB-ness of an ARM code address, we set the lowest bit to one. This convention
comes from LibVEX, and is not entirely our choice! If you see an odd ARM address, that just means the code
at address - 1 isin THUMB mode.

How do | serialize angr objects?

Pickle will work. However, python will default to using an extremely old pickle protocol that does not support
more complex python data structures, so you must specify a more advanced data stream format. The easiest

https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/pickle.html#data-stream-format

way to do thisis pickle.dumps(obi., -1).

What does UnsupportedIROpError ("floating point support
disabled") mean?

This might crop up if you're using a CGC analysis such as driller or rex. Floating point support in angr has
been disabled in the CGC analyses for a tight-knit nebula of reasons:

e Libvex's representation of floating point numbers is imprecise - it converts the 80-bit extended precision
format used by the x87 for computation to 64-bit doubles, making it impossible to get precise results

e There is very limited implementation support in angr for the actual primitive operations themselves as
reported by libvex, so you will often get a less friendly "unsupported operation" error if you go too much
further

e For what operations are implemented, the basic optimizations that allow tractability during symbolic
computation (AST deduplication, operation collapsing) are not implemented for floating point ops,
leading to gigantic ASTs

e There are memory corruption bugs in z3 that get triggered frighteningly easily when you're using huge
workloads of mixed floating point and bitvector ops. We haven't been able to get a testcase that doesn't
involve "just run angr" for the z3 guys to investigate.

Instead of trying to cope with all of these, we have simply disabled floating point support in the symbolic
execution engine. To allow for execution in the presence of floating point ops, we have enabled an
exploration technique called the
https://github.com/angr/angr/blob/master/angr/exploration_techniques/oppologist.py that is supposed to
catch these issues, concretize their inputs, and run the problematic instructions through gemu via unicorn
engine, allowing execution to continue. The intuition is that the specific values of floating point operations
don't typically affect the exploitation process.

If you're seeing this error and it's terminating the analysis, it's probably because you don't have unicorn
installed or configured correctly. If you're seeing this issue justin a log somewhere, it's just the oppologist
kicking in and you have nothing to worry about.

Why is angr's CFG different from IDA's?

Two main reasons:

¢ IDA does not split basic blocks at function calls. angr will, because they are a form of control flow and
basic blocks end at control flow instructions. You generally do not need the supergraph for performing
automated analyses.

¢ IDA will split basic blocks if another block jumps into the middle of it. This is called basic block
normalization, and angr does not do it by default since it is unnecessary for most static analyses. You
may enable it by passing normalize=True tothe CFG analysis.

https://github.com/angr/angr-doc/blob/master/docs/oppologist/README.md

Why do | get incorrect register values when reading from a state
during a Siminspect breakpoint?

libVEX will eliminate duplicate register writes within a single basic block when optimizations are enabled.
Turn off IR optimization to make everything look right at all times.

In the case of the instruction pointer, libVEX will frequently omit mid-block writes even when optimizations
are disabled. In this case, you should use state.scratch.ins_addr to getthe currentinstruction
pointer.

Core Concepts

Top Level Interfaces

Before You Start

Using and exploring angr in IPython (or other Python command line interpreters) is a main use case that we
design angr for. When you are not sure what interfaces are available, tab completion is your friend!

Sometimes tab completion in IPython can be slow. We find the following workaround helpful without
degrading the validity of completion results:

1 # Drop this file in IPython profile's startup directory to avoid running it every time.
2 dimport IPython

3 py = IPython.get_ipython()

4 py.Completer.use_jedi = False

Core Concepts

Before getting started with angr, you'll need to have a basic overview of some fundamental angr concepts
and how to construct some basic angr objects. We'll go over this by examining what's directly available to
you after you've loaded a binary!

Your first action with angr will always be to load a binary into a project. We'll use /bin/true forthese
examples.

1 >>> dmport angr

2 >>> proj = angr.Project('/bin/true')

A projectis your control base in angr. With it, you will be able to dispatch analyses and simulations on the
executable you just loaded. Almost every single object you work with in angr will depend on the existence of
a project in some form.

Basic properties

First, we have some basic properties about the project: its CPU architecture, its filename, and the address of
its entry point.

>>> import monkeyhex # this will format numerical results in hexadecimal
>>> proj.arch

<Arch AMD64 (LE)>

>>> proj.entry

0x401670

>>> proj.filename

'/bin/true'

~N oo b W N R

e archis aninstance ofan archinfo.Arch objectfor whichever architecture the program is compiled,
in this case little-endian amd64. It contains a ton of clerical data about the CPU it runs on, which you can
peruse at your leisure. The common ones you care aboutare arch.bits, arch.bytes (thatoneis
a @property declaration onthe main Arch class), arch.name,and arch.memory_endness.

e entry is the entry point of the binary!

e filename is the absolute filename of the binary. Riveting stuff!

The loader

Getting from a binary file to its representation in a virtual address space is pretty complicated! We have a
module called CLE to handle that. CLE's result, called the loader, is available in the .loader property.
We'll get into detail on how to use this soon, but for now just know that you can use it to see the shared
libraries that angr loaded alongside your program and perform basic queries about the loaded address
space.

1 >>> proj.loader

2 <Loaded true, maps [0x400000:0x5004000]>

3

4 >>> proj.loader.shared_objects # may look a little different for you!

5 {'ld-1linux-x86-64.s0.2': <ELF Object 1d-2.24.s0, maps [0x2000000:0x2227167]>,
6 'libc.so.6': <ELF Object libc-2.24.s0, maps [0x1000000:0x13c699f]>}

7

8 >>> proj.loader.min_addr

9 0x400000
10 >>> proj.loader.max_addr
11 Ox5004000
12
13 >>> proj.loader.main_object # we've loaded several binaries into this project. Here's the

=
N

<ELF Object true, maps [0x400000:0x60721f]>

=
(6]

https://github.com/angr/archinfo/blob/master/archinfo/arch_amd64.py
https://github.com/angr/archinfo/blob/master/archinfo/arch.py

17
18
19

p31gRroj.loader.main_object.execstack # sample query: does this binary have an executable

>>> proj.loader.main_object.pic # sample query: is this binary position-independent?

True

The factory

There are a lot of classes in angr, and most of them require a project to be instantiated. Instead of making

you pass around the project everywhere, we provide project.factory, which has several convenient
constructors for common objects you'll want to use frequently.

This section will also serve as an introduction to several basic angr concepts. Strap in!

Blocks

First, we have project.factory.block() ,whichis used to extract a basic block of code from a given
address. This is an important fact - angr analyzes code in units of basic blocks. You will get back a Block
object, which can tell you lots of fun things about the block of code:

O© 0 N O 00 W N

I S O T S ~ I = S = S S T
© W O ~N O U1 b W N R O

>>> block = proj.factory.block(proj.entry) # lift a block of code from the program's entry
<Block for 0x401670, 42 bytes>

>>> block.pp() # pretty-print a disassembly to stdout
0x401670: xor ebp, ebp

0x401672: mov ro, rdx

0x401675: pop rsi

0x401676: mov rdx, rsp

0x401679: and rsp, Oxfffffffffffffffo

0x40167d: push rax

0x40167e: push rsp

Ox40167f: lea r8, [rip + 0Ox2e2a]

0x401686: lea rex, [rip + 0x2db3]

0x40168d: lea rdi, [rip - 0xd4]

0x401694: call gword ptr [rip + 0x205866]

>>> block.instructions # how many instructions are there?

Oxb

>>> block.instruction_addrs # what are the addresses of the dinstructions?

[0x401670, Ox401672, 0x401675, Ox401676, Ox401679, 0x40167d, Ox40167e, 0x40167f, 0x401686,

Additionally, you can use a Block object to get other representations of the block of code:

A W N =

>>> block.capstone # capstone disassembly
<CapstoneBlock for 0x401670>
>>> block.vex # VEX IRSB (that's a python dinternal address, not

<pyvex.block.IRSB at 0x7706330>

States

https://en.wikipedia.org/wiki/Basic_block

Here's another fact about angr - the Project object only represents an "initialization image" for the
program. When you're performing execution with angr, you are working with a specific object representing a
simulated program state -a SimState . Let's grab one right now!

1 >>> state = proj.factory.entry_state()
2 <SimState @ Ox401670>

A SimState contains a program's memory, registers, filesystem data... any "live data" that can be changed by
execution has a home in the state. We'll cover how to interact with states in depth later, but for now, let's use
state.regs and state.mem to access the registers and memory of this state:

>>> state.regs.rip # get the current dinstruction pointer

<BV64 0x401670>

>>> state.regs.rax

<BV64 0x1lc>

>>> state.mem[proj.entry].int.resolved # interpret the memory at the entry point as a C i
<BV32 0x8949ed31>

S U b~ W N B

Those aren't python ints! Those are bitvectors. Python integers don't have the same semantics as words on
a CPU, e.g. wrapping on overflow, so we work with bitvectors, which you can think of as an integer as
represented by a series of bits, to represent CPU data in angr. Note that each bitvectorhasa .length
property describing how wide itis in bits.

We'll learn all about how to work with them soon, but for now, here's how to convert from python ints to
bitvectors and back again:

1 >>> bv = state.solver.BVV(0x1234, 32) # create a 32-bit-wide bitvector with value 0x
2 <BV32 0x1234> # BVV stands for bitvector value

3 >>> state.solver.eval(bv) # convert to python -int

4 Ox1234

You can store these bitvectors back to registers and memory, or you can directly store a python integer and
it'll be converted to a bitvector of the appropriate size:

1 >>> state.regs.rsi = state.solver.BVV(3, 64)
2 >>> state.regs.rsi

3 <BV64 0x3>

4

5 >>> state.mem[0x1000].long = 4

6 >>> state.mem[0x1000].long.resolved

7 <BV64 0Ox4>

The mem interface is a little confusing at first, since it's using some pretty hefty python magic. The short
version of how to use itis:

e Use array[index] notation to specify an address

e Use .<type> to specify thatthe memory should be interpreted as <type> (common values: char, short,

int, long, size_t, uint8_t, uint16_t...)
e From there, you can either:

e Store a value to it, either a bitvector or a python int
e Use .resolved to getthe value as a bitvector

e Use .concrete to getthe value as a python int

There are more advanced usages that will be covered later!

Finally, if you try reading some more registers you may encounter a very strange looking value:

1 >>> state.regs.rdi
2 <BV64 reg_48_11_64{UNINITIALIZED}>

This is still a 64-bit bitvector, but it doesn't contain a numerical value. Instead, it has a name! This is called a
symbolic variable and it is the underpinning of symbolic execution. Don't panic! We will discuss all of this in
detail exactly two chapters from now.

Simulation Managers

If a state lets us represent a program at a given point in time, there must be a way to get it to the next pointin
time. A simulation manager is the primary interface in angr for performing execution, simulation, whatever
you want to call it, with states. As a brief introduction, let's show how to tick that state we created eatrlier
forward a few basic blocks.

First, we create the simulation manager we're going to be using. The constructor can take a state or a list of
states.

1 >>> simgr = proj.factory.simulation_manager (state)
2 <SimulationManager with 1 active>

3 >>> simgr.active

4 [<SimState @ Ox401670>]

A simulation manager can contain several stashes of states. The default stash, active, isinitialized with
the state we passed in. We could look at simgr.active[0] tolook at our state some more, if we haven't
had enough!

Now... get ready, we're going to do some execution.

1 >>> simgr.step()

We've just performed a basic block's worth of symbolic execution! We can look at the active stash again,
noticing that it's been updated, and furthermore, that it has not modified our original state. SimState objects
are treated as immutable by execution - you can safely use a single state as a "base" for multiple rounds of
execution.

1 >>> simgr.active

o U b~ WN

[<SimState @ 0x1020300>]
>>> simgr.active[0].regs.rip

<BV64 0x1020300>
>>> state.regs.rip # still the same!
<BV64 0x401670>

new and exciting!

/bin/true isn'tavery good example for describing how to do interesting things with symbolic execution,
so we'll stop here for now.

Analyses

angr comes pre-packaged with several built-in analyses that you can use to extract some fun kinds of
information from a program. Here they are:

>>> proj.analyses.

proj.analyses.BackwardSlice proj.analyses.CongruencyCheck
proj.analyses.BinaryOptimizer proj.analyses.DDG
proj.analyses.BinDiff proj.analyses.DFG
proj.analyses.BoyScout proj.analyses.Disassembly
proj.analyses.CDG proj.analyses.GirlScout
proj.analyses.CFG proj.analyses.Identifier
proj.analyses.CFGEmulated proj.analyses.LoopFinder
proj.analyses.CFGFast proj.analyses.Reassembler

proj
proj
proj
proj
proj
proj
proj

.analyses.
.analyses.
.analyses.
.analyses.
Verit
.VFG

.VSA_DI

.analyses
.analyses

.analyses

Press TAB here 1in ipython to get an autocomplete-listing o

reloa
Stati:
Varial

Varial

A couple of these are documented later in this book, but in general, if you want to find how to use a given
analysis, you should look in the api documentation. As an extremely brief example: here's how you construct
and use a quick control-flow graph:

Originally, when we loaded this binary it also loaded all its dependencies into the same

This is undesirable for most analysis.

>>> proj = angr.Project('/bin/true', auto_load_libs=False)
>>> cfg = proj.analyses.CFGFast()

<CFGFast Analysis Result at 0x2d85130>

cfg.graph is a networkx DiGraph full of CFGNode instances

You should go look up the networkx APIs to learn how to use this!
>>> cfg.graph

<networkx.classes.digraph.DiGraph at 0x2da43a0>

11 >>> len(cfg.graph.nodes())
12 951
13
14 # To get the CFGNode for a given address, use cfg.get_any_node
15 >>> entry_node = cfg.get_any_node(proj.entry)
16 >>> len(list(cfg.graph.successors(entry_node)))
17 2
Now what?

Having read this page, you should now be aquainted with several important angr concepts: basic blocks,

http://angr.io/api-doc/angr.html?highlight=cfg#module-angr.analysis

states, bitvectors, simulation managers, and analyses. You can't really do anything interesting besides just
use angr as a glorified debugger, though! Keep reading, and you will unlock deeper powers...

Loading a Binary

Previously, you saw just the barest taste of angr's loading facilities - you loaded /b+in/true ,andthen
loaded it again without its shared libraries. You also saw proj.loader and a few things it could do. Now,
we'll dive into the nuances of these interfaces and the things they can tell you.

We briefly mentioned angr's binary loading component, CLE. CLE stands for "CLE Loads Everything", and
is responsible for taking a binary (and any libraries that it depends on) and presenting it to the rest of angr in
a way that is easy to work with.

The Loader

Let'sload examples/fauxware/fauxware and take a deeper look at how to interact with the loader.

>>> dmport angr, monkeyhex

>>> proj = angr.Project('examples/fauxware/fauxware')
>>> proj.loader

<Loaded fauxware, maps [0x400000:0x5008000]>

A W N

Loaded Objects

The CLE loader (cle. Loader) represents an entire conglomerate of loaded binary objects, loaded and
mapped into a single memory space. Each binary object is loaded by a loader backend that can handle its
filetype (a subclass of cle.Backend). Forexample, cle.ELF isused to load ELF binaries.

There will also be objects in memory that don't correspond to any loaded binary. For example, an object
used to provide thread-local storage support, and an externs object used to provide unresolved symbols.

You can get the full list of objects that CLE has loaded with loader.all_objects, as well as several
more targeted classifications:

ALl loaded objects

>>> proj.loader.all_objects

[<ELF Object fauxware, maps [0x400000:0x60105f]>,

<ELF Object libc-2.23.s0, maps [0x1000000:0x13c999f]>,

<ELF Object 1d-2.23.s0, maps [0x2000000:0x2227167]>,
<ELFTLSObject Object cle##tls, maps [0x3000000:0x3015010]>,
<ExternObject Object cle##externs, maps [0x4000000:0x4008000]>,
<KernelObject Object cletittkernel, maps [Ox5000000:0x5008000]>]

© 00 N o 00 A W N B

[
(o]

This is the "main" object, the one that you directly specified when loading the project

=
=

>>> proj.loader.main_object

13 <ELF Object fauxware, maps [0x400000:0x60105f]>

14 # This is a dictionary mapping from shared object name to object

15 >>> proj.loader.shared_objects

16 { 'fauxware': <ELF Object fauxware, maps [0x400000:0x60105f]>,

17 'libc.so0.6': <ELF Object 1libc-2.23.so0, maps [0x1000000:0x13c999f]>,

18 'ld-Tlinux-x86-64.s0.2': <ELF Object 1d-2.23.s0, maps [0x2000000:0x2227167]> }
19

20 # Here's all the objects that were loaded from ELF files

21 # If this were a windows program we'd use all_pe_objects!

22 >>> proj.loader.all_elf_objects

23 [<ELF Object fauxware, maps [0x400000:0x60105f]>,

24 <ELF Object 1libc-2.23.s0, maps [0x1000000:0x13c999f]>,

25 <ELF Object 1d-2.23.s0, maps [0x2000000:0x2227167]>]

26

27 # Here's the "externs object", which we use to provide addresses for unresolved imports an
28 >>> proj.loader.extern_object

29 <ExternObject Object cle##iexterns, maps [0x4000000:0x4008000]>

30

31 # This object is used to provide addresses for emulated syscalls

32 >>> proj.loader.kernel_object

33 <KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>

34

35 # Finally, you can to get a reference to an object given an address 1in it
36 >>> proj.loader.find_object_containing(0x400000)

37 <ELF Object fauxware, maps [0x400000:0x60105f]>

You can interact directly with these objects to extract metadata from them:

1 >>> obj = proj.loader.main_object

2

3 # The entry point of the object

4 >>> obj.entry

5 0x400580

6

7 >>> obj.min_addr, obj.max_addr

8 (Ox400000, 0x60105f)

9

10 # Retrieve this ELF's segments and sections

[
[

>>> obj.segments
<Regions: [<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5, offset=0x

=
N

13 <ELFSegment memsize=0x238, filesize=0x228, vaddr=0x600e28, flags=0x6, offset=0x
14 >>> obj.sections

15 <Regions: [<Unnamed | offset 0x0, vaddr 0x0, size 0x0>,

16 <.interp | offset 0x238, vaddr 0x400238, size Oxlc>,

17 <.note.ABI-tag | offset 0x254, vaddr 0x400254, size 0x20>,

18 FIC|EC

19

20 # You can get an individual segment or section by an address it contains:

N
=

>>> obj.find_segment_containing(obj.entry)
<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5, offset=0x0>
>>> obj.find_section_containing(obj.entry)

NN
w N

ié <.text | offset 0x580, vaddr 0x400580, size Ox338>

26 # Get the address of the PLT stub for a symbol
27 >>> addr = obj.plt['strcmp']

28 >>> addr

29 0x400550

30 >>> obj.reverse_plt[addr]

31 'strcmp'

32

33 # Show the prelinked base of the object and the location it was actually mapped into memor
34 >>> obj.linked_base

35 0x400000

36 >>> obj.mapped_base

37 0x400000

Symbols and Relocations

You can also work with symbols while using CLE. A symbol is a fundamental concept in the world of
executable formats, effectively mapping a name to an address.

The easiest way to get a symbol from CLE isto use loader.find_symbol, which takes either a name
or an address and returns a Symbol object.

1 >>> strcmp = proj.loader.find_symbol('strcmp')
2 >>> strcmp
3 <Symbol "strcmp" in libc.so.6 at 0x1089cd6>

The most useful attributes on a symbol are its name, its owner, and its address, but the "address" of a
symbol can be ambiguous. The Symbol object has three ways of reporting its address:

® .rebased_addr isits address in the global address space. This is what is shown in the print output.

e _.linked_addr isits address relative to the prelinked base of the binary. This is the address reported
in, forexample, readelf (1) .

e .relative_addr isits address relative to the object base. This is known in the literature (particularly
the Windows literature) as an RVA (relative virtual address).

>>> strcmp.name
'strcmp!

>>> strcmp.owner
<ELF Object libc-2.23.s0, maps [0x1000000:0x13c999f]>

>>> strcmp.rebased_addr
0x1089cdo

>>> strcmp. linked_addr
0x89cd0O

>>> strcmp.relative_addr
0x89cd0O

© 00 N o 00 A W N

== e
N RO

In addition to providing debug information, symbols also support the notion of dynamic linking. libc provides
the strcmp symbol as an export, and the main binary depends on it. If we ask CLE to give us a strcmp
symbol from the main object directly, it'll tell us that this is an import symbol. Import symbols do not have
meaningful addresses associated with them, but they do provide a reference to the symbol that was used to
resolve them, as .resolvedby .

>>> strcmp.is_export
True
>>> strcmp.is_import
False

On Loader, the method is find_symbol because it performs a search operation to find the
On an individual object, the method is get_symbol because there can only be one symbol w

>>> main_strcmp = proj.loader.main_object.get_symbol('strcmp')

O© 00 N oo 0 b~ W N -

>>> main_strcmp

=
©

<Symbol "strcmp" in fauxware (import)>

=
=

>>> main_strcmp.is_export

[
N

False

=
W

>>> main_strcmp.is_import

=
N

True

[
(6}

>>> main_strcmp.resolvedby
<Symbol "strcmp" in libc.so.6 at 0x1089cd0>

[
(9]

The specific ways that the links between imports and exports should be registered in memory are handled
by another notion called relocations. A relocation says, "when you match [import] up with an export symbol,
please write the export's address to [location], formatted as [format]." We can see the full list of relocations for
an object (as Relocation instances)as obj.relocs, orjusta mapping from symbol name to
Relocation as obj.imports . There is no corresponding list of export symbols.

A relocation's corresponding import symbol can be accessed as .symbo'l . The address the relocation will
write to is accessable through any of the address identifiers you can use for Symbol, and you can get a
reference to the object requesting the relocation with .owner as well.

Relocations don't have a good pretty-printing, so those addresses are python-internal, u

>>> proj.loader.shared_objects['libc.so.6'].imports

{'__Tlibc_enable_secure': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at Ox7ff5c5f
' __tls_get_addr': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at Ox7ff5c6018358
'_dl_argv': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at Ox7ff5c5fd2e48>,
'_dl_find_dso_for_object': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at Ox7ff
'_dl_starting_up': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at Ox7ff5c5fd2550
'_rtld_global': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0Ox7ff5c5fce4e0>,
'_rtld_global_ro': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at Ox7ff5c5fcea20

© 00 N o 00 A W N B

If an import cannot be resolved to any export, for example, because a shared library could not be found, CLE
will automatically update the externs object (Lloader.extern_obj)to claim it provides the symbol as an
export.

Loading Options

If you are loading something with angr.Project and you wantto pass an option to the cle.Loader
instance that Project implicitly creates, you can just pass the keyword argument directly to the Project
constructor, and it will be passed on to CLE. You should look at the CLE API docs. if you want to know
everything that could possibly be passed in as an option, but we will go over some important and frequently
used options here.

Basic Options

We've discussed auto_load_T1l1ibs already - itenables or disables CLE's attempt to automatically
resolve shared library dependencies, and is on by default. Additionally, there is the opposite,
except_missing_Tlibs, which,if setto true, will cause an exception to be thrown whenever a binary
has a shared library dependency that cannot be resolved.

You can pass a list of stringsto force_load_T1l1ibs and anything listed will be treated as an unresolved
shared library dependency right out of the gate, or you can pass a list of stringsto skip_1libs to prevent
any library of that name from being resolved as a dependency. Additionally, you can pass a list of strings (or
a single string) to 1d_path , which will be used as an additional search path for shared libraries, before
any of the defaults: the same directory as the loaded program, the current working directory, and your system
libraries.

Per-Binary Options

If you want to specify some options that only apply to a specific binary object, CLE will let you do that too.
The parameters main_opts and lib_opts do this by taking dictionaries of options. main_opts isa
mapping from option names to option values, while 1ib_opts is a mapping from library name to
dictionaries mapping option names to option values.

The options that you can use vary from backend to backend, but some common ones are:

® backend -which backend to use, as either a class or a name
® base_addr -abase addressto use
e entry_point -an entry pointto use

® arch -the name of an architecture to use

Example:

1 >>> angr.Project('examples/fauxware/fauxware', main_opts={'backend': 'blob', 'arch': 'i386

2 <Project examples/fauxware/fauxware>

Backends

CLE currently has backends for statically loading ELF, PE, CGC, Mach-O and ELF core dump files, as well
as loading files into a flat address space. CLE will automatically detect the correct backend to use in most

http://angr.io/api-doc/cle.html

cases, so you shouldn't need to specify which backend you're using unless you're doing some pretty weird
stuff.

You can force CLE to use a specific backend for an object by including a key in its options dictionary, as
described above. Some backends cannot autodetect which architecture to use and must have a arch
specified. The key doesn't need to match any list of architectures; angr will identify which architecture you
mean given almost any common identifier for any supported arch.

To refer to a backend, use the name from this table:

backend name description requires arch ?

Static loader for ELF files based
elf on PyELFTools no

Static loader for PE files based
pe on PEFile no

Static loader for Mach-O files.
Does not support dynamic

mach-o - i no
linking or rebasing.

Static loader for Cyber Grand
cgc Challenge binaries no

Static loader for CGC binaries
that allows specifying memory

backedcgc) no
and register backers

Static loader for ELF core

dumps
elfcore no

Loads the file into memory as a
blob flatimage yes

Symbolic Function Summaries

By default, Project tries to replace external calls to library functions by using symbolic summaries termed
SimProcedures - effectively just python functions that imitate the library function's effect on the state. We've
implemented a whole bunch of functions as SimProcedures. These builtin procedures are available in the
angr.SIM_PROCEDURES dictionary, which is two-leveled, keyed first on the package name (libc, posix,

https://github.com/angr/angr/tree/master/angr/procedures

win32, stubs) and then on the name of the library function. Executing a SimProcedure instead of the actual
library function that gets loaded from your system makes analysis a LOT more tractable, at the cost of some
potential inaccuracies.

When no such summary is available for a given function:

e if auto_Tload_1l1ibs is True (thisis the default), then the real library function is executed instead.
This may or may not be what you want, depending on the actual function. For example, some of libc's
functions are extremely complex to analyze and will most likely cause an explosion of the number of
states for the path trying to execute them.

e if auto_load_1l1ibs is False, then external functions are unresolved, and Project will resolve them
to a generic "stub" SimProcedure called ReturnUnconstrained . It does whatits name says: it
returns a unique unconstrained symbolic value each time itis called.

® if use_sim_procedures (thisis aparameterto angr.Project,not cle.Loader)is False (it
is True by default), then only symbols provided by the extern object will be replaced with
SimProcedures, and they will be replaced by a stub ReturnUnconstrained , which does nothing
but return a symbolic value.

e you may specify specific symbols to exclude from being replaced with SimProcedures with the
parametersto angr.Project: exclude_sim_procedures_1list and

exclude_sim_procedures_func.

® Look atthe code for angr.Project._register_object forthe exactalgorithm.

Hooking

The mechanism by which angr replaces library code with a python summary is called hooking, and you can
do it too! When performing simulation, at every step angr checks if the current address has been hooked,
and if so, runs the hook instead of the binary code at that address. The API to let you do this is
proj.hook(addr, hook) ,where hook isa SimProcedure instance. You can manage your project's
hooks with .1is_hooked, .unhook,and .hooked_by ,which should hopefully not require
explanation.

There is an alternate API for hooking an address that lets you specify your own off-the-cuff function to use as
a hook, by using proj.hook(addr) as a function decorator. If you do this, you can also optionally
specify a length keyword argument to make execution jump some number of bytes forward after your
hook finishes.

>>> stub_func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained'] # this is a CLASS
>>> proj.hook(0x10000, stub_func()) # hook with an instance of the class

>>> proj.is_hooked(0x10000) # these functions should be pretty self-explanitory
True

>>> proj.hooked_by(0x10000)

<ReturnUnconstrained>

>>> proj.unhook (0x10000)

O© 0 N o 00 A W N B

[
(o]

>>> @proj.hook(0x20000, length=5)
. def my_hook(state):
state.regs.rax = 1

= e
N

13

14 >>> proj.is_hooked(0x20000)
15 True

Furthermore, you can use proj.hook_symbol(name, hook) , providing the name of a symbol as the
first argument, to hook the address where the symbol lives. One very important usage of this is to extend the
behavior of angr's built-in library SimProcedures. Since these library functions are just classes, you can
subclass them, overriding pieces of their behavior, and then use your subclass in a hook.

So far so good!

By now, you should have a reasonable understanding of how to control the environment in which your
analysis happens, on the level of the CLE loader and the angr Project. You should also understand that angr
makes a reasonable attempt to simplify its analysis by hooking complex library functions with
SimProcedures that summarize the effects of the functions.

In order to see all the things you can do with the CLE loader and its backends, look at the CLE API docs.

Solver Engine

angr's power comes not from it being an emulator, but from being able to execute with what we call symbolic
variables. Instead of saying that a variable has a concrete numerical value, we can say that it holds a
symbol, effectively just a name. Then, performing arithmetic operations with that variable will yield a tree of
operations (termed an abstract syntax tree or AST, from compiler theory). ASTs can be translated into
constraints for an SMT solver, like z3, in order to ask questions like "given the output of this sequence of
operations, what must the input have been?" Here, you'll learn how to use angr to answer this.

Working with Bitvectors

Let's get a dummy project and state so we can start playing with numbers.

1 >>> dmport angr, monkeyhex

2 >>> proj = angr.Project('/bin/true')
3 >>> state = proj.factory.entry_state()

A bitvector is just a sequence of bits, interpreted with the semantics of a bounded integer for arithmetic. Let's
make a few.

1 # 64-bit bitvectors with concrete values 1 and 100
2 >>> one = state.solver.BVV(1l, 64)
3 >>> one

http://angr.io/api-doc/cle.html

<BV64 0Ox1>

>>> one_hundred = state.solver.BVV (100, 64)
>>> one_hundred

<BV64 0x64>

create a 27-bit bitvector with concrete value 9
>>> weird_nine = state.solver.BVV (9, 27)

>>> weird_nine

<BV27 0x9>

As you can see, you can have any sequence of bits and call them a bitvector. You can do math with them

too:

O© 00 N o O A W N -

[
(o]

>>> one + one_hundred
<BV64 0x65>

You can provide normal python integers and they will be coerced to the appropriate type:
>>> one_hundred + 0x100
<BV64 0x164>

The semantics of normal wrapping arithmetic apply
>>> one_hundred - onex200
<BV64 oxffffffffffffffoc>

You cannotsay one + weird_nine,though. Itis a type error to perform an operation on bitvectors of

differing lengths. You can, however, extend weird_nine so ithas an appropriate number of bits:

A W N R

>>> weird_nine.zero_extend(64 - 27)

<BV64 0x9>

>>> one + weird_nine.zero_extend(64 - 27)
<BV64 0Oxa>

zero_extend will pad the bitvector on the left with the given number of zero bits. You can also use

sign_extend to pad with a duplicate of the highest bit, preserving the value of the bitvector under two's
compliment signed integer semantics.

Now, let's introduce some symbols into the mix.

1

2
3
4
5
6
-

Create a bitvector symbol named "x" of length 64 bits

>>> x = state.solver.BVS("x", 64)
>>> X
<BV64 x_9_64>

>>> y = state.solver.BVS("y", 64)

>>> y
<BV64 y_10_64>

x and y are now symbolic variables, which are kind of like the variables you learned to work with in 7th
grade algebra. Notice that the name you provided has been been mangled by appending an incrementing

counter and You can do as much arithmetic as you want with them, but you won't get a number back, you'll
getan AST instead.

>>> X + one
<BV64 x_9_64 + 0Ox1>

>>> (x + one) / 2
<BV64 (x_9_64 + Ox1) / Ox2>

>>> x -y
<BV64 x_9_64 - y_10_64>

co N o o~ W N

Technically x and y and even one are also ASTs - any bitvector is a tree of operations, even if that tree is
only one layer deep. To understand this, let's learn how to process ASTSs.

Each AST hasa .op anda .args . The opis a string naming the operation being performed, and the
args are the values the operation takes as input. Unless the op is BVV or BVS (or a few others...), the args
are all other ASTs, the tree eventually terminating with BVVs or BVSs.

1 >> tree = (x + 1) / (y + 2)

2 >>> tree

3 <BV64 (x_9_64 + 0x1) / (y_l0_64 + 0x2)>

4 >>> tree.op

5 ' __floordiv__'

6 >>> tree.args

7 (<BV64 x_9_64 + Ox1>, <BV64 y_10_64 + 0x2>)
8 >>> tree.args[0].op

9 '__add__'

10 >>> tree.args[0].args

=
=

(<BV64 x_9_64>, <BV64 0x1>)
>>> tree.args[0].args[1].op
'BVV!

>>> tree.args[0].args[1].args
(1, 64)

e
a0 D W N

From here on out, we will use the word "bitvector" to refer to any AST whose topmost operation produces a
bitvector. There can be other data types represented through ASTs, including floating point numbers and, as
we're about to see, booleans.

Symbolic Constraints

Performing comparison operations between any two similarly-typed ASTs will yield another AST - nota
bitvector, but now a symbolic boolean.

1>> x==1
2 <Bool x_9_64 == 0x1>

3 >>> X == one

O© 0 N O U

10
11
12

§§90} ;_%_64 == Ox1>

<Bool x_9_64 > 0x2>

>>> x + == one_hundred + 5
<Bool (x_9_64 + y_10_64) == 0x69>
>>> one_hundred > 5

<Bool True>

>>> one_hundred > -5

<Bool False>

One tidbit you can see from this is that the comparisons are unsigned by default. The -5 in the last example
iscoercedto <BV64 Oxfffffffffffffffb> ,which is definitely notless than one hundred. If you want
the comparison to be signed, you can say one_hundred.SGT(-5) (that's "signed greater-than™). A full
list of operations can be found at the end of this chapter.

This snippet also illustrates an important point about working with angr - you should never directly use a
comparison between variables in the condition for an if- or while-statement, since the answer might not have

a concrete truth value. Even if there is a concrete truth value, if one > one_hundred will raise an

exception. Instead, you should use solver.is_true and solver.is_false, which testfor concrete
truthyness/falsiness without performing a constraint solve.

O© 0 N o O A W N B

L T e
o D W N RO

>>> yes = one == 1

>>> no = one == 2

>>> maybe = x ==y

>>> state.solver.is_true(yes)
True

>>> state.solver.is_false(yes)
False

>>> state.solver.is_true(no)
False

>>> state.solver.is_false(no)
True

>>> state.solver.is_true(maybe)
False

>>> state.solver.is_false(maybe)
False

Constraint Solving

You can treat any symbolic boolean as an assertion about the valid values of a symbolic variable by adding
it as a constraint to the state. You can then query for a valid value of a symbolic variable by asking for an
evaluation of a symbolic expression.

An example will probably be more clear than an explanation here:

1
2

>>> state.solver.add(x > y)
>>> state.solver.add(y > 2)

3 >>> state.solver.add(10 > x)
4 >>> state.solver.eval(x)

54

By adding these constraints to the state, we've forced the constraint solver to consider them as assertions
that must be satisfied about any values it returns. If you run this code, you might get a different value for X,
but that value will definitely be greater than 3 (since y must be greater than 2 and x must be greater than y)
and less than 10. Furthermore, if you then say state.solver.eval(y) ,you'll geta value ofy which is
consistent with the value of x that you got. If you don't add any constraints between two queries, the results
will be consistent with each other.

From here, it's easy to see how to do the task we proposed at the beginning of the chapter - finding the input
that produced a given output.

1 # get a fresh state without constraints

2 >>> state = proj.factory.entry_state()

3 >>> dnput = state.solver.BVS('input', 64)

4 >>> operation = (((input + 4) * 3) >> 1) + dinput
5 >>> output = 200

6 >>> state.solver.add(operation == output)

7 >>> state.solver.eval(input)

8 0x3333333333333381

Note that, again, this solution only works because of the bitvector semantics. If we were operating over the
domain of integers, there would be no solutions!

If we add conflicting or contradictory constraints, such that there are no values that can be assigned to the
variables such that the constraints are satisfied, the state becomes unsatisfiable, or unsat, and queries
against it will raise an exception. You can check the satisfiability of a state with state.satisfiable() .

1 >>> state.solver.add(input < 2xx32)
2 >>> state.satisfiable()
3 False

You can also evaluate more complex expressions, not just single variables.

1 # fresh state
2 >>> state = proj.factory.entry_state()
3 >>> state.solver.add(x -y >= 4)

>>> state.solver.add(y > 0)
>>> state.solver.eval(x)

5

>>> state.solver.eval(y)

o N oo u b

9 >>> state.solver.eval(x + vy)
10 6

From this we can see that eva'l is a general purpose method to convert any bitvector into a python

primitive while respecting the integrity of the state. This is why we use evall to convert from concrete
bitvectors to python ints, too!

Also note that the x and y variables can be used in this new state despite having been created using an old
state. Variables are not tied to any one state, and can exist freely.

Floating point numbers

z3 has support for the theory of IEEE754 floating point numbers, and so angr can use them as well. The
main difference is that instead of a width, a floating point number has a sort. You can create floating point
symbols and values with FPV and FPS.

1 # fresh state

2 >>> state = proj.factory.entry_state()
3 >>> a = state.solver.FPV(3.2, state.solver.fp.FSORT_DOUBLE)
4 >>> a

5 <FP64 FPV(3.2, DOUBLE)>
6

7

8

9

>>> b = state.solver.FPS('b', state.solver.fp.FSORT_DOUBLE)
>>> b
<FP64 FPS('FP_b_0_64"', DOUBLE)>

11 >>> a + b
12 <FP64 fpAdd('RNE', FPV(3.2, DOUBLE), FPS('FP_b_0_64', DOUBLE))>

14 >>> a + 4.4
15 <FP64 FPV(7.6000000000000005, DOUBLE)>

17 >>> b + 2 < 0
18 <Bool fpLT(fpAdd('RNE', FPS('FP_b_0_64', DOUBLE), FPV(2.0, DOUBLE)), FPV(0.0, DOUBLE))>

So there's a bit to unpack here - for starters the pretty-printing isn't as smart about floating point numbers. But
past that, most operations actually have a third parameter, implicitly added when you use the binary
operators - the rounding mode. The IEEE754 spec supports multiple rounding modes (round-to-nearest,
round-to-zero, round-to-positive, etc), so z3 has to support them. If you want to specify the rounding mode for
an operation, use the fp operation explicitly (solver . fpAdd for example) with a rounding mode (one of
solver. fp.RM_x) as the first argument.

Constraints and solving work in the same way, but with eva'l returning a floating point number:

>>> state.solver.add(b + 2 < 0)
>>> state.solver.add(b + 2 > -1)
>>> state.solver.eval(b)
-2.4999999999999996

A W N =

This is nice, but sometimes we need to be able to work directly with the representation of the float as a
bitvector. You can interpret bitvectors as floats and vice versa, with the methods raw_to_bv and

raw +A fno-

>>> a.raw_to_bv ()

<BV64 0x400999999999999a>

>>> b.raw_to_bv ()

<BV64 fpToIEEEBV(FPS('FP_b_0_64', DOUBLE))>

>>> state.solver.BVV (0, 64).raw_to_fp()
<FP64 FPV(0.0, DOUBLE)>

>>> state.solver.BVS('x', 64).raw_to_fp()
<FP64 fpToFP(x_1_64, DOUBLE)>

O© 0 N o 00 A W N B

These conversions preserve the bit-pattern, as if you casted a float pointer to an int pointer or vice versa.
However, if you want to preserve the value as closely as possible, as if you casted a float to an int (or vice
versa), you can use a different set of methods, val_to_fp and val_to_bv . These methods musttake
the size or sort of the target value as a parameter, due to the floating-point nature of floats.

>>> a

<FP64 FPV(3.2, DOUBLE)>

>>> a.val_to_bv(12)

<BV12 0Ox3>

>>> a.val_to_bv(12).val_to_fp(state.solver.fp.FSORT_FLOAT)
<FP32 FPV(3.0, FLOAT)>

D U~ WN B

These methods can also take a signed parameter, designating the signedness of the source or target
bitvector.

More Solving Methods

eval will give you one possible solution to an expression, but what if you want several? What if you want
to ensure that the solution is unique? The solver provides you with several methods for common solving
patterns:

e solver.eval(expression) will give you one possible solution to the given expression.

® solver.eval_one(expression) will give you the solution to the given expression, or throw an
error if more than one solution is possible.

e solver.eval_upto(expression, n) will give you up to n solutions to the given expression,
returning fewer than n if fewer than n are possible.

e solver.eval_atleast(expression, n) will give you n solutions to the given expression,
throwing an error if fewer than n are possible.

e solver.eval_exact(expression, n) will give you n solutions to the given expression,
throwing an error if fewer or more than are possible.

e solver.min(expression) will give youthe minimum possible solution to the given expression.

e solver.max(expression) will give youthe maximum possible solution to the given expression.

Additionally, all of these methods can take the following keyword arguments:

e extra_constraints can be passed as a tuple of constraints.
These constraints will be taken into account for this evaluation, but will not be added to the state.

® cast_to can be passed a data type to cast the result to.
Currently, this can only be int and bytes , which will cause the method to return the corresponding
representation of the underlying data.
For example, state.solver.eval(state.solver.BVV(0x41424344, 32),
cast_to=bytes) will return b'ABCD' .

Summary

That was a lot!! After reading this, you should be able to create and manipulate bitvectors, booleans, and
floating point values to form trees of operations, and then query the constraint solver attached to a state for
possible solutions under a set of constraints. Hopefully by this point you understand the power of using
ASTs to represent computations, and the power of a constraint solver.

In the appendix, you can find a reference for all the additional operations you can apply to ASTs, in case you
ever need a quick table to look at.

Program State

So far, we've only used angr's simulated program states (SimState objects) in the barest possible way in
order to demonstrate basic concepts about angr's operation. Here, you'll learn about the structure of a state
object and how to interact with it in a variety of useful ways.

Review: Reading and writing memory and registers

If you've been reading this book in order (and you should be, at least for this first section), you already saw
the basics of how to access memory and registers. state.regs provides read and write access to the
registers through attributes with the names of each register, and state.mem provides typed read and write
access to memory with index-access notation to specify the address followed by an attribute access to
specify the type you would like to interpret the memory as.

Additionally, you should now know how to work with ASTs, so you can now understand that any bitvector-
typed AST can be stored in registers or memory.

Here are some quick examples for copying and performing operations on data from the state:

1 >>> [dmport angr, claripy
2 >>> proj = angr.Project('/bin/true')

>>> state = proj.factory.entry_state()

copy rsp to rbp

>>> state.regs.rbp = state.regs.rsp

store rdx to memory at 0x1000
>>> state.mem[0x1000].uint64_t = state.regs.rdx

© 00 N o 0 »

10

11 # dereference rbp

12 >>> state.regs.rbp = state.mem[state.regs.rbp].uint64_t.resolved

13

14 # add rax, qword ptr [rsp + 8]

15 >>> state.regs.rax += state.mem[state.regs.rsp + 8].uint64_t.resolved

Basic Execution

Earlier, we showed how to use a Simulation Manager to do some basic execution. We'll show off the full
capabilities of the simulation manager in the next chapter, but for now we can use a much simpler interface
to demonstrate how symbolic execution works: state.step () . This method will perform one step of
symbolic execution and return an object called SimSuccessors . Unlike normal emulation, symbolic
execution can produce several successor states that can be classified in a number of ways. For now, what
we care aboutis the .successors property of this object, which is a list containing all the "normal”
successors of a given step.

Why a list, instead of just a single successor state? Well, angr's process of symbolic execution is just the
taking the operations of the individual instructions compiled into the program and performing them to mutate
a SimState. When a line of code like if (x > 4) isreached, what happens if x is a symbolic bitvector?
Somewhere in the depths of angr, the comparison x > 4 is going to get performed, and the resultis going
tobe <Bool x_32_1 > 4>.

That's fine, but the next question is, do we take the "true" branch or the "false" one? The answer is, we take
both! We generate two entirely separate successor states - one simulating the case where the condition was
true and simulating the case where the condition was false. In the first state, we add x > 4 as a constraint,
and in the second state, we add ! (x > 4) as a constraint. That way, whenever we perform a constraint
solve using either of these successor states, the conditions on the state ensure that any solutions we get are
valid inputs that will cause execution to follow the same path that the given state has followed.

To demonstrate this, let's use a fake firmware image as an example. If you look at the source code for this
binary, you'll see that the authentication mechanism for the firmware is backdoored; any username can be
authenticated as an administrator with the password "SOSNEAKY". Furthermore, the first comparison
against user input that happens is the comparison against the backdoor, so if we step until we get more than
one successor state, one of those states will contain conditions constraining the user input to be the
backdoor password. The following snippet implements this:

1 >>> proj = angr.Project('examples/fauxware/fauxware')

2 >>> state = proj.factory.entry_state(stdin=angr.SimFile) # -dgnore that argument for now -
3 >>> while True:

4 ... succ = state.step()

http://angr.io/api-doc/angr.html#module-angr.engines.successors
https://github.com/angr/angr-doc/tree/079c79b89c044a35f1cc6cb31ab799710f96fede/examples/fauxware/fauxware/README.md
https://github.com/angr/angr-doc/tree/079c79b89c044a35f1cc6cb31ab799710f96fede/examples/fauxware/fauxware.c

if len(succ.successors) == 2:
break

state = succ.successors[0]

O 0 ~N O WU

>>> statel, state2 = succ.successors
10 >>> statel

11 <SimState @ 0Ox400629>

12 >>> state2

13 <SimState @ 0x400699

Don't look at the constraints on these states directly - the branch we just went through involves the result of
strcmp , which is a tricky function to emulate symbolically, and the resulting constraints are very
complicated.

The program we emulated took data from standard input, which angr treats as an infinite stream of symbolic
data by default. To perform a constraint solve and get a possible value that input could have taken in order to
satisfy the constraints, we'll need to get a reference to the actual contents of stdin. We'll go over how our file
and input subsystems work later on this very page, but for now, justuse state.posix.stdin.load (0,
state.posix.stdin.size) toretrieve a bitvector representing all the content read from stdin so far.

>>> dnput_data = statel.posix.stdin.load(0, state.posix.stdin.size)

>>> statel.solver.eval(input_data, cast_to=bytes)
b'\x00\x00\x00\x00\x00\x00\x00\x00\xO0SOSNEAKY\Xx00\x00\x00"'

o U b~ W N B

>>> state2.solver.eval(input_data, cast_to=bytes)

7 b'\x00\x00\x00\x00\x00\Xx00\x00\x00\Xx00S\Xx00\x8ON\x00\x00 \x00\x00\x00\x00'

As you can see, in order to go down the statel path, you must have given as a password the backdoor
string "SOSNEAKY". In order to go down the state2 path, you must have given something besides
"SOSNEAKY". z3 has helpfully provided one of the billions of strings fitting this criteria.

Fauxware was the first program angr's symbolic execution ever successfully worked on, back in 2013. By
finding its backdoor using angr you are participating in a grand tradition of having a bare-bones
understanding of how to use symbolic execution to extract meaning from binaries!

State Presets

So far, whenever we've been working with a state, we've created it with
project.factory.entry_state() . Thisisjustone of several state constructors available on the
project factory:

e _blank_state() constructs a"blank slate" blank state, with most of its data left uninitialized.
When accessing uninitialized data, an unconstrained symbolic value will be returned.

e .entry_state() constructs a state ready to execute at the main binary's entry point.

e . full_init_state() constructs a state that is ready to execute through any initializers that need to

be run before the main binary's entry point, for example, shared library constructors or preinitializers.
When itis finished with these it will jJump to the entry point.

e .call_state() constructs a state ready to execute a given function.
You can customize the state through several arguments to these constructors:

¢ All of these constructors can take an addr argument to specify the exact address to start.

e Ifyou're executing in an environment that can take command line arguments or an environment, you can
pass a list of arguments through args and a dictionary of environment variables through env into
entry_state and full_init_state . The values in these structures can be strings or bitvectors,
and will be serialized into the state as the arguments and environment to the simulated execution. The
default args is an empty list, so if the program you're analyzing expects to find atleastan argv[0] ,
you should always provide that!

¢ Ifyou'd like to have argc be symbolic, you can pass a symbolic bitvector as argc tothe
entry_state and full_init_state constructors. Be careful, though: if you do this, you should
also add a constraint to the resulting state that your value for argc cannot be larger than the number of
args you passed into args .

® To use the call state, you should call itwith .call_state(addr, argl, arg2, ...),6where
addr isthe address of the function you want to call and argN is the Nth argument to that function,
either as a python integer, string, or array, or a bitvector. If you want to have memory allocated and
actually pass in a pointer to an object, you should wrap it in an PointerWrapper, i.e.
angr.PointerWrapper ("point to me!") .The results of this APl can be a little unpredictable,
but we're working on it.

¢ To specify the calling convention used for a function with call_state,youcanpassa SimCC
instance as the cc argument.
We try to pick a sane default, but for special cases you will need to help angr out.

There are several more options that can be used in any of these constructors! See the docs on the
project.factory object(an AngrObjectFactory) for more details.

Low level interface for memory

The state.mem interface is convenient for loading typed data from memory, but when you want to do raw

loads and stores to and from ranges of memory, it's very cumbersome. It turns out that state.mem is

actually just a bunch of logic to correctly access the underlying memory storage, which is just a flat address

space filled with bitvector data: state.memory .Youcanuse state.memory directly with the
.load(addr, size) and .store(addr, val) methods:

>>> s = proj.factory.blank_state()

>>> s.memory.store(0x4000, s.solver.BVV(0x0123456789abcdef0123456789abcdef, 128))
>>> s.memory.load(0x4004, 6) # load-size is in bytes

<BV48 0x89abcdef0123>

A W N

http://angr.io/api-doc/angr.html#module-angr.calling_conventions
http://angr.io/api-doc/angr.html#angr.factory.AngrObjectFactory

As you can see, the data is loaded and stored in a "big-endian"” fashion, since the primary purpose of
state.memory is toload an store swaths of data with no attached semantics. However, if you want to
perform a byteswap on the loaded or stored data, you can pass a keyword argument endness -if you
specify little-endian, byteswap will happen. The endness should be one of the members of the Endness
enuminthe archinfo package used to hold declarative data about CPU architectures for angr.
Additionally, the endness of the program being analyzed can be found as arch.memory_endness -for

instance state.arch.memory_endness.

1 >>> [dmport archinfo
2 >>> s.memory.load(0x4000, 4, endness=archinfo.Endness.LE)
3 <BV32 0x67452301>

There is also a low-level interface for register access, state.registers,that uses the exact same API
as state.memory , but explaining its behavior involves a dive into the abstractions that angr uses to
seamlessly work with multiple architectures. The short version is that it is simply a register file, with the
mapping between registers and offsets defined in archinfo.

State Options

There are a lot of little tweaks that can be made to the internals of angr that will optimize behavior in some
situations and be a detriment in others. These tweaks are controlled through state options.

On each SimState object, there isa set(state.options) of all its enabled options. Each option (really
just a string) controls the behavior of angr's execution engine in some minute way. A listing of the full domain
of options, along with the defaults for different state types, can be found in the appendix. You can access an
individual option for adding to a state through angr.options . The individual options are named with
CAPITAL_LETTERS, but there are also common groupings of objects that you might want to use bundled
together, named with lowercase_letters.

When creating a SimState through any constructor, you may pass the keyword arguments add_options
and remove_options , which should be sets of options that modify the initial options set from the default.

Example: enable lazy solves, an option that causes state satisfiability to be checked as
This change to the settings will be propagated to all successor states created from this
>>> s.options.add(angr.options.LAZY_SOLVES)

Create a new state with lazy solves enabled

>>> s = proj.factory.entry_state(add_options={angr.options.LAZY_SOLVES})

Create a new state without simplification options enabled

O© 00 N o 0 A W N -

>>> s = proj.factory.entry_state(remove_options=angr.options.simplification)

State Plugins

https://github.com/angr/archinfo

With the exception of the set of options just discussed, everything stored in a SimState is actually stored in a
plugin attached to the state. AlImost every property on the state we've discussed so far is a plugin -

memory, registers, mem, regs, solver , etc. This design allows for code modularity as well as the
ability to easily implement new kinds of data storage for other aspects of an emulated state, or the ability to
provide alternate implementations of plugins.

For example, the normal memory plugin simulates a flat memory space, but analyses can choose to
enable the "abstract memory" plugin, which uses alternate data types for addresses to simulate free-floating
memory mappings independent of address, to provide state.memory . Conversely, plugins can reduce
code complexity: state.memory and state.registers are actually two different instances of the
same plugin, since the registers are emulated with an address space as well.

The globals plugin

state.globals is an extremely simple plugin: itimplements the interface of a standard python dict,
allowing you to store arbitrary data on a state.

The history plugin

state.history isavery important plugin storing historical data about the path a state has taken during
execution. Itis actually a linked list of several history nodes, each one representing a single round of
execution---you can traverse this listwith state.history.parent.parent etc.

To make it more convenient to work with this structure, the history also provides several efficient iterators
over the history of certain values. In general, these values are stored as history.recent_NAME and the
iterator over them is just history.NAME . For example, for addr in

state.history.bbl_addrs: print hex(addr) will printouta basic block address trace for the
binary, while state.history.recent_bb1l_addrs is the list of basic blocks executed in the most
recentstep, state.history.parent.recent_bbl_addrs is the list of basic blocks executed in the
previous step, etc. If you ever need to quickly obtain a flat list of these values, you can access .hardcopy ,
e.g. state.history.bbl_addrs.hardcopy .Keep in mind though, index-based accessing is
implemented on the iterators.

Here is a brief listing of some of the values stored in the history:

e history.descriptions isalisting of string descriptions of each of the rounds of execution
performed on the state.

e history.bbl_addrs isalisting of the basic block addresses executed by the state.
There may be more than one per round of execution, and not all addresses may correspond to binary
code - some may be addresses at which SimProcedures are hooked.

* history.jumpkinds isalisting of the disposition of each of the control flow transitions in the state's
history, as VEX enum strings.

* history.jump_guards is alisting of the conditions guarding each of the branches that the state
has encountered.

e history.events isasemantic listing of "interesting events" which happened during execution,
such as the presence of a symbolic jump condition, the program popping up a message box, or

execution terminating with an exit code.
* history.actions isusually empty, butifyou addthe angr.options.refs options to the state,

it will be populated with a log of all the memory, register, and temporary value accesses performed by
the program.

The callstack plugin

angr will track the call stack for the emulated program. On every call instruction, a frame will be added to the
top of the tracked callstack, and whenever the stack pointer drops below the point where the topmost frame
was called, a frame is popped. This allows angr to robustly store data local to the current emulated function.

Similar to the history, the callstack is also a linked list of nodes, but there are no provided iterators over the
contents of the nodes - instead you can directly iterate over state.callstack to getthe callstack
frames for each of the active frames, in order from most recent to oldest. If you just want the topmost frame,
thisis state.callstack.

e callstack.func_addr isthe address of the function currently being executed
e callstack.call_site_addr isthe address of the basic block which called the current function
e callstack.stack_ptr isthe value of the stack pointer from the beginning of the current function

e callstack.ret_addr isthe location thatthe current function will return to if it returns

More about I/O: Files, file systems, and network sockets

Please refer to Working with File System, Sockets, and Pipes for a more complete and detailed
documentation of how I/O is modeled in angr.

Copying and Merging
A state supports very fast copies, so that you can explore different possibilities:
>>> proj = angr.Project('/bin/true')

>>> s = proj.factory.blank_state()
>>> sl = s.copy()

>>> s1.mem[0x1000].uint32_t
>>> s2.mem[0x1000] .uint32_t

0x41414141

1
2
3
4 >>> s2 = s.copy()
5
6
7 Ox42424242

States can also be merged together.

1 # merge will return a tuple. the first element is the merged state

2 # the second element 1is a symbolic variable describing a state flag

the third element is a boolean describing whether any merging was done
>>> (s_merged, m, anything_merged) = sl.merge(s2)

this is now an expression that can resolve to "AAAA" x*orx "BBBB"
>>> aaaa_or_bbbb = s_merged.mem[0x1000].uint32_t

TODO: describe limitations of merging

Simulation Managers

The most important control interface in angr is the SimulationManager, which allows you to control symbolic
execution over groups of states simultaneously, applying search strategies to explore a program'’s state
space. Here, you'll learn how to use it.

Simulation managers let you wrangle multiple states in a slick way. States are organized into “stashes”,
which you can step forward, filter, merge, and move around as you wish. This allows you to, for example,
step two different stashes of states at different rates, then merge them together. The default stash for most
operations is the active stash, which is where your states get put when you initialize a new simulation
manager.

Stepping
The most basic capability of a simulation manager is to step forward all states in a given stash by one basic

block. You do this with .step() .

>>> dmport angr
>>> proj = angr.Project('examples/fauxware/fauxware', auto_load_libs=False)
>>> state = proj.factory.entry_state()

>>> simgr = proj.factory.simgr(state)
>>> simgr.active
[<SimState @ 0x400580>]

>>> simgr.step()

O© 00 N o O A W N

>>> simgr.active
[<SimState @ Ox400540>]

=
o

Of course, the real power of the stash model is that when a state encounters a symbolic branch condition,
both of the successor states appear in the stash, and you can step both of them in sync. When you don't
really care about controlling analysis very carefully and you just want to step until there's nothing left to step,
you can just use the .run() method.

Step until the first symbolic branch
>>> while len(simgr.active) == 1:

simgr.step()

>>> simgr
<SimulationManager with 2 active>

>>> simgr.active

8 [<SimState @ Ox400692>, <SimState @ 0x400699>]
9

10 # Step until everything terminates

11 >>> simgr.run()

12 >>> simgr

13 <SimulationManager with 3 deadended>

We now have 3 deadended states! When a state fails to produce any successors during execution, for
example, because it reached an exit syscall, itis removed from the active stash and placed in the
deadended stash.

Stash Management
Let's see how to work with other stashes.

To move states between stashes, use .move () ,whichtakes from_stash, to_stash,and
filter_func (optional, defaultis to move everything). For example, let's move everything that has a
certain string in its output:

1 >>> simgr.move(from_stash='deadended', to_stash='authenticated', filter_func=lambda s: b'W
2 >>> simgr
3 <SimulationManager with 2 authenticated, 1 deadended>

We were able to just create a new stash named "authenticated" just by asking for states to be moved to it. All
the states in this stash have "Welcome" in their stdout, which is a fine metric for now.

Each stash is just a list, and you can index into or iterate over the list to access each of the individual states,
but there are some alternate methods to access the states too. If you prepend the name of a stash with
one_ , you will be given the first state in the stash. If you prepend the name of a stash with mp_ , you will
be given a mulpyplexed version of the stash.

>>> for s in simgr.deadended + simgr.authenticated:
print(hex(s.addr))

0x1000030

0x1000078

0x1000078

>>> simgr.one_deadended

<SimState @ Ox1000030>

>>> simgr.mp_authenticated

MP([<SimState @ Ox1000078>, <SimState @ 0x1000078>])

>>> simgr.mp_authenticated.posix.dumps(0)

MP (['\x00\x00\x00\x00\x00\x00\x00\x00\x00SOSNEAKY\x00",
"\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x80\x80\x80\x80@\x80@\x00"'])

O© 0 N oo 00 A W N B

e =
w N R o

Of course, step, run,and any other method that operates on a single stash of paths can take a stash
argument, specifying which stash to operate on.

https://github.com/zardus/mulpyplexer

There are lots of fun tools that the simulation manager provides you for managing your stashes. We won't go
into the rest of them for now, but you should check out the API documentation. TODO: link

Stash types

You can use stashes for whatever you like, but there are a few stashes that will be used to categorize some
special kinds of states. These are:

Stash Description

This stash contains the states that will be stepped

active . .
by default, unless an alternate stash is specified.

A state goes to the deadended stash when it
cannot continue the execution for some reason,

deadended including no more valid instructions, unsat state o
all of its successors, or an invalid instruction
pointer.

When using LAZY_SOLVES, states are not
checked for satisfiability unless absolutely
necessary. When a state is found to be unsatin th
presence of LAZY_SOLVES , the state hierarchy

pruned traversed to identify when, in its history, it initially
became unsat. All states that are descendants of
that point (which will also be unsat, since a state
cannot become un-unsat) are pruned and putin
this stash.

Ifthe save_unconstrained optionis provide
to the SimulationManager constructor, states that
unconstrained are determined to be unconstrained (i.e., with the
instruction pointer controlled by user data or some
other source of symbolic data) are placed here.

Ifthe save_unsat optionis provided to the
SimulationManager constructor, states that are
determined to be unsatisfiable (i.e., they have
constraints that are contradictory, like the input
having to be both "AAAA" and "BBBB" at the sarr
time) are placed here.

unsat

There is another list of states that is not a stash: errored . If, during execution, an error is raised, then the
state will be wrapped in an ErrorRecord object, which contains the state and the error it raised, and then
the record will be inserted into errored . You can get at the state as it was at the beginning of the
execution tick that caused the error with record.state , you can see the error that was raised with

record.error ,andyou can launch a debug shell at the site of the error with record.debug() . This
is an invaluable debugging tool!

Simple Exploration

An extremely common operation in symbolic execution is to find a state that reaches a certain address,
while discarding all states that go through another address. Simulation manager has a shortcut for this
pattern, the .explore() method.

When launching .explore() witha find argument, execution will run until a state is found that
matches the find condition, which can be the address of an instruction to stop at, a list of addresses to stop
at, or a function which takes a state and returns whether it meets some criteria. When any of the states in the
active stash match the find condition, they are placed in the found stash, and execution terminates.
You can then explore the found state, or decide to discard it and continue with the other ones. You can also
specify an avoid condition in the same formatas find .When a state matches the avoid condition, itis
putinthe avoided stash, and execution continues. Finally, the num_f-ind argument controls the number
of states that should be found before returning, with a default of 1. Of course, if you run out of states in the
active stash before finding this many solutions, execution will stop anyway.

Let's look at a simple crackme example:

First, we load the binary.

1 >>> proj = angr.Project('examples/CSCI-4968-MBE/challenges/crackmedx00a/crackmedx00a')

Next, we create a SimulationManager.

1 >>> simgr = proj.factory.simgr()

Now, we symbolically execute until we find a state that matches our condition (i.e., the "win" condition).

1 >>> simgr.explore(find=lambda s: b"Congrats" in s.posix.dumps(1l))

2 <SimulationManager with 1 active, 1 found>

Now, we can get the flag out of that state!

>>> s = simgr.found[0]
>>> print(s.posix.dumps(1))
Enter password: Congrats!

>>> flag = s.posix.dumps(0)

>>> print(flag)
g00dJeB!

Pretty simple, isn'tit?

Other examples can be found by browsing the examples.

Exploration Techniques

angr ships with several pieces of canned functionality that let you customize the behavior of a simulation
manager, called exploration techniques. The archetypical example of why you would want an exploration
technique is to modify the pattern in which the state space of the program is explored - the default "step
everything at once" strategy is effectively breadth-first search, but with an exploration technique you could
implement, for example, depth-first search. However, the instrumentation power of these techniques is much
more flexible than that - you can totally alter the behavior of angr's stepping process. Writing your own
exploration techniques will be covered in a later chapter.

To use an exploration technique, call simgr.use_technique(tech) , where tech is an instance of an
ExplorationTechnique subclass. angr's built-in exploration techniques can be found under

angr.exploration_techniques.

Here's a quick overview of some of the built-in ones:

e DFS: Depth first search, as mentioned earlier. Keeps only one state active at once, putting the restin the
deferred stash until it deadends or errors.

e Explorer: This technique implements the .explore() functionality, allowing you to search for and
avoid addresses.

e [engthLimiter: Puts a cap on the maximum length of the path a state goes through.

e [oopSeer: Uses a reasonable approximation of loop counting to discard states that appear to be going
through a loop too many times, putting themin a spinning stash and pulling them out again if we run
out of otherwise viable states.

e ManualMergepoint. Marks an address in the program as a merge point, so states that reach that address
will be briefly held, and any other states that reach that same point within a timeout will be merged
together.

e MemoryWatcher: Monitors how much memory is free/available on the system between simgr steps and
stops exploration if it gets too low.

e Oppologist. The "operation apologist" is an especially fun gadget - if this technique is enabled and angr
encounters an unsupported instruction, for example a bizzare and foreign floating point SIMD op, it will
concretize all the inputs to that instruction and emulate the single instruction using the unicorn engine,
allowing execution to continue.

e Spiller: When there are too many states active, this technique can dump some of them to disk in order to
keep memory consumption low.

e Threading: Adds thread-level parallelism to the stepping process. This doesn't help much because of
python's global interpreter locks, but if you have a program whose analysis spends a lot of time in angr's
native-code dependencies (unicorn, z3, libvex) you can seem some gains.

e Tracer: An exploration technique that causes execution to follow a dynamic trace recorded from some
other source. The dynamic tracer repository has some tools to generate those traces.

e \Veritesting: An implementation of a CMU paper on automatically identifying useful merge points. This is

so useful, you can enable it automatically with veritesting=True inthe SimulationManager
constructor! Note that it frequenly doesn't play nice with other techniques due to the invasive way it

https://github.com/angr/tracer
https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinos%20et%20al._2014_Enhancing%20Symbolic%20Execution%20with%20Veritesting.pdf

implements static symbolic execution.

Look at the APl documentation for the simulation manager and exploration techniques for more information.

Execution Engines

When you ask for a step of execution to happen in angr, something has to actually perform the step. angr
uses a series of engines (subclasses of the SimEngine class) to emulate the effects that of a given
section of code has on an input state. The execution core of angr simply tries all the available engines in
sequence, taking the first one that is able to handle the step. The following is the default list of engines, in
order:

e The failure engine kicks in when the previous step took us to some uncontinuable state

The syscall engine kicks in when the previous step ended in a syscall

The hook engine kicks in when the current address is hooked

® The unicorn engine kicks in when the UNICORN state option is enabled and there is no symbolic data
in the state

The VEX engine kicks in as the final fallback.

SimSuccessors

The code that actually tries all the engines inturnis project.factory.successors(state,
*xkwargs) , which passes its arguments onto each of the engines. This function is at the heart of
state.step() and simulation_manager.step() .ltreturns a SimSuccessors object, which we
discussed briefly before. The purpose of SimSuccessors is to perform a simple categorization of the
successor states, stored in various list attributes. They are:

Attribute Guard Condition Instruction Pointer Description

A normal, satisfiable
successor state to the
state processed by th
engine. The instructic
pointer of this state

Can be symbolic (but o
may be symbolic (i.e.

True (can be symbolic, 256 solutions or less;)
. a computed jump
successors but constrained to see _
n based on user input),
True) unconstrained_su

so the state might
actually represent
several potential
continuations of

ccessors).

http://angr.io/api-doc/angr.html#module-angr.manager
http://angr.io/api-doc/angr.html#angr.exploration_techniques.ExplorationTechnique

unsat_successor

S

flat_successors

False (can be
symbolic, but
constrained to False).

True (can be symbolic,
but constrained to
True).

Can be symbolic.

Concrete value.

e m At

Unsatisfiable
successors. These at
successors whose
guard conditions can
only be false (i.e.,
jumps that cannot be
taken, or the default
branch of jumps that
must be taken).

As noted above, state
inthe successors
list can have symboli
instruction pointers.
This is rather
confusing, as
elsewhere in the codt
(i.e.,in
SimEngineVEX. pr
cess ,whenit's time
step that state forwarc
we make assumption
that a single program
state only represents
the execution of a
single spotin the cod
To alleviate this, whel
we encounter states i
successors with
symbolic instruction
pointers, we compute
all possible concrete
solutions (up to an
arbitrary threshold of
256) for them, and
make a copy of the
state for each such
solution. We call this
process "flattening".
These
flat_successors
are states, each of
which has a different,
concrete instruction
pointer. For example,
the instruction pointel
of a state in
successors was

True (can be symbolic,

unconstrained_su .
but constrained to

CCRSSOrs
True).

all_successors Anything

Breakpoints

TODO: rewrite this to fix the narrative

Symbolic (with more
than 256 solutions).

Can be symbolic.

X+5 ,where X had
constraints of X >
Ox800000 and X <
Ox800010 , we woul
flatten itinto 16
different
flat_successors
states, one with an
instruction pointer of
Ox800006 , one witl
Ox800007 ,and so
on until O©x800015 .

During the flattening
procedure described
above, if it turns out
that there are more
than 256 possible
solutions for the
instruction pointer, we
assume that the
instruction pointer ha:
been overwritten with
unconstrained data
(i.e., a stack overflow
with user data). This
assumption is not
sound in general. Su
states are placed in
unconstrained_s
ccessors and noti

sSuccessors.

Thisis successors

"
unsat_successor
"

unconstrained_s

CEESISOIIES) .

Like any decent execution engine, angr supports breakpoints. This is pretty cool! A point is set as follows:

>>> dmport angr

>>> b = angr.Project('examples/fauxware/fauxware')

get our state
>>> s = b.factory.entry_state()

add a breakpoint. This breakpoint will drop into ipdb right before a memory write happen:
>>> s.inspect.b('mem_write'")

O© 00 N o O A W N

=
o

on the other hand, we can have a breakpoint trigger right xafterx a memory write happens

=
=

we can also have a callback function run instead of opening -ipdb.
>>> def debug_func(state):

print("State %s is about to do a memory write!")

[I O
o N W N

>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=debug_func)

[
~N o

or, you can have it drop you in an embedded IPython!
>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=angr.BP_IPYTHON)

=
(08}

There are many other places to break than a memory write. Here is the list. You can break at BP_BEFORE
or BP_AFTER for each of these events.

Event type Eve