
angr Documentation

README

angr is a multi-architecture binary analysis toolkit, with the capability to perform dynamic symbolic execution 
(like Mayhem, KLEE, etc.) and various static analyses on binaries. If you'd like to learn how to use it, you're 
in the right place!

We've tried to make using angr as pain-free as possible - our goal is to create a user-friendly binary analysis 
suite, allowing a user to simply start up iPython and easily perform intensive binary analyses with a couple 
of commands. That being said, binary analysis is complex, which makes angr complex. This documentation 
is an attempt to help out with that, providing narrative explanation and exploration of angr and its design.

Several challenges must be overcome to programmatically analyze a binary. They are, roughly:

Loading a binary into the analysis program.

Translating a binary into an intermediate representation (IR).

Performing the actual analysis. This could be:

A partial or full-program static analysis (i.e., dependency analysis, program slicing).

A symbolic exploration of the program's state space (i.e., "Can we execute it until we find an 
overflow?").

Some combination of the above (i.e., "Let's execute only program slices that lead to a memory write, 
to find an overflow.")

angr has components that meet all of these challenges. This book will explain how each one works, and 
how they can all be used to accomplish your evil goals.

Get Started

Installation instructions can be found .here

To dive right into angr's capabilities, start with the  and read forward from there.top level methods

A searchable HTML version of this documentation is hosted at , and an HTML API reference 
can be found at .

docs.angr.io
angr.io/api-doc

If you enjoy playing CTFs and would like to learn angr in a similar fashion,  will be a fun way for you 
to get familiar with much of the symbolic execution capability of angr.  is maintained by 

.

angr_ctf
The angr_ctf repo

@jakespringer

Citing angr

https://docs.angr.io/
https://angr.io/api-doc/
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer


If you use angr in an academic work, please cite the papers for which it was developed:

@article{shoshitaishvili2016state,1
  title={SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis},2
  author={Shoshitaishvili, Yan and Wang, Ruoyu and Salls, Christopher and Stephens, Nick an3
  booktitle={IEEE Symposium on Security and Privacy},4
  year={2016}5
}6

7
@article{stephens2016driller,8
  title={Driller: Augmenting Fuzzing Through Selective Symbolic Execution},9
  author={Stephens, Nick and Grosen, John and Salls, Christopher and Dutcher, Audrey and Wa10
  booktitle={NDSS},11
  year={2016}12
}13

14
@article{shoshitaishvili2015firmalice,15
  title={Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary16
  author={Shoshitaishvili, Yan and Wang, Ruoyu and Hauser, Christophe and Kruegel, Christop17
  booktitle={NDSS},18
  year={2015}19
}20

Support

To get help with angr, you can ask via:

the slack channel: , for which you can get an account .angr.slack.com here

opening an issue on the appropriate github repository

the mailing list: angr@lists.cs.ucsb.edu

Going further:

You can read this , explaining some of the internals, algorithms, and used techniques to get a better 
understanding on what's going on under the hood.

paper

Introductory Errata

Installing

https://angr.slack.com/
https://angr.io/invite/
https://www.cs.ucsb.edu/~vigna/publications/2016_SP_angrSoK.pdf


Installing angr

angr is a python library, so it must be installed into your python environment before it can be used. It is built 
for Python 3: Python 2 support is not feasible due to the looming EOL and the small size of our team.

We highly recommend using a  to install and use angr. Several of angr's 
dependencies (z3, pyvex) require libraries of native code that are forked from their originals, and if you 
already have libz3 or libVEX installed, you definitely don't want to overwrite the official shared objects with 
ours. In general, don't expect support for problems arising from installing angr outside of a virtualenv.

python virtual environment

Dependencies

All of the python dependencies should be handled by pip and/or the setup.py scripts. You will, however, 
need to build some C to get from here to the end, so you'll need a good build environment as well as the 
python development headers. At some point in the dependency install process, you'll install the python 
library cffi, but (on linux, at least) it won't run unless you install your operating system's libffi package.

On Ubuntu, you will want: sudo apt-get install python3-dev libffi-dev build-
essential virtualenvwrapper . If you are trying out angr Management, you will also need the 

.PySide 2 requirements

Most Operating systems, all *nix systems

mkvirtualenv --python=$(which python3) angr && pip install angr  should usually 
be sufficient to install angr in most cases, since angr is published on the Python Package Index.

Fish (shell) users can either use  or the  package: vf new angr && vf activate 
angr && pip install angr

virtualfish virtualenv

Failing that, you can install angr by installing the following repositories, in order, from 
:https://github.com/angr

archinfo

pyvex

claripy

cle

angr

Mac OS X

pip install angr  should work, but there are some caveats.

angr requires the unicorn  library, which (as of this writing) pip  must build from source on macOS, even 

though binary distributions ("wheels") exist on other platforms. Building unicorn  from source requires 

Python 2, so will fail inside a virtualenv where python  gets you Python 3. If you encounter errors with pip
install angr , you may need to first install unicorn  separately, pointing it to your Python 2:

https://virtualenvwrapper.readthedocs.org/en/latest/
https://wiki.qt.io/Qt_for_Python/GettingStarted
https://github.com/adambrenecki/virtualfish
https://pypi.python.org/pypi/virtualenv
https://github.com/angr
https://github.com/angr/archinfo
https://github.com/angr/pyvex
https://github.com/angr/claripy
https://github.com/angr/cle
https://github.com/angr/angr


UNICORN_QEMU_FLAGS="--python=/path/to/python2" pip install unicorn  # Python 2 is probably 1

Then retry pip install angr .

If this still doesn't work and you run into a broken build script with Clang, try using GCC.

brew install gcc1
CC=/usr/local/bin/gcc-8 UNICORN_QEMU_FLAGS="--python=/path/to/python2" pip install unicorn 2
pip install angr3

After installing angr, you will need to fix some shared library paths for the angr native libraries. Activate your 
virtual env and execute the following lines.  is provided in the angr-dev repo.A script

PYVEX=`python3 -c 'import pyvex; print(pyvex.__path__[0])'`1
UNICORN=`python3 -c 'import unicorn; print(unicorn.__path__[0])'`2
ANGR=`python3 -c 'import angr; print(angr.__path__[0])'`3

4
install_name_tool -change libunicorn.1.dylib "$UNICORN"/lib/libunicorn.dylib "$ANGR"/lib/an5
install_name_tool -change libpyvex.dylib "$PYVEX"/lib/libpyvex.dylib "$ANGR"/lib/angr_nativ6

Windows

As usual, a virtualenv is very strongly recommended. You can use either the  or  
packages for this.

virtualenv-win virtualenv

angr can be installed from pip on Windows, same as above: pip install angr . You should not be 
required to build any C code with this setup, since wheels (binary distributions) should be automatically 
pulled down for angr and its dependencies.

Nix/NixOS

angr is available via the  package manager and on , using the .Nix NixOS Nix User Repository

First, make NUR available to your user:

cat << __EOF__ > ~/.config/nixpkgs/config.nix1
{2
  packageOverrides = pkgs: {3
    nur = import (builtins.fetchTarball "https://github.com/nix-community/NUR/archive/maste4
      inherit pkgs;5
    };6
  };7
}8
__EOF__9

Then, to obtain a nix-shell with the angr  Python package:

https://github.com/angr/angr-dev/blob/master/fix_macOS.sh
https://pypi.org/project/virtualenvwrapper-win/
https://pypi.python.org/pypi/virtualenv
https://nixos.org/nix/
https://nixos.org/nixos/
https://github.com/nix-community/NUR


nix-shell -p 'python3.withPackages(ps: with ps; [ nur.repos.angr.python3Packages.angr ])'1

More information on .angr/nixpkgs

Development install

There is a special repository angr-dev  with scripts to make life easier for angr developers. You can set up
angr in development mode by running:

git clone https://github.com/angr/angr-dev1
cd angr-dev2
./setup.sh -i -e angr3

This creates a virtualenv ( -e angr ), checks for any dependencies you might need ( -i ), clones all of the 

repositories and installs them in editable mode. setup.sh  can even create a PyPy virtualenv for you 

(replace -e  with -p ), resulting in significantly faster performance and lower memory usage.

You can branch/edit/recompile the various modules in-place, and it will automatically reflect in your virtual 
environment.

Development install on windows

The angr-dev repository has a setup.bat script that creates the same setup as above, though it's not as 
magical as setup.sh. Since we'll be building C code, you must be in the visual studio developer command 
prompt. Make sure that if you're using a 64-bit python interpreter, you're also using the 64-bit build tools 

( VsDevCmd.bat -arch=x64 )

pip install virtualenv1
git clone https://github.com/angr/angr-dev2
cd angr-dev3
virtualenv -p "C:\Path\To\python3\python.exe" env4
env\Scripts\activate5
setup.bat6

You may also substitute the use of virtualenv  above with the virtualenvwrapper-win  package 
for a more streamlined experience.

Docker install

For convenience, we ship a Docker image that is 99% guaranteed to work. You can install via docker by 
doing:

# install docker1
curl -sSL https://get.docker.com/ | sudo sh2

3

https://github.com/angr/nixpkgs


# pull the docker image4
sudo docker pull angr/angr5

6
# run it7
sudo docker run -it angr/angr8

Synchronization of files in and out of docker is left as an exercise to the user (hint: check out docker run 
-v ).

Modifying the angr container

You might find yourself needing to install additional packages via apt. The vanilla version of the container 
does not have the sudo package installed, which means the default user in the container cannot escalate 
privilege to install additional packages.

To over come this hurdle, use the following docker command to grant yourself root access:

# assuming the docker container is running 1
# with the name "angr" and the instance is2
# running in the background.3
docker exec -ti -u root angr bash4

Troubleshooting

libgomp.so.1: version GOMP_4.0 not found, or other z3 issues

This specific error represents an incompatibility between the pre-compiled version of libz3.so and the 

installed version of libgomp . A Z3 recompile is required. You can do this by executing:

pip install -I --no-binary z3-solver z3-solver1

No such file or directory: 'pyvex_c'

Are you running Ubuntu 12.04? If so, please stop using a 6 year old operating system! Upgrading is free!

You can also try upgrading pip ( python -m pip install -U pip ), which might solve the issue.

AttributeError: 'FFI' object has no attribute 'unpack'

You have an outdated version of the cffi  Python module. angr now requires at least version 1.7 of cffi. Try 

pip install --upgrade cffi . If the problem persists, make sure your operating system hasn't pre-
installed an old version of cffi, which pip may refuse to uninstall. If you're using a Python virtual environment 
with the pypy interpreter, ensure you have a recent version of pypy, as it includes a version of cffi which pip 
will not upgrade.



angr has no attribute Project, or similar

If you can import angr but it doesn't seem to be the actual angr module... did you accidentally name your 

script angr.py ? You can't do that. Python does not work that way.

AttributeError: 'module' object has no attribute 'KS_ARCH_X86'

You have the keystone  package installed, which conflicts with the keystone-engine  package (an 

optional dependency of angr). Please uninstall keystone . If you would like to install keystone-
engine , please do it with pip install --no-binary keystone-engine keystone-engine , 
as the current pip distribution is broken.

No such file or directory: 'libunicorn.dylib'

(alternate error message: Cannot use 'python', Python 2.4 or later is required. 
Note that Python 3 or later is not yet supported. )

You need to define the UNICORN_QEMU_FLAGS  environment variable for pip . See the section above on 
installing for macOS.

pthread check failed: Make sure to have the pthread libs and headers installed.

(macOS) Try using GCC instead of Clang; see the section above on installing for macOS.

How to Contribute

Reporting Bugs

If you've found something that angr isn't able to solve and appears to be a bug, please let us know!

1. Create a fork off of angr/binaries and angr/angr

2. Give us a pull request with angr/binaries, with the binaries in question

3. Give us a pull request for angr/angr, with testcases that trigger the binaries in 

angr/tests/broken_x.py , angr/tests/broken_y.py , etc

Please try to follow the testcase format that we have (so the code is in a test_blah function), that way we can 
very easily merge that and make the scripts run.
An example is:

def test_some_broken_feature():1
    p = angr.Project("some_binary")2
    result = p.analyses.SomethingThatDoesNotWork()3
    assert result == "what it should *actually* be if it worked"4

5
if __name__ == '__main__':6



test some broken feature()7

This will greatly help us recreate your bug and fix it faster.
The ideal situation is that, when the bug is fixed, your testcases passes (i.e., the assert at the end does not 
raise an AssertionError).

Then, we can just fix the bug and rename broken_x.py  to test_x.py  and the testcase will run in our 
internal CI at every push, ensuring that we do not break this feature again.

Developing angr

These are some guidelines so that we can keep the codebase in good shape!

Coding style

We try to get as close as the  as is reasonable without being dumb. If you use Vim, 
the  plugin does all you need. You can also  vim to adopt this behavior.

PEP8 code convention
python-mode manually configure

Most importantly, please consider the following when writing code as part of angr:

Try to use attribute access (see the @property  decorator) instead of getters and setters wherever you 
can. This isn't Java, and attributes enable tab completion in iPython. That being said, be reasonable: 
attributes should be fast. A rule of thumb is that if something could require a constraint solve, it should 
not be an attribute.

Use . It's fairly permissive, but our CI server will fail your builds 
if pylint complains under those settings.

our .pylintrc  from the angr-dev repo

DO NOT, under ANY circumstances, raise Exception  or assert False . Use the right 
exception type. If there isn't a correct exception type, subclass the core exception of the module that 

you're working in (i.e., AngrError  in angr, SimError  in SimuVEX, etc) and raise that. We catch, 

and properly handle, the right types of errors in the right places, but AssertionError  and 

Exception  are not handled anywhere and force-terminate analyses.

Avoid tabs; use space indentation instead. Even though it's wrong, the de facto standard is 4 spaces. It 
is a good idea to adopt this from the beginning, as merging code that mixes both tab and space 
indentation is awful.

Avoid super long lines. It's okay to have longer lines, but keep in mind that long lines are harder to read 
and should be avoided. Let's try to stick to 120 characters.

Avoid extremely long functions, it is often better to break them up into smaller functions.

Always use _  instead of __  for private members (so that we can access them when debugging). You 
might not think that anyone has a need to call a given function, but trust us, you're wrong.

Documentation

Document your code. Every class definition and public function definition should have some description of:

What it does.

http://legacy.python.org/dev/peps/pep-0008/
https://github.com/klen/python-mode
https://wiki.python.org/moin/Vim
https://github.com/angr/angr-dev/blob/master/pylintrc


What are the type and the meaning of the parameters.

What it returns.

Class docstrings will be enforced by our linter. Do not under any circumstances write a docstring which 
doesn't provide more information than the name of the class. What you should try to write is a description of 
the environment that the class should be used in. If the class should not be instantiated by end-users, write a 
description of where it will be generated and how instances can be acquired. If the class should be 
instanciated by end-users, explain what kind of object it represents at its core, what behavior is expected of 
its parameters, and how to safely manage objects of its type.

We use  to generate the API documentation. Sphinx supports docstrings written in  
with special  to document function and class parameters, return values, return types, members, etc.

Sphinx ReStructured Text
keywords

Here is an example of function documentation. Ideally the parameter descriptions should be aligned 
vertically to make the docstrings as readable as possible.

def prune(self, filter_func=None, from_stash=None, to_stash=None):1
    """2
    Prune unsatisfiable paths from a stash.3

4
    :param filter_func: Only prune paths that match this filter.5
    :param from_stash:  Prune paths from this stash. (default: 'active')6
    :param to_stash:    Put pruned paths in this stash. (default: 'pruned')7
    :returns:           The resulting PathGroup.8
    :rtype:             PathGroup9
    """10

This format has the advantage that the function parameters are clearly identified in the generated 
documentation. However, it can make the documentation repetitive, in some cases a textual description can 
be more readable. Pick the format you feel is more appropriate for the functions or classes you are 
documenting.

 def read_bytes(self, addr, n):1
    """2
    Read `n` bytes at address `addr` in memory and return an array of bytes.3

    """4

Unit tests

If you're pushing a new feature and it is not accompanied by a test case it will be broken in very short order. 
Please write test cases for your stuff.

We have an internal CI server to run tests to check functionality and regression on each commit. In order to 
have our server run your tests, write your tests in a format acceptable to  in a file matching 

test_*.py  in the tests  folder of the appropriate repository. A test file can contain any number of 

functions of the form def test_*():  or classes of the form class Test*
(unittest.TestCase): . Each of them will be run as a test, and if they raise any exceptions or 

assertions, the test fails. Do not use the nose.tools.assert_*  functions, as we are presently trying to 

nosetests

http://www.sphinx-doc.org/en/stable/
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html#auto-document-your-python-code
http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists
https://nose.readthedocs.org/en/latest/


migrate to nose2 . Use assert  statements with descriptive messages or the unittest.TestCase  
assert methods.

Look at the existing tests for examples. Many of them use an alternate format where the test_*  function is 
actually a generator that yields tuples of functions to call and their arguments, for easy parametrization of 
tests.

Finally, do not add docstrings to your test functions.

What to Contribute

angr is a huge project, and it's hard to keep up. Here, we list some big TODO items that we would love 
community contributions for in the hope that it can direct community involvement. They (will) have a wide 
range of complexity, and there should be something for all skill levels!

We tag issues on our github repositories that would be good for community involvement as "Help wanted". 
To see the exhaustive list of these, use this github search!

Documentation

There are many parts of angr that suffer from little or no documentation. We desperately need community 
help in this area.

API

We are always behind on documentation. We've created several tracking issues on github to understand 
what's still missing:

1. angr

2. claripy

3. cle

4. pyvex

GitBook

This book is missing some core areas. Specifically, the following could be improved:

1. Finish some of the TODOs floating around the book.

2. Organize the Examples page in some way that makes sense. Right now, most of the examples are very 
redundant. It might be cool to have a simple table of most of them so that the page is not so 
overwhelming.

angr course

https://github.com/search?utf8=%E2%9C%93&q=user%3Aangr+label%3A%22help+wanted%22+state%3Aopen&type=Issues&ref=advsearch&l=&l=
https://github.com/angr/angr/issues/145
https://github.com/angr/claripy/issues/17
https://github.com/angr/cle/issues/29
https://github.com/angr/pyvex/issues/34


Developing a "course" of sorts to get people started with angr would be really beneficial. Steps have already 
been made in this direction , but more expansion would be beneficial.here

Ideally, the course would have a hands-on component, of increasing difficulty, that would require people to 
use more and more of angr's capabilities.

Research re-implementation

Unfortunately, not everyone bases their research on angr ;-). Until that's remedied, we'll need to periodically 
implement related work, on top of angr, to make it reusable within the scope of the framework. This section 
lists some of this related work that's ripe for reimplementation in angr.

Redundant State Detection for Dynamic Symbolic Execution

Bugrara, et al. describe a method to identify and trim redundant states, increasing the speed of symbolic 
execution by up to 50 times and coverage by 4%. This would be great to have in angr, as an 
ExplorationTechnique. The paper is here: http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-
bugrara.pdf

In-Vivo Multi-Path Analysis of Software Systems

Rather than developing symbolic summaries for every system call, we can use a technique proposed by 
 for concretizing necessary data and dispatching them to the OS itself. This would make angr applicable 

to a much larger set of binaries than it can currently analyze.
S2E

While this would be most useful for system calls, once it is implemented, it could be trivially applied to any 
location of code (i.e., library functions). By carefully choosing which library functions are handled like this, 
we can greatly increase angr's scalability.

Development

We have several projects in mind that primarily require development effort.

angr-management

The angr GUI,  needs a lot of work. Here is a non-exhaustive list of what is currently 
missing in angr-management:

angr-management

A navigator toolbar showing content in a program’s memory space, just like IDA Pro’s navigator toolbar.

A text-based disassembly view of the program.

Better view showing details in program states during path exploration, including modifiable register 
view, memory view, file descriptor view, etc.

A GUI for cross referencing.

https://github.com/angr/angr-doc/pull/74
http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-bugrara.pdf
http://dslab.epfl.ch/pubs/s2e.pdf
https://github.com/angr/angr-management


Exposing angr's capabilities in a usable way, graphically, would be really useful!

IDA Plugins

Much of angr's functionality could be exposed via IDA. For example, angr's data dependence graph could 
be exposed in IDA through annotations, or obfuscated values can be resolved using symbolic execution.

Additional architectures

More architecture support would make angr all the more useful. Supporting a new architecture with angr 
would involve:

1. Adding the architecture information to archinfo

2. Adding an IR translation. This may be either an extension to PyVEX, producing IRSBs, or another IR 
entirely.

3. If your IR is not VEX, add a SimEngine  to support it.

4. Adding a calling convention ( angr.SimCC ) to support SimProcedures (including system calls)

5. Adding or modifying an angr.SimOS  to support initialization activities.

6. Creating a CLE backend to load binaries, or extending the CLE ELF backend to know about the new 
architecture if the binary format is ELF.

ideas for new architectures:

PIC, AVR, other embedded architectures

SPARC (there is some preliminary libVEX support for SPARC )here

ideas for new IRs:

LLVM IR (with this, we can extend angr from just a Binary Analysis Framework to a Program Analysis 
Framework and expand its capabilities in other ways!)

SOOT (there is no reason that angr can't analyze Java code, although doing so would require some 
extensions to our memory model)

Environment support

We use the concept of "function summaries" in angr to model the environment of operating systems (i.e., the 
effects of their system calls) and library functions. Extending this would be greatly helpful in increasing 
angr's utility. These function summaries can be found .here

A specific subset of this is system calls. Even more than library function SimProcedures (without which angr 
can always execute the actual function), we have very few workarounds for missing system calls. Every 
implemented system call extends the set of binaries that angr can handle.

https://github.com/angr/archinfo
https://bitbucket.org/iraisr/valgrind-solaris
https://github.com/angr/angr/tree/master/angr/procedures


Design Problems
There are some outstanding design challenges regarding the integration of additional functionalities into 
angr.

Type annotation and type information usage

angr has fledgling support for types, in the sense that it can parse them out of header files. However, those 
types are not well exposed to do anything useful with. Improving this support would make it possible to, for 
example, annotate certain memory regions with certain type information and interact with them intelligently. 

Consider, for example, interacting with a linked list like this: print 
state.mem[state.regs.rax].llist.next.next.value .

(editor's note: you can actually already do this)

Research Challenges

Historically, angr has progressed in the course of research into novel areas of program analysis. Here, we 
list several self-contained research projects that can be tackled.

Semantic function identification/diffing

Current function diffing techniques (TODO: some examples) have drawbacks. For the CGC, we created a 
semantic-based binary identification engine ( ) that can identify functions 
based on testcases. There are two areas of improvement, each of which is its own research project:

https://github.com/angr/identifier

1. Currently, the testcases used by this component are human-generated. However, symbolic execution 
can be used to automatically generate testcases that can be used to recognize instances of a given 
function in other binaries.

2. By creating testcases that achieve a "high-enough" code coverage of a given function, we can detect 
changes in functionality by applying the set of testcases to another implementation of the same function 
and analyzing changes in code coverage. This can then be used as a sematic function diff.

Applying AFL's path selection criteria to symbolic execution

AFL does an excellent job in identifying "unique" paths during fuzzing by tracking the control flow transitions 
taken by every path. This same metric can be applied to symbolic exploration, and would probably do a 
depressingly good job, considering how simple it is.

Overarching Research Directions

There are areas of program analysis that are not well explored. We list general directions of research here, 
but readers should keep in mind that these directions likely describe potential undertakings of entire PhD 
dissertations.

https://github.com/angr/identifier


Process interactions

Almost all work in the field of binary analysis deals with single binaries, but this is often unrealistic in the real
world. For example, the type of input that can be passed to a CGI program depend on pre-processing by a 
web server. Currently, there is no way to support the analysis of multiple concurrent processes in angr, and 
many open questions in the field (i.e., how to model concurrent actions).

Intra-process concurrency

Similar to the modeling of interactions between processes, little work has been done in understanding the 
interaction of concurrent threads in the same process. Currently, angr has no way to reason about this, and it 
is unclear from the theoretical perspective how to approach this.

A subset of this problem is the analysis of signal handlers (or hardware interrupts). Each signal handler can 
be modeled as a thread that can be executed at any time that a signal can be triggered. Understanding 
when it is meaningful to analyze these handlers is an open problem. One system that does reason about the 
effect of interrupts is .FIE

Path explosion

Many approaches (such as ) attempt to mitigate the path explosion problem in symbolic 
execution. However, despite these efforts, path explosion is still the main problem preventing symbolic 
execution from being mainstream.

Veritesting

angr provides an excellent base to implement new techniques to control path explosion. Most approaches 
can be easily implemented as  and quickly evaluated (for example, on the 

).
Exploration Techniques CGC 

dataset

Frequently Asked Questions

This is a collection of commonly-asked "how do I do X?" questions and other general questions about angr, 
for those too lazy to read this whole document.

If your question is of the form "how do I fix X issue", see also the Troubleshooting section of the 
.

install 
instructions

Why is it named angr?

The core of angr's analysis is on VEX IR, and when something is vexing, it makes you angry.

How should "angr" be stylized?

http://pages.cs.wisc.edu/~davidson/fie/
https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinos%20et%20al._2014_Enhancing%20Symbolic%20Execution%20with%20Veritesting.pdf
http://angr.io/api-doc/angr.html#angr.exploration_techniques.ExplorationTechnique
https://github.com/CyberGrandChallenge/samples


All lowercase, even at the beginning of sentences. It's an anti-proper noun.

How can I get diagnostic information about what angr is doing?

angr uses the standard logging  module for logging, with every package and submodule creating a new 
logger.

The simplest way to get debug output is the following:

import logging1
logging.getLogger('angr').setLevel('DEBUG')2

You may want to use INFO  or whatever else instead. By default, angr will enable logging at the WARNING  
level.

Each angr module has its own logger string, usually all the python modules above it in the hierarchy, plus 

itself, joined with dots. For example, angr.analyses.cfg . Because of the way the python logging 
module works, you can set the verbosity for all submodules in a module by setting a verbosity level for the 

parent module. For example, logging.getLogger('angr.analyses').setLevel('INFO')  will 
make the CFG, as well as all other analyses, log at the INFO level.

Why is angr so slow?

It's complicated!

How do I find bugs using angr?

It's complicated! The easiest way to do this is to define a "bug condition", for example, "the instruction 
pointer has become a symbolic variable", and run symbolic exploration until you find a state matching that 
condition, then dump the input as a testcase. However, you will quickly run into the state explosion problem. 

How you address this is up to you. Your solution may be as simple as adding an avoid  condition or as 
complicated as implementing CMU's MAYHEM system as an .Exploration Technique

Why did you choose VEX instead of another IR (such as LLVM, 
REIL, BAP, etc)?

We had two design goals in angr that influenced this choice:

1. angr needed to be able to analyze binaries from multiple architectures. This mandated the use of an IR 

https://github.com/angr/angr-doc/blob/master/docs/otiegnqwvk.md


to preserve our sanity, and required the IR to support many architectures.
2. We wanted to implement a binary analysis engine, not a binary lifter. Many projects start and end with 

the implementation of a lifter, which is a time consuming process. We needed to take something that 
existed and already supported the lifting of multiple architectures.

Searching around the internet, the major choices were:

LLVM is an obvious first candidate, but lifting binary code to LLVM cleanly is a pain. The two solutions 
are either lifting to LLVM through QEMU, which is hackish (and the only implementation of it seems very 
tightly integrated into S2E), or McSema, which only supported x86 at the time but has since gone 
through a rewrite and gotten support for x86-64 and aarch64.

TCG is QEMU's IR, but extracting it seems very daunting as well and documentation is very scarce.

REIL seems promising, but there is no standard reference implementation that supports all the 
architectures that we wanted. It seems like a nice academic work, but to use it, we would have to 
implement our own lifters, which we wanted to avoid.

BAP was another possibility. When we started work on angr, BAP only supported lifting x86 code, and 
up-to-date versions of BAP were only available to academic collaborators of the BAP authors. These 
were two deal-breakers. BAP has since become open, but it still only supports x86_64, x86, and ARM.

VEX was the only choice that offered an open library and support for many architectures. As a bonus, it 
is very well documented and designed specifically for program analysis, making it very easy to use in 
angr.

While angr uses VEX now, there's no fundamental reason that multiple IRs cannot be used. There are two 

parts of angr, outside of the angr.engines.vex  package, that are VEX-specific:

the jump labels (i.e., the Ijk_Ret  for returns, Ijk_Call  for calls, and so forth) are VEX enums.

VEX treats registers as a memory space, and so does angr. While we provide accesses to 

state.regs.rax  and friends, on the backend, this does state.registers.load(8, 8) , 

where the first 8  is a VEX-defined offset for rax  to the register file.

To support multiple IRs, we'll either want to abstract these things or translate their labels to VEX analogues.

Why are some ARM addresses off-by-one?

In order to encode THUMB-ness of an ARM code address, we set the lowest bit to one. This convention 
comes from LibVEX, and is not entirely our choice! If you see an odd ARM address, that just means the code

at address - 1  is in THUMB mode.

How do I serialize angr objects?

 will work. However, python will default to using an extremely old pickle protocol that does not support 
more complex python data structures, so you must specify a . The easiest 
Pickle

more advanced data stream format

https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/pickle.html#data-stream-format


way to do this is pickle.dumps(obj, -1) .

What does UnsupportedIROpError("floating point support 
disabled")  mean?

This might crop up if you're using a CGC analysis such as driller or rex. Floating point support in angr has 
been disabled in the CGC analyses for a tight-knit nebula of reasons:

Libvex's representation of floating point numbers is imprecise - it converts the 80-bit extended precision 
format used by the x87 for computation to 64-bit doubles, making it impossible to get precise results

There is very limited implementation support in angr for the actual primitive operations themselves as 
reported by libvex, so you will often get a less friendly "unsupported operation" error if you go too much 
further

For what operations are implemented, the basic optimizations that allow tractability during symbolic 
computation (AST deduplication, operation collapsing) are not implemented for floating point ops, 
leading to gigantic ASTs

There are memory corruption bugs in z3 that get triggered frighteningly easily when you're using huge 
workloads of mixed floating point and bitvector ops. We haven't been able to get a testcase that doesn't 
involve "just run angr" for the z3 guys to investigate.

Instead of trying to cope with all of these, we have simply disabled floating point support in the symbolic 
execution engine. To allow for execution in the presence of floating point ops, we have enabled an 
exploration technique called the 

 that is supposed to 
catch these issues, concretize their inputs, and run the problematic instructions through qemu via unicorn 
engine, allowing execution to continue. The intuition is that the specific values of floating point operations 
don't typically affect the exploitation process.

https://github.com/angr/angr/blob/master/angr/exploration_techniques/oppologist.py

If you're seeing this error and it's terminating the analysis, it's probably because you don't have unicorn 
installed or configured correctly. If you're seeing this issue just in a log somewhere, it's just the oppologist 
kicking in and you have nothing to worry about.

Why is angr's CFG different from IDA's?

Two main reasons:

IDA does not split basic blocks at function calls. angr will, because they are a form of control flow and 
basic blocks end at control flow instructions. You generally do not need the supergraph for performing 
automated analyses.

IDA will split basic blocks if another block jumps into the middle of it. This is called basic block 
normalization, and angr does not do it by default since it is unnecessary for most static analyses. You 

may enable it by passing normalize=True  to the CFG analysis.

https://github.com/angr/angr-doc/blob/master/docs/oppologist/README.md


Why do I get incorrect register values when reading from a state 
during a SimInspect breakpoint?

libVEX will eliminate duplicate register writes within a single basic block when optimizations are enabled. 
Turn off IR optimization to make everything look right at all times.

In the case of the instruction pointer, libVEX will frequently omit mid-block writes even when optimizations 

are disabled. In this case, you should use state.scratch.ins_addr  to get the current instruction 
pointer.

Core Concepts

Top Level Interfaces

Before You Start

Using and exploring angr in IPython (or other Python command line interpreters) is a main use case that we 
design angr for. When you are not sure what interfaces are available, tab completion is your friend!

Sometimes tab completion in IPython can be slow. We find the following workaround helpful without 
degrading the validity of completion results:

# Drop this file in IPython profile's startup directory to avoid running it every time.1
import IPython2
py = IPython.get_ipython()3
py.Completer.use_jedi = False4

Core Concepts

Before getting started with angr, you'll need to have a basic overview of some fundamental angr concepts 
and how to construct some basic angr objects. We'll go over this by examining what's directly available to 
you after you've loaded a binary!

Your first action with angr will always be to load a binary into a project. We'll use /bin/true  for these 
examples.

>>> import angr1
>>> proj = angr.Project('/bin/true')2



A project is your control base in angr. With it, you will be able to dispatch analyses and simulations on the 
executable you just loaded. Almost every single object you work with in angr will depend on the existence of 
a project in some form.

Basic properties

First, we have some basic properties about the project: its CPU architecture, its filename, and the address of 
its entry point.

>>> import monkeyhex # this will format numerical results in hexadecimal1
>>> proj.arch2
<Arch AMD64 (LE)>3
>>> proj.entry4
0x4016705
>>> proj.filename6
'/bin/true'7

arch is an instance of an archinfo.Arch  object for whichever architecture the program is compiled, 
in this case little-endian amd64. It contains a ton of clerical data about the CPU it runs on, which you can

peruse . The common ones you care about are arch.bits , arch.bytes  (that one is 

a @property  declaration on the ), arch.name , and arch.memory_endness .

at your leisure

main Arch  class

entry is the entry point of the binary!

filename is the absolute filename of the binary. Riveting stuff!

The loader

Getting from a binary file to its representation in a virtual address space is pretty complicated! We have a 

module called CLE to handle that. CLE's result, called the loader, is available in the .loader  property. 
We'll get into detail on how to use this , but for now just know that you can use it to see the shared 
libraries that angr loaded alongside your program and perform basic queries about the loaded address 
space.

soon

>>> proj.loader1
<Loaded true, maps [0x400000:0x5004000]>2

3
>>> proj.loader.shared_objects # may look a little different for you!4
{'ld-linux-x86-64.so.2': <ELF Object ld-2.24.so, maps [0x2000000:0x2227167]>,5
 'libc.so.6': <ELF Object libc-2.24.so, maps [0x1000000:0x13c699f]>}6

7
>>> proj.loader.min_addr8
0x4000009
>>> proj.loader.max_addr10
0x500400011

12
>>> proj.loader.main_object  # we've loaded several binaries into this project. Here's the 13
<ELF Object true, maps [0x400000:0x60721f]>14

15

https://github.com/angr/archinfo/blob/master/archinfo/arch_amd64.py
https://github.com/angr/archinfo/blob/master/archinfo/arch.py


>>> proj.loader.main_object.execstack  # sample query: does this binary have an executable 16 False17
>>> proj.loader.main_object.pic  # sample query: is this binary position-independent?18
True19

The factory

There are a lot of classes in angr, and most of them require a project to be instantiated. Instead of making 

you pass around the project everywhere, we provide project.factory , which has several convenient 
constructors for common objects you'll want to use frequently.

This section will also serve as an introduction to several basic angr concepts. Strap in!

Blocks

First, we have project.factory.block() , which is used to extract a  of code from a given 
address. This is an important fact - angr analyzes code in units of basic blocks. You will get back a Block 
object, which can tell you lots of fun things about the block of code:

basic block

>>> block = proj.factory.block(proj.entry) # lift a block of code from the program's entry 1
<Block for 0x401670, 42 bytes>2

3
>>> block.pp()                          # pretty-print a disassembly to stdout4
0x401670:       xor     ebp, ebp5
0x401672:       mov     r9, rdx6
0x401675:       pop     rsi7
0x401676:       mov     rdx, rsp8
0x401679:       and     rsp, 0xfffffffffffffff09
0x40167d:       push    rax10
0x40167e:       push    rsp11
0x40167f:       lea     r8, [rip + 0x2e2a]12
0x401686:       lea     rcx, [rip + 0x2db3]13
0x40168d:       lea     rdi, [rip - 0xd4]14
0x401694:       call    qword ptr [rip + 0x205866]15

16
>>> block.instructions                  # how many instructions are there?17
0xb18
>>> block.instruction_addrs             # what are the addresses of the instructions?19
[0x401670, 0x401672, 0x401675, 0x401676, 0x401679, 0x40167d, 0x40167e, 0x40167f, 0x401686, 20

Additionally, you can use a Block object to get other representations of the block of code:

>>> block.capstone                       # capstone disassembly1
<CapstoneBlock for 0x401670>2
>>> block.vex                            # VEX IRSB (that's a python internal address, not 3
<pyvex.block.IRSB at 0x7706330>4

States

https://en.wikipedia.org/wiki/Basic_block


Here's another fact about angr - the Project  object only represents an "initialization image" for the 
program. When you're performing execution with angr, you are working with a specific object representing a 

simulated program state - a SimState . Let's grab one right now!

>>> state = proj.factory.entry_state()1
<SimState @ 0x401670>2

A SimState contains a program's memory, registers, filesystem data... any "live data" that can be changed by 
execution has a home in the state. We'll cover how to interact with states in depth later, but for now, let's use 

state.regs and state.mem  to access the registers and memory of this state:

>>> state.regs.rip        # get the current instruction pointer1
<BV64 0x401670>2
>>> state.regs.rax3
<BV64 0x1c>4
>>> state.mem[proj.entry].int.resolved  # interpret the memory at the entry point as a C in5
<BV32 0x8949ed31>6

Those aren't python ints! Those are bitvectors. Python integers don't have the same semantics as words on 
a CPU, e.g. wrapping on overflow, so we work with bitvectors, which you can think of as an integer as 

represented by a series of bits, to represent CPU data in angr. Note that each bitvector has a .length  
property describing how wide it is in bits.

We'll learn all about how to work with them soon, but for now, here's how to convert from python ints to 
bitvectors and back again:

>>> bv = state.solver.BVV(0x1234, 32)       # create a 32-bit-wide bitvector with value 0x11
<BV32 0x1234>                               # BVV stands for bitvector value2
>>> state.solver.eval(bv)                # convert to python int3
0x12344

You can store these bitvectors back to registers and memory, or you can directly store a python integer and 
it'll be converted to a bitvector of the appropriate size:

>>> state.regs.rsi = state.solver.BVV(3, 64)1
>>> state.regs.rsi2
<BV64 0x3>3

4
>>> state.mem[0x1000].long = 45
>>> state.mem[0x1000].long.resolved6
<BV64 0x4>7

The mem  interface is a little confusing at first, since it's using some pretty hefty python magic. The short 
version of how to use it is:

Use array[index] notation to specify an address

Use .<type>  to specify that the memory should be interpreted as <type> (common values: char, short, 



int, long, size_t, uint8_t, uint16_t...)

From there, you can either:

Store a value to it, either a bitvector or a python int

Use .resolved  to get the value as a bitvector

Use .concrete  to get the value as a python int

There are more advanced usages that will be covered later!

Finally, if you try reading some more registers you may encounter a very strange looking value:

>>> state.regs.rdi1
<BV64 reg_48_11_64{UNINITIALIZED}>2

This is still a 64-bit bitvector, but it doesn't contain a numerical value. Instead, it has a name! This is called a 
symbolic variable and it is the underpinning of symbolic execution. Don't panic! We will discuss all of this in 
detail exactly two chapters from now.

Simulation Managers

If a state lets us represent a program at a given point in time, there must be a way to get it to the next point in 
time. A simulation manager is the primary interface in angr for performing execution, simulation, whatever 
you want to call it, with states. As a brief introduction, let's show how to tick that state we created earlier 
forward a few basic blocks.

First, we create the simulation manager we're going to be using. The constructor can take a state or a list of 
states.

>>> simgr = proj.factory.simulation_manager(state)1
<SimulationManager with 1 active>2
>>> simgr.active3
[<SimState @ 0x401670>]4

A simulation manager can contain several stashes of states. The default stash, active , is initialized with 

the state we passed in. We could look at simgr.active[0]  to look at our state some more, if we haven't 
had enough!

Now... get ready, we're going to do some execution.

>>> simgr.step()1

We've just performed a basic block's worth of symbolic execution! We can look at the active stash again, 
noticing that it's been updated, and furthermore, that it has not modified our original state. SimState objects 
are treated as immutable by execution - you can safely use a single state as a "base" for multiple rounds of 
execution.

>>> simgr.active1



[<SimState @ 0x1020300>]2
>>> simgr.active[0].regs.rip                 # new and exciting!3
<BV64 0x1020300>4
>>> state.regs.rip                           # still the same!5
<BV64 0x401670>6

/bin/true  isn't a very good example for describing how to do interesting things with symbolic execution, 
so we'll stop here for now.

Analyses

angr comes pre-packaged with several built-in analyses that you can use to extract some fun kinds of 
information from a program. Here they are:

>>> proj.analyses.            # Press TAB here in ipython to get an autocomplete-listing of1
 proj.analyses.BackwardSlice        proj.analyses.CongruencyCheck      proj.analyses.reload2
 proj.analyses.BinaryOptimizer      proj.analyses.DDG                  proj.analyses.Static3
 proj.analyses.BinDiff              proj.analyses.DFG                  proj.analyses.Variab4
 proj.analyses.BoyScout             proj.analyses.Disassembly          proj.analyses.Variab5
 proj.analyses.CDG                  proj.analyses.GirlScout            proj.analyses.Verite6
 proj.analyses.CFG                  proj.analyses.Identifier           proj.analyses.VFG   7
 proj.analyses.CFGEmulated          proj.analyses.LoopFinder           proj.analyses.VSA_DD8
 proj.analyses.CFGFast              proj.analyses.Reassembler9

A couple of these are documented later in this book, but in general, if you want to find how to use a given 
analysis, you should look in the As an extremely brief example: here's how you construct
and use a quick control-flow graph:

api documentation. 

# Originally, when we loaded this binary it also loaded all its dependencies into the same 1
# This is undesirable for most analysis.2
>>> proj = angr.Project('/bin/true', auto_load_libs=False)3
>>> cfg = proj.analyses.CFGFast()4
<CFGFast Analysis Result at 0x2d85130>5

6
# cfg.graph is a networkx DiGraph full of CFGNode instances7
# You should go look up the networkx APIs to learn how to use this!8
>>> cfg.graph9
<networkx.classes.digraph.DiGraph at 0x2da43a0>10
>>> len(cfg.graph.nodes())11
95112

13
# To get the CFGNode for a given address, use cfg.get_any_node14
>>> entry_node = cfg.get_any_node(proj.entry)15
>>> len(list(cfg.graph.successors(entry_node)))16
217

Now what?

Having read this page, you should now be aquainted with several important angr concepts: basic blocks, 

http://angr.io/api-doc/angr.html?highlight=cfg#module-angr.analysis


states, bitvectors, simulation managers, and analyses. You can't really do anything interesting besides just 
use angr as a glorified debugger, though! Keep reading, and you will unlock deeper powers...

Loading a Binary

Previously, you saw just the barest taste of angr's loading facilities - you loaded /bin/true , and then 

loaded it again without its shared libraries. You also saw proj.loader  and a few things it could do. Now, 
we'll dive into the nuances of these interfaces and the things they can tell you.

We briefly mentioned angr's binary loading component, CLE. CLE stands for "CLE Loads Everything", and 
is responsible for taking a binary (and any libraries that it depends on) and presenting it to the rest of angr in 
a way that is easy to work with.

The Loader

Let's load examples/fauxware/fauxware  and take a deeper look at how to interact with the loader.

>>> import angr, monkeyhex1
>>> proj = angr.Project('examples/fauxware/fauxware')2
>>> proj.loader3
<Loaded fauxware, maps [0x400000:0x5008000]>4

Loaded Objects

The CLE loader ( cle.Loader ) represents an entire conglomerate of loaded binary objects, loaded and 
mapped into a single memory space. Each binary object is loaded by a loader backend that can handle its 

filetype (a subclass of cle.Backend ). For example, cle.ELF  is used to load ELF binaries.

There will also be objects in memory that don't correspond to any loaded binary. For example, an object 
used to provide thread-local storage support, and an externs object used to provide unresolved symbols.

You can get the full list of objects that CLE has loaded with loader.all_objects , as well as several 
more targeted classifications:

# All loaded objects1
>>> proj.loader.all_objects2
[<ELF Object fauxware, maps [0x400000:0x60105f]>,3
 <ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>,4
 <ELF Object ld-2.23.so, maps [0x2000000:0x2227167]>,5
 <ELFTLSObject Object cle##tls, maps [0x3000000:0x3015010]>,6
 <ExternObject Object cle##externs, maps [0x4000000:0x4008000]>,7
 <KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>]8

9
# This is the "main" object, the one that you directly specified when loading the project10
>>> proj.loader.main_object11



<ELF Object fauxware, maps [0x400000:0x60105f]>1213

# This is a dictionary mapping from shared object name to object14
>>> proj.loader.shared_objects15
{ 'fauxware': <ELF Object fauxware, maps [0x400000:0x60105f]>,16
  'libc.so.6': <ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>,17
  'ld-linux-x86-64.so.2': <ELF Object ld-2.23.so, maps [0x2000000:0x2227167]> }18

19
# Here's all the objects that were loaded from ELF files20
# If this were a windows program we'd use all_pe_objects!21
>>> proj.loader.all_elf_objects22
[<ELF Object fauxware, maps [0x400000:0x60105f]>,23
 <ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>,24
 <ELF Object ld-2.23.so, maps [0x2000000:0x2227167]>]25

26
# Here's the "externs object", which we use to provide addresses for unresolved imports and27
>>> proj.loader.extern_object28
<ExternObject Object cle##externs, maps [0x4000000:0x4008000]>29

30
# This object is used to provide addresses for emulated syscalls31
>>> proj.loader.kernel_object32
<KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>33

34
# Finally, you can to get a reference to an object given an address in it35
>>> proj.loader.find_object_containing(0x400000)36
<ELF Object fauxware, maps [0x400000:0x60105f]>37

You can interact directly with these objects to extract metadata from them:

>>> obj = proj.loader.main_object1
2
# The entry point of the object3
>>> obj.entry4
0x4005805

6
>>> obj.min_addr, obj.max_addr7
(0x400000, 0x60105f)8

9
# Retrieve this ELF's segments and sections10
>>> obj.segments11
<Regions: [<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5, offset=0x012
           <ELFSegment memsize=0x238, filesize=0x228, vaddr=0x600e28, flags=0x6, offset=0xe13
>>> obj.sections14
<Regions: [<Unnamed | offset 0x0, vaddr 0x0, size 0x0>,15
           <.interp | offset 0x238, vaddr 0x400238, size 0x1c>,16
           <.note.ABI-tag | offset 0x254, vaddr 0x400254, size 0x20>,17
            ...etc18

19
# You can get an individual segment or section by an address it contains:20
>>> obj.find_segment_containing(obj.entry)21
<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5, offset=0x0>22
>>> obj.find_section_containing(obj.entry)23



<.text | offset 0x580, vaddr 0x400580, size 0x338>2425

# Get the address of the PLT stub for a symbol26
>>> addr = obj.plt['strcmp']27
>>> addr28
0x40055029
>>> obj.reverse_plt[addr]30
'strcmp'31

32
# Show the prelinked base of the object and the location it was actually mapped into memory33
>>> obj.linked_base34
0x40000035
>>> obj.mapped_base36
0x40000037

Symbols and Relocations

You can also work with symbols while using CLE. A symbol is a fundamental concept in the world of 
executable formats, effectively mapping a name to an address.

The easiest way to get a symbol from CLE is to use loader.find_symbol , which takes either a name 
or an address and returns a Symbol object.

>>> strcmp = proj.loader.find_symbol('strcmp')1
>>> strcmp2
<Symbol "strcmp" in libc.so.6 at 0x1089cd0>3

The most useful attributes on a symbol are its name, its owner, and its address, but the "address" of a 
symbol can be ambiguous. The Symbol object has three ways of reporting its address:

.rebased_addr  is its address in the global address space. This is what is shown in the print output.

.linked_addr  is its address relative to the prelinked base of the binary. This is the address reported 

in, for example, readelf(1) .

.relative_addr  is its address relative to the object base. This is known in the literature (particularly 
the Windows literature) as an RVA (relative virtual address).

>>> strcmp.name1
'strcmp'2

3
>>> strcmp.owner4
<ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>5

6
>>> strcmp.rebased_addr7
0x1089cd08
>>> strcmp.linked_addr9
0x89cd010
>>> strcmp.relative_addr11
0x89cd012



In addition to providing debug information, symbols also support the notion of dynamic linking. libc provides 
the strcmp symbol as an export, and the main binary depends on it. If we ask CLE to give us a strcmp 
symbol from the main object directly, it'll tell us that this is an import symbol. Import symbols do not have 
meaningful addresses associated with them, but they do provide a reference to the symbol that was used to 

resolve them, as .resolvedby .

>>> strcmp.is_export1
True2
>>> strcmp.is_import3
False4

5
# On Loader, the method is find_symbol because it performs a search operation to find the s6
# On an individual object, the method is get_symbol because there can only be one symbol wi7
>>> main_strcmp = proj.loader.main_object.get_symbol('strcmp')8
>>> main_strcmp9
<Symbol "strcmp" in fauxware (import)>10
>>> main_strcmp.is_export11
False12
>>> main_strcmp.is_import13
True14
>>> main_strcmp.resolvedby15
<Symbol "strcmp" in libc.so.6 at 0x1089cd0>16

The specific ways that the links between imports and exports should be registered in memory are handled 
by another notion called relocations. A relocation says, "when you match [import] up with an export symbol, 
please write the export's address to [location], formatted as [format]." We can see the full list of relocations for

an object (as Relocation  instances) as obj.relocs , or just a mapping from symbol name to 

Relocation as obj.imports . There is no corresponding list of export symbols.

A relocation's corresponding import symbol can be accessed as .symbol . The address the relocation will 
write to is accessable through any of the address identifiers you can use for Symbol, and you can get a 

reference to the object requesting the relocation with .owner  as well.

# Relocations don't have a good pretty-printing, so those addresses are python-internal, un1
>>> proj.loader.shared_objects['libc.so.6'].imports2
{'__libc_enable_secure': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fc3
 '__tls_get_addr': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at 0x7ff5c6018358>4
 '_dl_argv': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fd2e48>,5
 '_dl_find_dso_for_object': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at 0x7ff56
 '_dl_starting_up': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fd2550>7
 '_rtld_global': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fce4e0>,8
 '_rtld_global_ro': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fcea20>9

If an import cannot be resolved to any export, for example, because a shared library could not be found, CLE 

will automatically update the externs object ( loader.extern_obj ) to claim it provides the symbol as an 
export.



Loading Options

If you are loading something with angr.Project  and you want to pass an option to the cle.Loader  
instance that Project implicitly creates, you can just pass the keyword argument directly to the Project 
constructor, and it will be passed on to CLE. You should look at the  if you want to know 
everything that could possibly be passed in as an option, but we will go over some important and frequently 
used options here.

CLE API docs.

Basic Options

We've discussed auto_load_libs  already - it enables or disables CLE's attempt to automatically 
resolve shared library dependencies, and is on by default. Additionally, there is the opposite, 

except_missing_libs , which, if set to true, will cause an exception to be thrown whenever a binary 
has a shared library dependency that cannot be resolved.

You can pass a list of strings to force_load_libs  and anything listed will be treated as an unresolved 

shared library dependency right out of the gate, or you can pass a list of strings to skip_libs  to prevent 
any library of that name from being resolved as a dependency. Additionally, you can pass a list of strings (or 

a single string) to ld_path , which will be used as an additional search path for shared libraries, before 
any of the defaults: the same directory as the loaded program, the current working directory, and your system 
libraries.

Per-Binary Options

If you want to specify some options that only apply to a specific binary object, CLE will let you do that too. 

The parameters main_opts  and lib_opts  do this by taking dictionaries of options. main_opts  is a 

mapping from option names to option values, while lib_opts  is a mapping from library name to 
dictionaries mapping option names to option values.

The options that you can use vary from backend to backend, but some common ones are:

backend  - which backend to use, as either a class or a name

base_addr  - a base address to use

entry_point  - an entry point to use

arch  - the name of an architecture to use

Example:

>>> angr.Project('examples/fauxware/fauxware', main_opts={'backend': 'blob', 'arch': 'i3861
<Project examples/fauxware/fauxware>2

Backends

CLE currently has backends for statically loading ELF, PE, CGC, Mach-O and ELF core dump files, as well 
as loading files into a flat address space. CLE will automatically detect the correct backend to use in most 

http://angr.io/api-doc/cle.html


cases, so you shouldn't need to specify which backend you're using unless you're doing some pretty weird 
stuff.

You can force CLE to use a specific backend for an object by including a key in its options dictionary, as 

described above. Some backends cannot autodetect which architecture to use and must have a arch  
specified. The key doesn't need to match any list of architectures; angr will identify which architecture you 
mean given almost any common identifier for any supported arch.

To refer to a backend, use the name from this table:

backend name description requires arch ?

elf
Static loader for ELF files based 
on PyELFTools no

pe
Static loader for PE files based 
on PEFile no

mach-o

Static loader for Mach-O files. 
Does not support dynamic 
linking or rebasing.

no

cgc
Static loader for Cyber Grand 
Challenge binaries no

backedcgc

Static loader for CGC binaries 
that allows specifying memory 
and register backers

no

elfcore

Static loader for ELF core 
dumps

no

blob
Loads the file into memory as a 
flat image yes

Symbolic Function Summaries

By default, Project tries to replace external calls to library functions by using symbolic summaries termed 
SimProcedures - effectively just python functions that imitate the library function's effect on the state. We've 
implemented  as SimProcedures. These builtin procedures are available in the 

angr.SIM_PROCEDURES  dictionary, which is two-leveled, keyed first on the package name (libc, posix, 

a whole bunch of functions

https://github.com/angr/angr/tree/master/angr/procedures


win32, stubs) and then on the name of the library function. Executing a SimProcedure instead of the actual 
library function that gets loaded from your system makes analysis a LOT more tractable, at the cost of 

.
some 

potential inaccuracies

When no such summary is available for a given function:

if auto_load_libs  is True  (this is the default), then the real library function is executed instead. 
This may or may not be what you want, depending on the actual function. For example, some of libc's 
functions are extremely complex to analyze and will most likely cause an explosion of the number of 
states for the path trying to execute them.

if auto_load_libs  is False , then external functions are unresolved, and Project will resolve them 

to a generic "stub" SimProcedure called ReturnUnconstrained . It does what its name says: it 
returns a unique unconstrained symbolic value each time it is called.

if use_sim_procedures  (this is a parameter to angr.Project , not cle.Loader ) is False  (it 

is True  by default), then only symbols provided by the extern object will be replaced with 

SimProcedures, and they will be replaced by a stub ReturnUnconstrained , which does nothing 
but return a symbolic value.

you may specify specific symbols to exclude from being replaced with SimProcedures with the 

parameters to angr.Project : exclude_sim_procedures_list  and 

exclude_sim_procedures_func .

Look at the code for angr.Project._register_object  for the exact algorithm.

Hooking

The mechanism by which angr replaces library code with a python summary is called hooking, and you can 
do it too! When performing simulation, at every step angr checks if the current address has been hooked, 
and if so, runs the hook instead of the binary code at that address. The API to let you do this is 

proj.hook(addr, hook) , where hook  is a SimProcedure instance. You can manage your project's 

hooks with .is_hooked , .unhook , and .hooked_by , which should hopefully not require 
explanation.

There is an alternate API for hooking an address that lets you specify your own off-the-cuff function to use as 

a hook, by using proj.hook(addr)  as a function decorator. If you do this, you can also optionally 

specify a length  keyword argument to make execution jump some number of bytes forward after your 
hook finishes.

>>> stub_func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained'] # this is a CLASS1
>>> proj.hook(0x10000, stub_func())  # hook with an instance of the class2

3
>>> proj.is_hooked(0x10000)            # these functions should be pretty self-explanitory4
True5
>>> proj.hooked_by(0x10000)6
<ReturnUnconstrained>7
>>> proj.unhook(0x10000)8

9
>>> @proj.hook(0x20000, length=5)10
... def my_hook(state):11
...     state.regs.rax = 112



13

>>> proj.is_hooked(0x20000)14
True15

Furthermore, you can use proj.hook_symbol(name, hook) , providing the name of a symbol as the 
first argument, to hook the address where the symbol lives. One very important usage of this is to extend the 
behavior of angr's built-in library SimProcedures. Since these library functions are just classes, you can 
subclass them, overriding pieces of their behavior, and then use your subclass in a hook.

So far so good!

By now, you should have a reasonable understanding of how to control the environment in which your 
analysis happens, on the level of the CLE loader and the angr Project. You should also understand that angr
makes a reasonable attempt to simplify its analysis by hooking complex library functions with 
SimProcedures that summarize the effects of the functions.

In order to see all the things you can do with the CLE loader and its backends, look at the CLE API docs.

Solver Engine

angr's power comes not from it being an emulator, but from being able to execute with what we call symbolic 
variables. Instead of saying that a variable has a concrete numerical value, we can say that it holds a 
symbol, effectively just a name. Then, performing arithmetic operations with that variable will yield a tree of 
operations (termed an abstract syntax tree or AST, from compiler theory). ASTs can be translated into 
constraints for an SMT solver, like z3, in order to ask questions like "given the output of this sequence of 
operations, what must the input have been?" Here, you'll learn how to use angr to answer this.

Working with Bitvectors

Let's get a dummy project and state so we can start playing with numbers.

>>> import angr, monkeyhex1

>>> proj = angr.Project('/bin/true')2
>>> state = proj.factory.entry_state()3

A bitvector is just a sequence of bits, interpreted with the semantics of a bounded integer for arithmetic. Let's 
make a few.

# 64-bit bitvectors with concrete values 1 and 1001
>>> one = state.solver.BVV(1, 64)2
>>> one3

http://angr.io/api-doc/cle.html


 <BV64 0x1>4
>>> one_hundred = state.solver.BVV(100, 64)5
>>> one_hundred6
 <BV64 0x64>7

8
# create a 27-bit bitvector with concrete value 99
>>> weird_nine = state.solver.BVV(9, 27)10
>>> weird_nine11
<BV27 0x9>12

As you can see, you can have any sequence of bits and call them a bitvector. You can do math with them 
too:

>>> one + one_hundred1
<BV64 0x65>2

3
# You can provide normal python integers and they will be coerced to the appropriate type:4
>>> one_hundred + 0x1005
<BV64 0x164>6

7
# The semantics of normal wrapping arithmetic apply8
>>> one_hundred - one*2009
<BV64 0xffffffffffffff9c>10

You cannot say one + weird_nine , though. It is a type error to perform an operation on bitvectors of 

differing lengths. You can, however, extend weird_nine  so it has an appropriate number of bits:

>>> weird_nine.zero_extend(64 - 27)1
<BV64 0x9>2
>>> one + weird_nine.zero_extend(64 - 27)3
<BV64 0xa>4

zero_extend  will pad the bitvector on the left with the given number of zero bits. You can also use 

sign_extend  to pad with a duplicate of the highest bit, preserving the value of the bitvector under two's 
compliment signed integer semantics.

Now, let's introduce some symbols into the mix.

# Create a bitvector symbol named "x" of length 64 bits1

>>> x = state.solver.BVS("x", 64)2
>>> x3
<BV64 x_9_64>4
>>> y = state.solver.BVS("y", 64)5
>>> y6
<BV64 y_10_64>7

x  and y  are now symbolic variables, which are kind of like the variables you learned to work with in 7th 
grade algebra. Notice that the name you provided has been been mangled by appending an incrementing 



counter and You can do as much arithmetic as you want with them, but you won't get a number back, you'll 
get an AST instead.

>>> x + one1
<BV64 x_9_64 + 0x1>2

3
>>> (x + one) / 24
<BV64 (x_9_64 + 0x1) / 0x2>5

6
>>> x - y7
<BV64 x_9_64 - y_10_64>8

Technically x  and y  and even one  are also ASTs - any bitvector is a tree of operations, even if that tree is 
only one layer deep. To understand this, let's learn how to process ASTs.

Each AST has a .op  and a .args . The op is a string naming the operation being performed, and the 

args are the values the operation takes as input. Unless the op is BVV  or BVS  (or a few others...), the args 
are all other ASTs, the tree eventually terminating with BVVs or BVSs.

>>> tree = (x + 1) / (y + 2)1
>>> tree2
<BV64 (x_9_64 + 0x1) / (y_10_64 + 0x2)>3
>>> tree.op4
'__floordiv__'5
>>> tree.args6
(<BV64 x_9_64 + 0x1>, <BV64 y_10_64 + 0x2>)7
>>> tree.args[0].op8
'__add__'9
>>> tree.args[0].args10
(<BV64 x_9_64>, <BV64 0x1>)11
>>> tree.args[0].args[1].op12
'BVV'13
>>> tree.args[0].args[1].args14
(1, 64)15

From here on out, we will use the word "bitvector" to refer to any AST whose topmost operation produces a 
bitvector. There can be other data types represented through ASTs, including floating point numbers and, as 
we're about to see, booleans.

Symbolic Constraints

Performing comparison operations between any two similarly-typed ASTs will yield another AST - not a 
bitvector, but now a symbolic boolean.

>>> x == 11
<Bool x_9_64 == 0x1>2
>>> x == one3



<Bool x_9_64 == 0x1>4 >>> x > 25
<Bool x_9_64 > 0x2>6
>>> x + y == one_hundred + 57
<Bool (x_9_64 + y_10_64) == 0x69>8
>>> one_hundred > 59
<Bool True>10
>>> one_hundred > -511
<Bool False>12

One tidbit you can see from this is that the comparisons are unsigned by default. The -5 in the last example 

is coerced to <BV64 0xfffffffffffffffb> , which is definitely not less than one hundred. If you want 

the comparison to be signed, you can say one_hundred.SGT(-5)  (that's "signed greater-than"). A full 
list of operations can be found at the end of this chapter.

This snippet also illustrates an important point about working with angr - you should never directly use a 
comparison between variables in the condition for an if- or while-statement, since the answer might not have 

a concrete truth value. Even if there is a concrete truth value, if one > one_hundred  will raise an 

exception. Instead, you should use solver.is_true  and solver.is_false , which test for concrete 
truthyness/falsiness without performing a constraint solve.

>>> yes = one == 11
>>> no = one == 22
>>> maybe = x == y3
>>> state.solver.is_true(yes)4
True5
>>> state.solver.is_false(yes)6
False7
>>> state.solver.is_true(no)8
False9
>>> state.solver.is_false(no)10
True11
>>> state.solver.is_true(maybe)12
False13
>>> state.solver.is_false(maybe)14
False15

Constraint Solving

You can treat any symbolic boolean as an assertion about the valid values of a symbolic variable by adding 
it as a constraint to the state. You can then query for a valid value of a symbolic variable by asking for an 
evaluation of a symbolic expression.

An example will probably be more clear than an explanation here:

>>> state.solver.add(x > y)1
>>> state.solver.add(y > 2)2



>>> state.solver.add(10 > x)3
>>> state.solver.eval(x)4
45

By adding these constraints to the state, we've forced the constraint solver to consider them as assertions 
that must be satisfied about any values it returns. If you run this code, you might get a different value for x, 
but that value will definitely be greater than 3 (since y must be greater than 2 and x must be greater than y) 

and less than 10. Furthermore, if you then say state.solver.eval(y) , you'll get a value of y which is 
consistent with the value of x that you got. If you don't add any constraints between two queries, the results 
will be consistent with each other.

From here, it's easy to see how to do the task we proposed at the beginning of the chapter - finding the input 
that produced a given output.

# get a fresh state without constraints1
>>> state = proj.factory.entry_state()2
>>> input = state.solver.BVS('input', 64)3
>>> operation = (((input + 4) * 3) >> 1) + input4
>>> output = 2005
>>> state.solver.add(operation == output)6
>>> state.solver.eval(input)7
0x33333333333333818

Note that, again, this solution only works because of the bitvector semantics. If we were operating over the 
domain of integers, there would be no solutions!

If we add conflicting or contradictory constraints, such that there are no values that can be assigned to the 
variables such that the constraints are satisfied, the state becomes unsatisfiable, or unsat, and queries 

against it will raise an exception. You can check the satisfiability of a state with state.satisfiable() .

>>> state.solver.add(input < 2**32)1
>>> state.satisfiable()2
False3

You can also evaluate more complex expressions, not just single variables.

# fresh state1
>>> state = proj.factory.entry_state()2
>>> state.solver.add(x - y >= 4)3

>>> state.solver.add(y > 0)4
>>> state.solver.eval(x)5
56
>>> state.solver.eval(y)7
18
>>> state.solver.eval(x + y)9
610

From this we can see that eval  is a general purpose method to convert any bitvector into a python 



primitive while respecting the integrity of the state. This is why we use eval  to convert from concrete 
bitvectors to python ints, too!

Also note that the x and y variables can be used in this new state despite having been created using an old 
state. Variables are not tied to any one state, and can exist freely.

Floating point numbers

z3 has support for the theory of IEEE754 floating point numbers, and so angr can use them as well. The 
main difference is that instead of a width, a floating point number has a sort. You can create floating point 

symbols and values with FPV  and FPS .

# fresh state1
>>> state = proj.factory.entry_state()2
>>> a = state.solver.FPV(3.2, state.solver.fp.FSORT_DOUBLE)3
>>> a4
<FP64 FPV(3.2, DOUBLE)>5

6
>>> b = state.solver.FPS('b', state.solver.fp.FSORT_DOUBLE)7
>>> b8
<FP64 FPS('FP_b_0_64', DOUBLE)>9

10
>>> a + b11
<FP64 fpAdd('RNE', FPV(3.2, DOUBLE), FPS('FP_b_0_64', DOUBLE))>12

13
>>> a + 4.414
<FP64 FPV(7.6000000000000005, DOUBLE)>15

16
>>> b + 2 < 017
<Bool fpLT(fpAdd('RNE', FPS('FP_b_0_64', DOUBLE), FPV(2.0, DOUBLE)), FPV(0.0, DOUBLE))>18

So there's a bit to unpack here - for starters the pretty-printing isn't as smart about floating point numbers. But 
past that, most operations actually have a third parameter, implicitly added when you use the binary 
operators - the rounding mode. The IEEE754 spec supports multiple rounding modes (round-to-nearest, 
round-to-zero, round-to-positive, etc), so z3 has to support them. If you want to specify the rounding mode for 

an operation, use the fp operation explicitly ( solver.fpAdd  for example) with a rounding mode (one of 

solver.fp.RM_* ) as the first argument.

Constraints and solving work in the same way, but with eval  returning a floating point number:

>>> state.solver.add(b + 2 < 0)1
>>> state.solver.add(b + 2 > -1)2
>>> state.solver.eval(b)3
-2.49999999999999964

This is nice, but sometimes we need to be able to work directly with the representation of the float as a 

bitvector. You can interpret bitvectors as floats and vice versa, with the methods raw_to_bv  and 



raw to fp :

>>> a.raw_to_bv()1
<BV64 0x400999999999999a>2
>>> b.raw_to_bv()3
<BV64 fpToIEEEBV(FPS('FP_b_0_64', DOUBLE))>4

5
>>> state.solver.BVV(0, 64).raw_to_fp()6
<FP64 FPV(0.0, DOUBLE)>7
>>> state.solver.BVS('x', 64).raw_to_fp()8
<FP64 fpToFP(x_1_64, DOUBLE)>9

These conversions preserve the bit-pattern, as if you casted a float pointer to an int pointer or vice versa. 
However, if you want to preserve the value as closely as possible, as if you casted a float to an int (or vice 

versa), you can use a different set of methods, val_to_fp  and val_to_bv . These methods must take 
the size or sort of the target value as a parameter, due to the floating-point nature of floats.

>>> a1
<FP64 FPV(3.2, DOUBLE)>2
>>> a.val_to_bv(12)3
<BV12 0x3>4
>>> a.val_to_bv(12).val_to_fp(state.solver.fp.FSORT_FLOAT)5
<FP32 FPV(3.0, FLOAT)>6

These methods can also take a signed  parameter, designating the signedness of the source or target 
bitvector.

More Solving Methods

eval  will give you one possible solution to an expression, but what if you want several? What if you want 
to ensure that the solution is unique? The solver provides you with several methods for common solving 
patterns:

solver.eval(expression)  will give you one possible solution to the given expression.

solver.eval_one(expression)  will give you the solution to the given expression, or throw an 
error if more than one solution is possible.

solver.eval_upto(expression, n)  will give you up to n solutions to the given expression, 
returning fewer than n if fewer than n are possible.

solver.eval_atleast(expression, n)  will give you n solutions to the given expression, 
throwing an error if fewer than n are possible.

solver.eval_exact(expression, n)  will give you n solutions to the given expression, 
throwing an error if fewer or more than are possible.

solver.min(expression)  will give you the minimum possible solution to the given expression.

solver.max(expression)  will give you the maximum possible solution to the given expression.



Additionally, all of these methods can take the following keyword arguments:

extra_constraints  can be passed as a tuple of constraints.
These constraints will be taken into account for this evaluation, but will not be added to the state.

cast_to  can be passed a data type to cast the result to.

Currently, this can only be int  and bytes , which will cause the method to return the corresponding 
representation of the underlying data.

For example, state.solver.eval(state.solver.BVV(0x41424344, 32), 
cast_to=bytes)  will return b'ABCD' .

Summary

That was a lot!! After reading this, you should be able to create and manipulate bitvectors, booleans, and 
floating point values to form trees of operations, and then query the constraint solver attached to a state for 
possible solutions under a set of constraints. Hopefully by this point you understand the power of using 
ASTs to represent computations, and the power of a constraint solver.

, you can find a reference for all the additional operations you can apply to ASTs, in case you 
ever need a quick table to look at.
In the appendix

Program State

So far, we've only used angr's simulated program states ( SimState  objects) in the barest possible way in 
order to demonstrate basic concepts about angr's operation. Here, you'll learn about the structure of a state 
object and how to interact with it in a variety of useful ways.

Review: Reading and writing memory and registers

If you've been reading this book in order (and you should be, at least for this first section), you already saw 

the basics of how to access memory and registers. state.regs  provides read and write access to the 

registers through attributes with the names of each register, and state.mem  provides typed read and write 
access to memory with index-access notation to specify the address followed by an attribute access to 
specify the type you would like to interpret the memory as.

Additionally, you should now know how to work with ASTs, so you can now understand that any bitvector-
typed AST can be stored in registers or memory.

Here are some quick examples for copying and performing operations on data from the state:

>>> import angr, claripy1
>>> proj = angr.Project('/bin/true')2



>>> state = proj.factory.entry_state()34
# copy rsp to rbp5
>>> state.regs.rbp = state.regs.rsp6

7
# store rdx to memory at 0x10008
>>> state.mem[0x1000].uint64_t = state.regs.rdx9

10
# dereference rbp11
>>> state.regs.rbp = state.mem[state.regs.rbp].uint64_t.resolved12

13
# add rax, qword ptr [rsp + 8]14
>>> state.regs.rax += state.mem[state.regs.rsp + 8].uint64_t.resolved15

Basic Execution

Earlier, we showed how to use a Simulation Manager to do some basic execution. We'll show off the full 
capabilities of the simulation manager in the next chapter, but for now we can use a much simpler interface 

to demonstrate how symbolic execution works: state.step() . This method will perform one step of 

symbolic execution and return an object called . Unlike normal emulation, symbolic 
execution can produce several successor states that can be classified in a number of ways. For now, what 

we care about is the .successors  property of this object, which is a list containing all the "normal" 
successors of a given step.

SimSuccessors

Why a list, instead of just a single successor state? Well, angr's process of symbolic execution is just the 
taking the operations of the individual instructions compiled into the program and performing them to mutate 

a SimState. When a line of code like if (x > 4)  is reached, what happens if x is a symbolic bitvector? 

Somewhere in the depths of angr, the comparison x > 4  is going to get performed, and the result is going 

to be <Bool x_32_1 > 4> .

That's fine, but the next question is, do we take the "true" branch or the "false" one? The answer is, we take 
both! We generate two entirely separate successor states - one simulating the case where the condition was 

true and simulating the case where the condition was false. In the first state, we add x > 4  as a constraint, 

and in the second state, we add !(x > 4)  as a constraint. That way, whenever we perform a constraint 
solve using either of these successor states, the conditions on the state ensure that any solutions we get are 
valid inputs that will cause execution to follow the same path that the given state has followed.

To demonstrate this, let's use a  as an example. If you look at the  for this 
binary, you'll see that the authentication mechanism for the firmware is backdoored; any username can be 
authenticated as an administrator with the password "SOSNEAKY". Furthermore, the first comparison 
against user input that happens is the comparison against the backdoor, so if we step until we get more than 
one successor state, one of those states will contain conditions constraining the user input to be the 
backdoor password. The following snippet implements this:

fake firmware image source code

>>> proj = angr.Project('examples/fauxware/fauxware')1
>>> state = proj.factory.entry_state(stdin=angr.SimFile)  # ignore that argument for now - 2
>>> while True:3
...     succ = state.step()4

http://angr.io/api-doc/angr.html#module-angr.engines.successors
https://github.com/angr/angr-doc/tree/079c79b89c044a35f1cc6cb31ab799710f96fede/examples/fauxware/fauxware/README.md
https://github.com/angr/angr-doc/tree/079c79b89c044a35f1cc6cb31ab799710f96fede/examples/fauxware/fauxware.c


...     if len(succ.successors) == 2:5

...         break6

...     state = succ.successors[0]7
8
>>> state1, state2 = succ.successors9
>>> state110
<SimState @ 0x400629>11
>>> state212
<SimState @ 0x40069913

Don't look at the constraints on these states directly - the branch we just went through involves the result of 

strcmp , which is a tricky function to emulate symbolically, and the resulting constraints are very 
complicated.

The program we emulated took data from standard input, which angr treats as an infinite stream of symbolic 
data by default. To perform a constraint solve and get a possible value that input could have taken in order to 
satisfy the constraints, we'll need to get a reference to the actual contents of stdin. We'll go over how our file 

and input subsystems work later on this very page, but for now, just use state.posix.stdin.load(0, 
state.posix.stdin.size)  to retrieve a bitvector representing all the content read from stdin so far.

>>> input_data = state1.posix.stdin.load(0, state.posix.stdin.size)1
2
>>> state1.solver.eval(input_data, cast_to=bytes)3
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00SOSNEAKY\x00\x00\x00'4

5
>>> state2.solver.eval(input_data, cast_to=bytes)6

b'\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x00\x80N\x00\x00 \x00\x00\x00\x00'7

As you can see, in order to go down the state1  path, you must have given as a password the backdoor 

string "SOSNEAKY". In order to go down the state2  path, you must have given something besides 
"SOSNEAKY". z3 has helpfully provided one of the billions of strings fitting this criteria.

Fauxware was the first program angr's symbolic execution ever successfully worked on, back in 2013. By 
finding its backdoor using angr you are participating in a grand tradition of having a bare-bones 
understanding of how to use symbolic execution to extract meaning from binaries!

State Presets

So far, whenever we've been working with a state, we've created it with 

project.factory.entry_state() . This is just one of several state constructors available on the 
project factory:

.blank_state()  constructs a "blank slate" blank state, with most of its data left uninitialized.
When accessing uninitialized data, an unconstrained symbolic value will be returned.

.entry_state()  constructs a state ready to execute at the main binary's entry point.

.full_init_state()  constructs a state that is ready to execute through any initializers that need to 



be run before the main binary's entry point, for example, shared library constructors or preinitializers.
When it is finished with these it will jump to the entry point.

.call_state()  constructs a state ready to execute a given function.

You can customize the state through several arguments to these constructors:

All of these constructors can take an addr  argument to specify the exact address to start.

If you're executing in an environment that can take command line arguments or an environment, you can 

pass a list of arguments through args  and a dictionary of environment variables through env  into 

entry_state  and full_init_state . The values in these structures can be strings or bitvectors, 
and will be serialized into the state as the arguments and environment to the simulated execution. The 

default args  is an empty list, so if the program you're analyzing expects to find at least an argv[0] , 
you should always provide that!

If you'd like to have argc  be symbolic, you can pass a symbolic bitvector as argc  to the 

entry_state  and full_init_state  constructors. Be careful, though: if you do this, you should 
also add a constraint to the resulting state that your value for argc cannot be larger than the number of 

args you passed into args .

To use the call state, you should call it with .call_state(addr, arg1, arg2, ...) , where 

addr  is the address of the function you want to call and argN  is the Nth argument to that function, 
either as a python integer, string, or array, or a bitvector. If you want to have memory allocated and 
actually pass in a pointer to an object, you should wrap it in an PointerWrapper, i.e. 

angr.PointerWrapper("point to me!") . The results of this API can be a little unpredictable, 
but we're working on it.

To specify the calling convention used for a function with call_state , you can pass a 

 as the cc  argument.
We try to pick a sane default, but for special cases you will need to help angr out.

SimCC  

instance

There are several more options that can be used in any of these constructors! See the 

 for more details.

docs on the 

project.factory  object (an AngrObjectFactory )

Low level interface for memory

The state.mem  interface is convenient for loading typed data from memory, but when you want to do raw 

loads and stores to and from ranges of memory, it's very cumbersome. It turns out that state.mem  is 
actually just a bunch of logic to correctly access the underlying memory storage, which is just a flat address 

space filled with bitvector data: state.memory . You can use state.memory  directly with the 

.load(addr, size)  and .store(addr, val)  methods:

>>> s = proj.factory.blank_state()1
>>> s.memory.store(0x4000, s.solver.BVV(0x0123456789abcdef0123456789abcdef, 128))2
>>> s.memory.load(0x4004, 6) # load-size is in bytes3
<BV48 0x89abcdef0123>4

http://angr.io/api-doc/angr.html#module-angr.calling_conventions
http://angr.io/api-doc/angr.html#angr.factory.AngrObjectFactory


As you can see, the data is loaded and stored in a "big-endian" fashion, since the primary purpose of 

state.memory  is to load an store swaths of data with no attached semantics. However, if you want to 

perform a byteswap on the loaded or stored data, you can pass a keyword argument endness  - if you 

specify little-endian, byteswap will happen. The endness should be one of the members of the Endness  

enum in the archinfo  package used to hold declarative data about CPU architectures for angr. 

Additionally, the endness of the program being analyzed can be found as arch.memory_endness  - for 

instance state.arch.memory_endness .

>>> import archinfo1
>>> s.memory.load(0x4000, 4, endness=archinfo.Endness.LE)2
<BV32 0x67452301>3

There is also a low-level interface for register access, state.registers , that uses the exact same API 

as state.memory , but explaining its behavior involves a  into the abstractions that angr uses to 
seamlessly work with multiple architectures. The short version is that it is simply a register file, with the 
mapping between registers and offsets defined in .

dive

archinfo

State Options

There are a lot of little tweaks that can be made to the internals of angr that will optimize behavior in some 
situations and be a detriment in others. These tweaks are controlled through state options.

On each SimState object, there is a set ( state.options ) of all its enabled options. Each option (really 
just a string) controls the behavior of angr's execution engine in some minute way. A listing of the full domain
of options, along with the defaults for different state types, can be found in . You can access an 

individual option for adding to a state through angr.options . The individual options are named with 
CAPITAL_LETTERS, but there are also common groupings of objects that you might want to use bundled 
together, named with lowercase_letters.

the appendix

When creating a SimState through any constructor, you may pass the keyword arguments add_options  

and remove_options , which should be sets of options that modify the initial options set from the default.

# Example: enable lazy solves, an option that causes state satisfiability to be checked as 1
# This change to the settings will be propagated to all successor states created from this 2
>>> s.options.add(angr.options.LAZY_SOLVES)3

4
# Create a new state with lazy solves enabled5
>>> s = proj.factory.entry_state(add_options={angr.options.LAZY_SOLVES})6

7
# Create a new state without simplification options enabled8
>>> s = proj.factory.entry_state(remove_options=angr.options.simplification)9

State Plugins

https://github.com/angr/archinfo


With the exception of the set of options just discussed, everything stored in a SimState is actually stored in a 
plugin attached to the state. Almost every property on the state we've discussed so far is a plugin - 

memory , registers , mem , regs , solver , etc. This design allows for code modularity as well as the
ability to easily  for other aspects of an emulated state, or the ability to 
provide alternate implementations of plugins.

implement new kinds of data storage

For example, the normal memory  plugin simulates a flat memory space, but analyses can choose to 
enable the "abstract memory" plugin, which uses alternate data types for addresses to simulate free-floating 

memory mappings independent of address, to provide state.memory . Conversely, plugins can reduce 

code complexity: state.memory  and state.registers  are actually two different instances of the 
same plugin, since the registers are emulated with an address space as well.

The globals plugin

state.globals  is an extremely simple plugin: it implements the interface of a standard python dict, 
allowing you to store arbitrary data on a state.

The history plugin

state.history  is a very important plugin storing historical data about the path a state has taken during 
execution. It is actually a linked list of several history nodes, each one representing a single round of 

execution---you can traverse this list with state.history.parent.parent  etc.

To make it more convenient to work with this structure, the history also provides several efficient iterators 

over the history of certain values. In general, these values are stored as history.recent_NAME  and the 

iterator over them is just history.NAME . For example, for addr in 
state.history.bbl_addrs: print hex(addr)  will print out a basic block address trace for the 

binary, while state.history.recent_bbl_addrs  is the list of basic blocks executed in the most 

recent step, state.history.parent.recent_bbl_addrs  is the list of basic blocks executed in the 

previous step, etc. If you ever need to quickly obtain a flat list of these values, you can access .hardcopy , 

e.g. state.history.bbl_addrs.hardcopy . Keep in mind though, index-based accessing is 
implemented on the iterators.

Here is a brief listing of some of the values stored in the history:

history.descriptions  is a listing of string descriptions of each of the rounds of execution 
performed on the state.

history.bbl_addrs  is a listing of the basic block addresses executed by the state.
There may be more than one per round of execution, and not all addresses may correspond to binary 
code - some may be addresses at which SimProcedures are hooked.

history.jumpkinds  is a listing of the disposition of each of the control flow transitions in the state's 
history, as VEX enum strings.

history.jump_guards  is a listing of the conditions guarding each of the branches that the state 
has encountered.

history.events  is a semantic listing of "interesting events" which happened during execution, 
such as the presence of a symbolic jump condition, the program popping up a message box, or 



execution terminating with an exit code.
history.actions  is usually empty, but if you add the angr.options.refs  options to the state, 
it will be populated with a log of all the memory, register, and temporary value accesses performed by 
the program.

The callstack plugin

angr will track the call stack for the emulated program. On every call instruction, a frame will be added to the 
top of the tracked callstack, and whenever the stack pointer drops below the point where the topmost frame 
was called, a frame is popped. This allows angr to robustly store data local to the current emulated function.

Similar to the history, the callstack is also a linked list of nodes, but there are no provided iterators over the 

contents of the nodes - instead you can directly iterate over state.callstack  to get the callstack 
frames for each of the active frames, in order from most recent to oldest. If you just want the topmost frame, 

this is state.callstack .

callstack.func_addr  is the address of the function currently being executed

callstack.call_site_addr  is the address of the basic block which called the current function

callstack.stack_ptr  is the value of the stack pointer from the beginning of the current function

callstack.ret_addr  is the location that the current function will return to if it returns

More about I/O: Files, file systems, and network sockets

Please refer to  for a more complete and detailed 
documentation of how I/O is modeled in angr.

Working with File System, Sockets, and Pipes

Copying and Merging

A state supports very fast copies, so that you can explore different possibilities:

>>> proj = angr.Project('/bin/true')1
>>> s = proj.factory.blank_state()2
>>> s1 = s.copy()3
>>> s2 = s.copy()4

5
>>> s1.mem[0x1000].uint32_t = 0x414141416
>>> s2.mem[0x1000].uint32_t = 0x424242427

States can also be merged together.

# merge will return a tuple. the first element is the merged state1
# the second element is a symbolic variable describing a state flag2



# the third element is a boolean describing whether any merging was done3
>>> (s_merged, m, anything_merged) = s1.merge(s2)4

5
# this is now an expression that can resolve to "AAAA" *or* "BBBB"6
>>> aaaa_or_bbbb = s_merged.mem[0x1000].uint32_t7

TODO: describe limitations of merging

Simulation Managers

The most important control interface in angr is the SimulationManager, which allows you to control symbolic 
execution over groups of states simultaneously, applying search strategies to explore a program's state 
space. Here, you'll learn how to use it.

Simulation managers let you wrangle multiple states in a slick way. States are organized into “stashes”, 
which you can step forward, filter, merge, and move around as you wish. This allows you to, for example, 
step two different stashes of states at different rates, then merge them together. The default stash for most 

operations is the active  stash, which is where your states get put when you initialize a new simulation 
manager.

Stepping

The most basic capability of a simulation manager is to step forward all states in a given stash by one basic 

block. You do this with .step() .

>>> import angr1
>>> proj = angr.Project('examples/fauxware/fauxware', auto_load_libs=False)2
>>> state = proj.factory.entry_state()3
>>> simgr = proj.factory.simgr(state)4
>>> simgr.active5
[<SimState @ 0x400580>]6

7
>>> simgr.step()8
>>> simgr.active9
[<SimState @ 0x400540>]10

Of course, the real power of the stash model is that when a state encounters a symbolic branch condition, 
both of the successor states appear in the stash, and you can step both of them in sync. When you don't 
really care about controlling analysis very carefully and you just want to step until there's nothing left to step, 

you can just use the .run()  method.

# Step until the first symbolic branch1
>>> while len(simgr.active) == 1:2
...    simgr.step()3

4
>>> simgr5
<SimulationManager with 2 active>6
>>> simgr.active7



[<SimState @ 0x400692>, <SimState @ 0x400699>]8
9
# Step until everything terminates10
>>> simgr.run()11
>>> simgr12
<SimulationManager with 3 deadended>13

We now have 3 deadended states! When a state fails to produce any successors during execution, for 

example, because it reached an exit  syscall, it is removed from the active stash and placed in the 

deadended  stash.

Stash Management

Let's see how to work with other stashes.

To move states between stashes, use .move() , which takes from_stash , to_stash , and 

filter_func  (optional, default is to move everything). For example, let's move everything that has a 
certain string in its output:

>>> simgr.move(from_stash='deadended', to_stash='authenticated', filter_func=lambda s: b'We1
>>> simgr2
<SimulationManager with 2 authenticated, 1 deadended>3

We were able to just create a new stash named "authenticated" just by asking for states to be moved to it. All
the states in this stash have "Welcome" in their stdout, which is a fine metric for now.

Each stash is just a list, and you can index into or iterate over the list to access each of the individual states, 
but there are some alternate methods to access the states too. If you prepend the name of a stash with 

one_ , you will be given the first state in the stash. If you prepend the name of a stash with mp_ , you will 
be given a  version of the stash.mulpyplexed

>>> for s in simgr.deadended + simgr.authenticated:1
...     print(hex(s.addr))2
0x10000303
0x10000784
0x10000785

6
>>> simgr.one_deadended7
<SimState @ 0x1000030>8
>>> simgr.mp_authenticated9
MP([<SimState @ 0x1000078>, <SimState @ 0x1000078>])10
>>> simgr.mp_authenticated.posix.dumps(0)11
MP(['\x00\x00\x00\x00\x00\x00\x00\x00\x00SOSNEAKY\x00',12
    '\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x80\x80\x80\x80@\x80@\x00'])13

Of course, step , run , and any other method that operates on a single stash of paths can take a stash  
argument, specifying which stash to operate on.

https://github.com/zardus/mulpyplexer


There are lots of fun tools that the simulation manager provides you for managing your stashes. We won't go 
into the rest of them for now, but you should check out the API documentation. TODO: link

Stash types

You can use stashes for whatever you like, but there are a few stashes that will be used to categorize some 
special kinds of states. These are:

Stash Description

active
This stash contains the states that will be stepped
by default, unless an alternate stash is specified.

deadended

A state goes to the deadended stash when it 
cannot continue the execution for some reason, 
including no more valid instructions, unsat state o
all of its successors, or an invalid instruction 
pointer.

pruned

When using LAZY_SOLVES , states are not 
checked for satisfiability unless absolutely 
necessary. When a state is found to be unsat in th

presence of LAZY_SOLVES , the state hierarchy 
traversed to identify when, in its history, it initially 
became unsat. All states that are descendants of 
that point (which will also be unsat, since a state 
cannot become un-unsat) are pruned and put in 
this stash.

unconstrained

If the save_unconstrained  option is provided
to the SimulationManager constructor, states that 
are determined to be unconstrained (i.e., with the 
instruction pointer controlled by user data or some
other source of symbolic data) are placed here.

unsat

If the save_unsat  option is provided to the 
SimulationManager constructor, states that are 
determined to be unsatisfiable (i.e., they have 
constraints that are contradictory, like the input 
having to be both "AAAA" and "BBBB" at the sam
time) are placed here.

There is another list of states that is not a stash: errored . If, during execution, an error is raised, then the 

state will be wrapped in an ErrorRecord  object, which contains the state and the error it raised, and then 

the record will be inserted into errored . You can get at the state as it was at the beginning of the 

execution tick that caused the error with record.state , you can see the error that was raised with 



record.error , and you can launch a debug shell at the site of the error with record.debug() . This 
is an invaluable debugging tool!

Simple Exploration

An extremely common operation in symbolic execution is to find a state that reaches a certain address, 
while discarding all states that go through another address. Simulation manager has a shortcut for this 

pattern, the .explore()  method.

When launching .explore()  with a find  argument, execution will run until a state is found that 
matches the find condition, which can be the address of an instruction to stop at, a list of addresses to stop 
at, or a function which takes a state and returns whether it meets some criteria. When any of the states in the 

active stash match the find  condition, they are placed in the found  stash, and execution terminates. 
You can then explore the found state, or decide to discard it and continue with the other ones. You can also 

specify an avoid  condition in the same format as find . When a state matches the avoid condition, it is 

put in the avoided  stash, and execution continues. Finally, the num_find  argument controls the number
of states that should be found before returning, with a default of 1. Of course, if you run out of states in the 
active stash before finding this many solutions, execution will stop anyway.

Let's look at a simple crackme :example

First, we load the binary.

>>> proj = angr.Project('examples/CSCI-4968-MBE/challenges/crackme0x00a/crackme0x00a')1

Next, we create a SimulationManager.

>>> simgr = proj.factory.simgr()1

Now, we symbolically execute until we find a state that matches our condition (i.e., the "win" condition).

>>> simgr.explore(find=lambda s: b"Congrats" in s.posix.dumps(1))1
<SimulationManager with 1 active, 1 found>2

Now, we can get the flag out of that state!

>>> s = simgr.found[0]1
>>> print(s.posix.dumps(1))2
Enter password: Congrats!3

4
>>> flag = s.posix.dumps(0)5
>>> print(flag)6
g00dJ0B!7

Pretty simple, isn't it?

Other examples can be found by browsing the .examples



Exploration Techniques

angr ships with several pieces of canned functionality that let you customize the behavior of a simulation 
manager, called exploration techniques. The archetypical example of why you would want an exploration 
technique is to modify the pattern in which the state space of the program is explored - the default "step 
everything at once" strategy is effectively breadth-first search, but with an exploration technique you could 
implement, for example, depth-first search. However, the instrumentation power of these techniques is much 
more flexible than that - you can totally alter the behavior of angr's stepping process. Writing your own 
exploration techniques will be covered in a later chapter.

To use an exploration technique, call simgr.use_technique(tech) , where tech is an instance of an 
ExplorationTechnique subclass. angr's built-in exploration techniques can be found under 

angr.exploration_techniques .

Here's a quick overview of some of the built-in ones:

DFS: Depth first search, as mentioned earlier. Keeps only one state active at once, putting the rest in the 

deferred  stash until it deadends or errors.

Explorer: This technique implements the .explore()  functionality, allowing you to search for and 
avoid addresses.

LengthLimiter: Puts a cap on the maximum length of the path a state goes through.

LoopSeer: Uses a reasonable approximation of loop counting to discard states that appear to be going 

through a loop too many times, putting them in a spinning  stash and pulling them out again if we run 
out of otherwise viable states.

ManualMergepoint: Marks an address in the program as a merge point, so states that reach that address 
will be briefly held, and any other states that reach that same point within a timeout will be merged 
together.

MemoryWatcher: Monitors how much memory is free/available on the system between simgr steps and 
stops exploration if it gets too low.

Oppologist: The "operation apologist" is an especially fun gadget - if this technique is enabled and angr 
encounters an unsupported instruction, for example a bizzare and foreign floating point SIMD op, it will 
concretize all the inputs to that instruction and emulate the single instruction using the unicorn engine, 
allowing execution to continue.

Spiller: When there are too many states active, this technique can dump some of them to disk in order to 
keep memory consumption low.

Threading: Adds thread-level parallelism to the stepping process. This doesn't help much because of 
python's global interpreter locks, but if you have a program whose analysis spends a lot of time in angr's 
native-code dependencies (unicorn, z3, libvex) you can seem some gains.

Tracer: An exploration technique that causes execution to follow a dynamic trace recorded from some 
other source. The  has some tools to generate those traces.dynamic tracer repository

Veritesting: An implementation of a  on automatically identifying useful merge points. This is 

so useful, you can enable it automatically with veritesting=True  in the SimulationManager 
constructor! Note that it frequenly doesn't play nice with other techniques due to the invasive way it 

CMU paper

https://github.com/angr/tracer
https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinos%20et%20al._2014_Enhancing%20Symbolic%20Execution%20with%20Veritesting.pdf


implements static symbolic execution.

Look at the API documentation for the  and  for more information.simulation manager exploration techniques

Execution Engines

When you ask for a step of execution to happen in angr, something has to actually perform the step. angr 

uses a series of engines (subclasses of the SimEngine  class) to emulate the effects that of a given 
section of code has on an input state. The execution core of angr simply tries all the available engines in 
sequence, taking the first one that is able to handle the step. The following is the default list of engines, in 
order:

The failure engine kicks in when the previous step took us to some uncontinuable state

The syscall engine kicks in when the previous step ended in a syscall

The hook engine kicks in when the current address is hooked

The unicorn engine kicks in when the UNICORN  state option is enabled and there is no symbolic data 
in the state

The VEX engine kicks in as the final fallback.

SimSuccessors

The code that actually tries all the engines in turn is project.factory.successors(state, 
**kwargs) , which passes its arguments onto each of the engines. This function is at the heart of 

state.step()  and simulation_manager.step() . It returns a SimSuccessors object, which we 
discussed briefly before. The purpose of SimSuccessors is to perform a simple categorization of the 
successor states, stored in various list attributes. They are:

Attribute Guard Condition Instruction Pointer Description

successors
True (can be symbolic, 
but constrained to 
True)

Can be symbolic (but 
256 solutions or less; 
see 

unconstrained_su
ccessors ).

A normal, satisfiable 
successor state to the
state processed by th
engine. The instructio
pointer of this state 
may be symbolic (i.e.
a computed jump 
based on user input), 
so the state might 
actually represent 
several potential 
continuations of 

http://angr.io/api-doc/angr.html#module-angr.manager
http://angr.io/api-doc/angr.html#angr.exploration_techniques.ExplorationTechnique


execution going

unsat_successor
s

False (can be 
symbolic, but 
constrained to False).

Can be symbolic.

Unsatisfiable 
successors. These ar
successors whose 
guard conditions can 
only be false (i.e., 
jumps that cannot be 
taken, or the default 
branch of jumps that 
must be taken).

flat_successors
True (can be symbolic, 
but constrained to 
True).

Concrete value.

As noted above, state

in the successors
list can have symbolic
instruction pointers. 
This is rather 
confusing, as 
elsewhere in the code
(i.e., in 

SimEngineVEX.pr
cess , when it's time 
step that state forward
we make assumption
that a single program 
state only represents 
the execution of a 
single spot in the cod
To alleviate this, when
we encounter states i

successors  with 
symbolic instruction 
pointers, we compute
all possible concrete 
solutions (up to an 
arbitrary threshold of 
256) for them, and 
make a copy of the 
state for each such 
solution. We call this 
process "flattening". 
These 

flat_successors
are states, each of 
which has a different,
concrete instruction 
pointer. For example, 
the instruction pointer
of a state in 

successors  was 



X+5 , where X  had 

constraints of X > 
0x800000  and X <
0x800010 , we woul
flatten it into 16 
different 

flat_successors
states, one with an 
instruction pointer of 

0x800006 , one with

0x800007 , and so 

on until 0x800015 .

unconstrained_su
ccessors

True (can be symbolic, 
but constrained to 

True).

Symbolic (with more 
than 256 solutions).

During the flattening 
procedure described 
above, if it turns out 
that there are more 
than 256 possible 
solutions for the 
instruction pointer, we
assume that the 
instruction pointer has
been overwritten with
unconstrained data 
(i.e., a stack overflow 
with user data). This 
assumption is not 
sound in general. Suc
states are placed in 

unconstrained_s
ccessors  and not i

successors .

all_successors Anything Can be symbolic.

This is successors
+ 
unsat_successor
+ 
unconstrained_s
ccessors .

Breakpoints

TODO: rewrite this to fix the narrative



Like any decent execution engine, angr supports breakpoints. This is pretty cool! A point is set as follows:

>>> import angr1
>>> b = angr.Project('examples/fauxware/fauxware')2

3
# get our state4
>>> s = b.factory.entry_state()5

6
# add a breakpoint. This breakpoint will drop into ipdb right before a memory write happens7
>>> s.inspect.b('mem_write')8

9
# on the other hand, we can have a breakpoint trigger right *after* a memory write happens10
# we can also have a callback function run instead of opening ipdb.11
>>> def debug_func(state):12
...     print("State %s is about to do a memory write!")13

14
>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=debug_func)15

16
# or, you can have it drop you in an embedded IPython!17
>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=angr.BP_IPYTHON)18

There are many other places to break than a memory write. Here is the list. You can break at BP_BEFORE 
or BP_AFTER for each of these events.

Event type Event meaning

mem_read Memory is being read.

mem_write Memory is being written.

address_concretization A symbolic memory access is being resolved.

reg_read A register is being read.

reg_write A register is being written.

tmp_read A temp is being read.

tmp_write A temp is being written.

expr
An expression is being created (i.e., a result of an 
arithmetic operation or a constant in the IR).

statement An IR statement is being translated.

instruction A new (native) instruction is being translated.

irsb A new basic block is being translated.

constraints New constraints are being added to the state.

exit A successor is being generated from execution.



fork A symbolic execution state has forked into multipl
states.

symbolic_variable A new symbolic variable is being created.

call A call instruction is hit.

return A ret instruction is hit.

simprocedure A simprocedure (or syscall) is executed.

dirty A dirty IR callback is executed.

These events expose different attributes:

Event type Attribute name Attribute availability Attribute meaning

mem_read mem_read_address
BP_BEFORE or 
BP_AFTER

The address at which
memory is being read

mem_read mem_read_expr BP_AFTER
The expression at tha
address.

mem_read mem_read_length
BP_BEFORE or 
BP_AFTER

The length of the 
memory read.

mem_read mem_read_condition
BP_BEFORE or 
BP_AFTER

The condition of the 
memory read.

mem_write mem_write_address
BP_BEFORE or 
BP_AFTER

The address at which
memory is being 
written.

mem_write mem_write_length
BP_BEFORE or 
BP_AFTER

The length of the 
memory write.

mem_write mem_write_expr
BP_BEFORE or 
BP_AFTER

The expression that is
being written.

mem_write mem_write_condition
BP_BEFORE or 
BP_AFTER

The condition of the 
memory write.

reg_read reg_read_offset
BP_BEFORE or 
BP_AFTER

The offset of the 
register being read.

reg_read reg_read_length
BP_BEFORE or 
BP_AFTER

The length of the 
register read.

reg_read reg_read_expr BP_AFTER
The expression in the



register

reg_read reg_read_condition
BP_BEFORE or 
BP_AFTER

The condition of the 
register read.

reg_write reg_write_offset
BP_BEFORE or 
BP_AFTER

The offset of the 
register being written.

reg_write reg_write_length
BP_BEFORE or 
BP_AFTER

The length of the 
register write.

reg_write reg_write_expr
BP_BEFORE or 
BP_AFTER

The expression that is
being written.

reg_write reg_write_condition
BP_BEFORE or 
BP_AFTER

The condition of the 
register write.

tmp_read tmp_read_num
BP_BEFORE or 
BP_AFTER

The number of the 
temp being read.

tmp_read tmp_read_expr BP_AFTER
The expression of the
temp.

tmp_write tmp_write_num
BP_BEFORE or 
BP_AFTER

The number of the 
temp written.



These attributes can be accessed as members of state.inspect  during the appropriate breakpoint 
callback to access the appropriate values. You can even modify these value to modify further uses of the 
values!

>>> def track_reads(state):1
...     print('Read', state.inspect.mem_read_expr, 'from', state.inspect.mem_read_address)2
...3
>>> s.inspect.b('mem_read', when=angr.BP_AFTER, action=track_reads)4

Additionally, each of these properties can be used as a keyword argument to inspect.b  to make the 
breakpoint conditional:

# This will break before a memory write if 0x1000 is a possible value of its target express1
>>> s.inspect.b('mem_write', mem_write_address=0x1000)2

3
# This will break before a memory write if 0x1000 is the *only* value of its target express4
>>> s.inspect.b('mem_write', mem_write_address=0x1000, mem_write_address_unique=True)5

6
# This will break after instruction 0x8000, but only 0x1000 is a possible value of the last7
>>> s.inspect.b('instruction', when=angr.BP_AFTER, instruction=0x8000, mem_read_expr=0x10008



Cool stuff! In fact we can even specify a function as a condition:

# this is a complex condition that could do anything! In this case, it makes sure that RAX 1
# that the basic block starting at 0x8004 was executed sometime in this path's history2
>>> def cond(state):3
...     return state.eval(state.regs.rax, cast_to=str) == 'AAAA' and 0x8004 in state.inspec4

5
>>> s.inspect.b('mem_write', condition=cond)6

That is some cool stuff!

Caution about mem_read  breakpoint

The mem_read  breakpoint gets triggered anytime there are memory reads by either the executing program 

or the binary analysis. If you are using breakpoint on mem_read  and also using state.mem  to load data 
from memory addresses, then know that the breakpoint will be fired as you are technically reading memory.

So if you want to load data from memory and not trigger any mem_read  breakpoint you have had set up, 

then use state.memory.load  with the keyword arguments disable_actions=True  and 

inspect=False .

This is also true for state.find  and you can use the same keyword arguments to prevent mem_read  
breakpoints from firing

Analyses

angr's goal is to make it easy to carry out useful analyses on binary programs. To this end, angr allows you 
to package analysis code in a common format that can be easily applied to any project. We will cover writing 

your own analyses , but the idea is that all the analyses appear under project.analyses  (for 

example, project.analyses.CFGFast() ) and can be called as functions, returning analysis result 
instances.

later

Built-in Analyses

Name Description

CFGFast
Constructs a fast Control Flow Graph of the 
program

CFGEmulated
Constructs an accurate Control Flow Graph of the
program

VFG
Performs VSA on every function of the program, 
creating a Value Flow Graph and detecting stack 
variables



DDG Calculates a Data Dependency Graph, allowing 
one to determine what statements a given value 
depends on

BackwardSlice
Computes a Backward Slice of a program with 
respect to a certain target

Identifier Identifies common library functions in CGC binarie

More!
angr has quite a few analyses, most of which work
If you'd like to know how to use one, please subm
an issue requesting documentation.

Resilience

Analyses can be written to be resilient, and catch and log basically any error. These errors, depending on 

how they're caught, are logged to the errors  or named_errors  attribute of the analysis. However, you 
might want to run an analysis in "fail fast" mode, so that errors are not handled. To do this, the argument 

fail_fast=True  can be passed into the analysis constructor.

Remarks

Congratulations! If you've read this far through the book (editor's note: this comment only really applies when
we've actually finished writing all the TODOs so far) then you've been introduced to all the fundamental 
components of angr necessary to get started with binary analysis.

Ultimately, angr is just an emulator. It is a highly instrumentable and very unique emulator with lots of 
considerations for environment, true, but at its core, the work you do with angr is about extracting knowledge 
about how a bunch of bytecode behaves on a CPU. In designing angr, we've tried to provide you with the 
tools and abstractions on top of this emulator to make certain common tasks more useful, but there's no 

problem you can't solve just by working with a SimState and observing the affects of .step() .

As you read further into this book, we'll describe more technical subjects and how to tune angr's behavior for 
complicated scenarios. This knowledge should inform your use of angr so you can take the quickest path to 
a solution to any given problem, but ultimately, you will want to solve problems by exercising creativity with 
the tools at your disposal. If you can take a problem and wrangle it into a form where it has defined and 
tractable inputs and outputs, you can absolutely use angr to achieve your goals, given that these goals 
involve analyzing binaries. None of the abstractions or instrumentations we provide are the end-all of how to 
use angr for a given task - angr is designed so it can be used in as integrated or as ad-hoc of a manner as 
you desire. If you see a path from problem to solution, take it.

Of course, it's very difficult to become well-acquainted with such a huge piece of technology as angr. To this 
end you can absolutely lean on the community (through the  is the best option) to discuss angr 
and solving problems with it.

angr slack

Good luck!

https://angr.io/invite


Built-in Analyses

CFG

angr includes analyses to recover the control-flow graph of a binary program. This also includes recovery of 
function boundaries, as well as reasoning about indirect jumps and other useful metadata.

General ideas

A basic analysis that one might carry out on a binary is a Control Flow Graph. A CFG is a graph with 
(conceptually) basic blocks as nodes and jumps/calls/rets/etc as edges.

In angr, there are two types of CFG that can be generated: a static CFG (CFGFast) and a dynamic CFG 
(CFGEmulated).

CFGFast uses static analysis to generate a CFG. It is significantly faster, but is theoretically bounded by the 
fact that some control-flow transitions can only be resolved at execution-time. This is the same sort of CFG 
analysis performed by other popular reverse-engineering tools, and its results are comparable with their 
output.

CFGEmulated uses symbolic execution to capture the CFG. While it is theoretically more accurate, it is 
dramatically slower. It is also typically less complete, due to issues with the accuracy of emulation (system 
calls, missing hardware features, and so on)

If you are unsure which CFG to use, or are having problems with CFGEmulated, try CFGFast first.

A CFG can be constructed by doing:

>>> import angr1
# load your project2
>>> p = angr.Project('/bin/true', load_options={'auto_load_libs': False})3

4
# Generate a static CFG5
>>> cfg = p.analyses.CFGFast()6

7
# generate a dynamic CFG8
>>> cfg = p.analyses.CFGEmulated(keep_state=True)9

Using the CFG

The CFG, at its core, is a  di-graph. This means that all of the normal NetworkX APIs are available:NetworkX

https://networkx.github.io/


>>> print("This is the graph:", cfg.graph)1
>>> print("It has %d nodes and %d edges" % (len(cfg.graph.nodes()), len(cfg.graph.edges()))2

The nodes of the CFG graph are instances of class CFGNode . Due to context sensitivity, a given basic 
block can have multiple nodes in the graph (for multiple contexts).

# this grabs *any* node at a given location:1
>>> entry_node = cfg.get_any_node(p.entry)2

3
# on the other hand, this grabs all of the nodes4
>>> print("There were %d contexts for the entry block" % len(cfg.get_all_nodes(p.entry)))5

6
# we can also look up predecessors and successors7
>>> print("Predecessors of the entry point:", entry_node.predecessors)8
>>> print("Successors of the entry point:", entry_node.successors)9
>>> print("Successors (and type of jump) of the entry point:", [ jumpkind + " to " + str(no10

Viewing the CFG

Control-flow graph rendering is a hard problem. angr does not provide any built-in mechanism for rendering 
the output of a CFG analysis, and attempting to use a traditional graph rendering library, like matplotlib, will 
result in an unusable image.

One solution for viewing angr CFGs is found in .axt's angr-utils repository

Shared Libraries

The CFG analysis does not distinguish between code from different binary objects. This means that by 
default, it will try to analyze control flow through loaded shared libraries. This is almost never intended 
behavior, since this will extend the analysis time to several days, probably. To load a binary without shared 

libraries, add the following keyword argument to the Project  constructor: load_options=
{'auto_load_libs': False}

Function Manager

The CFG result produces an object called the Function Manager, accessible through 

cfg.kb.functions . The most common use case for this object is to access it like a dictionary. It maps 

addresses to Function  objects, which can tell you properties about a function.

>>> entry_func = cfg.kb.functions[p.entry]1

https://github.com/axt/angr-utils


Functions have several important properties!

entry_func.block_addrs  is a set of addresses at which basic blocks belonging to the function 
begin.

entry_func.blocks  is the set of basic blocks belonging to the function, that you can explore and 
disassemble using capstone.

entry_func.string_references()  returns a list of all the constant strings that were referred to 
at any point in the function.

They are formatted as (addr, string)  tuples, where addr is the address in the binary's data 
section the string lives, and string is a python string that contains the value of the string.

entry_func.returning  is a boolean value signifying whether or not the function can return.

False  indicates that all paths do not return.

entry_func.callable  is an angr Callable object referring to this function.
You can call it like a python function with python arguments and get back an actual result (may be 
symbolic) as if you ran the function with those arguments!

entry_func.transition_graph  is a NetworkX DiGraph describing control flow within the 
function itself. It resembles the control-flow graphs IDA displays on a per-function level.

entry_func.name  is the name of the function.

entry_func.has_unresolved_calls  and entry.has_unresolved_jumps  have to do with 
detecting imprecision within the CFG.
Sometimes, the analysis cannot detect what the possible target of an indirect call or jump could be.

If this occurs within a function, that function will have the appropriate has_unresolved_*  value set 

to True .

entry_func.get_call_sites()  returns a list of all the addresses of basic blocks which end in 
calls out to other functions.

entry_func.get_call_target(callsite_addr)  will, given callsite_addr  from the list 
of call site addresses, return where that callsite will call out to.

entry_func.get_call_return(callsite_addr)  will, given callsite_addr  from the list 
of call site addresses, return where that callsite should return to.

and many more !

CFGFast details

CFGFast peforms a static control-flow and function recovery. Starting with the entry point (or any user-
defined points) roughly the following procedure is performed:

1) The basic block is lifted to VEX IR, and all its exits (jumps, calls, returns, or continuation to the next block) 
are collected 2) For each exit, if this exit is a constant address, we add an edge to the CFG of the correct 
type, and add the destination block to the set of blocks to be analyzed. 3) In the event of a function call, the 
destination block is also considered the start of a new function. If the target function is known to return, the 
block after the call is also analyzed. 4) In the event of a return, the current function is marked as returning, 



and the appropriate edges in the callgraph and CFG are updated. 4) For all indirect jumps (block exits with a 
non-constant destination) Indirect Jump Resolution is performed.

Finding function starts

CFGFast supports multiple ways of deciding where a function starts and ends.

First the binary's main entry point will be analyzed. For binaries with symbols (e.g., non-stripped ELF and 
PE binaries) all function symbols will be used as possible starting points. For binaries without symbols, such

as stripped binaries, or binaries loaded using the blob  loader backend, CFG will scan the binary for a set 
of function prologues defined for the binary's architecture. Finally, by default, the binary's entire code section 
will be scanned for executable contents, regardless of prologues or symbols.

In addition to these, as with CFGEmulated, function starts will also be considered when they are the target of
a "call" instruction on the given architecture.

All of these options can be disabled

FakeRets and function returns

When a function call is observed, we first assume that the callee function eventually returns, and treat the 
block after it as part of the caller function. This inferred control-flow edge is known as a "FakeRet". If, in 
analyzing the callee, we find this not to be true, we update the CFG, removing this "FakeRet", and updating 
the callgraph and function blocks accordingly. As such, the CFG is recovered twice. In doing this, the set of 
blocks in each function, and whether the function returns, can be recovered and propagated directly.

Indirect Jump Resolution

TODO

Options

These are the most useful options when working with CFGFast:

Option Description

force_complete_scan

(Default: True) Treat the entire binary as code for 
the purposes of function detection.  If you have a 
blob (e.g., mixed code and data) you want to turn 
this off.

function_starts
A list of addresses, to use as entry points into the 
analysis.

normalize

(Default: False) Normalize the resulting functions 
(e.g., each basic block belongs to at most one 
function, back-edges point to the start of basic 
blocks)

(Default: True) Perform additional analysis to 



resolve_indirect_jumps attempt to find targets for every indirect jump found
during CFG creation

more!
Examine the docstring on p.analyses.CFGFast fo
more up-to-date options

CFGEmulated details

Options

The most common options for CFGEmulated include:

Option Description

context_sensitivity_level

This sets the context sensitivity level of the 
analysis. See the context sensitivity level section 
below for more information. This is 1 by default.

starts
A list of addresses, to use as entry points into the 
analysis.

avoid_runs A list of addresses to ignore in the analysis.

call_depth

Limit the depth of the analysis to some number 
calls. This is useful for checking which functions a
specific function can directly jump to (by setting 

call_depth  to 1).

initial_state
An initial state can be provided to the CFG, which
will use throughout its analysis.

keep_state

To save memory, the state at each basic block is 

discarded by default. If keep_state  is True, the
state is saved in the CFGNode.

enable_symbolic_back_traversal
Whether to enable an intensive technique for 
resolving indirect jumps

enable_advanced_backward_slicing
Whether to enable another intensive technique fo
resolving direct jumps

Examine the docstring on 



more! p.analyses.CFGEmulated for more up-to-date 
options

Context Sensitivity Level

angr constructs a CFG by executing every basic block and seeing where it goes. This introduces some 
challenges: a basic block can act differently in different contexts. For example, if a block ends in a function 
return, the target of that return will be different, depending on different callers of the function containing that 
basic block.

The context sensitivity level is, conceptually, the number of such callers to keep on the callstack. To explain 
this concept, let's look at the following code:

void error(char *error)1
{2
    puts(error);3
}4

5
void alpha()6
{7
    puts("alpha");8
    error("alpha!");9
}10

11
void beta()12
{13
    puts("beta");14
    error("beta!");15
}16

17
void main()18
{19
    alpha();20
    beta();21
}22

The above sample has four call chains: main>alpha>puts , main>alpha>error>puts  and 

main>beta>puts , and main>beta>error>puts . While, in this case, angr can probably execute 
both call chains, this becomes unfeasible for larger binaries. Thus, angr executes the blocks with states 
limited by the context sensitivity level. That is, each function is re-analyzed for each unique context that it is 
called in.

For example, the puts()  function above will be analyzed with the following contexts, given different 
context sensitivity levels:

Level Meaning Contexts

0 Callee-only puts



1 One caller, plus callee alpha>puts  beta>puts  

error>puts

2 Two callers, plus callee

alpha>error>puts  

main>alpha>puts  

beta>error>puts  

main>beta>puts

3 Three callers, plus callee

main>alpha>error>puts
main>alpha>puts  

main>beta>error>puts  

main>beta>puts

The upside of increasing the context sensitivity level is that more information can be gleaned from the CFG. 

For example, with context sensitivity of 1, the CFG will show that, when called from alpha , puts  returns 

to alpha , when called from error , puts  returns to error , and so forth. With context sensitivity of 0, 

the CFG simply shows that puts  returns to alpha , beta , and error . This, specifically, is the context 
sensitivity level used in IDA. The downside of increasing the context sensitivity level is that it exponentially 
increases the analysis time.

Backward Slicing

A program slice is a subset of statements that is obtained from the original program, usually by removing 
zero or more statements. Slicing is often helpful in debugging and program understanding. For instance, it’s 
usually easier to locate the source of a variable on a program slice.

A backward slice is constructed from a target in the program, and all data flows in this slice end at the target.

angr has a built-in analysis, called BackwardSlice , to construct a backward program slice. This section 

will act as a how-to for angr’s BackwardSlice  analysis, and followed by some in-depth discussion over 
the implementation choices and limitations.

First Step First

To build a BackwardSlice , you will need the following information as input.

Required CFG. A control flow graph (CFG) of the program. This CFG must be an accurate CFG 
(CFGEmulated).

Required Target, which is the final destination that your backward slice terminates at.

Optional CDG. A control dependence graph (CDG) derived from the CFG.

angr has a built-in analysis CDG  for that purpose.

Optional DDG. A data dependence graph (DDG) built on top of the CFG.

angr has a built-in analysis DDG  for that purpose.



A BackwardSlice  can be constructed with the following code:

>>> import angr1
# Load the project2
>>> b = angr.Project("examples/fauxware/fauxware", load_options={"auto_load_libs": False})3

4
# Generate a CFG first. In order to generate data dependence graph afterwards, you’ll have 5
# - keep all input states by specifying keep_state=True.6
# - store memory, register and temporary values accesses by adding the angr.options.refs op7
# Feel free to provide more parameters (for example, context_sensitivity_level) for CFG 8
# recovery based on your needs.9
>>> cfg = b.analyses.CFGEmulated(keep_state=True, 10
...                              state_add_options=angr.sim_options.refs, 11
...                              context_sensitivity_level=2)12

13
# Generate the control dependence graph14
>>> cdg = b.analyses.CDG(cfg)15

16
# Build the data dependence graph. It might take a while. Be patient!17
>>> ddg = b.analyses.DDG(cfg)18

19
# See where we wanna go... let’s go to the exit() call, which is modeled as a 20

# SimProcedure.21
>>> target_func = cfg.kb.functions.function(name="exit")22
# We need the CFGNode instance23
>>> target_node = cfg.get_any_node(target_func.addr)24

25
# Let’s get a BackwardSlice out of them!26
# `targets` is a list of objects, where each one is either a CodeLocation 27
# object, or a tuple of CFGNode instance and a statement ID. Setting statement 28
# ID to -1 means the very beginning of that CFGNode. A SimProcedure does not 29
# have any statement, so you should always specify -1 for it.30
>>> bs = b.analyses.BackwardSlice(cfg, cdg=cdg, ddg=ddg, targets=[ (target_node, -1) ])31

32
# Here is our awesome program slice!33
>>> print(bs)34

Sometimes it’s difficult to get a data dependence graph, or you may simply want build a program slice on top 

of a CFG. That’s basically why DDG is an optional parameter. You can build a BackwardSlice  solely 
based on CFG by doing:

>>> bs = b.analyses.BackwardSlice(cfg, control_flow_slice=True)1
BackwardSlice (to [(<CFGNode exit (0x10000a0) [0]>, -1)])2

Using The BackwardSlice  Object

Before you go ahead and use BackwardSlice  object, you should notice that the design of this class is 



fairly arbitrary right now, and it is still subject to change in the near future. We’ll try our best to keep this 
documentation up-to-date.

Members

After construction, a BackwardSlice  has the following members which describe a program slice:

Member Mode Meaning

runs_in_slice CFG-only

A networkx.DiGraph  
instance showing addresses of
blocks and SimProcedures in 
the program slice, as well as 
transitions between them

cfg_nodes_in_slice CFG-only

A networkx.DiGraph  
instance showing CFGNodes i
the program slice and transition
in between

chosen_statements With DDG

A dict mapping basic block 
addresses to lists of statement 
IDs that are part of the program
slice

chosen_exits With DDG

A dict mapping basic block 
addresses to a list of “exits”. 
Each exit in the list is a valid 
transition in the program slice

Each “exit” in chosen_exit  is a tuple including a statement ID and a list of target addresses. For 
example, an “exit” might look like the following:

(35, [ 0x400020 ])1

If the “exit” is the default exit of a basic block, it’ll look like the following:

(“default”, [ 0x400085 ])1

Export an Annotated Control Flow Graph

TODO



User-friendly Representation
Take a look at BackwardSlice.dbg_repr() !

TODO

Implementation Choices

TODO

Limitations

TODO

Completeness

TODO

Soundness

TODO

Function Identifier

The identifier uses test cases to identify common library functions in CGC binaries. It prefilters by finding 
some basic information about stack variables/arguments. The information of about stack variables can be 
generally useful in other projects.

>>> import angr1
2
# get all the matches3
>>> p = angr.Project("../binaries/tests/i386/identifiable")4
# note analysis is executed via the Identifier call5
>>> idfer = p.analyses.Identifier()6
>>> for funcInfo in idfer.func_info:7
...     print(hex(funcInfo.addr), funcInfo.name)8

9
0x8048e60 memcmp10
0x8048ef0 memcpy11
0x8048f60 memmove12
0x8049030 memset13
0x8049320 fdprintf14
0x8049a70 sprintf15
0x8049f40 strcasecmp16



0x804a0f0 strcmp17 0x804a190 strcpy18
0x804a260 strlen19
0x804a3d0 strncmp20
0x804a620 strtol21
0x804aa00 strtol22
0x80485b0 free23
0x804aab0 free24
0x804aad0 free25
0x8048660 malloc26
0x80485b0 free27

Advanced Topics

Gotchas

This section contains a list of gotchas that users/victims of angr frequently run into.

SimProcedure inaccuracy

To make symbolic execution more tractable, angr replaces common library functions with summaries written 
in Python. We call these summaries SimProcedures. SimProcedures allow us to mitigate path explosion 

that would otherwise be introduced by, for example, strlen  running on a symbolic string.

Unfortunately, our SimProcedures are far from perfect. If angr is displaying unexpected behavior, it might be 
caused by a buggy/incomplete SimProcedure. There are several things that you can do:

1. Disable the SimProcedure (you can exclude specific SimProcedures by passing options to the 
). This has the drawback of likely leading to a path explosion, unless you are very 

careful about constraining the input to the function in question. The path explosion can be partially 
mitigated with other angr capabilities (such as Veritesting).

angr.Project class

2. Replace the SimProcedure with something written directly to the situation in question. For example, our 

scanf  implementation is not complete, but if you just need to support a single, known format string, 
you can write a hook to do exactly that.

3. Fix the SimProcedure.

Unsupported syscalls

System calls are also implemented as SimProcedures. Unfortunately, there are system calls that we have 

http://angr.io/api-doc/angr.html#module-angr.project


not yet implemented in angr There are several workarounds for an unsupported system call:

1. Implement the system call. TODO: document this process

2. Hook the callsite of the system call (using project.hook ) to make the required modifications to the 
state in an ad-hoc way.

3. Use the state.posix.queued_syscall_returns  list to queue syscall return values. If a return 
value is queued, the system call will not be executed, and the value will be used instead. Furthermore, a 
function can be queued instead as the "return value", which will result in that function being applied to 
the state when the system call is triggered.

Symbolic memory model

The default memory model used by angr is inspired by . This memory model supports limited 
symbolic reads and writes. If the memory index of a read is symbolic and the range of possible values of this 
index is too wide, the index is concretized to a single value. If the memory index of a write is symbolic at all, 
the index is concretized to a single value. This is configurable by changing the memory concretization 

strategies of state.memory .

Mayhem

Symbolic lengths

SimProcedures, and especially system calls such as read()  and write()  might run into a situation 
where the length of a buffer is symbolic. In general, this is handled very poorly: in many cases, this length 
will end up being concretized outright or retroactively concretized in later steps of execution. Even in cases 
when it is not, the source or destination file might end up looking a bit "weird".

The Whole Pipeline

Understanding the Execution Pipeline

If you've made it this far you know that at its core, angr is a highly flexible and intensely instrumentable 
emulator. In order to get the most mileage out of it, you'll want to know what happens at every step of the way

when you say simgr.run() .

This is intended to be a more advanced document; you'll need to understand the function and intent of 

SimulationManager , ExplorationTechnique , SimState , and SimEngine  in order to 
understand what we're talking about at times! You may want to have the angr source open to follow along 
with this.

At every step along the way, each function will take **kwargs  and pass them along to the next function in 
the hierarchy, so you can pass parameters to any point in the hierarchy and they will trickle down to 
everything below.

https://users.ece.cmu.edu/~dbrumley/pdf/Cha%20et%20al._2012_Unleashing%20Mayhem%20on%20Binary%20Code.pdf


Simulation Managers

So you've set your analysis in motion. Time to begin our journey.

run()

SimulationManager.run()  takes several optional parameters, all of which control when to break out 

of the stepping loop. Notably, n , and until . n  is used immediately - the run function loops, calling the 

step()  function and passing on all its parameters until either n  steps have happened or some other 

termination condition has occurred. If n  is not provided, it defaults to 1, unless an until  function is 
provided, in which case there will be no numerical cap on the loop. Additionally, the stash that is being used 
is taken into consideration, as if it becomes empty execution must terminate.

So, in summary, when you call run() , step()  will be called in a loop until any of the following:

1. The n  number of steps have elapsed

2. The until  function returns true

3. The exploration techniques complete()  hooks (combined via the 

SimulationManager.completion_mode  parameter/attribute - it is by default the any  builtin 

function but can be changed to all  for example) indicate that the analysis is complete

4. The stash being executed becomes empty

An aside: explore()

SimulationManager.explore()  is a very thin wrapper around run()  which adds the Explorer  
exploration technique, since performing one-off explorations is a very common action. Its code in its entirety 
is below:

num_find += len(self._stashes[find_stash]) if find_stash in self._stashes else 01
tech = self.use_technique(Explorer(find, avoid, find_stash, avoid_stash, cfg, num_find))2

3
try:4
    self.run(stash=stash, n=n, **kwargs)5
finally:6
    self.remove_technique(tech)7

8
return self9

Exploration technique hooking

From here down, every function in the simulation manager can be instrumented by an exploration technique.
The exact mechanism through which this works is that when you call 

SimulationManager.use_technique() , angr monkeypatches the simulation manager to replace 
any function implemented in the exploration technique's body with a function which will first call the 
exploration technique's function, and then on the second call will call the original function. This is somewhat 
messy to implement and certainly not thread safe by any means, but does produce a clean and powerful 



interface for exploration techniques to instrument stepping behavior, either before or after the original 
function is called, even choosing whether or not to call the original function whatsoever. Additionally, it 
allows multiple exploration techniques to hook the same function, as the monkeypatched function simply 
becomes the "original" function for the next applied hook

step()

There is a lot of complicated logic in step()  to handle degenerate cases - mostly implementing the 

population of the deadended  stash, the save_unsat  option, and calling the filter()  exploration 
technique hooks. Beyond this, though, most of the logic is looping through the stash specified by the 

stash  argument and calling step_state()  on each state, then applying the dict result of 

step_state()  to the stash list. Finally, if the step_func  parameter is provided, it is called with the 
simulation manager as a parameter before the step ends.

step_state()

The default step_state() , which can be overridden or instrumented by exploration techniques, is also 

simple - it calls successors() , which returns a SimSuccessors  object, and then translates it into a 
dict mapping stash names to new states which should be added to that stash. It also implements error 

handling - if successors()  throws an error, it will be caught and an ErrorRecord  will be inserted into 

SimulationManager.errored .

successors()

We've almost made it out of SimulationManager. successors() , which can also be instrumented by 

exploration techniques, is supposed to take a state and step it forward, returning a SimSuccessors  

object categorizing its successors independently of any stash logic. If the successor_func  parameter 
was provided, it is used and its return value is returned directly. If this parameter was not provided, we use 

the project.factory.successors  method to tick the state forward and get our SimSuccessors .

The Engine

When we get to the actual successors generation, we need to figure out how to actually perform the 
execution. Hopefully, the angr documentation has been organized in a way such that by the time you reach 

this page, you know that a SimEngine  is a device that knows how to take a state and produce its 

successors. There is only one "default engine" per project, but you can provide the engine  parameter to 
specify which engine will be used to perform the step.

Keep in mind that this parameter can be provided way at the top, to .step() , .explore() , .run()  or
anything else that starts execution, and they will be filtered down to this level. Any additional parameters will 
continue being passed down, until they reach the part of the engine they are intended for. The engine will 
discard any parameters it doesn't understand.

Generally, the main entry point of an engine is SimEngine.process() , which can return whatever result

it likes, but for simulation managers, engines are required to use SuccessorsMixin , which provides a 

process()  method, which creates a SimSuccessors  object and then calls 

process_successors()  so that other mixins can fill it out.

angr's default engine, the UberEngine , contains several mixins which provide the 



process successors()  method:

SimEngineFailure  - handles stepping states with degenerate jumpkinds

SimEngineSyscall  - handles stepping states which have performed a syscall and need it executed

HooksMixin  - handles stepping states which have reached a hooked address and need the hook 
executed

SimEngineUnicorn  - executes machine code via the unicorn engine

SootMixin  - executes java bytecode via the SOOT IR

HeavyVEXMixin  - executes machine code via the VEX IR

Each of these mixins is implemented to fill out the SimSuccessors  object if they can handle the current 

state, otherwise they call super()  to pass the job on to the next class in the stack.

Engine mixins

SimEngineFailure  handles error cases. It is only used when the previous jumpkind is one of 

Ijk_EmFail , Ijk_MapFail , Ijk_Sig* , Ijk_NoDecode  (but only if the address is not hooked), or 

Ijk_Exit . In the first four cases, its action is to raise an exception. In the last case, its action is to simply 
produce no successors.

SimEngineSyscall  services syscalls. It is used when the previous jumpkind is anything of the form 

Ijk_Sys* . It works by making a call into SimOS  to retrieve the SimProcedure that should be run to 
respond to this syscall, and then running it! Pretty simple.

HooksMixin  provides the hooking functionality in angr. It is used when a state is at an address that is 

hooked, and the previous jumpkind is not Ijk_NoHook . It simply looks up the associated SimProcedure 

and runs it on the state! It also takes the parameter procedure , which will cause the given procedure to 
be run for the current step even if the address is not hooked.

SimEngineUnicorn  performs concrete execution with the Unicorn Engine. It is used when the state 

option o.UNICORN  is enabled, and a myriad of other conditions designed for maximum efficiency 
(described below) are met.

SootMixin  performs execution over the SOOT IR. Not very important unless you are analyzing java 
bytecode, in which case it is very important.

SimEngineVEX  is the big fellow. It is used whenever any of the previous can't be used. It attempts to lift 
bytes from the current address into an IRSB, and then executes that IRSB symbolically. There are a huge 
number of parameters that can control this process, so I will merely link to the  describing 
them.

API reference

The exact process by which SimEngineVEX digs into an IRSB is a little complicated, but essentially it runs 
all the block's statements in order. This code is worth reading if you want to see the true inner core of angr's 
symbolic execution.

When using Unicorn Engine

http://angr.io/api-doc/angr.html#angr.engines.vex.engine.SimEngineVEX.process


If you add the o.UNICORN  state option, at every step SimEngineUnicorn  will be invoked, and try to 
see if it is allowed to use Unicorn to execute concretely.

What you REALLY want to do is to add the predefined set o.unicorn  (lowercase) of options to your state:

unicorn = { UNICORN, UNICORN_SYM_REGS_SUPPORT, INITIALIZE_ZERO_REGISTERS, UNICORN_HANDLE_TR1

These will enable some additional functionalities and defaults which will greatly enhance your experience. 

Additionally, there are a lot of options you can tune on the state.unicorn  plugin.

A good way to understand how unicorn works is by examining the logging output 

( logging.getLogger('angr.engines.unicorn_engine').setLevel('DEBUG'); 
logging.getLogger('angr.state_plugins.unicorn_engine').setLevel('DEBUG')  from 
a sample run of unicorn.

INFO    | 2017-02-25 08:19:48,012 | angr.state_plugins.unicorn | started emulation at 0x4011

Here, angr diverts to unicorn engine, beginning with the basic block at 0x4012f9. The maximum step count 
is set to 1000000, so if execution stays in Unicorn for 1000000 blocks, it'll automatically pop out. This is to 

avoid hanging in an infinite loop. The block count is configurable via the state.unicorn.max_steps  
variable.

INFO    | 2017-02-25 08:19:48,014 | angr.state_plugins.unicorn | mmap [0x401000, 0x401fff]1
INFO    | 2017-02-25 08:19:48,016 | angr.state_plugins.unicorn | mmap [0x7fffffffffe0000, 02
INFO    | 2017-02-25 08:19:48,019 | angr.state_plugins.unicorn | mmap [0x6010000, 0x601ffff3
INFO    | 2017-02-25 08:19:48,022 | angr.state_plugins.unicorn | mmap [0x602000, 0x602fff]4
INFO    | 2017-02-25 08:19:48,023 | angr.state_plugins.unicorn | mmap [0x400000, 0x400fff]5
INFO    | 2017-02-25 08:19:48,025 | angr.state_plugins.unicorn | mmap [0x7000000, 0x7000fff6

angr performs lazy mapping of data that is accessed by unicorn engine, as it is accessed. 0x401000 is the 
page of instructions that it is executing, 0x7fffffffffe0000 is the stack, and so on. Some of these pages are 
symbolic, meaning that they contain at least some data that, when accessed, will cause execution to abort 
out of Unicorn.

INFO    | 2017-02-25 08:19:48,037 | angr.state_plugins.unicorn | finished emulation at 0x701

Execution stays in Unicorn for 3 basic blocks (a computational waste, considering the required setup), after 
which it reaches a simprocedure location and jumps out to execute the simproc in angr.

INFO    | 2017-02-25 08:19:48,076 | angr.state_plugins.unicorn | started emulation at 0x4011
INFO    | 2017-02-25 08:19:48,077 | angr.state_plugins.unicorn | mmap [0x401000, 0x401fff]2
INFO    | 2017-02-25 08:19:48,079 | angr.state_plugins.unicorn | mmap [0x7fffffffffe0000, 03
INFO    | 2017-02-25 08:19:48,081 | angr.state_plugins.unicorn | mmap [0x6010000, 0x601ffff4

After the simprocedure, execution jumps back into Unicorn.



WARNING | 2017-02-25 08:19:48,082 | angr.state_plugins.unicorn | fetching empty page [0x0, 1
INFO    | 2017-02-25 08:19:48,103 | angr.state_plugins.unicorn | finished emulation at 0x402

Execution bounces out of Unicorn almost right away because the binary accessed the zero-page.

INFO    | 2017-02-25 08:19:48,120 | angr.engines.unicorn_engine | not enough runs since las1
INFO    | 2017-02-25 08:19:48,125 | angr.engines.unicorn_engine | not enough runs since las2

To avoid thrashing in and out of Unicorn (which is expensive), we have cooldowns (attributes of the 

state.unicorn  plugin) that wait for certain conditions to hold (i.e., no symbolic memory accesses for X 
blocks) before jumping back into unicorn when a unicorn run is aborted due to anything but a simprocedure 
or syscall. Here, the condition it's waiting for is for 100 blocks to be executed before jumping back in.

The Mixin Pattern

If you are trying to work more intently with the deeper parts of angr, you will need to understand one of the 
design patterns we use frequently: the mixin pattern.

In brief, the mixin pattern is where python's subclassing features is used not to implement IS-A relationships 
(a Child is a kind of Person) but instead to implement pieces of functionality for a type in different classes to 
make more modular and maintainable code. Here's an example of the mixin pattern in action:

class Base:1
    def add_one(self, v):2
        return v + 13

4
class StringsMixin(Base):5
    def add_one(self, v):6
        coerce = type(v) is str7
        if coerce:8
            v = int(v)9
        result = super().add_one(v)10
        if coerce:11
            result = str(result)12
        return result13

14
class ArraysMixin(Base):15
    def add_one(self, v):16
        if type(v) is list:17
            return [super().add_one(v_x) for v_x in v]18
        else:19

            return super().add_one(v)20
21

class FinalClass(ArraysMixin, StringsMixin, Base):22



pass23

With this construction, we are able to define a very simple interface in the Base  class, and by "mixing in" 

two mixins, we can create the FinalClass  which has the same interface but with additional features. 
This is accomplished through python's powerful multiple inheritance model, which handles method dispatch 
by creating a method resolution order, or MRO, which is unsuprisingly a list which determines the order in 

which methods are called as execution proceeds through super()  calls. You can view a class' MRO as 
such:

FinalClass.__mro__1
2
(FinalClass, ArraysMixin, StringsMixin, Base, object)3

This means that when we take an instance of FinalClass  and call add_one() , python first checks to 

see if FinalClass  defines an add_one , and then ArraysMixin , and so on and so forth. 

Furthermore, when ArraysMixin  calls super().add_one() , python will skip past ArraysMixin  

in the MRO, first checking if StringsMixin  defines an add_one , and so forth.

Because multiple inheritance can create strange dependency graphs in the subclass relationship, there are 
rules for generating the MRO and for determining if a given mix of mixins is even allowed. This is important 
to understand when building complex classes with many mixins which have dependencies on each other. In 
short: left-to-right, depth-first, but deferring any base classes which are shared by multiple subclasses (the 
merge point of a diamond pattern in the inheritance graph) until the last point where they would be 
encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A), E(C, D), then 
the method resolution order will be E, C, B, D, A. If there is any case in which the MRO would be 
ambiguous, the class construction is illegal and will throw an exception at import time.

This is complicated! If you find yourself confused, the canonical document explaining the rationale, history, 
and mechanics of python's multiple inheritence can be found .here

Mixins in Claripy Solvers

yan please write something here

Mixins in angr Engines

The main entry point to a SimEngine is process() , but how do we determine what that does?

The mixin model is used in SimEngine and friends in order to allow pieces of functionality to be reused 

between static and symbolic analyses. The default engine, UberEngine , is defined as follows:

class UberEngine(SimEngineFailure, SimEngineSyscall, HooksMixin, SimEngineUnicorn, SuperFas1
    pass2

https://www.python.org/download/releases/2.3/mro/


Each of these mixins provides either execution through a different medium or some additional 
instrumentation feature. Though they are not listed here explicitly, there are some base classes implicit to 
this hierarchy which set up the way this class is traversed. Most of these mixins inherit from 

SuccessorsMixin , which is what provides the basic process()  implementation. This function sets 

up the SimSuccessors  for the rest of the mixins to fill in, and then calls process_successors() , 
which each of the mixins which provide some mode of execution implement. If the mixin can handle the 

step, it does so and returns, otherwise it calls super().process_successors() . In this way, the MRO 
for the engine class determines what the order of precedence for the engine's pieces is.

HeavyVEXMixin and friends

Let's take a closer look at the last mixin, HeavyVEXMixin . If you look at the module hierarchy of the angr 

engines  submodule, you will see that the vex  submodule has a lot of pieces in it which are organized 
by how tightly tied to particular state types or data types they are. The heavy VEX mixin is one version of the 
culmination of all of these. Let's look at its definition:

class HeavyVEXMixin(SuccessorsMixin, ClaripyDataMixin, SimStateStorageMixin, VEXMixin, VEXL1
    ...2
    # a WHOLE lot of implementation3

So, the heavy VEX mixin is meant to provide fully instrumented symbolic execution on a SimState. What 
does this entail? The mixins tell the tale.

First, the plain VEXMixin . This mixin is designed to provide the barest-bones framework for processing a 
VEX block. Take a look at its . Its main purpose is to perform the preliminary digestion of the 
VEX IRSB and dispatch processing of it to methods which are provided by mixins - look at the methods 

which are either pass  or return NotImplemented . Notice that absolutely none of its code makes 

any assumption whatsoever of what the type of state  is or even what the type of the data words inside 

state  are. This job is delegated to other mixins, making the VEXMixin  an appropriate base class for 
literally any analysis on VEX blocks.

source code

The next-most interesting mixin is the ClaripyDataMixin , whose source code is . This mixin 
actually integrates the fact that we are executing over the domain of Claripy ASTs. It does this by 

implementing some of the methods which are unimplemented in the VEXMixin , most importantly the ITE  
expression, all the operations, and the clean helpers.

here

In terms of what it looks like to actually touch the SimState, the SimStateStorageMixin  provides the 

glue between the VEXMixin 's interface for memory writes et al and SimState's interface for memory writes 

and such. It is unremarkable, except for a small interaction between it and the ClaripyDataMixin . The 
Claripy mixin also overrides the memory/register read/write functions, for the purpose of converting between 
the bitvector and floating-point types, since the vex interface expects to be able to load and store floats, but 
the SimState interface wants to load and store only bitvectors. Because of this, the claripy mixin must come 
before the storage mixin in the MRO. This is very much an interaction like the one in the add_one example 
at the start of this page - one mixin serves as a data filtering layer for another mixin.

Instrumenting the data layer

Let's turn our attention to a mixin which is not included in the HeavyVEXMixin  but rather mixed into the 

UberEngine  formula explicitly: the TrackActionsMixin . This mixin implements "SimActions", which 

https://github.com/angr/angr/blob/master/angr/engines/vex/light/light.py
https://github.com/angr/angr/blob/master/angr/engines/vex/claripy/datalayer.py


is angr parlance for dataflow tracking. Again, look at the . The way it does this is that it wraps 
and unwraps the data layer to pass around additional information about data flows. Look at how it 

instruments RdTmp , for instance. It immediately super() -calls to the next method in the MRO, but 
instead of returning that data it returns a tuple of the data and its dependencies, which depending on 
whether you want temporary variables to be atoms in the dataflow model, will either be just the tmp which 
was read or the dependencies of the value written to that tmp.

source code

This pattern continues for every single method that this mixin touches - any expression it receives must be 
unpacked into the expression and its dependencies, and any result must be packaged with its 
dependencies before it is returned. This works because the mixin above it makes no assumptions about 
what data it is passing around, and the mixin below it never gets to see any dependencies whatsoever. In 
fact, there could be multiple mixins performing this kind of wrap-unwrap trick and they could all coexist 
peacefully!

Note that a mixin which instruments the data layer in this way is obligated to override every single method 
which takes or returns an expression value, even if it doesn't perform any operation on the expression other 
than doing the wrapping and unwrapping. To understand why, imagine that the mixin does not override the 

_handle_vex_const  expression, so immediate value loads are not annotated with dependencies. The 

expression value which will be returned from the mixin which does provide _handle_vex_const  will not 
be a tuple of (expression, deps), it will just be the expression. Imagine this execution is taking place in the 

context of a WrTmp(t0, Const(0)) . The const expression will be passed down to the WrTmp  handler 

along with the identifier of the tmp to write to. However, since _handle_vex_stmt_WrTmp  will be 
overridden by our mixin which touches the data layer, it expects to be passed the tuple including the deps, 
and so it will crash when trying to unpack the not-a-tuple value.

In this way, you can sort of imagine that a mixin which instruments the data layer in this way is actually 
creating a contract within python's nonexistent typesystem - you are guaranteed to receive back any types 
you return, but you must pass down any types you receive as return values from below.

Mixins in the memory model

audrey please write something here. or fish, I'm not picky

Optimizing Symbolic Execution

The performance of angr as an analysis tool or emulator is greatly handicapped by the fact that lots of it is 
written in python. Regardless, there are a lot of optimizations and tweaks you can use to make angr faster 
and lighter.

General speed tips

Use pypy.
 is an alternate python interpreter that performs optimized jitting of python code.Pypy

https://github.com/angr/angr/blob/master/angr/engines/vex/heavy/actions.py
http://pypy.org/


In our tests, it's a 10x speedup out of the box.

Only use the SimEngine mixins that you need. SimEngine uses a mixin model which allows you to add 
and remove features by constructing new classes. The default engine mixes in every possible features, 
and the consequence of that is that it is slower than it needs to be. Look at the definition for 

UberEngine  (the default SimEngine), copy its declaration, and remove all the base classes which 
provide features you don't need.

Don't load shared libraries unless you need them.
The default setting in angr is to try at all costs to find shared libraries that are compatible with the binary 
you've loaded, including loading them straight out of your OS libraries.
This can complicate things in a lot of scenarios.
If you're performing an analysis that's anything more abstract than bare-bones symbolic execution, 
ESPECIALLY control-flow graph construction, you might want to make the tradeoff of sacrificing 
accuracy for tractability.
angr does a reasonable job of making sane things happen when library calls to functions that don't exist 
try to happen.

Use hooking and SimProcedures.
If you're enabling shared libraries, then you definitely want to have SimProcedures written for any 
complicated library function you're jumping into.
If there's no autonomy requirement for this project, you can often isolate individual problem spots where 
analysis hangs up and summarize them with a hook.

Use SimInspect.
 is the most underused and one of the most powerful features of angr.SimInspect

You can hook and modify almost any behavior of angr, including memory index resolution (which is 
often the slowest part of any angr analysis).

Write a concretization strategy.
A more powerful solution to the problem of memory index resolution is a .concretization strategy

Use the Replacement Solver.
You can enable it with the angr.options.REPLACEMENT_SOLVER  state option.
The replacement solver allows you to specify AST replacements that are applied at solve-time.
If you add replacements so that all symbolic data is replaced with concrete data when it comes time to 
do the solve, the runtime is greatly reduced.

The API for adding a replacement is state.se._solver.add_replacement(old, new) .
The replacement solver is a bit finicky, so there are some gotchas, but it'll definitely help.

If you're performing lots of concrete or partially-concrete 
execution

Use the unicorn engine.
If you have  installed, angr can be built to take advantage of it for concrete emulation.unicorn engine

To enable it, add the options in the set angr.options.unicorn  to your state.

Keep in mind that while most items under angr.options  are individual options, 

angr.options.unicorn  is a bundle of options, and is thus a set.
NOTE: At time of writing the official version of unicorn engine will not work with angr - we have a lot of 

https://github.com/angr/angr-doc/tree/0baf95ca22ae0f9e7561005f1e0fe628f0f06974/docs/simulation.html#breakpoints
https://github.com/angr/angr/tree/master/angr/concretization_strategies
https://github.com/unicorn-engine/unicorn/


patches to it to make it work well with angr.
They're all pending pull requests at this time, so sit tight. If you're really impatient, ping us about 
uploading our fork!

Enable fast memory and fast registers.

The state options angr.options.FAST_MEMORY  and angr.options.FAST_REGISTERS  will 
do this.
These will switch the memory/registers over to a less intensive memory model that sacrifices accuracy 
for speed.
TODO: document the specific sacrifices. Should be safe for mostly concrete access though.
NOTE: not compatible with concretization strategies.

Concretize your input ahead of time.
This is the approach taken by .driller

When creating a state with entry_state  or the like, you can create a SimFile filled with symbolic 

data, pass it to the initialization function as an argument entry_state(..., 
stdin=my_simfile) , and then constrain the symbolic data in the SimFile to what you want the input 
to be.
If you don't require any tracking of the data coming from stdin, you can forego the symbolic part and just 
fill it with concrete data.
If there are other sources of input besides standard input, do the same for those.

Use the afterburner. While using unicorn, if you add the UNICORN_THRESHOLD_CONCRETIZATION  
state option, angr will accept thresholds after which it causes symbolic values to be concretized so that 
execution can spend more time in Unicorn. Specifically, the following thresholds exist:

state.unicorn.concretization_threshold_memory  - this is the number of times a 
symbolic variable, stored in memory, is allowed to kick execution out of Unicorn before it is forcefully 
concretized and forced into Unicorn anyways.

state.unicorn.concretization_threshold_registers  - this is the number of times a 
symbolic variable, stored in a register, is allowed to kick execution out of Unicorn before it is 
forcefully concretized and forced into Unicorn anyways.

state.unicorn.concretization_threshold_instruction  - this is the number of times 
that any given instruction can force execution out of Unicorn (by running into symbolic data) before 
any symbolic data encountered at that instruction is concretized to force execution into Unicorn.

You can get further control of what is and isn't concretized with the following sets:

state.unicorn.always_concretize  - a set of variable names that will always be 
concretized to force execution into unicorn (in fact, the memory and register thresholds just end up 
causing variables to be added to this list).

state.unicorn.never_concretize  - a set of variable names that will never be concretized 
and forced into Unicorn under any condition.

state.unicorn.concretize_at  - a set of instruction addresses at which data should be 
concretized and forced into Unicorn. The instruction threshold causes addresses to be added to this 
set.

Once something is concretized with the afterburner, you will lose track of that variable. The state will still 
be consistent, but you'll lose dependencies, as the stuff that comes out of Unicorn is just concrete bits 
with no memory of what variables they came from. Still, this might be worth it for the speed in some 
cases, if you know what you want to (or do not want to) concretize.

https://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf


Memory optimization

The golden rule for memory optimization is to make sure you're not keeping any references to data you don't 
care about anymore, especially related to states which have been left behind. If you find yourself running out 
of memory during analysis, the first thing you want to do is make sure you haven't caused a state explosion, 
meaning that the analysis is accumulating program states too quickly. If the state count is in control, then you 
can start looking for reference leaks. A good tool to do this with is , 
which gives you an interactive prompt for exploring the reference graph of a python process.

https://github.com/rhelmot/dumpsterdiver

One specific consideration that should be made when analyzing programs with very long paths is that the 
state history is designed to accumulate data infinitely. This is less of a problem than it could be because the 
data is stored in a smart tree structure and never copied, but it will accumulate infinitely. To downsize a 

state's history and free all data related to old steps, call state.history.trim() .

One particularly problematic member of the history dataset is the basic block trace and the stack pointer 
trace. When using unicorn engine, these lists of ints can become huge very very quickly. To disable 

unicorn's capture of ip and sp data, remove the state options UNICORN_TRACK_BBL_ADDRS  and 

UNICORN_TRACK_STACK_POINTERS .

The Emulated Filesystem

It's very important to be able to control the environment that emulated programs see, including how symbolic 
data is introduced from the environment! angr has a robust series of abstractions to help you set up the 
environment you want.

The root of any interaction with the filesystem, sockets, pipes, or terminals is a SimFile object. A SimFile is a 
storage abstraction that defines a sequence of bytes, symbolic or otherwise. There are several kinds of 

SimFiles which store their data very differently - the two easiest examples are SimFile  (the base class is 

actually called SimFileBase ), which stores files as a flat address-space of data, and SimPackets , 
which stores a sequence of variable-sized reads. The former is best for modeling programs that need to 
perform seeks on their files, and is the default storage for opened files, while the latter is best for modeling 
programs that depend on short-reads or use scanf, and is the default storage for stdin/stdout/stderr.

Because SimFiles can have such diverse storage mechanisms, the interface for interacting with them is very 
abstracted. You can read from the file from some position, you can write to the file at some position, you can 
ask how many bytes are currently stored in the file, and you can concretize the file, generating a testcase for 
it. If you know specifically which SimFile class you're working with, you can take much more powerful 
control over it, and as a result you're encouraged to manually create any files you want to work with when 
you create your initial state.

Specifically, each SimFile class creates its own abstraction of a "position" within the file - each read and 
write takes a position and returns a new position that you should use to continue from where you left off. If 
you're working with SimFiles of unknown type you have to treat this position as a totally opaque object with 
no semantics other than the contract with the read/write functions.

https://github.com/rhelmot/dumpsterdiver


However! This is a very poor match to how programs generally interact with files, so angr also has a 
SimFileDescriptor abstraction, which provides the familiar read/write/seek/tell interfaces but will also return 
error conditions when the underlying storage don't support the appropriate operations - just like normal file 
descriptors!
You may access the mapping from file descriptor number to file descriptor object in state.posix.fd . 
The file descriptor API may be found .here

Just tell me how to do what I want to do!

Okay okay!!

To create a SimFile, you should just create an instance of the class you want to use. Refer to the  
for the full instructions.

API docs

Let's go through a few illustrative examples, which cover how you can work with a concrete file, a symbolic 
file, a file with mixed concrete and symbolic content, or streams.

Example 1: Create a file with concrete content

>>> import angr1
>>> simfile = angr.SimFile('myconcretefile', content='hello world!\n')2

Here's a nuance - you can't use SimFiles without a state attached, because reasons. You'll never have to do
this in a real scenario (this operation happens automatically when you pass a SimFile into a constructor or 
the filesystem) but let's mock it up:

>>> proj = angr.Project('/bin/true')1
>>> state = proj.factory.blank_state()2
>>> simfile.set_state(state)3

To demonstrate the behavior of these files we're going to use the fact that the default SimFile position is just 

the number of bytes from the start of the file. SimFile.read  returns a tuple (bitvector data, actual size, 
new pos):

>>> data, actual_size, new_pos = simfile.read(0, 5)1
>>> import claripy2
>>> assert claripy.is_true(data == 'hello')3
>>> assert claripy.is_true(actual_size == 5)4
>>> assert claripy.is_true(new_pos == 5)5

Continue the read, trying to read way too much:

>>> data, actual_size, new_pos = simfile.read(new_pos, 1000)1

angr doesn't try to sanitize the data returned, only the size - we returned 1000 bytes! The intent is that you're 

http://angr.io/api-doc/angr.html#angr.storage.file.SimFileDescriptorBase
http://angr.io/api-doc/angr.html#module-angr.storage.file


only allowed to use up to actual_size of them.

>>> assert len(data) == 1000*8  # bitvector sizes are in bits1
>>> assert claripy.is_true(actual_size == 8)2
>>> assert claripy.is_true(data.get_bytes(0, 8) == ' world!\n')3
>>> assert claripy.is_true(new_pos == 13)4

Example 2: Create a file with symbolic content and a defined size

>>> simfile = angr.SimFile('mysymbolicfile', size=0x20)1
>>> simfile.set_state(state)2

3
>>> data, actual_size, new_pos = simfile.read(0, 0x30)4
>>> assert data.symbolic5
>>> assert claripy.is_true(actual_size == 0x20)6

The basic SimFile provides the same interface as state.memory , so you can load data directly:

>>> assert simfile.load(0, actual_size) is data.get_bytes(0, 0x20)1

Example 3: Create a file with constrained symbolic content

>>> bytes_list = [claripy.BVS('byte_%d' % i, 8) for i in range(32)]1
>>> bytes_ast = claripy.Concat(*bytes_list)2
>>> mystate = proj.factory.entry_state(stdin=angr.SimFile('/dev/stdin', content=bytes_ast))3
>>> for byte in bytes_list:4
...     mystate.solver.add(byte >= 0x20)5
...     mystate.solver.add(byte <= 0x7e)6

Example 4: Create a file with some mixed concrete and symbolic content, but no EOF

>>> variable = claripy.BVS('myvar', 10*8)1
>>> simfile = angr.SimFile('mymixedfile', content=variable.concat(claripy.BVV('\n')), has_e2
>>> simfile.set_state(state)3

We can always query the number of bytes stored in the file:

>>> assert claripy.is_true(simfile.size == 11)1

Reads will generate additional symbolic data past the current frontier:

>>> data, actual_size, new_pos = simfile.read(0, 15)1
>>> assert claripy.is_true(actual_size == 15)2
>>> assert claripy.is_true(new_pos == 15)3



4 >>> assert claripy.is_true(data.get_bytes(0, 10) == variable)5
>>> assert claripy.is_true(data.get_bytes(10, 1) == '\n')6
>>> assert data.get_bytes(11, 4).symbolic7

Example 5: Create a file with a symbolic size ( has_end  is implicitly true here)

>>> symsize = claripy.BVS('mysize', 64)1
>>> state.solver.add(symsize >= 10)2
>>> state.solver.add(symsize < 20)3
>>> simfile = angr.SimFile('mysymsizefile', size=symsize)4
>>> simfile.set_state(state)5

Reads will encode all possibilities:

>>> data, actual_size, new_pos = simfile.read(0, 30)1
>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(10, 20))2

The maximum size can't be easily resolved, so the data returned is 30 bytes long, and we're supposed to 
use it conjunction with actual_size.

>>> assert len(data) == 30*81

Symbolic read sizes work too!

>>> symreadsize = claripy.BVS('myreadsize', 64)1
>>> state.solver.add(symreadsize >= 5)2
>>> state.solver.add(symreadsize < 30)3
>>> data, actual_size, new_pos = simfile.read(0, symreadsize)4

All sizes between 5 and 20 should be possible:

>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(5, 20))1

Example 6: Working with streams ( SimPackets )

So far, we've only used the SimFile class, which models a random-accessible file object. However, in real 
life, files are not everything. Streams (standard I/O, TCP, etc.) are a great example: While they hold data like 
a normal file does, they do not support random accesses, e.g., you cannot read out the second byte of stdin 
if you have already read passed that position, and you cannot modify any byte that has been previously sent 
out to a network endpoint. This allows us to design a simpler abstraction for streams in angr.

Believe it or not, this simpler abstraction for streams will benefit symbolic execution. Consider an example 

program that calls scanf  N times to read in N strings. With a traditional SimFile, as we do not know the 
length of each input string, there does not exist any clear boundary in the file between these symbolic input 
strings. In this case, angr will perform N symbolic reads where each read will generate a gigantic tree of 



claripy ASTs, with string lengths being symbolic. This is a nightmare for constraint solving. Nevertheless, the 

fact that scanf  is used on a stream (stdin) dictates that there will be zero overlap between individual 
reads, regardless of the sizes of each symbolic input string. We may as well model stdin as a stream that 
comprises of consecutive packets, instead of a file containing a sequence of bytes. Each of the packet can 
be of a fixed length or a symbolic length. Since there will be absolutely no byte overlap between packets, 
the constraints that angr will produce after executing this example program will be a lot simpler.

The key concept involved is "short reads", i.e. when you ask for n  bytes but actually get back fewer bytes 

than that. We use a different class implementing SimFileBase, SimPackets , to automatically enable 
support for short reads. By default, stdin, stdout, and stderr are all SimPackets objects.

>>> simfile = angr.SimPackets('mypackets')1
>>> simfile.set_state(state)2

This'll just generate a single packet. For SimPackets, the position is just a packet number! If left unspecified, 
short_reads is determined from a state option.

>>> data, actual_size, new_pos = simfile.read(0, 20, short_reads=True)1
>>> assert len(data) == 20*82
>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(21))3

Data in a SimPackets is stored as tuples of (packet data, packet size) in .content .

>>> print(simfile.content)1
[(<BV160 packet_0_mypackets>, <BV64 packetsize_0_mypackets>)]2

3
>>> simfile.read(0, 1, short_reads=False)4
>>> print(simfile.content)5
[(<BV160 packet_0_mypackets>, <BV64 packetsize_0_mypackets>), (<BV8 packet_1_mypackets>, <B6

So hopefully you understand sort of the kind of data that a SimFile can store and what'll happen when a 
program tries to interact with it with various combinations of symbolic and concrete data. Those examples 
only covered reads, but writes are pretty similar.

The filesystem, for real now

If you want to make a SimFile available to the program, we need to either stick it in the filesystem or serve 
stdin/stdout from it.

The simulated filesystem is the state.fs  plugin. You can store, load, and delete files from the filesystem, 

with the insert , get , and delete  methods. Refer to the  for details.api docs

So to make our file available as /tmp/myfile :

>>> state.fs.insert('/tmp/myfile', simfile)1
>>> assert state.fs.get('/tmp/myfile') is simfile2

http://angr.io/api-doc/angr.html#module-angr.state_plugins.filesystem


Then, after execution, we would extract the file from the result state and use simfile.concretize()  to 

generate a testcase to reach that state. Keep in mind that concretize()  returns different types 
depending on the file type - for a SimFile it's a bytestring and for SimPackets it's a list of bytestrings.

The simulated filesystem supports a fun concept of "mounts", where you can designate a subtree as 
instrumented by a particular provider. The most common mount is to expose a part of the host filesystem to 
the guest, lazily importing file data when the program asks for it:

>>> state.fs.mount('/', angr.SimHostFilesystem('./guest_chroot'))1

You can write whatever kind of mount you want to instrument filesystem access by subclassing 

angr.SimMount !

Stdio streams

For stdin and friends, it's a little more complicated. The relevant plugin is state.posix , which stores all 
abstractions relevant to a POSIX-compliant environment. You can always get a state's stdin SimFile with 

state.posix.stdin , but you can't just replace it - as soon as the state is created, references to this file 
are created in the file descriptors. Because of this you need to specify it at the time the POSIX plugin is 
created:

>>> state.register_plugin('posix', angr.state_plugins.posix.SimSystemPosix(stdin=simfile, s1
>>> assert state.posix.stdin is simfile2
>>> assert state.posix.stdout is simfile3
>>> assert state.posix.stderr is simfile4

Or, there's a nice shortcut while creating the state if you only need to specify stdin:

>>> state = proj.factory.entry_state(stdin=simfile)1
>>> assert state.posix.stdin is simfile2

Any of those places you can specify a SimFileBase, you can also specify a string or a bitvector (a flat 
SimFile with fixed size will be created to hold it) or a SimFile type (it'll be instantiated for you).

Intermediate Representation

In order to be able to analyze and execute machine code from different CPU architectures, such as MIPS, 
ARM, and PowerPC in addition to the classic x86, angr performs most of its analysis on an intermediate 
representation, a structured description of the fundamental actions performed by each CPU instruction. By 
understanding angr's IR, VEX (which we borrowed from Valgrind), you will be able to write very quick static 
analyses and have a better understanding of how angr works.



The VEX IR abstracts away several architecture differences when dealing with different architectures, 
allowing a single analysis to be run on all of them:

Register names. The quantity and names of registers differ between architectures, but modern CPU 
designs hold to a common theme: each CPU contains several general purpose registers, a register to 
hold the stack pointer, a set of registers to store condition flags, and so forth. The IR provides a 
consistent, abstracted interface to registers on different platforms. Specifically, VEX models the registers 

as a separate memory space, with integer offsets (e.g., AMD64's rax  is stored starting at address 16 in 
this memory space).

Memory access. Different architectures access memory in different ways. For example, ARM can 
access memory in both little-endian and big-endian modes. The IR abstracts away these differences.

Memory segmentation. Some architectures, such as x86, support memory segmentation through the 
use of special segment registers. The IR understands such memory access mechanisms.

Instruction side-effects. Most instructions have side-effects. For example, most operations in Thumb 
mode on ARM update the condition flags, and stack push/pop instructions update the stack pointer. 
Tracking these side-effects in an ad hoc manner in the analysis would be crazy, so the IR makes these 
effects explicit.

There are lots of choices for an IR. We use VEX, since the uplifting of binary code into VEX is quite well 
supported. VEX is an architecture-agnostic, side-effects-free representation of a number of target machine 
languages. It abstracts machine code into a representation designed to make program analysis easier. This 
representation has four main classes of objects:

Expressions. IR Expressions represent a calculated or constant value. This includes memory loads, 
register reads, and results of arithmetic operations.

Operations. IR Operations describe a modification of IR Expressions. This includes integer arithmetic, 
floating-point arithmetic, bit operations, and so forth. An IR Operation applied to IR Expressions yields 
an IR Expression as a result.

Temporary variables. VEX uses temporary variables as internal registers: IR Expressions are stored in 
temporary variables between use. The content of a temporary variable can be retrieved using an IR 

Expression. These temporaries are numbered, starting at t0 . These temporaries are strongly typed 
(e.g., "64-bit integer" or "32-bit float").

Statements. IR Statements model changes in the state of the target machine, such as the effect of 
memory stores and register writes. IR Statements use IR Expressions for values they may need. For 
example, a memory store IR Statement uses an IR Expression for the target address of the write, and 
another IR Expression for the content.

Blocks. An IR Block is a collection of IR Statements, representing an extended basic block (termed "IR 
Super Block" or "IRSB") in the target architecture. A block can have several exits. For conditional exits 
from the middle of a basic block, a special Exit IR Statement is used. An IR Expression is used to 
represent the target of the unconditional exit at the end of the block.

VEX IR is actually quite well documented in the libvex_ir.h  file 
( ) in the VEX repository. For the lazy, we'll detail some
parts of VEX that you'll likely interact with fairly frequently. To begin with, here are some IR Expressions:
https://github.com/angr/vex/blob/master/pub/libvex_ir.h

IR Expression Evaluated Value VEX Output Example

https://github.com/angr/vex/blob/master/pub/libvex_ir.h


Constant A constant value. 0x4:I32

Read Temp
The value stored in a VEX 
temporary variable.

RdTmp(t10)

Get Register The value stored in a register. GET:I32(16)

Load Memory

The value stored at a memory 
address, with the address 
specified by another IR 
Expression.

LDle:I32 / LDbe:I64

Operation
A result of a specified IR 
Operation, applied to specified 
IR Expression arguments.

Add32

If-Then-Else

If a given IR Expression 
evaluates to 0, return one IR 
Expression. Otherwise, return 
another.

ITE

Helper Function

VEX uses C helper functions for 
certain operations, such as 
computing the conditional flags 
registers of certain architectures. 
These functions return IR 
Expressions.

function_name()

These expressions are then, in turn, used in IR Statements. Here are some common ones:

IR Statement Meaning VEX Output Example

Write Temp
Set a VEX temporary variable to 
the value of the given IR 
Expression.

WrTmp(t1) = (IR Expression)

Put Register
Update a register with the value 
of the given IR Expression.

PUT(16) = (IR Expression)

Store Memory

Update a location in memory, 
given as an IR Expression, with 
a value, also given as an IR 
Expression.

STle(0x1000) = (IR Expression

Exit

A conditional exit from a basic 
block, with the jump target 
specified by an IR Expression. 
The condition is specified by an 
IR Expression.

if (condition) goto (Boring) 
0x4000A00:I32



An example of an IR translation, on ARM, is produced below. In the example, the subtraction operation is 
translated into a single IR block comprising 5 IR Statements, each of which contains at least one IR 
Expression (although, in real life, an IR block would typically consist of more than one instruction). Register 
names are translated into numerical indices given to the GET Expression and PUT Statement. The astute 
reader will observe that the actual subtraction is modeled by the first 4 IR Statements of the block, and the 
incrementing of the program counter to point to the next instruction (which, in this case, is located at 

0x59FC8 ) is modeled by the last statement.

The following ARM instruction:

subs R2, R2, #81

Becomes this VEX IR:

t0 = GET:I32(16)1
t1 = 0x8:I322
t3 = Sub32(t0,t1)3
PUT(16) = t34
PUT(68) = 0x59FC8:I325

Now that you understand VEX, you can actually play with some VEX in angr: We use a library called 
 that exposes VEX into Python. In addition, PyVEX implements its own pretty-printing so that it can 

show register names instead of register offsets in PUT and GET instructions.
PyVEX

PyVEX is accessable through angr through the Project.factory.block  interface. There are many 
different representations you could use to access syntactic properties of a block of code, but they all have in 

common the trait of analyzing a particular sequence of bytes. Through the factory.block  constructor, 

you get a Block  object that can be easily turned into several different representations. Try .vex  for a 

PyVEX IRSB, or .capstone  for a Capstone block.

Let's play with PyVEX:

>>> import angr1
2
# load the program binary3
>>> proj = angr.Project("/bin/true")4

5
# translate the starting basic block6
>>> irsb = proj.factory.block(proj.entry).vex7
# and then pretty-print it8
>>> irsb.pp()9

10
# translate and pretty-print a basic block starting at an address11
>>> irsb = proj.factory.block(0x401340).vex12
>>> irsb.pp()13

14
# this is the IR Expression of the jump target of the unconditional exit at the end of the 15

https://github.com/angr/pyvex


>>> print(irsb.next)1617
# this is the type of the unconditional exit (e.g., a call, ret, syscall, etc)18
>>> print(irsb.jumpkind)19

20
# you can also pretty-print it21
>>> irsb.next.pp()22

23
# iterate through each statement and print all the statements24

>>> for stmt in irsb.statements:25
...     stmt.pp()26

27
# pretty-print the IR expression representing the data, and the *type* of that IR expressio28
>>> import pyvex29
>>> for stmt in irsb.statements:30
...     if isinstance(stmt, pyvex.IRStmt.Store):31
...         print("Data:",)32
...         stmt.data.pp()33
...         print("")34
...         print("Type:",)35
...         print(stmt.data.result_type)36
...         print("")37

38
# pretty-print the condition and jump target of every conditional exit from the basic block39
>>> for stmt in irsb.statements:40
...     if isinstance(stmt, pyvex.IRStmt.Exit):41
...         print("Condition:",)42
...         stmt.guard.pp()43
...         print("")44
...         print("Target:",)45
...         stmt.dst.pp()46
...         print("")47

48
# these are the types of every temp in the IRSB49
>>> print(irsb.tyenv.types)50

51
# here is one way to get the type of temp 052
>>> print(irsb.tyenv.types[0])53

Condition flags computation (for x86 and ARM)

One of the most common instruction side-effects on x86 and ARM CPUs is updating condition flags, such as 
the zero flag, the carry flag, or the overflow flag. Computer architects usually put the concatenation of these 
flags (yes, concatenation of the flags, since each condition flag is 1 bit wide) into a special register (i.e. 

EFLAGS / RFLAGS  on x86, APSR / CPSR  on ARM). This special register stores important information about
the program state, and is critical for correct emulation of the CPU.

VEX uses 4 registers as its "Flag thunk descriptors" to record details of the latest flag-setting operation. VEX 
has a lazy strategy to compute the flags: when an operation that would update the flags happens, instead of 



computing the flags, VEX stores a code representing this operation to the cc_op  pseudo-register, and the 

arguments to the operation in cc_dep1  and cc_dep2 . Then, whenever VEX needs to get the actual flag 
values, it can figure out what the one bit corresponding to the flag in question actually is, based on its flag 
thunk descriptors. This is an optimization in the flags computation, as VEX can now just directly perform the 
relevant operation in the IR without bothering to compute and update the flags' value
Amongst different operations that can be placed in cc_op , there is a special value 0 which corresponds to 

OP_COPY  operation. This operation is supposed to copy the value in cc_dep1  to the flags. It simply 

means that cc_dep1  contains the flags' value. angr uses this fact to let us efficiently retrieve the flags' 
value: whenever we ask for the actual flags, angr computes their value, then dumps them back into 

cc_dep1  and sets cc_op = OP_COPY  in order to cache the computation. We can also use this 

operation to allow the user to write to the flags: we just set cc_op = OP_COPY  to say that a new value 

being set to the flags, then set cc_dep1  to that new value.

Working with Data and Conventions

Frequently, you'll want to access structured data from the program you're analyzing. angr has several 
features to make this less of a headache.

Working with types

angr has a system for representing types. These SimTypes are found in angr.types  - an instance of any 
of these classes represents a type. Many of the types are incomplete unless they are supplamented with a 
SimState - their size depends on the architecture you're running under. You may do this with 

ty.with_arch(arch) , which returns a copy of itself, with the architecture specified.

angr also has a light wrapper around pycparser , which is a C parser. This helps with getting instances of 
type objects:

>>> import angr, monkeyhex1
2
# note that SimType objects have their __repr__ defined to return their c type name,3
# so this function actually returned a SimType instance.4
>>> angr.types.parse_type('int')5
int6

7
>>> angr.types.parse_type('char **')8
char**9

10
>>> angr.types.parse_type('struct aa {int x; long y;}')11

struct aa12
13

>>> angr.types.parse_type('struct aa {int x; long y;}').fields14
OrderedDict([('x', int), ('y', long)])15



Additionally, you may parse C definitions and have them returned to you in a dict, either of variable/function 
declarations or of newly defined types:

>>> angr.types.parse_defns("int x; typedef struct llist { char* str; struct llist *next; } 1
{'x': int, 'y': struct llist*}2

3
>>> defs = angr.types.parse_types("int x; typedef struct llist { char* str; struct llist *n4
>>> defs5
{'struct llist': struct llist, 'list_node': struct llist}6

7
# if you want to get both of these dicts at once, use parse_file, which returns both in a t8
>>> angr.types.parse_file("int x; typedef struct llist { char* str; struct llist *next; } l9
({'x': int, 'y': struct llist*},10
 {'struct llist': struct llist, 'list_node': struct llist})11

12
>>> defs['list_node'].fields13
OrderedDict([('str', char*), ('next', struct llist*)])14

15
>>> defs['list_node'].fields['next'].pts_to.fields16
OrderedDict([('str', char*), ('next', struct llist*)])17

18
# If you want to get a function type and you don't want to construct it manually,19
# you can use parse_type20
>>> angr.types.parse_type("int (int y, double z)")21
(int, double) -> int22

And finally, you can register struct definitions for future use:

>>> angr.types.register_types(angr.types.parse_type('struct abcd { int x; int y; }'))1
>>> angr.types.register_types(angr.types.parse_types('typedef long time_t;'))2
>>> angr.types.parse_defns('struct abcd a; time_t b;')3
{'a': struct abcd, 'b': long}4

These type objects aren't all that useful on their own, but they can be passed to other parts of angr to specify 
data types.

Accessing typed data from memory

Now that you know how angr's type system works, you can unlock the full power of the state.mem  
interface! Any type that's registered with the types module can be used to extract data from memory.

>>> p = angr.Project('examples/fauxware/fauxware')1
>>> s = p.factory.entry_state()2
>>> s.mem[0x601048]3
<<untyped> <unresolvable> at 0x601048>4

5



>>> s.mem[0x601048].long6 <long (64 bits) <BV64 0x4008d0> at 0x601048>7
8
>>> s.mem[0x601048].long.resolved9
<BV64 0x4008d0>10

11
>>> s.mem[0x601048].long.concrete12
0x4008d013

14
>>> s.mem[0x601048].struct.abcd15
<struct abcd {16
  .x = <BV32 0x4008d0>,17
  .y = <BV32 0x0>18
} at 0x601048>19

20
>>> s.mem[0x601048].struct.abcd.x21
<int (32 bits) <BV32 0x4008d0> at 0x601048>22

23
>>> s.mem[0x601048].struct.abcd.y24
<int (32 bits) <BV32 0x0> at 0x60104c>25

26
>>> s.mem[0x601048].deref27
<<untyped> <unresolvable> at 0x4008d0>28

29
>>> s.mem[0x601048].deref.string30
<string_t <BV64 0x534f534e45414b59> at 0x4008d0>31

32
>>> s.mem[0x601048].deref.string.resolved33
<BV64 0x534f534e45414b59>34

35
>>> s.mem[0x601048].deref.string.concrete36
b'SOSNEAKY'37

The interface works like this:

You first use [array index notation] to specify the address you'd like to load from

If at that address is a pointer, you may access the deref  property to return a SimMemView at the 
address present in memory.

You then specify a type for the data by simply accessing a property of that name. For a list of supported 

types, look at state.mem.types .

You can then refine the type. Any type may support any refinement it likes. Right now the only 
refinements supported are that you may access any member of a struct by its member name, and you 
may index into a string or array to access that element.

If the address you specified initially points to an array of that type, you can say .array(n)  to view the 
data as an array of n elements.

Finally, extract the structured data with .resolved  or .concrete . .resolved  will return 

bitvector values, while .concrete  will return integer, string, array, etc values, whatever best 
represents the data.

Alternately, you may store a value to memory, by assigning to the chain of properties that you've 



constructed. Note that because of the way python works, x = s.mem[...].prop; x = val  will 

NOT work, you must say s.mem[...].prop = val .

If you define a struct using register_types(parse_type(struct_expr)) , you can access it here 
as a type:

>>> s.mem[p.entry].struct.abcd1
<struct abcd {2
  .x = <BV32 0x8949ed31>,3
  .y = <BV32 0x89485ed1>4
} at 0x400580>5

Working with Calling Conventions

A calling convention is the specific means by which code passes arguments and return values through 
function calls. angr's abstraction of calling conventions is called SimCC. You can construct new SimCC 

instances through the angr object factory, with p.factory.cc(...) . This will give a calling convention 
which is guessed based your guest architecture and OS. If angr guesses wrong, you can explicitly pick one 

of the calling conventions in the angr.calling_conventions  module.

If you have a very wacky calling convention, you can use 

angr.calling_conventions.SimCCUsercall . This will ask you to specify locations for the 

arguments and the return value. To do this, use instances of the SimRegArg  or SimStackArg  classes. 

You can find them in the factory - p.factory.cc.Sim*Arg .

Once you have a SimCC object, you can use it along with a SimState object and a function prototype (a 
SimTypeFunction) to extract or store function arguments more cleanly. Take a look at the  
for details. Alternately, you can pass it to an interface that can use it to modify its own behavior, like 

p.factory.call_state , or...

API documentation

Callables

Callables are a Foreign Functions Interface (FFI) for symbolic execution. Basic callable usage is to create 

one with myfunc = p.factory.callable(addr) , and then call it! result = myfunc(args, 
...)  When you call the callable, angr will set up a call_state  at the given address, dump the given 

arguments into memory, and run a path_group  based on this state until all the paths have exited from the 
function. Then, it merges all the result states together, pulls the return value out of that state, and returns it.

All the interaction with the state happens with the aid of a SimCC  and a SimTypeFunction , to tell 
where to put the arguments and where to get the return value. It will try to use a sane default for the 

architecture, but if you'd like to customize it, you can pass a SimCC  object in the cc  keyword argument 

when constructing the callable. The SimTypeFunction  is required - you must pass the prototype  
parameter. If you pass a string to this parameter it will be parsed as a function declaration.

http://angr.io/api-doc/angr.html#angr.calling_conventions.SimCC


You can pass symbolic data as function arguments, and everything will work fine. You can even pass more 
complicated data, like strings, lists, and structures as native python data (use tuples for structures), and it'll 
be serialized as cleanly as possible into the state. If you'd like to specify a pointer to a certain value, you can 

wrap it in a PointerWrapper  object, available as p.factory.callable.PointerWrapper . The 
exact semantics of how pointer-wrapping work are a little confusing, but they can be boiled down to "unless 
you specify it with a PointerWrapper or a specific SimArrayType, nothing will be wrapped in a pointer 
automatically unless it gets to the end and it hasn't yet been wrapped in a pointer yet and the original type is 

a string, array, or tuple." The relevant code is actually in SimCC - it's the setup callsite  function.

If you don't care for the actual return value of the call, you can say func.perform_call(arg, ...) , 

and then the properties func.result_state  and func.result_path_group  will be populated. 
They will actually be populated even if you call the callable normally, but you probably care about them 
more in this case!

Claripy

angr's solver engine is called Claripy. Claripy exposes the following design:

Claripy ASTs (the subclasses of claripy.ast.Base) provide a unified way to interact with concrete and 
symbolic expressions

Frontend s provide different paradigms for evaluating these expressions. For example, the 

FullFrontend  solves expressions using something like an SMT solver backend, while 

LightFrontend  handles them by using an abstract (and approximating) data domain backend.

Each Frontend  needs to, at some point, do actual operation and evaluations on an AST. ASTs don't 

support this on their own. Instead, Backend s translate ASTs into backend objects (i.e., python 

primitives for BackendConcrete , Z3 expressions for BackendZ3 , strided intervals for 

BackendVSA , etc) and handle any appropriate state-tracking objects (such as tracking the solver state 

in the case of BackendZ3 ). Roughly speaking, frontends take ASTs as inputs and use backends to 

backend.convert()  those ASTs into backend objects that can be evaluated and otherwise 
reasoned about.

FrontendMixin s customize the operation of Frontend s. For example, ModelCacheMixin  
caches solutions from an SMT solver.

The combination of a Frontend, a number of FrontendMixins, and a number of Backends comprise a 

claripy Solver .

Internally, Claripy seamlessly mediates the co-operation of multiple disparate backends -- concrete 
bitvectors, VSA constructs, and SAT solvers. It is pretty badass.

Most users of angr will not need to interact directly with Claripy (except for, maybe, claripy AST objects, 
which represent symbolic expressions) -- angr handles most interactions with Claripy internally. However, 
for dealing with expressions, an understanding of Claripy might be useful.

Claripy ASTs



Claripy ASTs abstract away the differences between mathematical constructs that Claripy supports. They 

define a tree of operations (i.e., (a + b) / c)  on any type of underlying data. Claripy handles the 
application of these operations on the underlying objects themselves by dispatching requests to the 
backends.

Currently, Claripy supports the following types of ASTs:

Name Description
Supported By (Claripy 
Backends)

Example Code

BV

This is a bitvector, 
whether symbolic (with 
a name) or concrete 
(with a value). It has a 
size (in bits).

BackendConcrete, 
BackendVSA, 
BackendZ3

Create a 32-bit 
symbolic bitvector "x"
`claripy.BVS('x', 32)`
Create a 32-bit 
bitvector with the valu
`0xc001b3475`: 
`claripy.BVV(0xc001b
a75, 32)`

Create a 32-bit "stride
interval" (see VSA 
documentation) that 
can be any divisible-
by-10 number betwee
1000 and 2000: 
`claripy.SI(name='x', 
bits=32, 
lower_bound=1000, 
upper_bound=2000, 
stride=10)`

FP

This is a floating-point 
number, whether 
symbolic (with a name) 
or concrete (with a 
value).

BackendConcrete, 
BackendZ3

Create a 
`claripy.fp.FSORT_DO
UBLE` symbolic 
floating point "b": 
`claripy.FPS('b', 
claripy.fp.FSORT_DO
UBLE)`

Create a 
`claripy.fp.FSORT_FL
OAT` floating point wi
value `3.2`: 
`claripy.FPV(3.2, 
claripy.fp.FSORT_FL
AT)`

claripy.BoolV(T
rue) , or 



Bool
This is a boolean 
operation (True or 
False).

BackendConcrete, 
BackendVSA, 
BackendZ3

claripy.true  or 

claripy.false , o
by comparing two 
ASTs (i.e., 

claripy.BVS('x'
32) < 
claripy.BVS('y'
32)

All of the above creation code returns claripy.AST objects, on which operations can then be carried out.

ASTs provide several useful operations.

>>> import claripy1
2
>>> bv = claripy.BVV(0x41424344, 32)3

4
# Size - you can get the size of an AST with .size()5
>>> assert bv.size() == 326

7
# Reversing - .reversed is the reversed version of the BVV8
>>> assert bv.reversed is claripy.BVV(0x44434241, 32)9
>>> assert bv.reversed.reversed is bv10

11
# Depth - you can get the depth of the AST12
>>> print(bv.depth)13
>>> assert bv.depth == 114
>>> x = claripy.BVS('x', 32)15
>>> assert (x+bv).depth == 216
>>> assert ((x+bv)/10).depth == 317

Applying a condition (==, !=, etc) on ASTs will return an AST that represents the condition being carried out. 
For example:

>>> r = bv == x1
>>> assert isinstance(r, claripy.ast.Bool)2

3

>>> p = bv == bv4
>>> assert isinstance(p, claripy.ast.Bool)5
>>> assert p.is_true()6

You can combine these conditions in different ways.

>>> q = claripy.And(claripy.Or(bv == x, bv * 2 == x, bv * 3 == x), x == 0)1
>>> assert isinstance(p, claripy.ast.Bool)2

The usefulness of this will become apparent when we discuss Claripy solvers.



In general, Claripy supports all of the normal python operations (+, -, |, ==, etc), and provides additional ones 
via the Claripy instance object. Here's a list of available operations from the latter.

Name Description Example

LShR
Logically shifts a bit expression 
(BVV, BV, SI) to the right.

claripy.LShR(x, 10)

SignExt Sign-extends a bit expression.
claripy.SignExt(32, x
or x.sign_extend(32)

ZeroExt Zero-extends a bit expression.
claripy.ZeroExt(32, x
or x.zero_extend(32)

Extract
Extracts the given bits (zero-
indexed from the right, inclusive) 
from a bit expression.

Extract the rightmost byte of x: 

claripy.Extract(7, 0, 
x)  or x[7:0]

Concat
Concatenates several bit 
expressions together into a new 
bit expression.

claripy.Concat(x, y, 
z)

RotateLeft Rotates a bit expression left.
claripy.RotateLeft(x, 
8)

RotateRight Rotates a bit expression right.
claripy.RotateRight(x
8)

Reverse
Endian-reverses a bit 
expression.

claripy.Reverse(x)  or 

x.reversed

And
Logical And (on boolean 
expressions)

claripy.And(x == y, x 
> 0)

Or
Logical Or (on boolean 
expressions)

claripy.Or(x == y, y 
10)

Not
Logical Not (on a boolean 
expression)

claripy.Not(x == y)  is 

the same as x != y

If An If-then-else

Choose the maximum of two 

expressions: claripy.If(x
> y, x, y)

ULE Unsigned less than or equal to.
Check if x is less than or equal

to y: claripy.ULE(x, y)

ULT Unsigned less than.
Check if x is less than y: 

claripy.ULT(x, y)

UGE
Unsigned greater than or equal 

Check if x is greater than or 

equal to y: claripy.UGE(x,



to. y)

UGT Unsigned greater than.
Check if x is greater than y: 

claripy.UGT(x, y)

SLE Signed less than or equal to.
Check if x is less than or equal

to y: claripy.SLE(x, y)

SLT Signed less than.
Check if x is less than y: 

claripy.SLT(x, y)

SGE Signed greater than or equal to.

Check if x is greater than or 

equal to y: claripy.SGE(x,
y)

NOTE: The default python > , < , >= , and <=  are unsigned in Claripy. This is different than their behavior 
in Z3, because it seems more natural in binary analysis.

Solvers

The main point of interaction with Claripy are the Claripy Solvers. Solvers expose an API to interpret ASTs 
in different ways and return usable values. There are several different solvers.

Name Description

Solver

This is analogous to a z3.Solver() . It is a 
solver that tracks constraints on symbolic variable
and uses a constraint solver (currently, Z3) to 
evaluate symbolic expressions.

SolverVSA
This solver uses VSA to reason about values. It is
an approximating solver, but produces values 
without performing actual constraint solves.

SolverReplacement

This solver acts as a pass-through to a child solve
allowing the replacement of expressions on-the-fly
It is used as a helper by other solvers and can be 
used directly to implement exotic analyses.

SolverHybrid

This solver combines the SolverReplacement and
the Solver (VSA and Z3) to allow for approximatin
values. You can specify whether or not you want a
exact result from your evaluations, and this solver 
does the rest.

This solver implements optimizations that solve 



SolverComposite smaller sets of constraints to speed up constraint 
solving.

Some examples of solver usage:

# create the solver and an expression1
>>> s = claripy.Solver()2
>>> x = claripy.BVS('x', 8)3

4
# now let's add a constraint on x5
>>> s.add(claripy.ULT(x, 5))6

7
>>> assert sorted(s.eval(x, 10)) == [0, 1, 2, 3, 4]8
>>> assert s.max(x) == 49
>>> assert s.min(x) == 010

11
# we can also get the values of complex expressions12
>>> y = claripy.BVV(65, 8)13
>>> z = claripy.If(x == 1, x, y)14
>>> assert sorted(s.eval(z, 10)) == [1, 65]15

16
# and, of course, we can add constraints on complex expressions17
>>> s.add(z % 5 != 0)18
>>> assert s.eval(z, 10) == (1,)19
>>> assert s.eval(x, 10) == (1,) # interestingly enough, since z can't be y, x can only be 20

Custom solvers can be built by combining a Claripy Frontend (the class that handles the actual interaction 
with SMT solver or the underlying data domain) and some combination of frontend mixins (that handle 
things like caching, filtering out duplicate constraints, doing opportunistic simplification, and so on).

Claripy Backends

Backends are Claripy's workhorses. Claripy exposes ASTs to the world, but when actual computation has to 
be done, it pushes those ASTs into objects that can be handled by the backends themselves. This provides 
a unified interface to the outside world while allowing Claripy to support different types of computation. For 
example, BackendConcrete provides computation support for concrete bitvectors and booleans, 
BackendVSA introduces VSA constructs such as StridedIntervals (and details what happens when 
operations are performed on them, and BackendZ3 provides support for symbolic variables and constraint 
solving.

There are a set of functions that a backend is expected to implement. For all of these functions, the "public" 
version is expected to be able to deal with claripy's AST objects, while the "private" version should only deal
with objects specific to the backend itself. This is distinguished with Python idioms: a public function will be 
named func() while a private function will be _func(). All functions should return objects that are usable by 
the backend in its private methods. If this can't be done (i.e., some functionality is being attempted that the 
backend can't handle), the backend should raise a BackendError. In this case, Claripy will move on to the 
next backend in its list.



All backends must implement a convert()  function. This function receives a claripy AST and should 
return an object that the backend can handle in its private methods. Backends should also implement a 

_convert()  method, which will receive anything that is not a claripy AST object (i.e., an integer or an 

object from a different backend). If convert()  or _convert()  receives something that the backend 
can't translate to a format that is usable internally, the backend should raise BackendError, and thus won't be 

used for that object. All backends must also implement any functions of the base Backend  abstract class 

that currently raise NotImplementedError() .

Claripy's contract with its backends is as follows: backends should be able to handle, in their private 
functions, any object that they return from their private or public functions. Claripy will never pass an object 
to any backend private function that did not originate as a return value from a private or public function of that

backend. One exception to this is convert()  and _convert() , as Claripy can try to stuff anything it 
feels like into _convert() to see if the backend can handle that type of object.

Backend Objects

To perform actual, useful computation on ASTs, Claripy uses backend objects. A BackendObject  is a 
result of the operation represented by the AST. Claripy expects these objects to be returned from their 
respective backends, and will pass such objects into that backend's other functions.

Symbolic Memory Addressing

angr supports symbolic memory addressing, meaning that offsets into memory may be symbolic. Our 
implementation of this is inspired by "Mayhem". Specifically, this means that angr concretizes symbolic 
addresses when they are used as the target of a write. This causes some surprises, as users tend to expect 
symbolic writes to be treated purely symbolically, or "as symbolically" as we treat symbolic reads, but that is 
not the default behavior. However, like most things in angr, this is configurable.

The address resolution behavior is governed by concretization strategies, which are subclasses of 

angr.concretization_strategies.SimConcretizationStrategy . Concretization strategies 

for reads are set in state.memory.read_strategies  and for writes in 

state.memory.write_strategies . These strategies are called, in order, until one of them is able to 
resolve addresses for the symbolic index. By setting your own concretization strategies (or through the use 

of SimInspect address_concretization  breakpoints, described above), you can change the way angr
resolves symbolic addresses.

For example, angr's default concretization strategies for writes are:

1. A conditional concretization strategy that allows symbolic writes (with a maximum range of 128 possible 
solutions) for any indices that are annotated with 

angr.plugins.symbolic_memory.MultiwriteAnnotation .

2. A concretization strategy that simply selects the maximum possible solution of the symbolic index.

To enable symbolic writes for all indices, you can either add the SYMBOLIC_WRITE_ADDRESSES  state 
option at state creation time or manually insert a 



angr.concretization_strategies.SimConcretizationStrategyRange  object into 

state.memory.write_strategies . The strategy object takes a single argument, which is the 
maximum range of possible solutions that it allows before giving up and moving on to the next (presumably 
non-symbolic) strategy

Writing concretization strategies

TODO

Java Symbolic Execution

angr  also supports symbolically executing Java code and Android apps! This also includes Android apps 
using a combination of compiled Java and native (C/C++) code.

Java support is experimental! Contribution from the community is highly encouraged! Pull requests are 
very welcomed!

We implemented Java support by lifting the compiled Java code, both Java and DEX bytecode, leveraging 

our Soot python wrapper: . pysoot  extracts a fully serializable interface from Android apps and 
Java code (unfortunately, as of now, it only works on Linux). For every class of the generated IR (for 

instance, SootMethod ), you can nicely print its instructions (in a format similar to Soot  shimple ) 

using print()  or str() .

pysoot

We then leverage the generated IR in a new angr engine able to run code in Soot IR: 
. This engine is also able to automatically switch to executing native code if the 

Java code calls any native method using the JNI interface.
angr/engines/soot/engine.py

Together with the symbolic execution, we also implemented some basic static analysis, specifically a basic 
CFG reconstruction analysis. Moreover, we added support for string constraint solving, modifying claripy and
using the CVC4 solver.

How to install

Enabling Java support requires few more steps than typical angr installation. Assuming you installed 
, activate the virtualenv and run:

angr-
dev

# CVC4 and pysoot should be already installed (if you used angr-dev to install angr)1
# install cvc4, needed for String solving2
pip install cvc4-solver3
# install pysoot, needed to lift code from JARs and APKs4
git clone git@github.com:angr/pysoot.git5
cd pysoot6
pip install -e .7
cd ..8

https://github.com/angr/pysoot
https://github.com/angr/angr/blob/master/angr/engines/soot/engine.py
https://github.com/angr/angr-dev


# install a specific version of pysmt (the one currently available on pip is buggy)9 pip uninstall pysmt10
git clone https://github.com/pysmt/pysmt.git11
cd pysmt12
git checkout 6d792db47be5f8734db15848faca9bc6b770085e13
pip install -e .14
cd ..15

Analyzing Android apps.

Analyzing Android apps ( .APK  files, containing Java code compiled to the DEX  format) requires the 

Android SDK. Typically, it is installed in <HOME>/Android/SDK/platforms/platform-
XX/android.jar , where XX  is the Android SDK version used by the app you want to analyze (you may 
want to install all the platforms required by the Android apps you want to analyze).

Examples

There are multiple examples available:

Easy Java crackmes: , , java_crackme1 java_simple3 java_simple4

A more complex example (solving a CTF challenge): , ictf2017_javaisnotfun blogpost

Symbolically executing an Android app (using a mix of Java and native code): java_androidnative1

Many other low-level tests: test_java

Symbion

Let's suppose you want to symbolically analyze a specific function of a program, but there is a huge 
initialization step that you want to skip because it is not necessary for your analysis, or cannot properly be 
emulated by angr. For example, maybe your program is running on an embedded system and you have 
access to a debug interface, but you can't easily replicate the hardware in a simulated environment.

This is the perfect scenario for Symbion , our interleaved execution technique!

We implemented a built-in system that let users define a ConcreteTarget  that is used to "import" a 

concrete state of the target program from an external source into angr . Once the state is imported you can 
make parts of the state symbolic, use symbolic execution on this state, run your analyses, and finally 
concretize the symbolic parts and resume concrete execution in the external environment. By iterating this 
process it is possible to implement run-time and interactive advanced symbolic analyses that are backed up 
by the real program's execution!

Isn't that cool?

https://github.com/angr/angr-doc/tree/master/examples/java_crackme1
https://github.com/angr/angr-doc/tree/master/examples/java_simple3
https://github.com/angr/angr-doc/tree/master/examples/java_simple4
https://github.com/angr/angr-doc/tree/master/examples/ictf2017_javaisnotfun
https://angr.io/blog/java_angr/
https://github.com/angr/angr-doc/tree/master/examples/java_androidnative1
https://github.com/angr/angr/blob/master/tests/test_java.py


How to install

To use this technique you’ll need an implementation of a ConcreteTarget  (effectively, an object that is 
going to be the "glue" between angr and the external process.) We ship a default one (the 
AvatarGDBConcreteTarget, which control an instance of a program being debugged under GDB) in the 
following repo .https://github.com/angr/angr-targets

Assuming you installed angr-dev, activate the virtualenv and run:

git clone https://github.com/angr/angr-targets.git1
cd angr-targets2
pip install .3

Now you’re ready to go!

Gists

Once you have created an entry state, instantiated a SimulationManager , and specified a list of 

stop_points using the Symbion  interface we are going to resume the concrete process execution.

# Instantiating the ConcreteTarget1
avatar_gdb = AvatarGDBConcreteTarget(avatar2.archs.x86.X86_64,2
                                     GDB_SERVER_IP, GDB_SERVER_PORT)3

4
# Creating the Project5
p = angr.Project(binary_x64, concrete_target=avatar_gdb,6
                             use_sim_procedures=True)7

8
# Getting an entry_state9
entry_state = p.factory.entry_state()10

11
# Forget about these options as for now, will explain later.12
entry_state.options.add(angr.options.SYMBION_SYNC_CLE)13
entry_state.options.add(angr.options.SYMBION_KEEP_STUBS_ON_SYNC)      14

15
# Use Symbion!                                16
simgr.use_technique(angr.exploration_techniques.Symbion(find=[0x85b853])17

When one of your stop_points (effectively a breakpoint) is hit, we give control to angr . A new plugin called 

concrete is in charge of synchronizing the concrete state of the program inside a new SimState .

Roughly, synchronization does the following:

All the registers' values (NOT marked with concrete=False in the respective arch file in archinfo) are 
copied inside the new SimState.

The underlying memory backend is hooked in a way that all the further memory accesses triggered 

https://github.com/angr/angr-targets


during symbolic execution are redirected to the concrete process.
If the project is initialized with SimProcedure (use_sim_procedures=True) we are going to re-hook the 

external functions' addresses with a SimProcedure  if we happen to have it, otherwise with 

a SimProcedure  stub (you can control this decision by using the Options 
SYMBION_KEEP_STUBS_ON_SYNC). Conversely, the real code of the function is executed inside 
angr (Warning: do that at your own risk!)

Once this process is completed, you can play with your new SimState  backed by the concrete process 
stopped at that particular stop_point. Options

The way we synchronize the concrete process inside angr is customizable by 2 state options:

SYMBION_SYNC_CLE: this option controls the synchronization of the memory mapping of the program 
inside angr. When the project is created, the memory mapping inside angr is different from the one 
inside the concrete process (this will change as soon as Symbion will be fully compatible with archr). If 
you want the process mapping to be fully synchronized with the one of the concrete process, set this 
option to the SimState before initializing the SimulationManager (Note that this is going to happen at the 
first synchronization of the concrete process inside angr, NOT before)

entry_state.options.add(angr.options.SYMBION_SYNC_CLE)1
simgr = project.factory.simgr(state)2

SYMBION_KEEP_STUBS_ON_SYNC: this option controls how we re-hook external functions with 
SimProcedures. If the project has been initialized to use SimProcedures (use_sim_procedures=True), 
we are going to re-hook external functions with SimProcedures (if we have that particular 
implementation) or with a generic stub. If you want to execute SimProcedures for functions for which we 
have an available implementation and a generic stub SimProcedure for the ones we have not, set this 
option to the SimState before initializing the SimulationManager. In the other case, we are going to 
execute the real code for the external functions that miss a SimProcedure (no generic stub is going to be 
used).

entry_state.options.add(angr.options.SYMBION_KEEP_STUBS_ON_SYNC)1
simgr = project.factory.simgr(state)2

Example
You can find more information about this technique and a complete example in our blog post: 

. For more technical details a public paper will be available soon, or, 

ping @degrigis on our angr  Slack channel.

https://angr.io/blog/angr_symbion/

Extending angr

Programming SimProcedures

Hooks in angr are very powerful! You can use them to modify a program's behavior in any way you could 
imagine. However, the exact way you might want to program a specific hook may be non-obvious. This 
chapter should serve as a guide when programming SimProcedures.

https://angr.io/blog/angr_symbion/


Quick Start

Here's an example that will remove all bugs from any program:

>>> from angr import Project, SimProcedure1
>>> project = Project('examples/fauxware/fauxware')2

3
>>> class BugFree(SimProcedure):4
...    def run(self, argc, argv):5
...        print('Program running with argc=%s and argv=%s' % (argc, argv))6
...        return 07

8
# this assumes we have symbols for the binary9

>>> project.hook_symbol('main', BugFree())10
11

# Run a quick execution!12
>>> simgr = project.factory.simulation_manager()13
>>> simgr.run()  # step until no more active states14
Program running with argc=<SAO <BV64 0x0>> and argv=<SAO <BV64 0x7fffffffffeffa0>>15
<SimulationManager with 1 deadended>16

Now, whenever program execution reaches the main function, instead of executing the actual main function, 
it will execute this procedure! It just prints out a message, and returns.

Now, let's talk about what happens on the edge of this function! When entering the function, where do the 

values that go into the arguments come from? You can define your run()  function with however many 
arguments you like, and the SimProcedure runtime will automatically extract from the program state those 
arguments for you, via a , and call your run function with them. Similarly, when you return 
a value from the run function, it is placed into the state (again, according to the calling convention), and the 
actual control-flow action of returning from a function is performed, which depending on the architecture may 
involve jumping to the link register or jumping to the result of a stack pop.

calling convention

It should be clear at this point that the SimProcedure we just wrote is meant to totally replace whatever 
function it is hooked over top of. In fact, the original use case for SimProcedures was replacing library 
functions. More on that later.

Implementation Context

On a Project  class, the dict project._sim_procedures  is a mapping from address to 

SimProcedure  instances. When the  reaches an address that is present in that dict, 
that is, an address that is hooked, it will execute 

project._sim_procedures[address].execute(state) . This will consult the calling convention 

to extract the arguments, make a copy of itself in order to preserve thread safety, and run the run()  
method. It is important to produce a new instance of the SimProcedure for each time it is run, since the 

execution pipeline



process of running a SimProcedure necessarily involves mutating state on the SimProcedure instance, so 
we need separate ones for each step, lest we run into race conditions in multithreaded environments.

kwargs

This hierarchy implies that you might want to reuse a single SimProcedure in multiple hooks. What if you 
want to hook the same SimProcedure in several places, but tweaked slightly each time? angr's support for 
this is that any additional keyword arguments you pass to the constructor of your SimProcedure will end up 

getting passed as keyword args to your SimProcedure's run()  method. Pretty cool!

Data Types

If you were paying attention to the example earlier, you noticed that when we printed out the arguments to 

the run()  function, they came out as a weird <SAO <BV64 0xSTUFF>>  class. This is a 

SimActionObject . Basically, you don't need to worry about it too much, it's just a thin wrapper over a 
normal bitvector. It does a bit of tracking of what exactly you do with it inside the SimProcedure---this is 
helpful for static analysis.

You may also have noticed that we directly returned the python int 0  from the procedure. This will 
automatically be promoted to a word-sized bitvector! You can return a native number, a bitvector, or a 
SimActionObject.

When you want to write a procedure that deals with floating point numbers, you will need to specify the 

calling convention manually. It's not too hard, just provide a cc to the hook: 

 and 

project.hook(address, ProcedureClass(cc=mycc))  This method for passing in a calling 
convention works for all calling conventions, so if angr's autodetected one isn't right, you can fix that.

cc = 
project.factory.cc_from_arg_kinds((True, True), ret_fp=True)

Control Flow

How can you exit a SimProcedure? We've already gone over the simplest way to do this, returning a value 

from run() . This is actually shorthand for calling self.ret(value) . self.ret()  is the function 
which knows how to perform the specific action of returning from a function.

SimProcedures can use lots of different functions like this!

ret(expr) : Return from a function

jump(addr) : Jump to an address in the binary

exit(code) : Terminate the program

call(addr, args, continue_at) : Call a function in the binary

inline_call(procedure, *args) : Call another SimProcedure in-line and return the results

That second-last one deserves some looking-at. We'll get there after a quick detour...

http://angr.io/api-doc/angr.html#angr.factory.AngrObjectFactory.cc_from_arg_kinds


Conditional Exits

What if we want to add a conditional branch out of a SimProcedure? In order to do that, you'll need to work 
directly with the SimSuccessors object for the current execution step.

The interface for this is 

. All of these parameters should have an obvious meaning if you've followed along so far. Keep
in mind that the state you pass in will NOT be copied and WILL be mutated, so be sure to make a copy 
beforehand if there will be more work to do!

self.successors.add_successor(state, addr, guard, 
jumpkind)

SimProcedure Continuations

How can we call a function in the binary and have execution resume within our SimProcedure? There is a 
whole bunch of infrastructure called the "SimProcedure Continuation" that will let you do this. When you use 

self.call(addr, args, continue_at) , addr  is expected to be the address you'd like to call, 

args  is the tuple of arguments you'd like to call it with, and continue_at  is the name of another method
in your SimProcedure class that you'd like execution to continue at when it returns. This method must have 

the same signature as the run()  method. Furthermore, you can pass the keyword argument cc  as the 
calling convention that ought to be used to communicate with the callee.

When you do this, you finish your current step, and execution will start again at the next step at the function 
you've specified. When that function returns, it has to return to some concrete address! That address is 
specified by the SimProcedure runtime: an address is allocated in angr's externs segment to be used as the 
return site for returning to the given method call. It is then hooked with a copy of the procedure instance 

tweaked to run the specified continue_at  function instead of run() , with the same args and kwargs 
as the first time.

There are two pieces of metadata you need to attach to your SimProcedure class in order to use the 
continuation subsystem correctly:

Set the class variable IS_FUNCTION = True

Set the class variable local_vars  to a tuple of strings, where each string is the name of an instance 
variable on your SimProcedure whose value you would like to persist to when you return.
Local variables can be any type so long as you don't mutate their instances.

You may have guessed by now that there exists some sort of auxiliary storage in order to hold on to all this 

data. You would be right! The state plugin state.callstack  has an entry called .procedure_data  
which is used by the SimProcedure runtime to store information local to the current call frame. angr tracks 

the stack pointer in order to make the current top of the state.callstack  a meaningful local data store. 
It's stuff that ought to be stored in memory in a stack frame, but the data can't be serialized and/or memory 
allocation is hard.

As an example, let's look at the SimProcedure that angr uses internally to run all the shared library 

initializers for a full_init_state  for a linux program:

class LinuxLoader(angr.SimProcedure):1
    NO_RET = True2

http://angr.io/api-doc/angr.html#angr.engines.successors.SimSuccessors.add_successor


    IS_FUNCTION = True3     local_vars = ('initializers',)4
5
    def run(self):6
        self.initializers = self.project.loader.initializers7
        self.run_initializer()8

9
    def run_initializer(self):10
        if len(self.initializers) == 0:11
            self.project._simos.set_entry_register_values(self.state)12
            self.jump(self.project.entry)13
        else:14
            addr = self.initializers[0]15
            self.initializers = self.initializers[1:]16
            self.call(addr, (self.state.posix.argc, self.state.posix.argv, self.state.posix17

This is a particularly clever usage of the SimProcedure continuations. First, notice that the current project is 
available for use on the procedure instance. This is some powerful stuff you can get yourself into; for safety 
you generally only want to use the project as a read-only or append-only data structure. Here we're just 
getting the list of dynamic intializers from the loader. Then, for as long as the list isn't empty, we pop a single 
function pointer out of the list, being careful not to mutate the list, since the list object is shared across states, 

and then call it, returning to the run_initializer  function again. When we run out of initializers, we set 
up the entry state and jump to the program entry point.

Very cool!

Global Variables

As a brief aside, you can store global variables in state.globals . This is a dictionary that just gets 
shallow-copied from state to successor state. Because it's only a shallow copy, its members are the same 
instances, so the same rules as local variables in SimProcedure continuations apply. You need to be careful 
not to mutate any item that is used as a global variable unless you know exactly what you're doing.

Helping out static analysis

We've already looked at the class variable IS_FUNCTION , which allows you to use the SimProcedure 
continuation. There are a few more class variables you can set, though these ones have no direct benefit to 
you - they merely mark attributes of your function so that static analysis knows what it's doing.

NO_RET : Set this to true if control flow will never return from this function

ADDS_EXITS : Set this to true if you do any control flow other than returning

IS_SYSCALL : Self-explanatory

Furthermore, if you set ADDS_EXITS , you may also want to define the method static_exits() . This 



function takes a single parameter, a list of IRSBs that would be executed in the run-up to your function, and 
asks you to return a list of all the exits that you know would be produced by your function in that case. The 
return value is expected to be a list of tuples of (address (int), jumpkind (str)). This is meant to be a quick, 
best-effort analysis, and you shouldn't try to do anything crazy or intensive to get your answer.

User Hooks

The process of writing and using a SimProcedure makes a lot of assumptions that you want to hook over a 
whole function. What if you don't? There's an alternate interface for hooking, a user hook, that lets you 
streamline the process of hooking sections of code.

>>> @project.hook(0x1234, length=5)1
... def set_rax(state):2
...     state.regs.rax = 13

This is a lot simpler! The idea is to use a single function instead of an entire SimProcedure subclass. No 
extraction of arguments is performed, no complex control flow happens.

Control flow is controlled by the length argument. After the function finishes executing in this example, the 
next step will start at 5 bytes after the hooked address. If the length argument is omitted or set to zero, 
execution will resume executing the binary code at exactly the hooked address, without re-triggering the 

hook. The Ijk_NoHook  jumpkind allows this to happen.

If you want more control over control flow coming out of a user hook, you can return a list of successor 

states. Each successor will be expected to have state.regs.ip , state.scratch.guard , and 

state.scratch.jumpkind  set. The IP is the target instruction pointer, the guard is a symbolic boolean 
representing a constraint to add to the state related to it being taken as opposed to the others, and the 

jumpkind is a VEX enum string, like Ijk_Boring , representing the nature of the branch.

The general rule is, if you want your SimProcedure to either be able to extract function arguments or cause a 
program return, write a full SimProcedure class. Otherwise, use a user hook.

Hooking Symbols

As you should recall from the , dynamically linked programs have a list of 
symbols that they must import from the libraries they have listed as dependencies, and angr will make sure, 
rain or shine, that every import symbol gets resolved by some address, whether it's a real implementaion of 
the function or just a dummy address hooked with a do-nothing stub. As a result, you can just use the 

Project.hook_symbol  API to hook the address referred to by a symbol!

section on loading a binary

This means that you can replace library functions with your own code. For instance, to replace rand()  
with a function that always returns a consistent sequence of values:

>>> class NotVeryRand(SimProcedure):1



...     def run(self, return_values=None):2 ...         rand_idx = self.state.globals.get('rand_idx', 0) % len(return_values)3

...         out = return_values[rand_idx]4

...         self.state.globals['rand_idx'] = rand_idx + 15

...         return out6
7
>>> project.hook_symbol('rand', NotVeryRand(return_values=[413, 612, 1025, 1111]))8

Now, whenever the program tries to call rand() , it'll return the integers from the return_values  array 
in a loop.

Writing State Plugins

If you want to store some data on a state and have that information propagated from successor to successor, 

the easiest way to do this is with state.globals . However, this can become obnoxious with large 
amounts of interesting data, doesn't work at all for merging states, and isn't very object-oriented.

The solution to these problems is to write a State Plugin - an appendix to the state that holds data and 
implements an interface for dealing with the lifecycle of a state.

My First Plugin

Let's get started! All state plugins are implemented as subclasses of angr.SimStatePlugin . Once 
you've read this document, you can use the  to quickly review the semantics of all 
the interfaces you should implement.

API reference for this class

The most important method you need to implement is copy : it should be annotated with the memo  
staticmethod and take a dict called the "memo"---these'll be important later---and returns a copy of the 
plugin. Short of that, you can do whatever you want. Just make sure to call the superclass initializer!

>>> import angr1
>>> class MyFirstPlugin(angr.SimStatePlugin):2
...     def __init__(self, foo):3
...         super(MyFirstPlugin, self).__init__()4
...         self.foo = foo5
... 6
...     @angr.SimStatePlugin.memo7
...     def copy(self, memo):8
...         return MyFirstPlugin(self.foo)9

10
>>> state = angr.SimState(arch='AMD64')11
>>> state.register_plugin('my_plugin', MyFirstPlugin('bar'))12
>>> assert state.my_plugin.foo == 'bar'13

14
>>> state2 = state.copy()15
>>> state.my_plugin.foo = 'baz'16
>>> state3 = state.copy()17

http://angr.io/api-doc/angr.html#angr.state_plugins.plugin.SimStatePlugin


>>> assert state2.my_plugin.foo == 'bar'18
>>> assert state3.my_plugin.foo == 'baz'19

It works! Note that plugins automatically become available as attributes on the state. 

state.get_plugin(name)  is also available as a more programmatic interface.

Where's the state?

State plugins have access to the state, right? So why isn't it part of the initializer? It turns out, there are a 
plethora of issues related to initialization order and dependency issues, so to simplify things as much as 
possible, the state is not part of the initializer but is rather set onto the state in a separate phase, by using the 

set_state  method. You can override this state if you need to do things like propagate the state to 
subcomponents or extract architectural information.

>>> def set_state(self, state):1
...     super(SimStatePlugin, self).set_state(state)2
...     self.symbolic_word = claripy.BVS('my_variable', self.state.arch.bits)3

Note the self.state ! That's what the super set_state  sets up.

However, there's no guarantee on what order the states will be set onto the plugins in, so if you need to 

interact with other plugins for initialization, you need to override the init_state  method.

Once again, there's no guarantee on what order these will be called in, so the rule is to make sure you set 

yourself up good enough during set_state  so that if someone else tries to interact with you, no type 

errors will happen. Here's an example of a good use of init_state , to map a memory region in the state. 

The use of an instance variable (presumably copied as part of copy() ) ensures this only happens the first 
time the plugin is added to a state.

>>> def init_state(self):1
...     if self.region is None:2
...        self.region = self.state.memory.map_region(SOMEWHERE, 0x1000, 7)3

Note: weak references

self.state  is not the state itself, but rather a  to the state. You can still use this object as a 
normal state, but attempts to store it persistently will not work.

weak proxy

Merging

The other element besides copying in the state lifecycle is merging. As input you get the plugins to merge 
and a list of "merge conditions" - symbolic booleans that are the "guard conditions" describing when the 
values from each state should actually apply.

https://docs.python.org/2/library/weakref.html


The important properties of the merge conditions are:

They are mutually exclusive and span an entire domain - exactly one may be satisfied at once, and 
there will be additional constraints to ensure that at least one must be satisfied.

len(merge_conditions)  == len(others) + 1, since self  counts too.

zip(merge_conditions, [self] + others)  will correctly pair merge conditions with plugins.

During the merge function, you should mutate self  to become the merged version of itself and all the 
others, with respect to the merge conditions. This involves using the if-then-else structure that claripy 
provides. Here is an example of constructing this merged structure by merging a bitvector instance variable 

called myvar , producing a binary tree of if-then-else expressions searching for the correct condition:

for other_plugin, condition in zip(others, merge_conditions[1:]): # chop off self's conditi1
    self.myvar = claripy.If(condition, other_plugin.myvar, self.myvar)2

This is such a common construction that we provide a utility to perform it automatically: 

claripy.ite_cases . The following code snippet is identical to the previous one:

self.myvar = claripy.ite_cases(zip(merge_conditions[1:], [o.myvar for o in others]), self.m1

Keep in mind that like the rest of the top-level claripy functions, ite_cases  and If  are also available 

from state.solver , and these versions will perform SimActionObject unwrapping if applicable.

Common Ancestor

The full prototype of the merge  interface is def merge(self, others, merge_conditions, 
common_ancestor=None) . others  and merge_conditions  have been discussed in depth 
already.

The common ancestor is the instance of the plugin from the most recent common ancestor of the states 
being merged. It may not be available for all merges, in which case it will be None. There are no rules for 
how exactly you should use this to improve the quality of your merges, but you may find it useful in more 
complex setups.

Widening

There is another kind of merging called widening which takes several states and produces a more general 
state. It is used during static analysis.

TODO: @FISH PLEASE EXPLAIN WHAT THIS MEANS

Serialization



In order to support serialization of states which contain your plugin, you should implement the 

__getstate__ / __setstate__  magic method pair. Keep in mind the following guidelines:

Your serialization result should not include the state.

After deserialization, set_state()  will be called again.

This means that plugins are "detached" from the state and serialized in an isolated environment, and then 
reattached to the state on deserialization.

Plugins all the way down

You may have components within your state plugins which are large and complicated and start breaking 
object-orientation in order to make copy/merge work well with the state lifecycle. You're in luck! Things can 

be state plugins even if they aren't directly attached to a state. A great example of this is SimFile , which is
a state plugin but is stored in the filesystem plugin, and is never used with 

SimState.register_plugin . When you're doing this, there are a handful of rules to remember which 
will keep your plugins safe and happy:

Annotate your copy function with @SimStatePlugin.memo .

In order to prevent divergence while copying multiple references to the same plugin, make sure you're 

passing the memo (the argument to copy) to the .copy  of any subplugins. This with the previous point 
will preserve object identity.

In order to prevent duplicate merging while merging multiple references to the same plugin, there should 
be a concept of the "owner" of each instance, and only the owner should run the merge routine.

While passing arguments down into sub-plugins merge()  routines, make sure you unwrap others  

and common_ancestor  into the appropriate types. For example, if PluginA  contains a PluginB , 
the former should do the following:

>>> def merge(self, others, merge_conditions, common_ancestor=None):1
...     # ... merge self2
...     self.plugin_b.merge([o.plugin_b for o in others], merge_conditions,3
...         common_ancestor=None if common_ancestor is None else common_ancestor.plugin_b)4

Setting Defaults

To make it so that a plugin will automatically become available on a state when requested, without having to 
register it with the state first, you can register it as a default. The following code example will make it so that 

whenever you access state.my_plugin , a new instance of MyPlugin  will be instanciated and 
registered with the state.



MyPlugin register default('my plugin')1

Extending the Environment Model

One of the biggest issues you may encounter while using angr to analyze programs is an incomplete model 
of the environment, or the APIs, surrounding your program. This usually takes the form of syscalls or 
dynamic library calls, or in rare cases, loader artifacts. angr provides a convenient interface to do most of 
these things!

Everything discussed here involves writing SimProcedures, so .make sure you know how to do that!

Note that this page should be treated as a narrative document, not a reference document, so you should 
read it at least once start to end.

Setup

You probably want to have a development install of angr, i.e. set up with the script in the . 
It is remarkably easy to add new API models by just implementing them in certain folders of the angr 
repository. This is also desirable because any work you do in this field will almost always be useful to other 
people, and this makes it extremely easy to submit a pull request.

angr-dev repository

However, if you want to do your development out-of-tree, you want to work against a production version of 
angr, or you want to make customized versions of already-implemented API functions, there are ways to 
incorporate your extensions programmatically. Both these techniques, in-tree and out-of-tree, will be 
documented at each step.

Dynamic library functions - import dependencies

This is the easiest case, and the case that SimProcedures were originally designed for.

First, you need to write a SimProcedure representing the function. Then you need to let angr know about it.

Case 1, in-tree development: SimLibraries and catalogues

angr has a magical folder in its repository, . Within it are all the SimProcedure 
implementations that come bundled with angr as well as information about what libraries implement what 
functions.

angr/procedures

Each folder in the procedures  directory corresponds to some sort of standard, or a body that specifies 
the interface part of an API and its semantics. We call each folder a catalog of procedures. For example, we 

have libc  which contains the functions defined by the C standard library, and a separate folder posix  
which contains the functions defined by the posix standard. There is some magic which automatically 

scrapes these folders in the procedures  directory and organizes them into the 

https://github.com/angr/angr-dev
https://github.com/angr/angr/tree/master/angr/procedures


angr.SIM_PROCEDURES  dict. For example, angr/procedures/libc/printf.py  contains both 

class printf  and class __printf_chk , so there exists both 

angr.SIM_PROCEDURES['libc']['printf']  and angr.SIM_PROCEDURES['libc']
['__printf_chk'] .

The purpose of this categorization is to enable easy sharing of procedures among different libraries. For 
example. libc.so.6 contains all the C standard library functions, but so does msvcrt.dll! These relationships 

are represented with objects called SimLibraries  which represent an actual shared library file, its 
functions, and their metadata. Take a look at  along with 

 to learn how to use it.
the API reference for SimLibrary the code for setting 

up glibc

SimLibraries are defined in a special folder in the procedures directory, procedures/definitions . 

Files in here should contain an instance, not a subclass, of SimLibrary . The same magic that scrapes 

up SimProcedures will also scrape up SimLibraries and put them in angr.SIM_LIBRARIES , keyed on 

each of their common names. For example, angr/procedures/definitions/linux_loader.py  

contains lib = SimLibrary(); lib.set_library_names('ld.so', 'ld-linux.so', 
'ld.so.2', 'ld-linux.so.2', 'ld-linux-x86_64.so.2') , so you can access it via 

angr.SIM_LIBRARIES['ld.so']  or angr.SIM_LIBRARIES['ld-linux.so']  or any of the 
other names.

At load time, all the dynamic library dependencies are looked up in SIM_LIBRARIES  and their procedures
(or stubs!) are hooked into the project's address space to summarize any functions it can. The code for this 
process is found .here

SO, the bottom line is that you can just write your own SimProcedure and SimLibrary definitions, drop them 
into the directory structure, and they'll automatically be applied. If you're adding a procedure to an existing 
library, you can just drop it into the appropriate catalog and it'll be picked up by all the libraries using that 
catalog, since most libraries construct their list of function implementation by batch-adding entire catalogs.

Case 2, out-of-tree development, tight integration

If you'd like to implement your procedures outside the angr repository, you can do that. You effectively do this
by just manually adding your procedures to the appropriate SimLibrary. Just call 

angr.SIM_LIBRARIES[libname].add(name, proc_cls)  to do the registration.

Note that this will only work if you do this before the project is loaded with angr.Project . Note also that 

adding the procedure to angr.SIM_PROCEDURES , i.e. adding it directly to a catalog, will not work, since 
these catalogs are used to construct the SimLibraries only at import and are used by value, not by reference.

Case 3, out-of-tree development, loose integration

Finally, if you don't want to mess with SimLibraries at all, you can do things purely on the project level with 

.hook_symbol

Syscalls

Unlike dynamic library methods, syscall procedures aren't incorporated into the project via hooks. Instead, 

http://angr.io/api-doc/angr.html#angr.procedures.definitions.SimLibrary
https://github.com/angr/angr/blob/master/angr/procedures/definitions/glibc.py
https://github.com/angr/angr/blob/master/angr/project.py#L244
http://angr.io/api-doc/angr.html#angr.project.Project.hook_symbol


whenever a syscall instruction is encountered, the basic block should end with a jumpkind of Ijk_Sys . 
This will cause the next step to be handled by the SimOS associated with the project, which will extract the 
syscall number from the state and query a specialized SimLibrary with that.

This deserves some explanation.

There is a subclass of SimLibrary called SimSyscallLibrary which is used for collecting all the functions that 
are part of an operating system's syscall interface. SimSyscallLibrary uses the same system for managing 
implementations and metadata as SimLibrary, but adds on top of it a system for managing syscall numbers 
for multiple ABIs (application binary interfaces, like an API but lower level). The best example for an 
implementation of a SimSyscallLibrary is the . It keeps its procedures in a normal 

SimProcedure catalog called linux_kernel  and adds them to the library, then adds several syscall 

number mappings, including separate mappings for mips-o32 , mips-n32 , and mips-n64 .

linux syscalls

In order for syscalls to be supported in the first place, the project's SimOS must inherit from , 
itself a SimOS subclass. This requires the class to call SimUserland's constructor with a super() call that 

includes the syscall_library  keyword argument, specifying the specific SimSyscallLibrary that 
contains the appropriate procedures and mappings for the operating system. Additionally, the class's 

configure_project  must perform a super() call including the abi_list  keyword argument, which 
contains the list of ABIs that are valid for the current architecture. If the ABI for the syscall can't be 

determined by just the syscall number, for example, that amd64 linux programs can use either int 0x80  

or syscall  to invoke a syscall and these two ABIs use overlapping numbers, the SimOS cal override 

syscall_abi() , which takes a SimState and returns the name of the current syscall ABI. This is 
determined for int80/syscall by examining the most recent jumpkind, since libVEX will produce different 
syscall jumpkinds for the different instructions.

SimUserland

Calling conventions for syscalls are a little weird right now and they ought to be refactored. The current 

situation requires that angr.SYSCALL_CC  be a map of maps {arch_name: {os_name: cc_cls}} , 

where os_name  is the value of project.simos.name, and each of the calling convention classes must 

include an extra method called syscall_number  which takes a state and return the current syscall 

number. Look at the bottom of  to learn more about it. Not very object-
oriented at all...

calling_conventions.py

As a side note, each syscall is given a unique address in a special object in CLE called the "kernel object". 
Upon a syscall, the address for the specific syscall is set into the state's instruction pointer, so it will show up 
in the logs. These addresses are not hooked, they are just used to identify syscalls during analysis given 
only an address trace. The test for determining if an address corresponds to a syscall is 

project.simos.is_syscall_addr(addr)  and the syscall corresponding to the address can be 

retrieved with project.simos.syscall_from_addr(addr) .

Case 1, in-tree development

SimSyscallLibraries are stored in the same place as the normal SimLibraries, 

angr/procedures/definitions . These libraries don't have to specify any common name, but they 

can if they'd like to show up in SIM_LIBRARIES  for easy access.

The same thing about adding procedures to existing catalogs of dynamic library functions also applies to 
syscalls - implementing a linux syscall is as easy as writing the SimProcedure and dropping the 

implemementation into angr/procedures/linux_kernel . As long as the class name matches one of 

https://github.com/angr/angr/blob/master/angr/procedures/definitions/linux_kernel.py
http://angr.io/api-doc/angr.html#angr.simos.userland.SimUserland
https://github.com/angr/angr/blob/master/angr/calling_conventions.py


the names in the number-to-name mapping of the SimLibrary (all the linux syscall numbers are included with
t l f ) it ill b d

To add a new operating system entirely, you need to implement the SimOS as well, as a subclass of 

SimUserland. To integrate it into the tree, you should add it to the simos  directory, but this is not a magic 

directory like procedures . Instead, you should add a line to angr/simos/__init__.py  calling 

register_simos()  with the OS name as it appears in project.loader.main_object.os  and 
the SimOS class. Your class should do everything described above.

Case 2, out-of-tree development, tight integration

You can add syscalls to a SimSyscallLibrary the same way you can add functions to a normal SimLibrary, by

tweaking the entries in angr.SIM_LIBRARIES . If you're this for linux you want 

angr.SIM_LIBRARIES['linux'].add(name, proc_cls) .

You can register a SimOS with angr from out-of-tree as well - the same register_simos  method is just 

sitting there waiting for you as angr.simos.register_simos(name, simos_cls) .

Case 3, out-of-tree development, loose integration

The SimSyscallLibrary the SimOS uses is copied from the original during setup, so it is safe to mutate. You 

can directly fiddle with project.simos.syscall_library  to manipulate an individual project's 
syscalls.

You can provide a SimOS class (not an instance) directly to the Project  constructor via the simos  
keyword argument, so you can specify the SimOS for a project explicitly if you like.

SimData

What about when there is an import dependency on a data object? This is easily resolved when the given 
library is actually loaded into memory - the relocation can just be resolved as normal. However, when the 

library is not loaded (for example, auto_load_libs=False , or perhaps some dependency is simply 
missing), things get tricky. It is not possible to guess in most cases what the value should be, or even what 
its size should be, so if the guest program ever dereferences a pointer to such a symbol, emulation will go off
the rails.

CLE will warn you when this might happen:

[22:26:58] [cle.backends.externs] |  WARNING: Symbol was allocated without a known size; em1
[22:26:58] [cle.backends.externs] |  WARNING: Symbol was allocated without a known size; em2

[22:26:58] [cle.backends.externs] |  WARNING: Symbol was allocated without a known size; em3
[22:26:58] [cle.backends.externs] |  WARNING: Symbol was allocated without a known size; em4

If you see this message and suspect it is causing issues (i.e. the program is actually introspecting the value 
of these symbols), you can resolve it by implementing and registering a SimData class, which is like a 
SimProcedure but for data. Simulated data. Very cool.



A SimData can effectively specify some data that must be used to provide an unresolved import symbol. It 
has a number of mechanisms to make this more useful, including the ability to specify relocations and 
subdependencies.

Look at the  and the  for guidelines on how to do this.SimData class reference existing SimData subclasses

TODO: Writing Exploration Techniques

Writing Analyses

An analysis can be created by subclassing the angr.Analysis  class. In this section, we'll create a mock 
analysis to show off the various features. Let's start with something simple:

>>> import angr1
2
>>> class MockAnalysis(angr.Analysis):3
...     def __init__(self, option):4
...         self.option = option5

6
>>> angr.AnalysesHub.register_default('MockAnalysis', MockAnalysis) # register the class wi7

This is a very simple analysis -- it takes an option, and stores it. Of course, it's not useful, but this is just a 
demonstration.

Let's see how to run our new analysis:

>>> proj = angr.Project("/bin/true")1
>>> mock = proj.analyses.MockAnalysis('this is my option')2
>>> assert mock.option == 'this is my option'3

Working with projects

Via some python magic, your analysis will automatically have the project upon which you are running it 

under the self.project  property. Use this to interact with your project and analyze it!

>>> class ProjectSummary(angr.Analysis):1
...     def __init__(self):2
...         self.result = 'This project is a %s binary with an entry point at %#x.' % (self3

4
>>> angr.AnalysesHub.register_default('ProjectSummary', ProjectSummary)5
>>> proj = angr.Project("/bin/true")6

http://angr.io/api-doc/cle.html#cle.backends.externs.simdata.SimData
https://github.com/angr/cle/tree/master/cle/backends/externs/simdata


7
>>> summary = proj.analyses.ProjectSummary()8
>>> print(summary.result)9
This project is a AMD64 binary with an entry point at 0x401410.10

Analysis Resilience

Sometimes, your (or our) code might suck and analyses might throw exceptions. We understand, and we 
also understand that oftentimes a partial result is better than nothing. This is specifically true when, for 
example, running an analysis on all of the functions in a program. Even if some of the functions fails, we still 
want to know the results of the functions that do not.

To facilitate this, the Analysis  base class provides a resilience context manager under 

self._resilience . Here's an example:

>>> class ComplexFunctionAnalysis(angr.Analysis):1
...     def __init__(self):2
...         self._cfg = self.project.analyses.CFG()3
...         self.results = { }4
...         for addr, func in self._cfg.function_manager.functions.items():5
...             with self._resilience():6
...                 if addr % 2 == 0:7
...                     raise ValueError("can't handle functions at even addresses")8
...                 else:9
...                     self.results[addr] = "GOOD"10

The context manager catches any exceptions thrown and logs them (as a tuple of the exception type, 

message, and traceback) to self.errors . These are also saved and loaded when the analysis is saved 
and loaded (although the traceback is discarded, as it is not picklable).

You can tune the effects of the resilience with two optional keyword parameters to 

self._resilience() .

The first is name , which affects where the error is logged. By default, errors are placed in self.errors , 

but if name  is provided, then instead the error is logged to self.named_errors , which is a dict 

mapping name  to a list of all the errors that were caught under that name. This allows you to easily tell 
where thrown without examining its traceback.

The second argument is exception , which should be the type of the exception that _resilience  

should catch. This defaults to Exception , which handles (and logs) almost anything that could go wrong. 
You can also pass a tuple of exception types to this option, in which case all of them will be caught.

Using _resilience  has a few advantages:

1. Your exceptions are gracefully logged and easily accessible afterwards. This is really nice for writing 
testcases.

2.



When creating your analysis, the user can pass fail_fast=True , which transparently disable the 
resilience, which is really nice for manual testing.3. It's prettier than having try / except  everywhere.

Have fun with analyses! Once you master the rest of angr, you can use analyses to understand anything 
computable!

TODO: Adding Support for New Architectures

Scripting angr management

Please note that the documentation and the API for angr management are highly in-flux. You will need to 
spend time reading the source code. Grep is your friend. If you have questions, please ask in the angr slack.

If you build something which uses an API and you want to make sure it doesn't break, you can contribute a 
testcase for the API!

This codebase is absolutely filled to the brim with one-off hacks. If you see some code and think, "hm, that 
doesn't seem like an extensible or best-practices way to code that", you're probably right. Cleaning up angr 
management's code is a top priority for us, so if you have some ideas to fix these sorts of issues, please let 
us know, either in an issue or a pull request!

The console, and the basic objects

angr management opens with an IPython console ready for input. This console has in its namespace 
several objects which are important for manipulating angr management and its data.

First, the main_window . This is the QMainWindow  instance for the application. It contains basic 
functions that correspond to top-level buttons, such as loading a binary.

Next, the workspace . This is a light object which coordinates the UI elements and manages the 
tabbed environment. You can use it to access any analysis-related GUI element, such as the 
disassembly view.

Finally, the instance . This is angr management's data model. It contains mechanisms for 
synchronizing components on shared data sources, as well as logic for creating long-running jobs.

workspace  is also available as an attribute on main_window  and instance  is available as an 

attribute on workspace . If you are programming in a namespace where none of these objects are 

available, you can import the angrmanagment.logic.GlobalInfo  object, which contains a reference 

to main_window .

The ObjectContainer

angr management uses a class called ObjectContainer to implement a pub-sub model and synchronize 



changing object references. Let's use instance.project  as an example. This is an ObjectContainer 
that contains the current project. You can use it in every way that you would normally use a project - you can 

access project.factory , project.kb , etc. However, it also has two very important features that are 
helpful for building UIs.

First, the pub-sub model. You can subscribe to changes to this object by calling 

instance.project.am_subscribe(callback) . Then, you can notify listeners of changes by 

calling instance.project.am_event() . Note that events are NEVER automatically triggered - you 

must call am_event  in order to trigger the callbacks. One useful feature of this model is that you can 

provide arbitrary keyword arguments to am_event , and they will be passed on to each callback. This 

means that you should always have your callbacks take **kwargs  in order to account for unknown 
parameters. This feature is particularly useful to prevent feedback loops - if you ever find yourself in a 
situation where you need to broadcast an event from your callback, you can add an argument that you can 
use as a flag not to recurse any further.

Next, object reference mutability. Let's say you have a widget that displays information about the project. 
Following the principle of least access, you should only provide as much information as is necessary to do 
the job - in this case, just the project object. If you provide the basic project object, this will cause issues 
when a new project is loaded. Notably, there will be a dangling reference held to the original project, 
preventing it from being garbage collected, and the widget will not update, continuing to show the old 
project's information. Now, if you provide the project's ObjectContainer, a new project can be created and 
inserted into the container and the reference will instantly be available to your widget. If you ever wanted to 

load a new project yourself, all you have to do is assign to instance.project.am_obj  and then send 
off an event. Combined with the event publication model, this provides an efficient way to build responsive 
UIs that follow the principle of least access.

One important way that you can't use the object container the same way that you would a normal object is 

that is None  will obviously not work. To resolve this, you can use instance.project.am_none  - 
this will be True when no project is loaded.

One interesting feature of the ObjectContainer is that they can nest. If you have a container which contains a 
container which contains an object, any events sent to the inner container will also be sent to subscribers to 
the outer container. This allows patterns such as the list of SimStates actually containing a list of 
ObjectContainers which contain states, and the "current state" container actually contains one of these 
containers. The result of this is that UI elements can either subscribe to the current state, no matter

A full list of standard ObjectContainers that can be found in the . There are 
more containers floating around for synchronizing on non-global elements - for example, the current state of 
the disassembly view is synchronized through its InfoDock object. Given a disassembly view instance, you 
can subscribe to, for example, its current selected instructions through 

view.infodock.selected_insns .

instance __init__  method

Manipulating UI elements

The workspace  contains methods to manipulate UI elements. Notably, you can manipulate all open tabs 

with . Additionally, you can pass any sort of object you like to 

workspace.viz()  and it will attempt to visualize the object in the current window.

the workspace.view_manager  reference

Writing plugins

https://github.com/angr/angr-management/blob/master/angrmanagement/data/instance.py
https://github.com/angr/angr-management/blob/master/angrmanagement/ui/view_manager.py


angr management has a very flexible plugin framework. A plugin is a python file containing a subclass of 

angrmanagement.plugins.BasePlugin . Plugin files will be automatically loaded from the 

plugins  module of angr management, and also from ~/.local/share/angr-
management/plugins . These paths are configurable through the program configuration, but at the time 
of writing, this is not exposed in the UI.

The best way to see the tools you can use while building a plugin is to read the 
. Any method or attribute can be overridden from a base class and will be automatically called on 

relevant events.

plugin base class source 
code

Writing tests

Look at the  for examples. Generally, you can test UI components by creating the component 
and driving input to it via QTest. You can create a headless MainWindow instance by passing 

show=False  to its constructor - this will also get you access to a workspace and an instance.

existing tests

Examples

To help you get started with , we've created several examples. We've tried to organize them into major 
categories, and briefly summarize that each example will expose you to. Enjoy!

angr

There are also a great amount of slightly more redundant examples (these mostly stem from CTF problems 
solved with angr by Shellphish) .here

If you want a high-level cheatsheet of the "techniques" used in the examples, see 
 by .

the angr strategies 
cheatsheet Florent Bordignon

To jump to a specific category:

 - examples showing off the very basics of angr's functionalityIntroduction

 - examples showing angr being used in reverse engineering tasksReversing

 - examples of angr being used to search for vulnerabilitiesVulnerability Discovery

 - examples of angr being used as an exploitation assistance toolExploitation

Introduction

These are some introductory examples to give an idea of how to use angr's API.

Fauxware

This is a basic script that explains how to use angr to symbolically execute a program and produce concrete 
input satisfying certain conditions.

Binary, source, and script are found here.

https://github.com/angr/angr-management/blob/master/angrmanagement/plugins/base_plugin.py
https://github.com/angr/angr-management/tree/master/tests
https://github.com/angr/angr
https://github.com/angr/angr-doc/tree/314f909875efe14c6cd6f815e28f2f65f213e903/docs/more-examples.md
https://github.com/bordig-f/angr-strategies/blob/master/angr_strategies.md
https://github.com/bordig-f
https://github.com/angr/angr-doc/tree/master/examples/fauxware


Reversing

These are examples that use angr to solve reverse engineering challenges. There are a lot of these. We've 
chosen the most unique ones, and relegated the rest to the  section below.CTF Challenges

Beginner reversing example: little_engine

Script author: Michael Reeves (github: @mastermjr)1
Script runtime: 3 min 26 seconds (206 seconds)2
Concepts presented: 3

stdin constraining, concrete optimization with Unicorn4

This challenge is similar to the csaw challenge below, however the reversing is much more simple. The 
original code, solution, and writeup for the challenge can be found at the b01lers github .here

The angr solution script is  and the binary is .here here

Whitehat CTF 2015 - Crypto 400

Script author: Yan Shoshitaishvili (github: @Zardus)1
Script runtime: 30 seconds2
Concepts presented: statically linked binary (manually hooking with function summaries), co3

We solved this crackme with angr's help. The resulting script will help you understand how angr can be 
used for crackme assistance, not a full-out solve. Since angr cannot solve the actual crypto part of the 
challenge, we use it just to reduce the keyspace, and brute-force the rest.

You can find this script  and the binary .here here

CSAW CTF 2015 Quals - Reversing 500, "wyvern"

Script author: Audrey Dutcher (github: @rhelmot)1
Script runtime: 15 mins2
Concepts presented: stdin constraining, concrete optimization with Unicorn3

angr can outright solve this challenge with very little assistance from the user. The script to do so is  and 
the binary is .

here
here

TUMCTF 2016 - zwiebel

Script author: Fish1
Script runtime: 2 hours 31 minutes with pypy and Unicorn - expect much longer with CPython 2
Concepts presented: self-modifying code support, concrete optimization with Unicorn3

https://github.com/b01lers/b01lers-ctf-2020/tree/master/rev/100_little_engine
https://github.com/angr/angr-doc/tree/master/examples/b01lersctf2020_little_engine/solve.py
https://github.com/angr/angr-doc/tree/master/examples/b01lersctf2020_little_engine/engine
https://github.com/angr/angr-doc/tree/master/examples/whitehat_crypto400/solve.py
https://github.com/angr/angr-doc/tree/master/examples/whitehat_crypto400/whitehat_crypto400
https://github.com/angr/angr-doc/tree/master/examples/csaw_wyvern/solve.py
https://github.com/angr/angr-doc/tree/master/examples/csaw_wyvern/wyvern


This example is of a self-unpacking reversing challenge. This example shows how to enable Unicorn 
support and self-modification support in angr. Unicorn support is essential to solve this challenge within a 
reasonable amount of time - simulating the unpacking code symbolically is very slow. Thus, we execute it 
concretely in unicorn/qemu and only switch into symbolic execution when needed.

You may refer to other writeup about the internals of this binary. I didn’t reverse too much since I was pretty 
confident that angr is able to solve it :-)

The long-term goal of optimizing angr is to execute this script within 10 minutes. Pretty ambitious :P

Here is the  and the .binary script

FlareOn 2015 - Challenge 5

Script author: Adrian Tang (github: @tangabc)1
Script runtime: 2 mins 10 secs2
Concepts presented: Windows support3

This is another  from the FlareOn challenges.reversing challenge

"The challenge is designed to teach you about PCAP file parsing and traffic decryption by reverse 
engineering an executable used to generate it. This is a typical scenario in our malware analysis practice 
where we need to figure out precisely what the malware was doing on the network"

For this challenge, the author used angr to represent the desired encoded output as a series of constraints 
for the SAT solver to solve for the input.

For a detailed write-up please visit the author's post  and you can also find the solution from the FireEye here
here

0ctf quals 2016 - trace

Script author: WGH (wgh@bushwhackers.ru)1
Script runtime: 1 min 50 secs (CPython 2.7.10), 1 min 12 secs (PyPy 4.0.1)2
Concepts presented: guided symbolic tracing3

In this challenge we're given a text file with trace of a program execution. The file has two columns, address 
and instruction executed. So we know all the instructions being executed, and which branches were taken. 
But the initial data is not known.

Reversing reveals that a buffer on the stack is initialized with known constant string first, then an unknown 
string is appended to it (the flag), and finally it's sorted with some variant of quicksort. And we need to find 
the flag somehow.

angr easily solves this problem. We only have to direct it to the right direction at every branch, and the solver 
finds the flag at a glance.

Files are .here

https://github.com/angr/angr-doc/tree/master/examples/tumctf2016_zwiebel/zwiebel
https://github.com/angr/angr-doc/tree/master/examples/tumctf2016_zwiebel/solve.py
https://github.com/angr/angr-doc/tree/master/examples/flareon2015_5/sender
http://0x0atang.github.io/reversing/2015/09/18/flareon5-concolic.html
https://www.fireeye.com/content/dam/fireeye-www/global/en/blog/threat-research/flareon/2015solution5.pdf
https://github.com/angr/angr-doc/tree/master/examples/0ctf_trace


ASIS CTF Finals 2015 - license

Script author: Fish Wang (github: @ltfish)1
Script runtime: 3.6 sec2
Concepts presented: using the filesystem, manual symbolic summary execution3

This is a crackme challenge that reads a license file. Rather than hooking the read operations of the flag file, 
we actually pass in a filesystem with the correct file created.

Here is the  and the .binary script

DEFCON Quals 2017 - Crackme2000

Script author: Shellphish1
Script runtime: varies, but on the order of seconds2
Concepts presented: automated reverse engineering3

DEFCON Quals had a whole category for automatic reversing in 2017. Our scripts are .here

Vulnerability Discovery

These are examples of angr being used to identify vulnerabilities in binaries.

Beginner vulnerability discovery example: strcpy_find

Script author: Kyle Ossinger (github: @k0ss)1
Concepts presented: exploration to vulnerability, programmatic find condition2

This is the first in a series of "tutorial scripts" I'll be making which use angr to find exploitable conditions in 
binaries. The first example is a very simple program. The script finds a path from the main entry point to 

strcpy , but only when we control the source buffer of the strcpy  operation. To hit the right path, angr 
has to solve for a password argument, but angr solved this in less than 2 seconds on my machine using the 
standard python interpreter. The script might look large, but that's only because I've heavily commented it to 
be more helpful to beginners. The challenge binary is  and the script is .here here

CGC crash identification

Script author: Antonio Bianchi, Jacopo Corbetta1
Concepts presented: exploration to vulnerability2

This is a very easy binary containing a stack buffer overflow and an easter egg. CADET_00001 is one of the 
challenge released by DARPA for the Cyber Grand Challenge:  The binary can run in the DECREE VM: link

https://github.com/angr/angr-doc/tree/master/examples/asisctffinals2015_license/license
https://github.com/angr/angr-doc/tree/master/examples/asisctffinals2015_license/solve.py
https://github.com/angr/angr-doc/tree/master/examples/defcon2017quals_crackme2000
https://github.com/angr/angr-doc/tree/master/examples/strcpy_find/strcpy_test
https://github.com/angr/angr-doc/tree/master/examples/strcpy_find/solve.py
https://github.com/CyberGrandChallenge/samples/tree/master/examples/CADET_00001


 A copy of the original challenge and the angr solution is provided  CADET_00001.adapted (by link here

Grub "back to 28" bug

Script author: Audrey Dutcher (github: @rhelmot)1
Concepts presented: unusal target (custom function hooking required), use of exploration te2

This is the demonstration presented at 32c3. The script uses angr to discover the input to crash grub's 
password entry prompt.

 - script vulnerable module

Exploitation

These are examples of angr's use as an exploitation assistance engine.

Insomnihack Simple AEG

Script author: Nick Stephens (github: @NickStephens)1
Concepts presented: automatic exploit generation, global symbolic data tracking2

Demonstration for Insomni'hack 2016. The script is a very simple implementation of AEG.

script

SecuInside 2016 Quals - mbrainfuzz - symbolic exploration for exploitability conditions

Script author: nsr (nsr@tasteless.eu)1
Script runtime: ~15 seconds per binary2
Concepts presented: symbolic exploration guided by static analysis, using the CFG3

Originally, a binary was given to the ctf-player by the challenge-service, and an exploit had to be crafted 
automatically. Four sample binaries, obtained during the ctf, are included in the example. All binaries follow 
the same format; the command-line argument is validated in a bunch of functions, and when every check 
succeeds, a memcpy() resulting into a stack-based buffer overflow is executed. angr is used to find the way 
through the binary to the memcpy() and to generate valid inputs to every checking function individually.

The sample binaries and the script are located  and additional information be found at the author's 
.

here
Write-Up

SECCON 2016 Quals - ropsynth

Script author: Yan Shoshitaishvili (github @zardus) and Nilo Redini1
Script runtime: 2 minutes2

http://repo.cybergrandchallenge.com/boxes/
https://github.com/angr/angr-doc/tree/master/examples/CADET_00001
https://github.com/angr/angr-doc/tree/master/examples/grub/solve.py
https://github.com/angr/angr-doc/tree/master/examples/grub/crypto.mod
https://github.com/angr/angr-doc/tree/master/examples/insomnihack_aeg/solve.py
https://github.com/angr/angr-doc/tree/master/examples/secuinside2016mbrainfuzz
https://tasteless.eu/post/2016/07/secuinside-mbrainfuzz/


C t t d: t ti ROP h i ti bi difi ti i3

This challenge required the automatic generation of ropchains, with the twist that every ropchain was 
succeeded by an input check that, if not passed, would terminate the application. We used symbolic 
execution to recover those checks, removed the checks from the binary, used angrop to build the ropchains, 
and instrumented them with the inputs to pass the checks.

The various challenge files are located , with the actual solve script .here here

Appendix

List of Claripy Operations

Arithmetic and Logic

Name Description Example

LShR
Logically shifts an expression to 
the right. (the default shifts are 
arithmetic)

x.LShR(10)

RotateLeft Rotates an expression left x.RotateLeft(8)

RotateRight Rotates an expression right x.RotateRight(8)

And
Logical And (on boolean 
expressions)

solver.And(x == y, x >
0)

Or
Logical Or (on boolean 
expressions)

solver.Or(x == y, y < 
10)

Not
Logical Not (on a boolean 
expression)

solver.Not(x == y)  is th

same as x != y

If An If-then-else

Choose the maximum of two 

expressions: solver.If(x 
y, x, y)

ULE Unsigned less than or equal to
Check if x is less than or equal

to y: x.ULE(y)

ULT Unsigned less than
Check if x is less than y: 

x.ULT(y)

UGE
Unsigned greater than or equal 
to

Check if x is greater than or 

equal to y: x.UGE(y)

https://github.com/angr/angr-doc/tree/master/examples/secconquals2016_ropsynth
https://github.com/angr/angr-doc/tree/master/examples/secconquals2016_ropsynth/solve.py


UGT Unsigned greater than
Check if x is greater than y: 

x.UGT(y)

SLE Signed less than or equal to
Check if x is less than or equal

to y: x.SLE(y)

SLT Signed less than
Check if x is less than y: 

x.SLT(y)

SGE Signed greater than or equal to
Check if x is greater than or 

equal to y: x.SGE(y)

SGT Signed greater than
Check if x is greater than y: 

x.SGT(y)

TODO: Add the floating point ops

Bitvector Manipulation

Name Description Example

SignExt
Pad a bitvector on the left with 

n  sign bits
x.sign_extend(n)

ZeroExt
Pad a bitvector on the left with 

n  zero bits
x.zero_extend(n)

Extract
Extracts the given bits (zero-
indexed from the right, inclusive) 
from an expression.

Extract the least significant byte

of x: x[7:0]

Concat
Concatenates any number of 
expressions together into a new 
expression.

x.concat(y, ...)

Extra Functionality

There's a bunch of prepackaged behavior that you could implement by analyzing the ASTs and composing 
sets of operations, but here's an easier way to do it:

You can chop a bitvector into a list of chunks of n  bits with val.chop(n)

You can endian-reverse a bitvector with x.reversed

You can get the width of a bitvector in bits with val.length



You can test if an AST has any symbolic components with val.symbolic

You can get a set of the names of all the symbolic variables implicated in the construction of an AST 

with val.variables

List of State Options

State Modes

These may be enabled by passing mode=xxx  to a state constructor.

Mode name Description

symbolic
The default mode. Useful for most emulation and 
analysis tasks.

symbolic_approximating
Symbolic mode, but enables approximations for 
constraint solving.

static

A preset useful for static analysis. The memory 
model becomes an abstract region-mapping 
system, "fake return" successors skipping calls ar
added, and more.

fastpath
A preset for extremely lightweight static analysis. 
Executing will skip all intensive processing to give
a quick view of the behavior of code.

tracing

A preset for attempting to execute concretely 
through a program with a given input. Enables 
unicorn, enables resilience options, and will 
attempt to emulate access violations correctly.

Option Sets

These are sets of options, found as angr.options.xxx .

Set name Description

common_options Options necessary for basic execution

symbolic Options necessary for basic symbolic execution

Options that harden angr's emulation against 



resilience
unsupported operations, attempting to carry on by
treating the result as an unconstrained symbolic 
value and logging the occasion to 

state.history.events .

refs

Options that cause angr to keep a log of all the 
memory, register, and temporary references 
complete with dependency information in 

history.actions . This option consumes a lo
of memory, so be careful!

approximation
Options that enable approximations of constraint 
solves via value-set analysis instead of calling int
z3

simplification
Options that cause data to be run through z3's 
simplifiers before it reaches memory or register 
storage

unicorn
Options that enable the unicorn engine for 
executing on concrete data

Options

These are individual option objects, found as angr.options.XXX .

Option name Description Sets Modes Implicit adds

ABSTRACT_ME
MORY

Use 

SimAbstractM
emory  to model 
memory as 
discrete regions

 static  

ABSTRACT_SO
LVER

Allow splitting 
constraint sets 
during 
simplification

 static  

ACTION_DEPS

Track 
dependencies in 
SimActions    

APPROXIMATE_
GUARDS

Use VSA when 
evaluating guard 
conditions

   

APPROXIMATE_



MEMORY_INDIC
ES

Use VSA when 
evaluating 
memory indices

approximati
on

symbolic_app
roximating

 

APPROXIMATE_
MEMORY_SIZES

Use VSA when 
evaluating 
memory 
load/store sizes

approximati
on

symbolic_app
roximating

 

APPROXIMATE_
SATISFIABILI
TY

Use VSA when 
evaluating state 
satisfiability

approximati
on

symbolic_app
roximating

 

AST_DEPS

Enables 
dependency 
tracking for all 
claripy ASTs

  During executio

AUTO_REFS

An internal option 
used to track 
dependencies in 
SimProcedures

  During executio

AVOID_MULTIV
ALUED_READS

Return a 
symbolic value 
without touching 
memory for any 
read that has a 
symbolic address

 fastpath  

AVOID_MULTIV
ALUED_WRITES

Do not perfrom 
any write that has 
a symbolic 
address

 fastpath  

BEST_EFFORT_
MEMORY_STORI
NG

Handle huge 
writes of 
symbolic size by 
pretending they 
are actually 
smaller

 
static , 

fastpath
 

BREAK_SIRSB
_END

Debug: trigger a 
breakpoint at the 
end of each block

   

BREAK_SIRSB_
START

Debug: trigger a 
breakpoint at the 
start of each 
block

   

Debug: trigger a 



BREAK_SIRSTM
T_END

breakpoint at the 
end of each IR 
statement

   

BREAK_SIRSTM
T_START

Debug: trigger a 
breakpoint at the 
start of each IR 
statement

   

BYPASS_ERROR
ED_IRCCALL

Treat clean 
helpers that fail 
with errors as 
returning 
unconstrained 
symbolic values

resilience
fastpath , 

tracing
 

BYPASS_ERROR
ED_IROP

Treat operations 
that fail with 
errors as 
returning 
unconstrained 
symbolic values

resilience
fastpath , 

tracing
 

BYPASS_UNSUP
PORTED_IRCCA
LL

Treat 
unsupported 
clean helpers as 
returning 
unconstrained 
symbolic values

resilience
fastpath , 

tracing
 







Changelog

This lists the major changes in angr. Tracking minor changes are left as an exercise for the reader :-)

angr 9.1

(#2961) Refactored SimCC to support passing and returning structs and arrays by value

(#2964) Functions from the knowledge base may now be pretty-printed, showing colors and reference 
arrows

Improved import angr  speed substantially

(#2948) RDA's dep_graph  can now be used to track dependencies between temporaries, constants, 
guard conditions, and function calls - if you want it!

(#2929) Basic support for structs with bitfields in SimType

There's a decompiler now



angr 9.0

Switched to a new versioning scheme: major.minor.build_id

angr 8.19.7.25

(#1503) Implement necessary helpers and information storage for call pretty printing

(#1546) Add a new state option MEMORY_FIND_STRICT_SIZE_LIMIT

(#1548) SimProcedure.static_exits: Allow providing name hints

(cle#177) Use Enums for Symbol Types

(cle#193) Add support for "named regions"

(claripy#151) Implement operator precedence in claripy op rendering

Added support for interaction recording in angr-management

Several new simprocedure implementations

Substantial imporvments to our CFG

angr 8.19.4.5

(#1234) Massive improvements to CFG recovery for ARM and ARM cortex-m binaries.

(#1416) Added support for analyzing Java programs via the Soot IR, including the ability to analyze 
interplay between Java code and JNI libraries. This branch was two years old!

(#1427) Added a MemoryWatcher exploration technique to take action when the system is running out of 
RAM. Thanks @bannsec.

(#1432) Added a state.heap  plugin which manages the heap (with pluggable heap schemes!) and 
provides malloc functionality. Thanks @tgduckworth.

Speed improvements for using the VEX engine and working with concrete data.

Added SimLightRegisters, an alternate registers plugin that eliminates the abstraction of the register file 
for performance improvements at the cost of removing all instrumentability.

__version__  variable has been added to all modules.

The stack_base  kwarg for call_state  is not broken for the first time ever

https://github.com/python/cpython/pull/11384

angr 8.19.2.4



(#1279) Support C++ function name demangling via itanium-demangler. Thanks @fmagin.

(#1283) _security_cookie  is initialized for SimWindows. Thanks @zeroSteiner.

(#1298) Introduce SimData . It's a cleaner interface to deal with data imports in CLE -- especially for 
those data entries that are not imported because of missing or unloaded libraries. This commit fixes 
long-standing issues #151 and #693.

(#1299, #1300, #1301, #1313, #1314, #1315, #1336, #1337, #1343, ...) Multiple CFGFast-related 
improvements and bug fixes.

(#1332) UnresolvableTarget  is now split into two classes: UnresolvableJumpTarget  and 

UnresolvableCallTarget . Thanks @Kyle-Kyle.

(#1382) Add a preliminary implementation of angr decompiler. Give it a try! p = 
angr.Project("cfg_loop_unrolling", auto_load_libs=False); 
p.analyses.CFG(); 
print(p.analyses.Decompiler(p.kb.functions['test_func']).codegen.text) .

(#1421) SimAction s now have incrementing IDs. Thanks @bannsec.

(#1408) ANA , angr's old identity-aware serialization backend, has been removed. Instead of non-
obvious serialization behavior, all angr objects should now be pickleable. If one is not, please file an 
issue. For use-cases that require identity-awareness (i.e., deduplicating ASTs across states serialized at 

different times), an angr.vaults  module has been introduced.

Added a facility to synchronize state between angr and a running target a la avatar2

Changed unconstrained registers/memory warning to be less obnoxious and contain useful information. 

Also added SYMBOL_FILL_UNCONSTRAINED_REGISTERS  and 

SYMBOL_FILL_UNCONSTRAINED_MEMORY  state options to silence them.

angr 8.18.10.25

The IDA backend for CLE has been removed. It has been broken for quite some time, but now it has 
been disabled for your own safety.

Surveyors have been removed! Finally! This is thanks to @danse-macabre who contributed an 
Exploration Technique for the Slicecutor. Backwards slicing has now been brought out of the angr dark 
ages.

SimCC can now be initialized with a string containing C function prototype in its func_ty  argument

Similarly, Callable can now be run with its arguments instanciated from a string containing C 
expressions

Tracer has been substantially refactored - it will now handle more kinds of desyncs, ASLR slides, and is 
much more friendly for hacking. We will be continuing to improve it!

The Oppologist and Driller have been refactored to play nice with other exploration techniques

SimProcedure continuations now have symbols in the externs object, so describe_addr  will work 

on them. Additionally, the representation for SimProcedure (appearing in history.descriptions  

http://angr.io/blog/angr_symbion/


and project._sim_procedures  among other places) has been improved to show this information.

angr 8.18.10.5

Largely a bugfix release, but with a few bonus treats:

API documentation has been rewritten for Exploration Technique. It should be much easier to use now.

Simulation Manager will throw an error if you pass incorrect keyword arguments (??? why was it like 
this)

The save_unconstrained  flag of Simulation Manager is now on by default

If a step produces only unsatisfiable states, they will appear in the 'unsat'  stash regardless of the 

save_unsat  setting, since this usually indicates a bug. Add unsat  to the auto_drop  parameter 
to restore the old behavior.

angr 8.18.10.1

Welcome to angr 8! The biggest change for this major version bump is the transition to python 3. You can 
read about this, as well as a few other breaking changes, in the .migration guide

Switch to python 3

Refactor to Clemory to clean up the API and speed things up drastically

Remove object.symbols_by_addr  (dict) and add object.symbols  (sorted list); add fuzzy  

parameter to loader.find_symbol

CFGFast is much, much faster now. CFGAccurate has been renamed to CFGEmulated.

Support for avx2 unpack instructions, courtesy of D. J. Bernstein

Removed support for immutable simulation managers

angr will now show you a warning when using uninitialized memory or registers

angr will now NOT show you a warning if you have a capstone 3.x install unless you're actually 
interacting with the relevant missing parts

Many, many, many bug fixes

angr 7.8.7.1

Remove LoopLimiter  and DFG .

(#1063) CFGAccurate  can now leverage indirect jump resolvers to resolve indirect jumps.



angr 7.8.6.23

(PyVEX!#134) We now recognize LDMDB r11, {xxx, pc} as a ret instruction for ARM.

(#1053) CFGFast spends less time running next_pos_with_sort_not_in(), thus it runs faster on large 
binaries.

(#1080) Jump table resolvers now support resolving ARM jump tables.

(#1081, together with the PyVEX commit 61efbdcf6303a936aa3de35011d2d1e3fe5fdea5) The memory 
footprint of CFGFast is noticeably smaller, especially on large binaries (over 10 MB in size).

(#1034) Concretizing a SimFile with unconstrained size can no longer run you out of memory.

Other minor changes and bug fixes.

angr 7.8.6.16

The modeling of file system is refactored.

(#808) Add a new class Control flow blanket (CFBlanket) to support generating a linear view of a control 
flow graph.

(#863) Add support to AIL, the new angr intermediate language (still pretty WIP though). Merged in 
several static analyses (reaching definition analysis, VEX-to-AIL translation, redundant assignment 
elimination, code region identification, conrol flow structuring, etc.) that support the development of 
decompilation in the near future.

(#888) SimulationManager is extensively refactored and cleaned up.

(#892) Keystone is integrated. You can assemble instructions inside angr now.

(#897) A new class PluginHub  is added. Plugins (analyses, engines) are refactored to be based on 

PluginHub .

(#899) Support of bidirectional mapping between syscall numbers and syscalls.

(#925, #941, #942) A bunch of library function prototypes (including glibc) are added to angr.

(#953) Fix the issue where evaluating the jump target of a jump table that contains many entries (e.g., > 
512) is extremely slow.

(#964) State options are now stored in insances of SimStateOptions. state.options  is no longer a 
set of strings.

(#973) Add two new exploration techniques: Stochastic and unique.

(#996) SimType structs are now much easier to use.

(#998) Add a new state option PRODUCE_ZERODIV_SUCCESSORS  to generate divide-by-zero 
successors.

Speed improvements and bug fixes in CFG generation (CFGFast and CFGAccurate).



angr 7.8.2.21

Refactor of how syscall handling and SimSyscallLibrary work - it is now possible to handle syscalls 
using multiple ABIs in the same process

Added syscall name-number mappings from all linux ABIs, parsed from gdb

Add ManualMergepoint  exploration technique for when veritesting is too mysterious for your tastes

Add LoopSeer  exploration technique for managing loops during symbolic exploration (credit 
@tyb0807)

Add ProxyTechnique  exploration technique for easily composing simple lambda-based 
instrumentations (credit @danse-macabre)

angr 7.7.12.16

You can now tell where the variables implicitly created by angr come from! state.solver.BVS  now 

can take a key  parameter, which describes its meaning in relation to the emulated environment. You 

can then use state.solver.get_variables(...)  and 

state.solver.describe_variables(...)  to map tags and ASTs to and from each other. 
Check out the !API docs

The SimOS for a project is now a public property - project.simos  instead of project._simos . 
Additionally, the SimOS code structure has been shuffled around a bit - it's now a subpackage instead of 
a submodule.

The core components of Tracer and Driller have been refactored into Exploration Techniques and 
integrated into angr proper, so you can now follow instrution traces without installing another repostory! 
(credit @tyb0807)

Archinfo now contains a byte_width  parameter and angr supports emulation of platforms with non-
octet bytes, lord help us

Upgraded to networkx 2 (credit @tyb0807)

Hopefully installation issues with capstone should be fixed FOREVER

Minor fixes to gender

angr 7.7.9.8

Welcome to angr 7! We worked long and hard all summer to make this release the best ever. It introduces 
several breaking changes, so for a quick guide on the most common ways you'll need to update your scripts, 
take a look at the .migration guide

SimuVEX has been removed and its components have been integrated into angr

Path has been removed and its components have been integrated into SimState, notably the new 

http://angr.io/api-doc/angr.html#angr.state_plugins.solver.SimSolver


history  state plugin

PathGroup has been renamed to SimulationManager

SimState and SimProcedure now have a reference to their parent Project, though it is verboten to use it 
in anything other than an append-only fashion

A new class SimLibrary is used to track SimProcedure and metadata corresponding to an individual 
shared library

Several CLE interfaces have been refactored up for consistency

Hook has been removed. Hooking is now done with individual SimProcedure instances, which are 
shallow-copied at execution time for thread-safety.

The state.solver  interface has been cleaned up drastically

These are the major refactor-y points. As for the improvements:

Greatly improved support for analyzing 32 bit windows binaries (partial credit @schieb)

Unicorn will now stop for stop points and breakpoints in the middle of blocks (credit @bennofs)

The processor flags for a state can now be accessed through state.regs.eflags  on x86 and 

state.regs.flags  on ARM (partial credit @tyb0807)

Fledgling support for emulating exception handling. Currently the only implementation of this is support 

for Structured Exception Handling on Windows, see angr.SimOS.handle_exception  for details

Fledgling support for runtime library loading by treating the CLE loader as an append-only interface, 

though only implemented for windows. See cle.Loader.dynamic_load  and 

angr.procedures.win32.dynamic_loading  for details.

The knowledge base has been refactored into a series of plugins similar to SimState (credit @danse-
macabre)

The testcase-based function identifier we wrote for CGC has been integrated into angr as the Identifier 
analysis

Improved support for writing custom VEX lifters

angr 6.7.6.9

angr: A static data-flow analysis framework has been introduced, and implemented as part of the 

ForwardAnalysis  class. Additionally, a few exemplary data-flow analyses, like 

VariableRecovery  and VariableRecoveryFast , have been implemented in angr.

angr: We introduced the notion of variable to the angr world. Now a VariableManager is available in the 
knowledge base. Variable information can be recovered by running a variable recovery analysis. 
Currently the variable information recovered for each function is still pretty coarse. More updates to it will 
arrive soon.

angr: Fix a bug in the topological sorting in CFGUtils , which resulted in suboptimal graph node 
ordering after sorting.



SimuVEX: LAZY_SOLVES  is no longer enabled by default during symbolic execution. It's still there if 
it's wanted, but it just caused confusion when on by default.SimuVEX: Thanks to @ekilmer, a few new libc SimProcedures are added.

SimuVEX: The default memory model has been refactored for expandability. Custom pages can now be 
created (derive the simuvex.storage.ListPage class) and used instead of the default page classes to 
implement custom memory behavior for specific pages. The user-friendly API for this is pending the next 
release.

angr-management: Implemented our own graph layout and edge routing algorithm. We do not rely on 
grandalf anymore.

angr-management: Added support for displaying variable information for operands.

angr-management: Added support for highlighting dependent operands when an operand is highlighted.

angr 6.7.3.26

Building off of the engine changes from the last release, we have begun to extend angr to other 
architectures. AVR and MSP430 are in progress. In the meantime, subwire has created a reference 
implementation of BrainFuck support in angr, done two different ways! Check out  for more 
info!

angr-platforms

We have rebased our fork of VEX on the latest master branch from Valgrind (as of 2 months ago, at 
least...). We have also submitted our patches to VEX to upstream, so we should be able to stop 
maintaining a fork pretty soon.

The way we interact with VEX has changed substancially, and should speed things up a bit.

Loading sets of binaries with many import symbols has been sped up

Many, many improvements to angr-management, including the switch away from enaml to using pyside 
directly.

angr 6.7.1.13

For the last month, we have been working on a major refactor of the angr to change the way that angr 
reasons about the code that it analyzes. Until now, angr has been bound to the VEX intermediate 
representation to lift native code, supporting a wide range of architectures but not being very expandable 
past them. This release represents the ground work for what we call translation and execution engines. 
These engines are independent backends, pluggable into the angr framework, that will allow angr to reason 
about a wide range of targets. For now, we have restructured the existing VEX and Unicorn Engine support 
into this engine paradigm, but as we discuss in , the plan is to create engines to enable angr's 
reasoning of Java bytecode and source code, and to augment angr's environment support through the use of
external dynamic sandboxes.

our blog post

For now, these changes are mostly internal. We have attempted to maintain compatibility for end-users, but 
those building systems atop angr will have to adapt to the modern codebase. The following are the major 

https://github.com/angr/angr-platforms
http://angr.io/blog/2017_01_10.html


changes:

simuvex: we have introduced SimEngine. SimEngine is a base class for abstractions over native code. 
For example, angr's VEX-specific functionality is now concentrated in SimEngineVEX, and new engines
(such as SimEngineLLVM) can be implemented (even outside of simuvex itself) to support the analysis 
of new types of code.

simuvex: as part of the engines refactor, the SimRun class has been eliminated. Instead of different 

subclasses of SimRun that would be instantiated from an input state, engines each have a process  
function that, from an input state, produces a SimSuccessors instance containing lists of different 
successor states (normal, unsat, unconstrained, etc) and any engine-specific artifacts (such as the VEX 

statements. Take a look at successors.artifacts ).

simuvex: state.mem[x:] = y  now requires a type for storage (for example 

state.mem[x:].dword = y ).

simuvex: the way of calling inline SimProcedures has been changed. Now you have to create a 

SimProcedure, and then call execute()  on it and pass in a program state as well as the arguments.

simuvex: accessing registers through SimRegNameView  (like state.regs.eax ) always triggers 
SimInspect breakpoints and creates new actions. Now you can access a register by prefixing its name 

with an underscore (e.g. state.regs._eax  or state._ip ) to avoid triggering breakpoints or 
creating actions.

angr: the way hooks work has slightly changed, though is backwards-compatible. The new angr.Hook 
class acts as a wrapper for hooks (SimProcedures and functions), keeping things cleaner in the 

project._sim_procedures  dict.

angr: we have deprecated the keyword argument max_size  and changed it to to size  in the 

angr.Block  constructor (i.e., the argument to project.factory.block  and more upstream 

methods ( path.step , path_group.step , etc).

angr: we have deprecated project.factory.sim_run  and changed it to to 

project.factory.successors , and it now generates a SimSuccessors  object.

angr: project.factory.sim_block  has been deprecated and replaced with 

project.factory.successors(default_engine=True) .

angr: angr syscalls are no longer hooks. Instead, the syscall table is now in 

project._simos.syscall_table . This will be made "public" after a usability refactor. If you were 

using project.is_hooked(addr)  to see if an address has a related SimProcedure, now you 
probably want to check if there is a related syscall as well (using 

project._simos.syscall_table.get_by_addr(addr) is not None ).

pyvex: to support custom lifters to VEX, pyvex has introduced the concept of backend lifters. Lifters can 
be written in pure python to produce VEX IR, allowing for extendability of angr's VEX-based analyses to 
other hardware architectures.

As usual, there are many other improvements and minor bugfixes.

claripy: support unsat_core()  to get the core of unsatness of constraints. It is in fact a thin wrapper 

of the unsat_core()  function provided by Z3. Also a new state option 

CONSTRAINT_TRACKING_IN_SOLVER  is added to SimuVEX. That state option must be enabled if 

you want to use unsat_core()  on any state.



simuvex: SimMemory.load()  and SimMemory.store()  now takes a new parameter 

disable_actions . Setting it to True will prevent any SimAction creation.
angr: CFGFast has a better support for ARM binaries, especially for code in THUMB mode.

angr: thanks to an improvement in SimuVEX, CFGAccurate now uses slightly less memory than before.

angr: len()  on path trace  or addr_trace  is made much faster.

angr: Fix a crash during CFG generation or symbolic execution on platforms/architectures with no 
syscall defined.

angr: as part of the refactor, BackwardSlicing  is temporarily disabled. It will be re-enabled once all 
DDG-related refactor are merged to master.

Additionally, packaging and build-system improvements coordinated between the angr and Unicorn Engine 

projects have allowed angr's Unicorn support to be built on Windows. Because of this, unicorn  is now a 

dependency for simuvex .

Looking forward, angr is poised to become a program analysis engine for binaries and more!

angr 5.6.12.3

It has been over a month since the last release 5.6.10.12. Again, we’ve made some significant changes and 
improvements on the code base.

angr: Labels are now stored in KnowledgeBase.

angr: Add a new analysis: Disassembly . The new Disassembly analysis provides an easy-to-use 
interface to render assembly of functions.

angr: Fix the issue that ForwardAnalysis  may prematurely terminate while there are still un-
processed jobs.

angr: Many small improvements and bug fixes on CFGFast .

angr: Many small improvements and bug fixes on VFG . Bring back widening support. Fix the issue that 

VFG  may not terminate under certain cases. Implement a new graph traversal algorithm to have an 
optimal traversal order. Allow state merging at non-merge-points, which allows faster convergence.

angr-management: Display a progress during initial CFG recovery.

angr-management: Display a “Load binary” window upon binary loading. Some analysis options can be 
adjusted there.

angr-management: Disassembly view: Edge routing on the graph is improved.

angr-management: Disassembly view: Support starting a new symbolic execution task from an arbitrary 
address in the program.

angr-management: Disassembly view: Support renaming of function names and labels.

angr-management: Disassembly view: Support “Jump to address”.

angr-management: Disassembly view: Display resolved and unresolved jump targets. All jump targets 
are double-clickable.

SimuVEX: Move region mapping from SimAbstractMemory  to SimMemory . This will allow an 



easier conversion between SimAbstractMemory  and SimSymbolicMemory , which is to say, 
conversion between symbolic states and static states is now possible.

SimuVEX & claripy: Provide support for unsat_core  in Z3. It returns a set of constraints that led to 
unsatness of the constraint set on the current state.

archinfo: Add a new Boolean variable branch_delay_slot  for each architecture. It is set to True on 
MIPS32.

angr 5.6.8.22

Major point release! An incredible number of things have changed in the month run-up to the Cyber Grand 
Challenge.

Integration with  supported for concrete execution. A new SimRun type, SimUnicorn, 
may step through many basic blocks at once, so long as there is no operation on symbolic data. Please 
use , which has many patches applied. All these patches are pending merge 
into upstream.

Unicorn Engine

our fork of unicorn engine

Lots of improvements and bug fixes to CFGFast. Rumors are angr’s CFG was only "optimized" for x86-
64 binaries (which is really because most of our test cases are compiled as 64-bit ELFs). Now it is also 
“optimized” for x86 binaries :) (editor's note: angr is built with cross-architecture analysis in mind. CFG 
construction is pretty much the only component which has architecture-specific behavior.)

Lots of improvements to the VFG analysis, including speed and accuracy. However, there is still a lot to 
be done.

Lots of speed optimizations in general - CFGFast should be 3-6x faster under CPython with much less 
memory usage.

Now data dependence graph gives you a real dependence graph between variable definitions. Try 

data_graph  and simplified_data_graph  on a DDG object!

New state option simuvex.o.STRICT_PAGE_ACCESS  will cause a SimSegfaultError  to be 
raised whenever the guest reads/writes/executes memory that is either unmapped or doesn't have the 
appropriate permissions.

Merging of paths (as opposed to states) is performed in a much smarter way.

The behavior of the support_selfmodifying_code  project option is changed: Before, this would 
allow the state to be used as a fallback source of instruction bytes when no backer from CLE is 
available. Now, this option makes instruction lifting use the state as the source of bytes always. When 
the option is disabled and execution jumps outside the normal binary, the state will be used 
automatically.

Actually support self-modifying code - if a basic block of code modifies itself, the block will be re-lifted 
before the next instruction starts.

Syscalls are handled differently now - Before you would see a SimRun for a syscall helper, now you'll 
just see a SimProcedure for the given syscall. Additionally, each syscall has its own address in a 
"syscalls segment", and syscalls are treated as jumps to this segment. This simplifies a lot of things 
analysis-wise.

https://github.com/unicorn-engine/unicorn
https://github.com/angr/unicorn


CFGAccurate accepts a base_graph  keyword to its constructor, e.g. CFGFast().graph , or even 

.graph  of a function, to use as a base for analysis.

New fast memory model for cases where symbolic-addressed reads and writes are unlikely.

Conflicts between the find  and avoid  parameters to the Explorer otiegnqwvk are resolved correctly. 
(credit clslgrnc)

New analysis StaticHooker  which hooks library functions in unstripped statically linked binaries.

Lifter  can be used without creating an angr Project. You must manually specify the architecture and 

bytestring in calls to .lift()  and .fresh_block() . If you like, you can also specify the 
architecture as a parameter to the constructor and omit it from the lifting calls.

Add two new analyses developed for the CGC (mostly as examples of doing static analysis with angr): 
Reassembler and BinaryOptimizer.

angr 4.6.6.28

In general, there have been enormous amounts of speed improvements in this release. Depending on the 
workload, angr should run about twice as fast. Aside from this, there have also been many submodule-
specific changes:

angr

Quite a few changes and improvements are made to CFGFast  and CFGAccurate  in order to have better 

and faster CFG recovery. The two biggest changes in CFGFast  are jump table resolution and data 

references collection, respectively. Now CFGFast  resolves indirect jumps by default. You may get a list of 

indirect jumps recovered in CFGFast  by accessing the indirect_jumps  attribute. For many cases, it 
resolves the jump table accurately. Data references collection is still in alpha mode. To test data references 

collection, just pass collect_data_references=True  when creating a fast CFG, and access the 

memory_data  attribute after the CFG is constructed.

CFG recovery on ARM binaries is also improved.

A new paradigm called an "otiegnqwvk", or an "exploration technique", allows the packaging of special 
logic related to path group stepping.

SimuVEX

Reads/writes to the x87 fpu registers now work correctly - there is special logic that rotates a pointer into part 
of the register file to simulate the x87 stack.

With the recent changes to Claripy, we have configured SimuVEX to use the composite solver by default. 
This should be transparent, but should be considered if strange issues (or differences in behavior) arise 
during symbolic execution.

Claripy



Fixed a bug in claripy where __div__  was not always doing unsigned division, and added new methods 

SDiv  and SMod  for signed division and signed remainder, respectively.

Claripy frontends have been completely rewritten into a mixin-centric solver design. Basic frontend 
functionality (i.e., calling into the solver or dealing with backends) is handled by frontends (in 

claripy.frontends ), and additional functionality (such as caching, deciding when to simplify, etc) is 

handled by frontend mixins (in claripy.frontend_mixins ). This makes it considerably easier to 

customize solvers to your specific needE. For examples, look at claripy/solver.py .

Alongside the solver rewrite, the composite solver (which splits constraints into independent constraint sets 
for faster solving) has been immensely improved and is now functional and fast.

angr 4.6.6.4

Syscalls are no longer handled by simuvex.procedures.syscalls.handler . Instead, syscalls are 

now handled by angr.SimOS.handle_syscall() . Previously, the address of a syscall SimProcedure 

is the address right after the syscall instruction (e.g. int 80h ), which collides with the real basic block 
starting at that address, and is very confusing. Now each syscall SimProcedure has its own address, just as 
a normal SimProcedure. To support this, there is another region mapped for the syscall addresses, 

Project._syscall_obj .

Some refactoring and bug fixes in CFGFast .

Claripy has been given the ability to handle annotations on ASTs. An annotation can be used to customize 
the behavior of some backends without impacting others. For more information, check the docstrings of 

claripy.Annotation  and claripy.Backend.apply_annotation .

angr 4.6.5.25

New state constructor - call_state . Comes with a refactor to SimCC , a refactor to callable , and the 

removal of PathGroup.call . All these changes are thoroughly documented, in angr-
doc/docs/structured_data.md

Refactor of SimType  to make it easier to use types - they can be instanciated without a SimState and one 
can be added later. Comes with some usability improvements to SimMemView. Also, there's a better 
wrapper around PyCParser for generating SimType instances from c declarations and definitions. Again, 
thoroughly documented, still in the structured data doc.

CFG  is now an alias to CFGFast  instead of CFGAccurate . In general, CFGFast  should work under 

most cases, and it's way faster than CFGAccurate . We believe such a change is necessary, and will 

make angr more approachable to new users. You will have to change your code from CFG  to 

CFGAccurate  if you are relying on specific functionalities that only exist in CFGAccurate , for example, 
context-sensitivity and state-preserving. An exception will be raised by angr if any parameter passed to 

CFG  is only supported by CFGAccurate . For more detailed explanation, please take a look at the 

documentation of angr.analyses.CFG .



angr 4.6.3.28

PyVEX has a structural overhaul. The IRExpr , IRStmt , and IRConst  modules no longer exist as 

submodules, and those module names are deprecated. Use pyvex.expr , pyvex.stmt , and 

pyvex.const  if you need to access the members of those modules.

The names of the first three parameters to pyvex.IRSB  (the required ones) have been changed. If you 
were passing the positional args to IRSB as keyword args, consider switching to positional args. The order 

is data , mem_addr , arch .

The optional parameter sargc  to the entry_state  and full_init_state  constructors has been 

removed and replaced with an argc  parameter. sargc  predates being able to have claripy ASTs 
independent from a solver. The new system is to pass in the exact value, ast or integer, that you'd like to 
have as the guest program's arg count.

CLE and angr can now accept file-like streams, that is, objects that support stream.read()  and 

stream.seek()  can be passed in wherever a filepath is expected.

Documentation is much more complete, especially for PyVEX and angr's symbolic execution control 
components.

angr 4.6.3.15

There have been several improvements to claripy that should be transparent to users:

There's been a refactoring of the VSA StridedInterval classes to fix cases where operations were not 
sound. Precision might suffer as a result, however.

Some general speed improvements.

We've introduced a new backend into claripy: the ReplacementBackend. This frontend generates 
replacement sets from constraints added to it, and uses these replacement sets to increase the precision 
of VSA. Additionally, we have introduced the HybridBackend, which combines this functionality with a 
constraint solver, allowing for memory index resolution using VSA.

angr itself has undergone some improvements, with API changes as a result:

We are moving toward a new way to store information that angr has recovered about a program: the 
knowledge base. When an analysis recovers some truth about a program (i.e., "there's a basic block at 
0x400400", or "the block at 0x400400 has a jump to 0x400500"), it gets stored in a knowledge-base. 
Analysis that used to store data (currently, the CFG) now store them in a knowledge base and can share 

the global knowledge base of the project, now accessible via project.kb . Over time, this knowledge 
base will be expanded in the course of any analysis or symbolic execution, so angr is constantly 
learning more information about the program it is analyzing.

A forward data-flow analysis framework (called ForwardAnalysis) has been introduced, and the CFG 
was rewritten on top of it. The framework is still in alpha stage - expect more changes to be made. 



Documentation and more details will arrive shortly. The goal is to refactor other data-flow analysis, like 
CFGFast, VFG, DDG, etc. to use ForwardAnalysis.

We refactored the CFG to a) improve code readability, and b) eliminate some bad designs that linger 
due to historical reasons.

angr 4.5.12.?

Claripy has a new manager for backends, allowing external backends (i.e., those implemented by other 

modules) to be used. The result is that claripy.backend_concrete  is now 

claripy.backends.concrete , claripy.backend_vsa  is now claripy.backends.vsa , and 
so on.

angr 4.5.12.12

Improved the ability to recover from failures in instruction decoding. You can now hook specific addresses at 

which VEX fails to decode with project.hook , even if those addresses are not the beginning of a basic 
block.

angr 4.5.11.23

This is a pretty beefy release, with over half of claripy having been rewritten and major changes to other 
analyses. Internally, Claripy has been unified -- the VSA mode and symbolic mode now work on the same 
structures instead of requiring structures to be created differently. This opens the door for awesome 
capabilities in the future, but could also result in unexpected behavior if we failed to account for something.

Claripy has had some major interface changes:

claripy.BV has been renamed to claripy.BVS (bit-vector symbol). It can now create bitvectors out of 
strings (i.e., claripy.BVS(0x41, 8) and claripy.BVS("A") are identical).

state.BV and state.BVV are deprecated. Please use state.se.BVS and state.se.BVV.

BV.model is deprecated. If you're using it, you're doing something wrong, anyways. If you really need a 
specific model, convert it with the appropriate backend (i.e., claripy.backend_concrete.convert(bv)).

There have also been some changes to analyses:

Interface: CFG argument keep_input_state  has been renamed to keep_state . With this option 
enabled, both input and final states are kept.

Interface: Two arguments cfg_node  and stmt_id  of BackwardSlicing  have been deprecated. 

Instead, BackwardSlicing  takes a single argument, targets . This means that we now support 



slicing from multiple sources.
Performance: The speed of CFG recovery has been slightly improved. There is a noticeable speed 
improvement on MIPS binaries.

Several bugs have been fixed in DDG, and some sanity checks were added to make it more usable.

And some general changes to angr itself:

StringSpec is deprecated! You can now pass claripy bitvectors directly as arguments.

Migrating to angr 9.1

angr 9.1 is here!

Calling Conventions and Prototypes

The main change motivating angr 9.1 is . Here are the breaking changes:this large refactor of SimCC

SimCCs can no longer be customized

If you were using the sp_delta , args , or ret_val  parameters to SimCC, you should use the new 

class SimCCUsercall , which lets (requires) you to be explicit about the locations of each argument.

Passing SimTypes is now mandatory

Every method call on SimCC which interacts with typed data now requires a SimType to be passed in. 

Previously, the use of is_fp  and size  was optional, but now these parameters will no longer be 

accepted and a SimType  will be required.

This has some fairly non-intuitive consequences - in order to accommodate more esoteric calling 
conventions (think: passing large structs by value via an "invisible reference") you have to specify a 
function's return type before you can extract any of its arguments.

Additionally, some non-cc interfaces, such as call_state  and callable  and 

SimProcedure.call() , now require a prototype to be passed to them. You'd be surprised how many 
bugs we found in our own code from enforcing this requirement!

PointerWrapper has a new parameter

Imagine you're passing something into a function which has a parameter of type char* . Is this a pointer to 
a single char or a pointer to an array of chars? The answer changes how we typecheck the values you pass 
in. If you're passing a PointerWrapper wrapping a large value which should be treated as an array of chars, 

you should construct your pointerwrapper as PointerWrapper(foo, buffer=True) . The buffer 

https://github.com/angr/angr/pull/2961


argument to PointerWrapper now instructs SimCC to treat the data to be serialized as an array of the child 

func_ty  -> prototype

Every usage of the name func_ty has been replaced with the name prototype. This was done for consistency
between the static analysis code and the dynamic FFI.

Migrating to angr 8

angr has moved from python 2 to python 3! We took this opportunity of a major version bump to make a few 
breaking API changes that improve quality-of-life.

What do I need to know for migrating my scripts to python 3?

To begin, just the standard py3k changes, the relevant parts of which we'll rehash here as a reference guide:

Strings and bytestrings

Strings are now unicode by default, a new bytes  type holds bytestrings

Bytestring literals can be constructued with the b prefix, like b'ABCD'

Conversion between strings and bytestrings happens with .encode()  and .decode() , which 

use utf-8 as a default. The latin-1  codec will map byte values to their equivilant unicode 
codepoints

The ord()  and chr()  functions operate on strings, not bytestrings

Enumerating over or indexing into bytestrings produces an unsigned 8 bit integer, not a 1-byte 
bytestring

Bytestrings have all the string manipulation functions present on strings, including join , 

upper / lower , translate , etc

hex  and base64  are no longer string encoding codecs. For hex, use bytes.fromhex()  and 

bytes.hex() . For base64 use the base64  module.

Builtin functions

print  and exec  are now builtin functions instead of statements

Many builtin functions previously returning lists now return iterators, such as map , filter , and 

zip . reduce  is no longer a builtin; you have to import it from functools .

Numbers

The /  operator is explicitly floating-point division, the //  operator is expliclty integer division. The 

magic functions for overriding these ops are __truediv__  and __floordiv__

The int and long types have been merged, there is only int now

Dictionary objects have had their .iterkeys , .itervalues , and .iteritems  methods 
removed, and then non-iter versions have been made to return efficient iterators

Comparisons between objects of very different types (such as between strings and ints) will raise an 



exception

In terms of how this has affected angr, any string that represents data from the emulated program will be a 

bytestring. This means that where you previously said state.solver.eval(x, cast_to=str)  you 

should now say cast_to=bytes . When creating concrete bitvectors from strings (including implicitly by 
just making a comparison against a string) these should be bytestrings. If they are not they will be utf-8 
converted and a warning will be printed. Symbol names should be unicode strings.

For division, however, ASTs are strongly typed so they will treat both division operators as the kind of 
division that makes sense for their type.

Clemory API changes

The memory object in CLE (project.loader.memory, not state.memory) has had a few breaking API changes 
since the bytes type is much nicer to work with than the py2 string for this specific case, and the old API was 
an inconsistent mess.

Before After

memory.read_bytes(addr, n) -> 
list[str]

memory.load(addr, n) -> bytes

memory.write_bytes(addr, list[str]) memory.store(addr, bytes)

memory.get_byte(addr) -> str memory[addr] -> int

memory.read_addr_at(addr) -> int memory.unpack_word(addr) -> int

memory.write_addr_at(addr, value) -> 
int

memory.pack_word(addr, value)

memory.stride_repr -> list[(start, 
end, str)]

memory.backers() -> iter[(start, 
bytearray)]

Additionally, pack_word  and unpack_word  now take optional size , endness , and signed  

parameters. We have also added memory.pack(addr, fmt, *data)  and 

memory.unpack(addr, fmt) , which take format strings for use with the struct  module.

If you were using the cbackers  or read_bytes_c  functions, the conversion is a little more complicated 
- we were able to remove the split notion of "backers" and "updates" and replaced all backers with 

bytearrays that we mutate, so we can work directly with the backer objects. The backers()  function 
iterates through all bottom-level backer objects and their start addresses. You can provide an optional 
address to the function, and it will skip over all backers that end before that address.

Here is some sample code for producing a C-pointer to a given address:



import cffi, cle1 ffi = cffi.FFI()2
ld = cle.Loader('/bin/true')3

4
addr = ld.main_object.entry5
try:6
    backer_start, backer = next(ld.memory.backers(addr))7
except StopIteration:8
    raise Exception("not mapped")9

10
if backer_start > addr:11
    raise Exception("not mapped")12

13
cbacker = ffi.from_buffer(backer)14
addr_pointer = cbacker + (addr - backer_start)15

You should not have to use this if you aren't passing the data to a native library - the normal load methods 
should now be more than fast enough for intensive use.

CLE symbols changes

Previously, your mechanisms for looking up symbols by their address were loader.find_symbol()  

and object.symbols_by_addr , where there was clearly some overlap. However, 

symbols_by_addr  stayed because it was the only way to enumerate symbols in an object. This has 

changed! symbols_by_addr  is deprecated and here is now object.symbols , a sorted list of Symbol 
objects, to enumerate symbols in a binary.

Additionally, you can now enumerate all symbols in the entire project with loader.symbols . This 

change has also enabled us to add a fuzzy  parameter to find_symbol  (returns the first symbol before 

the given address) and make the output of loader.describe_addr  much nicer (shows offset from 
closest symbol).

Deprecations and name changes

All parameters in cle that started with custom_  - so, custom_base_addr , 

custom_entry_point , custom_offset , custom_arch , and custom_ld_path  - have had 

the custom_  removed from the beginning of their names.

All the functions that were deprecated more than a year ago (at or before the angr 7 release) have been 
removed.

state.se  has been deprecated. You should have been using state.solver  for the past few 
years.

Support for immutable simulation managers has been removed. So far as we're aware, nobody was 
actually using this, and it was making debugging a pain.



Migrating to angr 7

The release of angr 7 introduces several departures from long-standing angr-isms. While the community has 
created a compatibility layer to give external code written for angr 6 a good chance of working on angr 7, the 
best thing to do is to port it to the new version. This document serves as a guide for this.

SimuVEX is gone

angr versions up through angr 6 split the program analysis into two modules: simuvex , which was 
responsible for analyzing the effects of a single piece of code (whether a basic block or a SimProcedure) on 

a program state, and angr , which aggregated analyses of these basic blocks into program-level analysis 
such as control-flow recovery, symbolic execution, and so forth. In theory, this would encourage for the 
encapsulation of block-level analyses, and allow other program analysis frameworks to build upon 

simuvex  for their needs. In practice, no one (to our knowledge) used simuvex  without angr , and the 
separation introduced frustrating limitations (such as not being able to reference the history of a state from a 
SimInspect breakpoint) and duplication of code (such as the need to synchronize data from 

state.scratch  into path.history ).

Realizing that SimuVEX wasn't a usable independent package, we brainstormed about merging it into angr 
and further noticed that this would allow us to address the frustrations resulting from their separation.

All of the SimuVEX concepts (SimStates, SimProcedures, calling conventions, types, etc) have been 
migrated into angr. The migration guide for common classes is bellow:

Before After

simuvex.SimState angr.SimState

simuvex.SimProcedure angr.SimProcedure

simuvex.SimEngine angr.SimEngine

simuvex.SimCC angr.SimCC

And for common modules:

Before After

simuvex.s_cc angr.calling_conventions

simuvex.s_state angr.sim_state

simuvex.s_procedure angr.sim_procedure

simuvex.plugins angr.state_plugins



simuvex.engines angr.engines

simuvex.concretization_strategies angr.concretization_strategies

Additionally, simuvex.SimProcedures  has been renamed to angr.SIM_PROCEDURES , since it is a 
global variable and not a class. There have been some other changes to its semantics, see the section on 
SimProcedures for details.

Removal of angr.Path

In angr, a Path object maintained references to a SimState and its history. The fact that the history was 
separated from the state caused a lot of headaches when trying to analyze states inside a breakpoint, and 
caused overhead in synchronizing data from the state to its history.

In the new model, a state's history is maintained in a SimState plugin: state.history . Since the path 
would now simply point to the state, we got rid of it. The mapping of concepts is roughly as follows:

Before After

path state

path.state state

path.history state.history

path.callstack state.callstack

path.trace state.history.descriptions

path.addr_trace state.history.bbl_addrs

path.jumpkinds state.history.jumpkinds

path.guards state.history.jump_guards

path.targets state.history.jump_targets

path.actions state.history.actions

path.events state.history.events

path.recent_actions state.history.recent_actions

path.reachable state.history.reachable()

An important behavior change about path.actions  and path.recent_actions  - actions are no 

longer tracked by default. If you would like them to be tracked again, please add angr.options.refs  to 
your state.



Path Group -> Simulation Manager

Since there are no paths, there cannot be a path group. Instead, we have a Simulation Manager now (we 
recommend using the abbreviation "simgr" in places you were previously using "pg"), which is exactly the 
same as a path group except it holds states instead of paths. You can make one with 

project.factory.simulation_manager(...) .

Errored Paths

Before, error resilience was handled at the path level, where stepping a path that caused an error would 

return a subclass of Path called ErroredPath, and these paths would be put in the errored  stash of a path 
group. Now, error resilience is handled at the simulation manager level, and any state that throws an error 
during stepping will be wrapped in an ErrorRecord object, which is not a subclass of SimState, and put into 

the errored  list attribute of the simulation manager, which is not a stash.

An ErrorRecord object has attributes for .state  (the initial state that caused the error), .error  (the error 

that was thrown), and .traceback  (the traceback from the error). To debug these errors you can call 

.debug() .

These changes are because we were uncomfortable making a subclass of SimState, and the ErrorRecord 
class then has sufficiently different semantics from a normal state that it cannot be placed in a stash.

Changes to SimProcedures

The most noticeable difference from the old version to the new version is that the catalog of built-in 
simprocedures are no longer organized strictly according to which library they live in. Now, they are 
organized according to which standards they conform to, which helps with re-using procedures between 

different libraries. For instance, the old SimProcedures['libc.so.6']  has been split up between 

SIM_PROCEDURES['libc'] , SIM_PROCEDURES['posix'] , and SIM_PROCEDURES['glibc'] , 

depending on what specifications each function conforms to. This allows us to reuse the libc  catalog in 

msvcrt.dll  and the MUSL libc, for example.

In order to group SimProcedures together by libraries, we have introduced a new abstraction called the 

SimLibrary, the definitions for which are stored in angr.procedures.definitions . Each SimLibrary 
object stores information about a single shared library, and can contain SimProcedure implementations, 
calling convention information, and type information. SimLibraries are scraped from the filesystem at import 

time, just like SimProcedures, and placed into angr.SIM_LIBRARIES .

Syscalls are now categorized through a subclass of SimLibrary called SimSyscallLibrary. The API for 
managing syscalls through SimOS has been changed - check the API docs for the SimUserspace class.

One important implication of this change is that if you previously used a trick where you changed one of the 

SimProcedures present in the SimProcedures  dict in order to change which SimProcedures would be 

used to hook over library functions by default, this will no longer work. Instead of SimProcedures[lib]
[func_name] = proc , you now need to say SIM_LIBRARIES[lib].add(func_name, proc) . 

But really you should just be using hook_symbol  anyway.



Changes to hooking

The Hook  class is gone. Instead, we now can hook with individual instances of SimProcedure objects, as 
opposed to just the classes. A shallow copy of the SimProcedure will be made at runtime to preserve thread 
safety.

So, previously, where you would have done project.hook(addr, Hook(proc, ...))  or 

project.hook(addr, proc) , you can now do project.hook(addr, proc(...)) . In order to 

use simple functions as hooks, you can either say project.hook(addr, func)  or decorate the 

declaration of your function with @project.hook(addr) .

Having simprocedures as instances and letting them have access to the project cleans up a lot of other 

hacks that were present in the codebase, mostly related to the self.call(...)  SimProcedure 

continuation system. It is no longer required to set IS_FUNCTION = True  if you intend to use 

self.call()  while writing a SimProcedure, and each call-return target you use will have a unique 
address associated with it. These addresses will be allocated lazily, which does have the side effect of 
making address allocation nondeterministic, sometimes based on dictionary-iteration order.

Changes to loading

The hook_symbol  method will no longer attempt to redo relocations for the given symbol, instead just 
hooking directly over the address of the symbol in whatever library it comes from. This speeds up loading 
substancially and ensures more consistent behavior for when mixing and matching native library code and 
SimProcedure summaries.

The angr externs object has been moved into CLE, which will ALWAYS make sure that every dependency is 
resolved to something, never left unrelocated. Similarly, CLE provides the "kernel object" used to provide 
addresses for syscalls now.

Before After

project._extern_obj loader.extern_object

project._syscall_obj loader.kernel_object

Several properties and methods have been renamed in CLE in order to maintain a more consistent and 
explicit API. The most common changes are listed below:

Before After

loader.whats_at() loader.describe_addr

loader.addr_belongs_to_object() loader.find_object_containing()

loader.find_symbol_name() loader.find_symbol().name



whatever the hell you were doing before to look up 
a symbol

loader.find_symbol(name or addr)

loader.find_module_name()
loader.find_object_containing().pro
vides

loader.find_symbol_got_entry() loader.find_relevant_relocations()

loader.main_bin loader.main_object

anything.get_min_addr() anything.min_addr

symbol.addr symbol.linked_addr

Changes to the solver interface

We cleaned up the menagerie of functions present on state.solver  (if you're still referring to it as 

state.se  you should stop) and simplified it into a cleaner interface:

solver.eval(expression)  will give you one possible solution to the given expression.

solver.eval_one(expression)  will give you the solution to the given expression, or throw an 
error if more than one solution is possible.

solver.eval_upto(expression, n)  will give you up to n solutions to the given expression, 
returning fewer than n if fewer than n are possible.

solver.eval_atleast(expression, n)  will give you n solutions to the given expression, 
throwing an error if fewer than n are possible.

solver.eval_exact(expression, n)  will give you n solutions to the given expression, 
throwing an error if fewer or more than are possible.

solver.min(expression)  will give you the minimum possible solution to the given expression.

solver.max(expression)  will give you the maximum possible solution to the given expression.

Additionally, all of these methods can take the following keyword arguments:

extra_constraints  can be passed as a tuple of constraints.
These constraints will be taken into account for this evaluation, but will not be added to the state.

cast_to  can be passed a data type to cast the result to.

Currently, this can only be str , which will cause the method to return the byte representation of the 
underlying data.

For example, state.solver.eval(state.solver.BVV(0x41424344, 32, 
cast_to=str)  will return "ABCD" .


