This demo will walk you through a complete dataset projection and analysis using ProjecTILs. We will use as a query set the Tetramer+ CD8+ T cells from the study by Miller et al., Nature Immunol (2019)
First, install ProjecTILs. For detailed installation instructions refer to the ProjecTILs Github page
remotes::install_github("carmonalab/ProjecTILs")
library(ProjecTILs)
First, load the default reference TIL atlas. If no reference map file is provided, the function load.reference.map()
will automatically download it from https://doi.org/10.6084/m9.figshare.12478571
ref <- load.reference.map()
## [1] "Loading Default Reference Atlas..."
## [1] "/Users/mass/Documents/Projects/Cell_clustering/ProjecTILs.demo/ref_TILAtlas_mouse_v1.rds"
## [1] "Loaded Reference map ref_TILAtlas_mouse_v1"
Load query data - Miller et al., Nature Immunol (2019)
#A sample data set is provided with the ProjecTILs package
querydata <- ProjecTILs::query_example_seurat
More generally, it is possible to load a query matrix with gene names and barcodes (e.g. 10X format or raw counts)
##10X format
fname2 <- "./sample_data"
querydata2 <- read.sc.query(fname2, type="10x")
##Raw count matrix from GEO
library(GEOquery)
geo_acc <- "GSE86028"
getGEOSuppFiles(geo_acc)
fname3 <- sprintf("%s/GSE86028_TILs_sc_wt_mtko.tpm.log2.txt.gz", geo_acc)
querydata3 <- read.sc.query(fname3, type = "raw.log2")
In this case, the query data was previously normalized, so we can set skip.normalize=T
query.projected <- make.projection(querydata, ref=ref, skip.normalize = T)
## [1] "Using assay RNA for query"
## celltype.pred
## CD4T CD8T Non-Tcell Tcell_unknown Treg
## 1 1288 183 17 11
## unknown
## 1
## CD8Tstate
## Naive EffectorMemory MemoryLike Exhausted unknown
## 5 15 62 1201 5
## [1] "184 out of 1501 ( 12 % ) non-pure T cells removed. Use filter.cells=FALSE to avoid pre-filtering (NOT RECOMMENDED)"
## [1] "Aligning query to reference map for batch-correction..."
##
## Projecting corrected query onto Reference PCA space
## [1] "Projecting corrected query onto Reference UMAP space"
Plot projection of new data over the reference in UMAP space. The contour lines display the density of projected query cells onto the reference map.
plot.projection(ref, query.projected)
We can also use different cell annotations to colour the reference map. For example, show the cell types predicted by the supervised classifier TILPRED
plot.projection(ref, query.projected, labels.col = "TILPRED")
Predict the cell states in the query set using a nearest-neighbor algorithm
query.projected <- cellstate.predict(ref=ref, query=query.projected)
table(query.projected$functional.cluster)
##
## CD8_EffectorMemory CD8_NaiveLike CD8_Tex CD8_Tpex
## 51 12 1188 58
## Treg
## 8
Plot the predicted composition of the query in terms of reference T cell subtypes
plot.statepred.composition(ref, query.projected)
How do the gene expression levels compare between reference and query for the different cell states?
plot.states.radar(ref, query=query.projected)
The dimensions in UMAP space summarize the main axes of variability of the reference map. What if the query data contains novel states? We can search for additional, maximally discriminant dimensions (either in ICA or PCA space) that explain new variability in the query set.
top.ica <- find.discriminant.dimensions(ref=ref, query=query.projected, reduction="ica")
head(top.ica)
## stat stat_abs p_val
## ICA_22 0.7298784 0.7298784 0
## ICA_7 0.7105181 0.7105181 0
## ICA_21 0.7017093 0.7017093 0
## ICA_33 0.6907275 0.6907275 0
## ICA_40 0.5934850 0.5934850 0
## ICA_25 0.5748989 0.5748989 0
See driver genes for the top 3 discriminant components
VizDimLoadings(ref, reduction = "ica", nfeatures = 10, dims=c(22,7,21), ncol=3)
Plot the most discriminant ICA component. These 3D plots are based on plotly and are interactive, when you generate them on your machine you will able to rotate the view and explore the cloud of points.
plot3d <- plot.discriminant.3d(ref, query.projected, extra.dim="ICA_22")
plot3d
Plot the cycling score calculated by the TILPRED cycling signature
plot3d <- plot.discriminant.3d(ref, query.projected, extra.dim="cycling.score")
plot3d
Focus the plot only on a specific state
plot3d <- plot.discriminant.3d(ref, query.projected, extra.dim="cycling.score", query.state="CD8_Tex")
plot3d
If we have a control vs. a perturbed sample (e.g. a genetically engineered strain), we can search for discriminant dimensions of the perturbed sample vs. the control (otherwise, by default this analysis is performed against the reference map)
#Simulate a condition which e.g. increases Gzmb expression compared to control
query.control <- subset(query.projected, subset=`Gzmb` < 1.5)
query.perturb <- subset(query.projected, subset=`Gzmb` >= 1.5)
plot.states.radar(ref, query=list("Control" = query.control, "Query" = query.perturb))
In this toy example, where we simulated a condition that increases Gzmb expression compared to control, we expect some gene module associated with granzymes to drive the discriminant analysis:
top.ica.wcontrol <- find.discriminant.dimensions(ref=ref, query=query.perturb, query.control=query.control)
head(top.ica.wcontrol)
## stat stat_abs p_val
## ICA_26 0.4458653 0.4458653 0.000000e+00
## ICA_24 0.2915033 0.2915033 1.451378e-08
## ICA_42 0.2550725 0.2550725 2.932201e-06
## ICA_19 0.2523444 0.2523444 4.240935e-06
## ICA_28 0.2450128 0.2450128 1.121095e-05
## ICA_6 0.2190395 0.2190395 2.786904e-04
VizDimLoadings(ref, reduction = "ica", nfeatures = 10, dims=c(26,24,42), ncol=3)
Now we can plot the ICA dimension that captured the genetic changes associated to the perturbation of increasing Gzmb
plot3d <- plot.discriminant.3d(ref, query=query.perturb, query.control=query.control, extra.dim="ICA_26")
plot3d
Using a random subsetting, p-values should not be significant:
rand.list <- ProjecTILs:::randomSplit(query.projected, n=2, seed=1)
top.ica.ks.rand <- find.discriminant.dimensions(ref=ref, query=rand.list[[1]], query.control=rand.list[[2]], reduction="ica")
top.ica.ttest.rand <- find.discriminant.dimensions(ref=ref, query=rand.list[[1]], query.control=rand.list[[2]], reduction="ica", test = "t-test")
ProjecTILs repository
ProjecTILs case studies - INDEX - Repository
Publication: pre-print