This demo will walk you through a complete dataset projection and analysis using ProjecTILs. We will use as a query set the Tetramer+ CD8+ T cells from the study by Miller et al., Nature Immunol (2019)
First, install ProjecTILs. For detailed installation instructions refer to the ProjecTILs Github page
remotes::install_github("carmonalab/ProjecTILs")
library(ProjecTILs)
First, load the default reference TIL atlas. If no reference map file is provided, the function load.reference.map()
will automatically download it from https://doi.org/10.6084/m9.figshare.12478571
ref <- load.reference.map()
## [1] "Loading Default Reference Atlas..."
## [1] "/Users/mass/Documents/Projects/Cell_clustering/ProjecTILs.demo/ref_TILAtlas_mouse_v1.rds"
## [1] "Loaded Reference map ref_TILAtlas_mouse_v1"
Let’s explore the reference atlas
refCols <- c("#edbe2a", "#A58AFF", "#53B400", "#F8766D", "#00B6EB", "#d1cfcc", "#FF0000", "#87f6a5", "#e812dd")
DimPlot(ref,label = T, cols = refCols)
See expression of important marker genes across reference subtypes
markers <- c("Cd4","Cd8a","Ccr7","Tcf7","Pdcd1","Havcr2","Tox","Izumo1r","Cxcr6","Xcl1","Gzmb","Gzmk","Ifng","Foxp3")
VlnPlot(ref,features=markers,stack = T,flip = T,assay = "RNA")
Now let’s load a query dataset - Miller et al., Nature Immunol (2019)
#A sample data set is provided with the ProjecTILs package
querydata <- ProjecTILs::query_example_seurat
More generally, it is possible to load a query matrix with gene names and barcodes (e.g. 10X format or raw counts)
##10X format
fname2 <- "./sample_data"
querydata2 <- read.sc.query(fname2, type="10x")
##Raw count matrix from GEO
library(GEOquery)
geo_acc <- "GSE86028"
getGEOSuppFiles(geo_acc)
fname3 <- sprintf("%s/GSE86028_TILs_sc_wt_mtko.tpm.log2.txt.gz", geo_acc)
querydata3 <- read.sc.query(fname3, type = "raw.log2")
query.projected <- make.projection(querydata, ref=ref)
## [1] "Using assay RNA for query"
## celltype.pred
## CD4T CD8T Non-Tcell Tcell_unknown Treg
## 1 1288 183 17 11
## unknown
## 1
## CD8Tstate
## Naive EffectorMemory MemoryLike Exhausted unknown
## 5 15 62 1201 5
## [1] "184 out of 1501 ( 12 % ) non-pure T cells removed. Use filter.cells=FALSE to avoid pre-filtering (NOT RECOMMENDED)"
## [1] "Aligning query to reference map for batch-correction..."
##
## Projecting corrected query onto Reference PCA space
## [1] "Projecting corrected query onto Reference UMAP space"
Plot projection of new data over the reference in UMAP space. The contour lines display the density of projected query cells onto the reference map.
plot.projection(ref, query.projected)
Predict the cell states in the query set using a nearest-neighbor algorithm
query.projected <- cellstate.predict(ref=ref, query=query.projected)
table(query.projected$functional.cluster)
##
## CD8_EarlyActiv CD8_EffectorMemory CD8_NaiveLike CD8_Tex
## 1 68 14 1173
## CD8_Tpex Treg
## 54 7
Plot the predicted composition of the query in terms of reference T cell subtypes
plot.statepred.composition(ref, query.projected,metric = "Percent")
How do the gene expression levels compare between reference and query for the different cell states?
plot.states.radar(ref, query=query.projected, min.cells = 20)
If we have multiple conditions (e.g. control vs. treatment, or samples from different tissues), we can search for discriminant genes between conditions (otherwise, by default this analysis is performed against the reference subtype as the ‘control’)
#Simulate a condition which e.g. increases Gzmb expression compared to control
query.control <- subset(query.projected, subset=`Gzmb` < 1.5)
query.perturb <- subset(query.projected, subset=`Gzmb` >= 1.5)
plot.states.radar(ref, query=list("Control" = query.control, "Query" = query.perturb))
In this toy example, where we simulated a condition that increases Gzmb expression compared to control, we expect cytotoxicity genes to drive differences.
discriminantGenes <- find.discriminant.genes(ref=ref, query=query.perturb, query.control=query.control, state="CD8_Tex")
head(discriminantGenes,n=10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## Gzmb 5.725952e-84 2.8687747 1.000 0.836 1.565533e-79
## Gzmc 3.503195e-32 2.9141749 0.803 0.370 9.578087e-28
## Lgals1 1.615188e-23 0.4724190 1.000 1.000 4.416087e-19
## AA467197 5.722795e-20 1.2066027 0.850 0.541 1.564669e-15
## Ccl9 9.238058e-16 1.6495391 0.490 0.130 2.525778e-11
## Mt1 9.872509e-16 1.1729060 0.775 0.466 2.699243e-11
## Serpinb6b 2.637569e-15 0.8289507 0.863 0.575 7.211377e-11
## Prf1 1.533166e-12 0.5716789 0.511 0.178 4.191829e-08
## Gzme 4.762643e-12 2.0662138 0.465 0.178 1.302154e-07
## Mt2 1.798971e-11 0.8955465 0.603 0.295 4.918565e-07
We can use a volcano plot to display differentially expressed genes:
library(EnhancedVolcano)
## Loading required package: ggrepel
## Registered S3 methods overwritten by 'ggalt':
## method from
## grid.draw.absoluteGrob ggplot2
## grobHeight.absoluteGrob ggplot2
## grobWidth.absoluteGrob ggplot2
## grobX.absoluteGrob ggplot2
## grobY.absoluteGrob ggplot2
EnhancedVolcano(discriminantGenes, lab = rownames(discriminantGenes), x = "avg_log2FC", y = "p_val", pCutoff = 1e-09,
FCcutoff = 0.5, labSize = 5, legendPosition = "none", drawConnectors = F, title = "Gzmb_high vs. Gzmb_low (Tex)")
Using a random subsetting, p-values should not be significant:
rand.list <- ProjecTILs:::randomSplit(query.projected, n=2, seed=1)
discriminantGenes <- find.discriminant.genes(ref=ref, query=rand.list[[1]], query.control=rand.list[[2]], state="CD8_Tex")
EnhancedVolcano(discriminantGenes, lab = rownames(discriminantGenes), x = "avg_log2FC", y = "p_val", pCutoff = 1e-09,
FCcutoff = 0.5, labSize = 5, legendPosition = "none", drawConnectors = F, title = "Random split (Tex)")
The dimensions in UMAP space summarize the main axes of variability of the reference map. What if the query data contains novel states? We can search for additional, maximally discriminant dimensions (either in ICA or PCA space) that explain new variability in the query set.
As before, simulate a condition which increases Gzmb expression compared to control
#
query.control <- subset(query.projected, subset=`Gzmb` < 1.5)
query.perturb <- subset(query.projected, subset=`Gzmb` >= 1.5)
plot.states.radar(ref, query=list("Control" = query.control, "Query" = query.perturb))
In this toy example, we expect some gene module associated with granzymes to drive the discriminant analysis:
top.ica.wcontrol <- find.discriminant.dimensions(ref=ref, query=query.perturb, query.control=query.control)
head(top.ica.wcontrol)
## stat stat_abs p_val
## ICA_26 0.4433848 0.4433848 0.000000e+00
## ICA_24 -0.3075389 0.3075389 3.153405e-09
## ICA_42 0.2895386 0.2895386 4.921312e-08
## ICA_19 0.2442144 0.2442144 2.388393e-05
## ICA_28 -0.2368249 0.2368249 5.926225e-05
## ICA_32 0.2156367 0.2156367 6.873906e-04
VizDimLoadings(ref, reduction = "ica", nfeatures = 10, dims=c(26,24,42), ncol=3)
Now we can plot the ICA dimension that captured the genetic changes associated to the perturbation of increasing Gzmb
plot3d <- plot.discriminant.3d(ref, query=query.perturb, query.control=query.control, extra.dim="ICA_26")
plot3d
We can plot other metadata in the z-axis of the UMAP, e.g. the cycling score calculated by the TILPRED cycling signature
plot3d <- plot.discriminant.3d(ref, query.projected, extra.dim="cycling.score")
plot3d
Focus the plot only on a specific state
plot3d <- plot.discriminant.3d(ref, query.projected, extra.dim="cycling.score", query.state="CD8_Tex")
plot3d
Using a random subsetting, p-values should not be significant:
rand.list <- ProjecTILs:::randomSplit(query.projected, n=2, seed=1)
top.ica.ks.rand <- find.discriminant.dimensions(ref=ref, query=rand.list[[1]], query.control=rand.list[[2]], reduction="ica")
top.ica.ttest.rand <- find.discriminant.dimensions(ref=ref, query=rand.list[[1]], query.control=rand.list[[2]], reduction="ica", test = "t-test")
ProjecTILs repository
ProjecTILs case studies - INDEX - Repository
Publication: pre-print