


Distributed Machine Learning with
Apache Spark and Keras

2

Joeri Hermans (Technical Student)
Maastricht University



Problem Statement

- CMS would like to use a deep learning model in the high level trigger.
- Specific questions from CMS:

- Equivalent amount of CPU cores compared to a single GPU?
- Can we reduce training time using distributed machine learning?

- CMS use-case requires a lot of data (~1 TB of training data)
- Keras (modeling framework in Python, interfacing TensorFlow or Theano).

3



Keras

model = Sequential()
model.add(Dense(600, input_shape=(num_features,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(600))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

4



Gradient Descent

5A single dimension corresponds with one parameter (weight) of a Neural Network.

Additional dimension to indicate error of expected value, and predicted value.

Goal: optimize parameters in such a way that it minimizes the error.
Problem: Gradient can only be evaluated locally.
Solution: Iteratively, add gradient (slope) until convergence.



Related Work (1)

- Elephas (https://github.com/maxpumperla/elephas):
- Fits requirements (Keras, Apache Spark). 
- Patched to work with Keras 1.0+, but testing indicates that it does 

not work on a cluster.
- Distributed gradient update is naive (but could not test).
- Does not support Spark 2.0, nor it supports Spark DataFrames.
- Not easily extendable to implement new algorithms with different 

communication protocols.

6

https://github.com/maxpumperla/elephas


Related Work (2)

- SparkNet (https://github.com/amplab/SparkNet)
  -   Built using Caffe
  -   TensorFlow supported
  -   A lot of freedom, but distributed optimizer needs to be
      implemented with every model.

- Deeplearning4j (http://deeplearning4j.org/spark)
- Java API
- Again, naive gradient update (averaging) 

7

https://github.com/amplab/SparkNet
http://deeplearning4j.org/spark


Main approaches

Source: Large scale distributed Deep Networks [1]
8

Model parallelism Data parallelism



Main approaches

Source: Large scale distributed Deep Networks [1]
9

Model parallelism Data parallelism



Architecture (1)

10

Spark Worker

Trainer

Keras model

Distribute trainer code to workers.

HDFS

Data

Trained model

Spark Worker ...



Spark Driver

Architecture (2)

11

Spark Cluster

Worker Worker Worker

Keras Keras Keras

Parameter Server

▽w, x ▽w, x ▽w, x



Architecture (3)

Source: github.com/JoeriHermans/dist-keras/blob/master/distkeras/distributed.py 12

   def train(self, data):

       self.start_service()  # Start parameter server

       worker = self.allocate_worker()

       numPartitions = data.rdd.getNumPartitions()

       if numPartitions > self.num_workers:

           data = data.coalesce(self.num_workers)

       else:

           data = data.repartition(self.num_workers)

       data.rdd.mapPartitionsWithIndex(worker.train).collect() # Train models

       self.stop_service()

Worker code as a Spark mapping function.



Advantages of using Apache Spark

- Scale out on cluster level (more cores, faster training).
- Spark will handle “bigger than memory” issue and parallelization. 
- Easy to provide compatibility with Spark API’s / Python:

- SparkSQL (DataFrames)
- Distributed preprocessing of dataset.
- Evaluation metrics.
- …

13



Experimental setup
- Evaluating EASGD [1] (Elastic Averaging SGD)
- 1 iteration over the training data (nb_epoch = 1)
- 24 trainers used when running EASGD
- Model: 380402 trainable parameters
- Data: only 250000 instances

- Training: 90% (variable)
- Test: 10%

- Evaluation criteria:
- Time
- Convergence
- Scaling 14



Spark Driver

EASGD

Worker

Keras

Parameter Server

1. Fetch center variable from PS.
2. Compute gradient based on data batch.
3. Send updated weights to PS.
4. New weights based on update rule.
5. Wait for other workers.
6. GOTO 1.Data Partition

Every worker gets its own partition of the data.



16

Higher is better

EASGD needs more data to converge, but achieves better model performance.



17

Outliers (loaded clusternode)

Lower is better

EASGD needs less time to converge.



18A lot of time is spent on the synchronization of the workers!



19

Higher is better



20

Can be improved by correcting inefficiencies regarding batch retrieval and batch size parameterization.



Summary

- Abstraction to easily experiment new distributed algorithms.
- Source code of framework is available as Open Source software.
- EASGD implemented and evaluated.
- Claims of paper are confirmed:

- Faster training.
- Eventual moder will have (slightly) better performance.

21



Future Work

- More experiments to understand scaling and convergence (10F-CV).
- Asynchronous algorithms
- Experiments with parameterization of EASGD.
- Other features requested by community?

22



References
- Large Scale Distributed Deep Networks. Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc 

V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang and Andrew Y. Ng. NIPS 2012. [1]

- Zhang, S., Choromanska, A. E., & LeCun, Y. (2015). Deep learning with elastic averaging SGD. In Advances in 
Neural Information Processing Systems (pp. 685-693). [2]

- https://github.com/JoeriHermans/dist-keras/ [3]

- SparkNet: Training Deep Networks in Spark. http://arxiv.org/pdf/1511.06051v4.pdf [4]

23

https://github.com/JoeriHermans/dist-keras/
https://github.com/JoeriHermans/dist-keras/
http://arxiv.org/pdf/1511.06051v4.pdf


Questions?

24



Appendices

25



26


